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ABSTRACT

Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic

framework, we estimate future ranges of carbon dioxide (CO2) emissions in order to follow three medium-high

mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by

allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical

processes to vary within widely accepted ranges. Results are then constrained by comparison against

contemporary measurements. For both constrained and unconstrained projections, our calculated allowable

emissions are close to the standard (harmonised) emission scenarios associatedwith these pathways. ForRCP4.5,

which is the most moderate scenario considered in terms of required emission abatement, then

after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO2 concentrations.

As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that

direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset

any minimum emissions for society to function (the ‘emissions floor’). Despite large uncertainties in the physical

and biogeochemical processes, constraints from model-observational comparisons support a high degree of

confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast

the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for

RCP2.6, the landwill turn into a carbon sourcewithin the 21st century, but the oceanwill remain as a carbon sink.

For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and

the Amazon basin even after atmospheric CO2 is stabilised, while for ocean carbon uptake, the tropical ocean

regions will be a source to the atmosphere, although uncertainties on this are large. The parameters which most

significantly affect the allowable emissions are aerosols and climate sensitivity, but some carbon-cycle related

parameters (e.g. maximum photosynthetic rate and respiration’s temperature dependency of vegetation) also

have significant effects. Parameter values are constrained by observation, and we found that the CO2 emission

data had a significant effect in constraining climate sensitivity and the magnitude of aerosol radiative forcing.

Keywords: climate-carbon cycle system, earth system model of intermediate complexity, parametric uncertainty,

observational constraints, allowable emissions, Representative Concentration Pathways

1. Introduction

Following the protocol of the Coupled Model Intercom-

parison Project Phase 5 (CMIP5), climate research centres

are running high resolution General Circulation Models

(GCMs), some of which contain carbon cycle components

and are called Earth System Models (ESMs), forced by

Representative Concentration Pathway (RCP) scenarios

(Meinshausen et al., 2011b). These prescribe atmospheric

gas concentrations. Studies now report allowable emissions

for single simulations by each ESM forced with such RCPs

(Arora et al., 2011; Hajima et al., 2012), and Jones et al.

(2013) summarise these allowable emissions for CMIP5

models. Jones et al. (2013) found that future projections

for RCP2.6 and RCP4.5 are consistent with Integrated

Assessment Model (IAM) estimates (the harmonised emis-

sion scenario), whilst for high end scenarios (RCP6.0 and

8.5) ESMs simulate smaller allowable (‘compatible’) emis-

sions than the IAMs.
*Corresponding author

email: tachiiri@jamstec.go.jp

Tellus B 2013. # 2013 K. Tachiiri et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0

Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided

the original work is properly cited.

1

Citation: Tellus B 2013, 65, 20586, http://dx.doi.org/10.3402/tellusb.v65i0.20586

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES B
CHEMICAL
AND PHYSICAL
METEOROLOGY 

(page number not for citation purpose)

http://www.tellusb.net/index.php/tellusb/article/view/20586
http://dx.doi.org/10.3402/tellusb.v65i0.20586


RCPs are concentration pathways and, therefore, for

those scenarioswe can calculate both allowable emission and

temperature rise for eachmodel. Allowable emissions are the

anthropogenic emissions that corresponds to a prescribed

atmospheric CO2 pathway (i.e. what humans are ‘allowed’ to

emit to achieve that pathway) and is equivalent to the sum of

the changes in air-, ocean- and land-borne carbon for the

given concentration pathway. As expected, these are model-

dependent and can vary from the MAGICC ‘harmonised’

values (Meinshausen et al., 2011b). Such variation can

depend on, for instance, alternative implicit climate sensitiv-

ities, varying depictions of the global carbon cycle and

carbon-cycle feedbacks in response to changing CO2 con-

centration or climate (Gregory et al., 2009). The CMIP5

integrations exhibit large differences, and thus, uncertainties

in physical and carbon cycle process representation (Arora

et al., 2013). An understanding of how such uncertainty

affects allowable emissions, and also temperature responses

to the RCPs, is important for future planning. However

given the massive computational requirement and long run

times, creating ensembles of full ESMs remains difficult.

Hence the limited number of CMIP5 integrationsmeans that

we need to rely additionally on other tools to assess the im-

plication of process uncertainty on allowable future emis-

sions. Many researchers (e.g. Lenton, 2000; Meinshausen

et al., 2011a, c) have made parameter perturbation experi-

ments with simpler global ‘box’ models, which provide

general information on climate evolution through use of

globally effective parameters.Whilst such studies can be very

informative, they may not inform on the intricate back-

ground mechanisms behind the change in global mean or

globally integrated values. Our solution to this problem is to

utilise a modelling structure that falls between the two

extremes. We use a Loosely Coupled Model (LCM, Tachiiri

et al., 2010). This model uses predictions from a fast Earth

system Model of Intermediate Complexity (EMIC) to scale

pre-computed climatic fields from an existing full GCM,

thus producing a large ensemble of three-dimensional

results. However each ensemble member, which has a

different parameterisation, requires only a fraction of the

computational cost of a full ESM simulation.

Here we use ensembles from the LCM to define the mag-

nitude and assess uncertainty in future allowable carbon

emissions for particular RCPs. These are the ‘benchmark’

concentration scenarios that have been developed (Moss

et al., 2010) for use by state-of-the-art climate models in

preparation for the forthcoming fifth IPCC Assessment

Report.We focus on themedium (Taylor et al., 2009) to high

mitigation (or low to medium-low emission) scenarios,

RCPs 2.6 and 4.5, including extensions to year 2300.

In addition, we also analyse SCP4.5 to 2.6, a supplementary

extension from RCP4.5. RCP4.5 assumes additional atmo-

spheric radiative forcing through anthropogenic activities to

increase to around 4.5 W/m2 by year 2120 and remains

constant thereafter, and of which most of this altered

radiative forcing is due to changed concentrations of atmo-

spheric CO2. RCP2.6 (sometimes called RCP-3PD) assumes

additional atmospheric radiative forcing of 3 W/m2 in the

peak period but then declines to 2.6W/m2 in 2100. SCP4.5 to

2.6 follows RCP4.5 until 2100 and then starts to approach

RCP2.6 to join that in 2250. For each RCP and SCP scenario

a baseline ‘harmonised’ emission scenario is available,

produced by a single model (MAGICC, Meinshausen

et al., 2011a, b, c) with a climate sensitivity of 3 K.

In this study, we present a consolidated framework that

captures uncertainty bounds in identifiable model para-

meters, and that are both consistent with the scientific

consensus presented by the last IPCC report and also

individually, based on expert opinion for each parameter.

Constraints, subject to caveats below, are provided using a

comprehensive set of contemporary and recent-past ob-

servations. It is these bounds and constraints that enable

the building of a probabilistic framework to assess allow-

able emissions and temperature rise with medium-to-high

mitigation scenarios. The recent paper by Bodman et al.

(2013) represents a major step forward in understanding

the implications of the global carbon cycle uncertainty on

future temperature rise, with a use of simple MAGICC

model and global temperature and CO2 observation. Here

we present the next logical step, constraining the climate-

carbon cycle model with a step-change increase in com-

plexity. Comparing our ensemble to a much wider use of

observational comparisons allows us to weight down less

credible model projections.

We present the model, scenario, parameter sets per-

turbed and observation data we use in Section 2. In Section

3 we show output of our ensemble members associated

with medium-to-high mitigation emission scenarios, mainly

in terms of allowable emission. The discussion, including

temperature response and also spatial distribution of the

land/ocean carbon storage, is in Section 4. The conclusions

follow in Section 5. Some methodological description is

also presented in an Appendix.

2. Methods

2.1. Model and experiments

The Japan Uncertainty Modelling Project � Loosely

Coupled Model (JUMP-LCM, Tachiiri et al., 2010) loosely

couples MIROC-lite (Oka et al., 2011) with the land

surface model Sim-CYCLE (Ito and Oikawa, 2002).

MIROC-lite is a simplified atmosphere�ocean coupled

model including a marine ecosystem component, and Sim-

CYCLE is driven by an archive of meteorological outputs

from a full GCM: MIROC3.2 medium resolution version

2 K. TACHIIRI ET AL.



(K-1 model developers, 2004). Together these mimic the

full ESM, MIROC3-ESM (called FRCGC in C4MIP,

Yoshikawa et al., 2008). JUMP-LCM is computationally

efficient, and it therefore allows massive ensembles to be

made across parameter ranges. Such parameter ranges

can be associated with a probability distribution, based

on expert opinion. Then in a further comparison to

contemporary measurements, this enables each ensemble

member to be prescribed an overall weighting. When all

members are combined, this gives a full probability

distribution for allowable emissions, and also for predicted

future temperature ranges. For each simulation and cor-

responding parameters, a long spin-up period to pre-

industrial conditions is performed to ensure a steady state

is achieved (3000 yr for MIROC-lite component and 2000

yr for Sim-CYCLE component). As the evolution of the

terrestrial and marine ecosystem carbon pools provide a

strong control on allowable anthropogenic emissions, for

the land surface we adopt a sophisticated model in full,

Sim-CYCLE.

To retain low computational expense, the land surface

component is also loosely coupled, and only passes back to

MIROC-lite yearly changes in carbon stocks. This lack of

full coupling does mean that other more regional types

of feedbacks, including effects of changed surface albedo

and evaporation due to modelled altered land surface

conditions, are not presently captured in this system. The

influence of land use change on the carbon cycle is also

treated relatively simply. Sim-CYCLE does not have an

explicit pasture functional type, so we treat this as the

same as cropland, tuning its parameterisation so that the

resultant net land use emission is consistent with estimated

values (Fig. 1 of Houghton et al., 2012). Albedo change due

to land surface change is included in the radiative forcing

data in the RCP scenarios.

Our ensemble contained 512 simulations. The para-

meters selected are generated using a Latin hypercube,

based on the parameter bounds of Table 1, and so that

there is minimised correlation between the parameters.

Initially all parameter perturbations (Table 1) are assumed

to have probabilities from a uniform distribution. How-

ever, a uniform distribution in climate sensitivity is known

not to be realistic (Annan and Hargreaves, 2009). Hence

we adopt probability distributions for climate sensitivity

and aerosol-derived radiative forcing based on the fourth

IPCC Assessment Report (AR4) (Forster et al., 2007;

Hegerl et al., 2007). Thus we use non-flat priors for these

parameters. It should be noted that other radiative forcings

than aerosol, e.g. GHGs and land-cover change albedo, are

not varied in this study. Detail of the priors for climate

sensitivity and aerosol forcing are given in Appendix A;

how we determined the parameter perturbation ranges are

in Appendix B and a description of these parameters is

given in Appendix C.

2.2. Scenario and data

Representation concentration pathways 2.6 and 4.5

(Meinshausen et al., 2011b), and SCP4.5 to 2.6, a supple-

mentary overshoot extension relaxing back from RCP4.5

to RCP2.6, are used to force the JUMP-LCM model-

ling system. We make ensembles of simulations from

modelled year of 1850 (taken as representative of preindus-

trial times) through to year 2300. The non-CO2 forcing,

including the effects of other greenhouse gases, tropo-

spheric/stratospheric aerosols and the variation of the solar

activity, is prescribed as radiative forcing (http://www.pik-

potsdam.de/�mmalte/rcps/). The scenarios’ names are de-

rived from the implied 2100 radiative forcing of either 2.6 or

4.5 W/m2 (arising from combined CO2 and non-CO2) of the

underlying IAM used to develop this scenario. The land use

data is from http://luh.umd.edu/. The land use scenario of

SCP4.5 to 2.6 is common with RCP4.5.

Each ensemble simulation is then weighted using a set of

eight key observations (Table 2) related to global thermal

properties of the Earth system and the carbon cycle. This

weighting creates a set of ‘constrained’ predictions, which

are the same simulations but with revised probabilities.

Some historical data will have influenced the develop-

ment of the prior ranges of parameters we adopt in our

unconstrained ensemble. As such there is a risk of some

over-confidence resulting from a double-counting of data.

Despite this caveat, it is important to assess the influence

that additional contemporary measurements may have on

the probabilities assigned to our ensemble. For the detail

of the data and the method used for ensemble constraint,

see Appendix D.

3. Global allowable emissions

3.1. Allowable emissions

Figure 1 shows the allowable fossil-fuel emissions of each

year for RCP2.6 (a, d), RCP4.5 (b, e) and SCP4.5 to 2.6

(c, f). For both unconstrained (left panels) and constrained

(right panels) projections, we find that the magnitude of

ensemble mean allowable emissions (black curve) are close

to that given by the harmonised RCP emission scenario

(red curve); the latter generally lies within the modelled

distribution in both cases. To follow the prescribed CO2

concentrations of the medium-to-high mitigation scenarios,

for all simulations the emissions must peak roughly in the

middle of this century, and then decline rapidly thereafter.

There is a strong chance that RCP2.6 and almost cer-

tainty that SCP4.5 to 2.6 requires negative emissions
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approximately after year 2070 (RCP2.6) or 2120 (SCP4.5

to 2.6). In particular SCP4.5 to 2.6 requires large negative

carbon emissions reaching up to approximately �5 PgC/yr.

For all scenarios, the uncertainty is reduced by obser-

vational constraints, but this reduction is less so after

stabilisation is achieved.
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(d) RCP2.6 (constrained)
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(b) RCP4.5 (unconstrained)
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(e) RCP4.5 (constrained)
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(c) SCP4.5 to 2.6 (unconstrained)
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(f) SCP4.5 to 2.6 (constrained)

Fig. 1. Time series of allowable annual fossil fuel emissions for period 1850�2300.
RCP2.6 (a), RCP4.5 (b) and SCP4.5 to 2.6 (c). The black curve is the ensemble mean, and the dark and light grey shades correspond to

68 (16�84 percentile) and 90 (5�95 percentile)% ranges respectively. The blue curve is the historical estimates of emissions (Carbon Dioxide

Information Analysis Center: http://cdiac.ornl.gov/ftp/ndp030/global.1751_2009.ems). The red curves are harmonised RCP emissions

(derived from MAGICC, documented in Meinshausen et al., 2011a). (d)�(f) are same as (a)�(c) but now for our constrained set of

simulations using the eight observed datasets in Table 2.
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Table 1. Parameters perturbed in this study and the ranges considered

Parameter Component Default Perturbation range

Climate sensitivity Atmosphere 4.7 [b] 1�6 K$

Vertical diffusivity Ocean 0.1�3.0 cm2/sec* 0.3�3.0�default

Horizontal diffusivity Ocean 1�107 cm2/sec 0.5�5.0�default

Gent-McWilliams thickness parameter [a] Ocean 7�106 cm2/sec 1�20�106 cm2 s�1

Magnitude of freshwater flux adjustment Ocean 1.0 (ratio to the values by [c]) 0.5�2.0
Wind speed used in marine CO2 uptake Marine carbon 3.3 m/s [b] 2.0�8.0 m/s

Maximum photosynthetic rate Land carbon 8.0�13.5 mmolCO2/(m
2s)** 0.8�3.0�default

Specific leaf area Land carbon 110�170 cm2/(g drymatter)** 0.5�2.5�default

Minimum temperature for photosynthesis Land carbon �5.0�11.08C** �4.5��3.08C of default

Coefficient for temperature dependency of plant’s respiration Land carbon 2.0 (dimensionless) 1.5�3.0
A parameter of temperature dependency of soil respiration Land carbon 46.02 K 35�55 K

Total aerosol forcing Forcing (RCPs) 0.0�3.0�RCPs$$

Parameters perturbed and where the symbols are: * and **: depth- and biome-dependent. $initially in a uniform distribution, and then

weighted with a beta function (Appendix A1). $$Weighted with combination of two Gaussian functions (Appendix A2).

[a]: Gent and McWilliams (1990).

[b]: Tachiiri et al. (2010).

[c]: Oort (1983).

Table 2. Observation data used for constraint of simulations

No. Variables (Average 9) SD Assumed distribution EES* Reference

1 Trend of global mean air

surface temperature

(1906�2005)

0.7490.11** (K/100 yr) T 86 Trenberth et al.

(2007)

2 Trend of ocean heat content

for 0�700 m depth

(1969�2003)

0.3290.05 (1022 J/yr) T 58 [a]

3 Historical fossil fuel

emission*** (1980�2008)
5.590.3 for 1980s,

6.490.4 for 1990s,

7.790.4 for 2000�8 (PgC/yr)

geometric mean of

Gaussian weights for

3 periods

223 (RCP4.5/SCP) Le Quéré et al.

(2009)

4 Net Primary Production

(1961�90, spatial 2D)

363 (gC/m2 yr1)$ Gaussian 382 Zheng et al. (2003)

5 Atlantic meridional

overturning circulation

(after spinup for 1850)

1792.5 (Sv) Gaussian 220 [b]

6 Present air surface

temperature (mean for

1968�96, spatial 2D)

21.8 (K)$ Gaussian 512 Kistler et al. (2001)

7 Present sea temperature

(mean for 1990�97,
spatial 3D)

11.1$/5.9$/1.9$/1.1$ (K)$$ geometric mean of

Gaussian weights for

4 layers

485 NODC_WOA98

8 Present sea salinity

(mean for 1990�97,
spatial 3D)

1.5$/0.58$/0.27$/0.17$ (psu)$$ geometric mean of

Gaussian weights for

4 layers

510 NODC_WOA98

9 All variables � Product of 1�8 10 �

The symbols in the tables are:

*Effective ensemble size (EES) calculated as S(weights)/S(weights)2. EES becomes large when the weights are equally distributed across

many members, and small when weights are concentrated on small numbers of members. **0.18 for 90% confidence level. ***Compared

with the model’s allowable emission for these periods. $These SD values are used to calculate the weight similar to CPI (Murphy et al.,

2004). $$The values are SDs for 0�50/50�600/600�2000/2000�5500 m.

[a]: Domingues et al. (2008); Levitus et al. (2009); Ishii and Kimoto (2009).

[b]: Smethie Jr. and Fine (2001); Ganachaud (2003); Talley et al. (2003); Lumpkin and Speer (2010).
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Figure 2 shows the time series of cumulative allowable

carbon emissions. Except for the later times of RCP2.6

and SCP4.5 to 2.6, the ensemble mean of the calculated

cumulative historical emissions (black curve) is slightly

smaller than the harmonised emission scenarios (red curve)

of RCP2.6 (van Vuuren et al., 2007), RCP4.5 (Smith and

(b) RCP4.5 (unconstrained)
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(c) SCP4.5 to 2.6 (unconstrained)
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(f) SCP4.5 to 2.6 (constrained)
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(e) RCP4.5 (constrained)
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(a) RCP2.6 (unconstrained)
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(d) RCP2.6 (constrained)

Fig. 2. Time series of cumulative allowable emissions for period 1850�2300.
RCP2.6 (a), RCP4.5 (b) and SCP4.5 to 2.6 (c). The black curve is the ensemble mean, and the dark and light grey shades correspond to

68 (16�84 percentile) and 90 (5�95 percentile)% ranges respectively. The blue curve is the historical estimates of emissions (Carbon Dioxide

Information Analysis Center: http://cdiac.ornl.gov/ftp/ndp030/global.1751_2009.ems). The red curves are harmonised RCP emissions

(derived from MAGICC, documented in Meinshausen et al., 2011a). (d)�(f) are same as (a)�(c) but now for our constrained set of

simulations using the eight observed datasets in Table 2.
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Wigley, 2006; Clarke et al., 2007; Wise et al., 2009) and

SCP4.5 to 2.6. It is, however, consistent with our ensemble

uncertainty range. Uncertainty is reduced by observational

constraints for all scenarios.

Table 3 shows a comparison of cumulative emissions for

RCPs 2.6 and 4.5 with the harmonised emission scenario

(IAM) and CMIP5 models (Jones et al., 2013). Our results

are consistent with the past (and IAM) emission and

slightly smaller than IAM in the future both for RCPs 2.6

and 4.5. Our study, having a large number of ensemble

members, includes extreme members and hence has large

min-max ranges. However, the standard deviation is com-

parable (unconstrained case) with or 40% smaller (con-

strained case) than CMIP5 models. The uncertainty ranges

include the IAM value. Table 4 shows a comparison of the

emission reduction required to follow RCP2.6 for CMIP5

(Jones et al., 2013) and our study. Unlike CMIP5 models,

our ensemble mean allowable emission in 2050s is sig-

nificantly smaller than that of IAM (although large

uncertainty ranges similar to CMIP5 models include the

IAM value). This has potentially major policy impli-

cations. In our experiment, a larger reduction is required

in 2050s relative to in 1990s to follow RCP2.6 pathway

in comparison to the mean of the CMIP5 models and

IAM.

3.2. Probability of the requirement for prolonged use

of negative emissions

Figure 1 suggests that in order to achieve the RCP4.5

profile, the lowest mitigation scenario we consider, emis-

sions are still required to be very low from 2100 onwards,

and there is a non-trivial probability that negative global

CO2 emissions will be required both in the unconstrained

and the constrained ensembles. After the late 22nd century,

even the ensemble mean indicates a very low emissions

rate of just 1.3 or 1.2 PgC/yr (unconstrained and con-

strained simulations for RCP4.5 respectively). Eliminating

all anthropogenic emissions might prove difficult if burn-

ing of fossil fuels is needed to maintain food and water

security, and this minimum level of emissions is sometimes

termed the ‘emissions floor’ (Bowerman et al., 2011;

Huntingford et al., 2012).

In Fig. 3, we present cumulative probabilities of average

allowable emissions during the period 2151�2200 being

less than different thresholds, and including negative global

emissions. As can also be inferred from inspection of

Fig. 1, for this period the cumulative probability curves

are quite different between our unconstrained simulations

(black curve) and constrained simulations (red curve).

The red curves generally show larger probability changes

for the same change in allowable emissions, consistent

with uncertainty reduction. Almost all members require

negative emission to follow the much higher mitigation

scenario of RCP2.6 (Fig. 3a), and for SCP4.5 to 2.6 all

members are required to have emissions of �2 PgC/yr or

less to follow the pathway (Fig. 3c), indicating that, as

expected, to follow them is far more difficult than to

remain on RCP4.5. The median values are at �0.4, 1.5

and �4.7 PgC/yr for the unconstrained simulations,

and for RCP2.6, RCP4.5 and SCP4.5 to 2.6, respectively.

For the constrained simulations, these numbers become

respectively �0.4, 1.6 and �4.4 PgC/yr. It should be

noted that these are net emissions, and that with emission

floors of 2 PgC/yr (for instance), �0.4 PgC/yr net will

turn out to be �2.4 PgC/yr. To follow SCP4.5 to 2.6 net

Table 3. Comparison of cumulative fossil fuel emission with CMIP5 models

CMIP5 models* Our result**

Unit: PgC Obs/IAM* mean9s min�max range mean9s min to max range

Historical 313 303961 194�394 314975 �77 to 577

320939

RCP2.6 325 3229106 189�469 2829103 �348 to 522

2006�2100 291963

RCP4.5 786 8319155 194�394 7389173 �2.2 to 1199

2006�2100 728982

*Jones et al. (2013), **upper: unconstrained, lower: constrained.

Table 4. Allowable fossil-fuel emissions for 1990s and 2050s for

RCP2.6

Model

1990s emissions

(PgC/yr)

2050s emissions

(PgC/yr)

%

reduction

CMIP5* 5.7690.8 2.9291.8 50

Our study** 6.0191.3 1.7991.7 70

6.5890.6 1.5791.4 76

IAM*** 6.35 2.39 62

Historical**** 6.490.4

*Jones et al. (2013), **upper: unconstrained, lower: constrained,

***van Vuuren et al. (2007), ****Le Quéré et al. (2009).
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emissions of less than �4 PgC/yr are needed in many

cases. This emphasises that the costs involved with later

transition to a low concentration target are likely to be far

higher during that transition period. Additionally, a period

of carbon capture and storage that is of far higher

magnitude than those involved in earlier transitions will

be needed.

3.3. Influence of the parameters on temperature

trends and allowable emissions

The relationship between the model parameters varied

and the cumulative allowable emissions for 1850�2300
are presented in Fig. 4. The individual plots correspond to

the 12 parameters presented in Table 1, which is the full set

of parameters varied. For RCP4.5 and SCP4.5 to 2.6 the

most influential parameter is climate sensitivity (black and

blue in Fig. 4, Panel 1), while for RCP2.6 the aerosol (red,

Panel 12) has slightly more correlation with cumulative

emission. The correlation values are presented as colour-

coded numbers in each panel. All parameters except the

horizontal diffusivity of oceans and the coefficient of

freshwater flux have effects, with 99% level significance

(three ‘stars’), for cumulative allowable emissions for

RCP4.5. From these, the soil respiration parameter has

weaker influence in RCP2.6 and SCP4.5 to 2.6, the

scenarios with less global warming.

It is noticeable that besides the physical parameters,

variation in the carbon-cycle-related parameters also make

substantial contributions to altered estimates of allowable

emissions. In some instances, the biogeochemical para-

meters have what appears initially to be a counter-intuitive

influence. For example, higher maximum photosynthetic

rate might suggest larger CO2-draw-down and therefore

higher allowable emissions, whereas Fig. 4 (Panel 7)

suggests the opposite. This is likely because higher photo-

synthesis rates implies more terrestrial carbon stored on the

ground for pre-industrial times, and so more terrestrial

carbon becomes available for release to the atmosphere at

higher temperatures. Also, as indicated in Tachiiri et al.

(2012), once atmospheric concentrations of around 550

ppm are reached, then the high maximum photosynthetic

rate constrains the photosynthesis through the effect of

stomatal conductance, whereas at lower CO2 concentra-

tions that effect is less significant.

4. Other related outputs and discussion

4.1. Future temperature rise and related issues

In Fig. 5, we present the spread of temperatures calcu-

lated in our ensemble for the different RCPs, and in the

unconstrained and constrained cases. At year 2100, for

RCPs, the average warming (black curves) is close to

(unconstrained case) or slightly higher than (constrained

case) that obtained from MAGICC harmonised calcula-

tions (Meinshausen et al., 2011c). For RCP2.6, we find

the headline result that 89% of the ensemble members

remain below the often-discussed 2K increase threshold.

Unlike for allowable emissions, for all scenarios tempera-

ture uncertainty is not reduced by the observational

constraint.

Allen et al. (2009), Matthews et al. (2009) andMeinshausen

et al. (2009) suggested the ratio of temperature rise (dT)

and cumulative carbon emission (CE) keeps nearly constant

due to the cancellation of two opposing nonlinear effects,

airborne fraction and temperature rise for atmospheric

CO2 concentration (Raupach, 2013), and Matthews et al.

(2009) call it Carbon Climate Response (CCR). Figure 6

presents the CCR, and also CA/CE (airborne fraction, CA:

airborne carbon) and dT/CA (left-to-right) and for each

scenario (top-to-bottom). In these simulations we also

find that CCR keeps nearly constant by cancellation of

the decreasing trend in CA/CE and the increasing trend

in dT/CA.
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Fig. 3. The cumulative probability distribution for allowable emission thresholds when averaged over the period of years 2151�2200.
RCP2.6 (a), RCP4.5 (b) and SCP4.5 to 2.6 (c). The cumulative probability of these mean emissions being less than each threshold presented

on the x-axis. Presented are the weighted probability for the unconstrained (black curve), and constrained ensembles using all variables in

Table 2 (red curve).
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Fig. 4. Relationship between the cumulative allowable emission (1850�2300) and variation in different parameter values.

RCP2.6 (red), RCP4.5 (black) and SCP4.5 to 2.6 (blue). Panels (1)�(12) are in the same order as Table 1. Numbers in plot areas are

coefficients of correlation to parameter values (*/**/*** mean statistically significant at 90/95/99% levels). Plotted are the 512 members.
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Figure 7a, b shows the influence of climate sensitivity

and aerosol forcing on the trend in the global mean surface

air temperature (TA trend). Figure 7a shows the interesting

result that TA trend is not an effective constraint for

climate sensitivity. However, in Fig. 7b, aerosol forcing has

very strong effect on the TA trend. Figure 7c shows that all
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Fig. 5. Time series of global mean surface air temperature for period 1850�2300.
RCP2.6 (a), RCP4.5 (b) and SCP4.5 to 2.6 (c). The black curve is the ensemble mean, and the dark and light grey shades

correspond to 68 (16�84 percentile) and 90 (5�95 percentile)% ranges respectively. The blue curve is the HadCRUT3 data (Brohan

et al., 2006). Anomalies are from average of 1980�1999, and the horizontal magenta line is 2 K increase from the preindustrial (here

average of 1850�1869). (d)�(f) are same as (a)�(c) but now for our constrained set of simulations using the eight observed datasets

in Table 2.
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ensemble members of very low climate sensitivity (less than

1.5 K) have a large error in predicting historical tempera-

ture trend, implying that the real Earth system is less likely

to have such a very low climate sensitivity. Figure 7d and e

show how climate sensitivity and aerosol forcing are

constrained by observation (transition from black curves

to red curves). Figure 7d shows that for a distribution for

climate sensitivity calculated based on weightings when

using observational constraints (red curves), then this

causes the peak of the distribution for climate sensitivity

to be shifted to higher values between 4 and 5 K. This

compares to the unconstrained-based distribution (black

curve), that peaks at 3 K. We note that when we constrain

our simulations with constraints from Table 2, but not

using the historical fossil fuel record, then a much higher

possibility remains of low climate sensitivity in tandem with

small negative aerosol forcing. However inclusion of the

fossil fuel emission record as a constraint, for our family of

simulations, generally removes this possibility. It is still

clearly not sufficient for very robust conclusions to be

drawn about the tails of the distribution, even though the

effective ensemble size of 10 (Table 2) is similar to ensemble

sizes typical of the multi-model ensembles. Figure 7e, for

aerosol forcing, shows in contrast how the comparison

against observations, i.e. constrained ensemble, yields a sig-

nificantly altered distribution shape. This focuses aerosol

forcing almost exclusively to between �1.5 and �1.0 W/m2

for 1850�2005. This is mainly the result of constraint by

ocean heat content and by TA trends. We suggest that

the main reason for our stronger constraint on aerosol
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Fig. 6. Carbon Climate Response.

RCP2.6 (a�c), RCP4.5 (d�f) and SCP4.5 to 2.6 (g�i). The left (a, d, g), the central (b, e, h) and right (c, f, i) columns show Carbon Climate

Response (ratio of temperature rise, dT, and cumulative emission (CE), ratio of CA (airborne carbon) and CE (i.e. airborne fraction) and

dT/CA, respectively. Black and red lines are the unconstrained and the constrained ensemble average.
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radiative forcing, in comparison to that of for instance

Harris et al. (2013), is through our use of multiple

observation data. Our ability to tightly constrain the

magnitude of the aerosol forcing with our model structure

and comprehensive datasets is of very general interest to

those analysing the climate system. To fully understand

even contemporary warming implications of raised atmos-

pheric greenhouse gas concentrations is difficult, in part

due to uncertainty in the magnitude of offsetting cooling

through raised aerosol concentrations. Our analysis has

the potential to remove much of this difficulty. Effects of

observational constraints on all parameters are presented in

Appendix E.

4.2. Land and ocean carbon uptake and spatial

distribution

Figure 8 shows changes in global land and carbon storage

(after constraint). The land becomes a carbon source in the

near future for the major part of the ensemble [it should

be noted, however, that the sensitivity of the land-borne

carbon to the climate is around 20% higher in our model

than the mean of the C4MIP models (gL in Appendix B)].

The ocean remains as a carbon sink for RCPs 2.6 and 4.5,

but actually changes in to a carbon source in mid 22nd

century for SCP4.5 to 2.6.

The spatial resolving capability of our EMIC allows

more elucidation of expected regional changes in carbon

storage. Maps of land carbon uptake, for the constrained

data for RCP4.5 and its associated uncertainty are pre-

sented in Fig. 9 (see Fig. F1 in Appendix for other two

scenarios). For the change over period 2010�2100, on

average, the Amazon is a major carbon source whilst most

of other regions stay as net sinks (Fig. 9a). In the period

2100�2300, on average, the Amazon continues to be a

source, whilst the northern high latitudes also become a

large carbon source; only limited areas are net sink for

the ensemble mean (Fig. 9b). This causes a net carbon
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Fig. 7. The dependence of temperature trend (warming between years 1906 to 2005), plotted against (a) climate sensitivity, (b)

uncertainty in aerosol forcing. Also plotted, (c) is the cost (errors defined as absolute value of the difference) in TA trend vs climate

sensitivity. Plotted are all of the 512 members. (d) and (e) are prior and posterior of climate sensitivity and aerosol forcing, in which black:

unconstrained, red: constrained. Plotted are probabilities for bins of 0.1 K (d) and 0.5 W/m2 (e) width.
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loss by global land ecosystems, and hence explains the

very small allowable emission in that period. However

across our ensemble, most regions actually have greater

uncertainty in terrestrial carbon store changes than the

absolute values of the ensemble mean average. This is true

both for 2010�2100 and 2100�2300 (Fig. 9c, d). Similar

results are seen for the other scenarios too (Fig. F1 in

Appendix).

Figure 10 presents the same panels as Fig. 9, but for

oceanic changes to carbon stocks (see Fig. F2 for RCP2.6

and RCP4.5 to 2.6). In 2010�2100 (Fig. 10a), carbon

uptake by the ocean is positive with magnitude of
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Fig. 8. Land and ocean carbon storage.

(a)�(c) are change in land carbon storage after constraint for RCP2.6, RCP4.5 and SCP4.5 to 2.6, respectively, and where a positive value

implies a gain in carbon. The dark and light grey shades correspond to 68 (16�84 percentile) and 90 (5�95 percentile)% ranges respectively.

(d)�(f) are change in ocean carbon storage for the scenarios.

ALLOWABLE CARBON EMISSIONS IN DIFFERING PARAMETERS 13



0�30 MgC/ha in most regions, and with larger magnitudes

in the Southern Ocean and northern North Atlantic.

Although there are some negative values in some equatorial

regions, the positive uptake in most regions results in an

overall global positive draw-down of atmospheric CO2. In

the period 2100�2300 (Fig. 10b), the regions with nega-

tive values expand, which is cancelled with high-latitudes

having large positive values, and as such, globally the

ocean remains a net sink of carbon, although reduced in

magnitude compared to the earlier period. The relative

uncertainty (SD/average) is larger in the equatorial regions

in 2010�2100 (Fig. 10c) and such regions are expanded in

the stabilised 2100�2300 period (Fig. 10d).

4.3. Notes on ensemble weights

The constraints to get the posterior (i.e. constrained)

probability distributions are made by comparing different

global sets of observations against outputs from our

simulation ensemble. However, we do recognise that the

parameter bounds and the global observations might not

be completely independent, as expert judgment of model

parameters may have been tuned implicitly considering

some of the observations that we also use to weight our

model simulations. That is, earlier understanding of the

climate system implicit in the expert judgment of parameter

ranges adopted in our Table 1 may have been informed

to some extent by the observed values in our Table 2. We

suggest that this might be in part why the use of constraints

via the data of Table 2 did not reduce uncertainty in our

predictions for global temperature change for each path-

way as might have been expected.

The choice of weighting function (see Table 2 and

Appendix D for the functions used in this study) also

influences the result, but the main conclusion that the

uncertainty in allowable emission, in particular before

stabilisation, is decreased by the application of observa-

tional constraints will be robust for wide range of possible
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Fig. 9. Spatial distribution of the land carbon uptake.

Panel (a) is the weighted mean of land carbon uptake between 2010�2100 (i.e. year 2100 values minus year 2010 values), and (b) is land

carbon uptake in 2100�2300. After constraint. Then panels (c) and (d) are relative uncertainty across the ensemble, calculated as SD/

average in (a) and (b) respectively, presenting the extent of the consistency in the sign of change. When jSD/averagejB1, the sign of the

change is considered be robust (note that the sign of jSD/averagej simply presents that of average, as SD is always positive). Few grids are

of robust signs for the change in 2010�2100, and even fewer grids are so in 2100�2300.
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weighting functions. More discussion on ensemble weights

is in Appendix G.

5. Conclusion

We have presented, possibly as a first of its kind, a large

ensemble (order hundreds) of targeted perturbed-physics

and perturbed-biogeochemical simulations, all with a cli-

mate model of significantly more complexity than a single

point ‘box’ description. Parameter values defining key

quantities known to affect both the climate system and

the global carbon cycle have been selected to cover ranges

based on present expert opinion. The parameter value

ranges are also tested to ensure that we cover ranges

implied by multiple climate modelling centres, which may

also be regarded as a form of inclusion of existing opinion.

Our EMIC ensemble, operating with such parameter

perturbation, has then been used to estimate, with un-

certainty bounds, allowable emissions associated with the

low to medium-low atmospheric concentration (medium-

high mitigation) pathways: RCP2.6, RCP4.5 and SCP4.5

to 2.6. We then take these simulations, and use a com-

prehensive set of contemporary measurements to assess the

influence that additional data may exert on the ensemble,

entrained in a way only possible with a geographically-

resolving model system. This allows refined probabilities to

be associated with each ensemble member, referred to as

the ‘constrained’ ensemble.

Our findings are as follows. For both constrained and

unconstrained projections, the mean of our spread of

allowable CO2 emissions is close to the standard ‘harmo-

nised’ emission scenarios associated with each RCP.

Further, our spread of allowable cumulative emissions is

consistent with CMIP5 models (Jones et al., 2013). By

applying the constraints of Table 2, we find that the

uncertainty in allowable emissions reduces from being of

similar magnitude to CMIP5, down to time-evolving ranges

approximately 40% smaller over the period years 2006

to 2100. However, the influence of the observational

comparison places less constraint on the range of allow-

able emissions for the period after climate stabilisation.

Additionally there is a possibility that negative net emis-

sions are eventually required and even to follow the

RCP4.5 scenario. This is despite RCP4.5 being the most

moderate scenario in terms of mitigation that we consider

here. Negative emissions would imply a global requirement
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Fig. 10. Spatial distribution of the ocean carbon uptake (a): For 2010�2100, (b): 2100�2300, (c)(d): relative uncertainty (standard

deviation/average). After constraint.
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for large-scale carbon capture and storage, most likely in

addition to deep cuts in emissions. As expected, heavier

mitigation scenarios of RCP2.6 and SCP4.5 to 2.6 require

harsher emission reductions. In particular, to follow a

later transition to RCP2.6 concentrations (SCP4.5 to

2.6), a low (negative) emissions reaching approximately

�5 PgC/yr will be required. Possible negative emissions

are predicted in part because, for many parameter sets,

the land will turn into a carbon source within the 21st

century. In most instances the ocean, however and

when considered globally, is predicted to remain as a

sink of atmospheric carbon dioxide in all simulations

except for the period with a strong overshoot in CO2

concentration in SCP4.5 to 2.6. Whilst the detail of the

distribution, such as tail, can be influenced by sampling

and weighting methods, these general results are expected

to be robust.

Of the parameters varied, climate sensitivity has the

most significant impact on allowable emissions for RCP4.5

and SCP4.5 to 2.6, while for RCP2.6 aerosol forcing is

most effective. This demonstrates the importance of

thermal climate-change feedbacks on the land and ocean

stores of carbon, altering their ability to ‘draw-down’ (or

otherwise) atmospheric CO2. As might be expected, some

more direct carbon-cycle related parameters also have a

significant effect on allowable emissions. We have been

able to investigate this further, as our EMIC allows for

the provision of geographical information. We find that

eventually both the Amazon and northern high latitude

(of land) show significant carbon release back in to the

atmosphere, while the Southern Ocean and northern

North Atlantic generally have very strong levels of carbon

uptake.

In our study, distributions of global mean temperature

rise are also calculated across the unconstrained and

constrained ensembles, and again corresponding to the

three RCP pathways we have analysed. However, unlike

where we could use the emission observation to refine

allowable emissions, the trade-off between climate sen-

sitivity and aerosol forcing in our study period still

prevented us from achieving a reduced spread in predicted

levels of future global warming � aerosol radiative forcing

is effectively constrained, but not enough to narrow the

distribution of climate sensitivity. It is also possible

that more detailed constraints on carbon cycle can sig-

nificantly change the distribution of the constrained climate

sensitivity.

The careful fusion of models with data is critical to en-

hancing understanding of the climate system, and including

explanation of contemporary and past observations. How-

ever for planning purposes, of more importance is that such

activity aids in making future predictions more robust.

When performed in tandem with ensembles of simulations,

it can at the minimum provide probabilistic estimates of

future change as demanded by policymakers. However

until now, computational requirement has made it extre-

mely difficult to make ensembles of more complex climate

models, preventing the entrainment of emerging datasets

that might have strong regional differences. The techniques

reported here are a significant step towards eventual

ensemble operation of full complexity climate models (i.e.

even higher complexity and resolution than our EMIC),

especially as even more computational resource becomes

available and including the potential use of cloud comput-

ing services (Huntingford, 2013). This will then allow, for

instance, a rigorous depiction of the spatially very hetero-

geneous sulphate forcing, and its uncertainties which are

known to be large (Forster et al., 2007).

We have presented allowable emissions implications for

three key medium-to-high mitigation RCP trajectories of

future altered atmospheric gas concentrations. To achieve

the atmospheric concentrations of these scenarios, CO2

emissions must peak soon before major on-going reduc-

tions. This is as expected, but here presented with a full

representation of uncertainty. However, despite the use of

contemporary measurements to constrain simulations fur-

ther and thus beyond the expert-opinion bounds on key

parameters, our uncertainty bounds on levels of warming

for all scenarios considered do remain larger than is ideal

for policy planning purposes. Hence we look forward to

repeating these analyses at a future date with a higher-

resolution model and slightly longer datasets, and to see the

influence this might have on ensemble temperature spread.

Our results have been possible using an ensemble modelling

structure with a systematic mechanism to routinely entrain

emerging datasets. Some of these datasets are of com-

plexity levels that cannot be entrained in to global ‘box’

formulations. We hope this analysis is a first step towards

providing routine and significantly more refined uncer-

tainty bounds around policy-specific climate change ques-

tions with the benefits that more complex climate models

provide.
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Appendix

A: Parameters with non-flat priors

A1 Climate sensitivity

Multiple studies have categorised the available estimates

of climate sensitivity, as this is a fundamental parameter

to characterise global warming. In most instances, any

distribution from across-model ensembles has been found

to be asymmetric. Hence it is not possible to rule out

quite high values (sometimes called the ‘‘fat upper tail’’). In

order to consider a more realistic probability density

function (PDF) for climate sensitivity than a uniform

one, we adopt a beta function. This has an asymmetric

shape and is easy to define, with only two parameters.

This is used to represent the prior. The definition of a beta

function is:

Bðx; yÞ ¼
Z1

0

tx�1ð1� tÞy�1
dt

and when it is used as a PDF in variable x (here climate

sensitivity), it is given as:

f ðx; a; bÞ ¼ 1

Bða; bÞ
xa�1ð1� xÞb�1

We fitted this to the IPCC AR4’s ‘‘likely’’ (i.e. of 66% con-

fidence) range of 2�4.58C, thus we use the parameters

B(1.8,2.2) which actually gives positive numbers over range

1�68C (Fig. A1 and A2). This results in a distribution

which is maximised at around 38C and which assigns

roughly 15% probability to the sensitivity lying outside

either end of the IPCC likely range, resulting that 69% is

between 2 and 4.5 K.

A2 Aerosol

In Hegerl et al. (2007), the total (direct and indirect) aero-

sol effect is �3.00 to 0.00 W/m2 for 1750�2005. In the

forcing for the past associated with RCP scenarios, aerosol

forcing for 1765�2005 and for 1850�2005 is about �1.1

W/m2 and �1.0 W/m2. In this study, by multiplying with

0�3, the aerosol forcing for 1850�2005 is perturbed as

�3.0�0.0 W/m2.

To mimic the PDF of Hegerl et al. (2007), we use a com-

bination of two Gaussian functions: N(�1.1,0.642)�1.29

for �35RF5�1.1 (W/m2) and N(�1.1, 0.342)�0.69

for �1.1BRF50 (W/m2) (where RF is radiative forcing,

and the coefficients are determined to have the two func-

tions connected at �1.1, and to make the integral to be 1).

Although Hegerl et al. (2007) provide quantitative infor-

mation only for the sum of the aerosol’s direct and the first

kind indirect (i.e. cloud albedo) effects, there are many

other kinds of indirect effects (Lohmann and Feichter,

2005), such as cloud lifetime effect which is often called the

second kind of indirect effect. The total shortwave aerosol

forcing is estimated to be �1.590.5 Wm2 or �1.290.4

Wm2 by two different methods (Quaas et al., 2009) and the

latter is close to a recent estimate (�1.17 Wm2; �0.74 to

�1.44 Wm2) by Shindell et al. (2013). Although we use the

prior distribution based on the direct and the first indirect

aerosol effects, it should be interpreted that the posterior

distribution after observational constraint gives that of the

total (i.e. including direct and all kinds of indirect) aerosol

forcing.

B: The basis of the parametric uncertainty explored

using JUMP-LCM

Recent work by Yokohata et al. (2011) analysed the

CMIP3 multi-model ensemble and found the ensemble

has plausible range, which gives us reason to hope that

existing ESMs, developed by similar model centres and

having common or similar physics with CMIP3 models,

also give plausible ranges in their future dispersion. We

use such a multi-model ensemble (the Coupled Carbon

Fig. A1. The beta distribution with values B(1.8, 2.2), used

to represent the asymmetric climate sensitivity’s probability

distribution.

Fig. A2. The distribution of aerosol represented using a

combination of two normal functions.
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Cycle Climate Model Intercomparison Project; C4MIP,

Friedlingstein et al., 2006), combined with expert opinion

of the JUMP-LCM model developers, as a guide to key

parameter ranges. The ranges are originally based on those

reported in previous studies (Tachiiri et al., 2010, 2012)

but subsequently shifted to cover bounds more similar to

those implicit in the C4MIP (Friedlingstein et al., 2006)

set of full-complexity climate-carbon cycle simulations. The

C4MIP simulations capture model behaviour in terms of

five key effective parameters: linear transient climate sen-

sitivity (a), sensitivity of land and ocean carbon storage to

the change in carbon content in atmosphere (bL and bO)

and sensitivity of land and ocean carbon storage to the

change in global mean surface air temperature (gL and gO).
The ranges for our equivalent effective parameters are

given in Table B1 (based on parameter variations in

JUMP-LCM; see Table 1). The results broadly span the

range of C4MIP’s results (Table B1). This is an encoura-

ging outcome as we cannot expect to fully encapsulate all

model behaviours found in a structurally diverse multi-

model ensemble.

The difference between the ranges of the five effective

parameters from the C4MIP simulations and from our

modelling system is small, but there still remain non-

negligible differences. Particularly, the smaller average

and standard deviation in bL result that our model explores

the lower bL (leading to less future carbon uptake) portion

of the C4MIP range. The original parameter perturba-

tion range before tuning for C4MIP models is presented in

Table B2. To achieve this comparability, except for

equilibrium climate sensitivity (which are fixed, as pre-

sented in Table 1) and aerosol forcing (not used, following

the C4MIP protocol), the tuning is carried out heuristically

using a small ensemble with 20 members. We compared

these ranges of a, b and g against their equivalent num-

bers across the C4MIP range of climate-carbon cycle

simulations. An iterative process is then made across

our parameter ranges in Table B2 until our a, b and g
values coincided more closely with the C4MIP ranges,

and this modification is the difference between our

Table B2 and Table 1. These parameter ranges and

probabilities define our ‘‘unconstrained’’ experiments.

The parameters varied, and their ranges, are presented in

Table 1. More details regarding the parameters are given in

Appendix C.

C: Parameters varied

A detailed description of the 12 varied parameters are as

follows.

The first parameter is climate sensitivity. Although in a

full-complexity GCM this is not an (effective) parameter

which can be easily controlled, in an EMIC this can be

controlled relatively easily. For the detail of how climate

sensitivity is controlled in our model, please see Tachiiri

et al. (2010).

The next four parameters varied are related to ocean

physics. The (initial) vertical and horizontal diffusivities

are depth dependent. The Gent-McWilliams parameter

(Gent and McWilliams, 1990) parameterises the sub-

grid scale eddy effect. The magnitude of the freshwater

flux adjustment is an EMIC specific parameter. As many

EMICs cannot represent well the freshwater transporta-

tion between Pacific and Atlantic oceans, it is necessary

to add artificial movement between them. The para-

meter is considered as a ratio of modelled values to the

Table B2. Original parameter perturbation ranges before the

tuning for the C4MIP models

Parameters

Original

perturbation range

Climate sensitivity (1�6 K)

Vertical diffusivity 0.5�2.0�default

Horizontal diffusivity 0.5�5.0�default

Gent-McWilliams thickness parameter (a) 1�10�106 cm2/s

Magnitude of freshwater flux adjustment 0.5�2.0�Oort’s

values (b)

Wind speed used in marine CO2 uptake 1�6 m/s

Maximum photosynthetic rate 0.8�2.0�default

Specific leaf area 0.5�1.5�default

Minimum temperature for photosynthesis �3.0��3.08C of

default

Coefficient for temperature dependency

of plant’s respiration

1.5�3.0

A parameter of temperature dependency

of soil respiration

40�60 K

Total aerosol forcing �

Ranges are based on Tachiiri et al. (2010), Tachiiri et al. (2012).

(a) Gent and McWilliams (1990).

(b) Oort (1983).

Table B1. Feedback parameters compared to the C4MIP models

Unit This study C4MIP

a K/ppm 0.005490.0013 0.006190.0012

bL PgC/ppm 1.190.3 1.390.6

bO PgC/ppm 1.290.3 1.190.2

gL PgC/K �97975 �79944

gO PgC/K �33911 �31916

Parameters presented (Friedlingstein et al., 2006), are linear

transient climate sensitivity (a), sensitivity of land and ocean

carbon storage to atmospheric CO2 concentration change (b) and
to temperature change (g). ‘‘l’’ and ‘‘o’’ are land and ocean. The 9

one SD of 20 members (in a small ensemble) and also for C4MIP

models are presented.
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estimates by Oort (1983) providing values for some

latitudinal bands.

The sixth parameter, wind speed used in marine CO2

uptake, is also EMIC specific. As described in Orr (2000),

air-sea CO2 flux is calculated as a function of the wind

speed. In GCMs simulated wind speed is used, but in

many EMICs including MIROC-lite, simulated wind speed

in each grid cell can contain large biases compared to

actual values, and often a fixed value is used. Given that

changing wind speed is only way to obtain plausible ranges

in marine carbon response to concentration and to

temperature change similar to those of C4MIP models,

then we perturbed the wind speed used in air-sea CO2 flux

calculation. These six parameters so far are selected

considering Tachiiri et al. (2010) and their assessment of

key parameters of importance.

The 7�11th parameters are related to terrestrial carbon

cycle, and this time selected based on another study

(Tachiiri et al., 2012) which in turn made an assessment

of the twelve most important parameters for the carbon

cycle. In Tachiiri et al. (2012), the four parameters of

maximum photosynthetic rate, specific leaf area, minimum

temperature for photosynthesis and a soil respiration

parameter had correlation of 99% level significance with

both CO2 and temperature response of the land surface,

characterised by effective parameters bL and gL. When

their effects are combined, the temperature dependency of

plant respiration has largest correlation to change in

terrestrial carbon storage in RCP4.5 scenario (Tachiiri

et al., 2012).

The 12th and last parameter varied is aerosol forcing.

Information on parameter ranges taken from the two key

references (Tachiiri et al. 2010, 2012) are presented be in

Table B2.

D: Data for constraint

For the physical climate system, we use the trend in surface

air temperature in 1906�2005 (Trenberth et al., 2007), the

trend in ocean heat content (OHC) of 0�700 m depth during

1969�2003 (Domingues et al., 2008; Ishii and Kimoto, 2009;

Levitus et al., 2009), Atlantic meridional overturning cir-

culation (derived from Lumpkin and Speer, 2010; Smethie

Jr. and Fine, 2001; Ganachaud, 2003; Talley et al., 2003),

present day air temperature (2 dimensional, NCEP/NCAR

reanalysis; Kistler et al., 2001), and present sea temperature/

salinity (3 dimensional, World Ocean Atlas, http://www.

esrl.noaa.gov/psd/data/gridded/data.nodc.woa98.html). We

also use observations relating to carbon cycle component

of the model: implied fossil fuel CO2 emissions in 1980s,

1990s and 2000�2008 (Le Quéré et al., 2009) and present

day net primary production (Zheng et al., 2003).

The assumed probabilistic function is a t-distribution for

trends in both global mean surface air temperature and

OHC, and Gaussian for other data. For the two dimen-

sional (i.e. spatial) data, we used weights designed along

similar principles to those used by Murphy et al. (2004).

That is, we first calculated the ratio of the mean square

error of each ensemble member to the spatial variance of

the observed data (for all the globe), and using this ratio

(called CPI’ here, due to the similarity to Climate Predic-

tion Index, or CPI; Murphy et al., 2004), the weight (W) is

calculated as W�exp[�CPI’/2]. We normalised all weights

across the ensemble, so that they add up to unity, with each

observed variable having equal weight. For the emissions

data, we calculated the weight as the geometric mean of the

values for the three decades, and for the sea temperature

and salinity, we calculated the geometric means of the four

ocean layers.

E: Constraint on parameters

The distributions of the varied parameters are also

influenced by the observational constraints. Figure E1

presents the posterior distribution of each parameter.

The weighted distribution is concentrated on either side

of the parameter perturbation range for some parameters.

For example, a temperature dependency parameter of soil

respiration (panel 11) has high probability of high para-

meter values, while oceanic vertical diffusivity (panel 2) and

parameter of freshwater flux adjustment (panel 5) are more

likely to have low parameter values.

F: Spatial distribution of carbon uptake for RCP2.6

and SCP4.5 to 2.6 (Figs. F1 and F2)

G: More discussion on the ensemble weights

The use of constraints should bemade with some caution for

a couple of additional reasons. Some combinations of model

parametersmay correspond to goodpredictive capability for

present-day, but will subsequently be found to perform

poorly for prediction at significantly altered atmospheric gas

concentrations. This is because some features or parameter-

isation of a climate model might not matter for current levels

of atmospheric CO2 concentrations, but do become much

more important (and thus need correct parameterisation) for

significantly higher CO2 concentrations. Conversely, it is

possible to weight down a particular simulation based on

contemporary measurements, but which actually has good

predictive capability for the future. For those issues, Knutti

et al. (2010) pointed out a weighting metric is most powerful

if it is relatively simple but statistically robust, if the results

are not strongly dependent on the detailed specifications of

the metric and other choices external to the model (e.g. the

forcing) and if the results can be understood in terms of

known processes. We hope our methodology at least

partially fulfils these objectives.

There remains significant interest in the upper tail

of PDF of climate sensitivity, corresponding to what
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Fig. E1. Prior and posterior probability distribution of 12 parameters.

Black: prior (unconstrained), red: posterior (after constrained by observation data). X-axis is normalised to the perturbation range

(logarithmic scales for 2�4). Priors are flat for all parameters but climate sensitivity and aerosol for which non-flat distributions presented

in Appendix A are used. Plotted are probabilities for bins of 0.2 (i.e. one fifth of the pertubed range) width.
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might be low probability events, but potentially very

difficult for society to adapt to. In order to assess the

effect of changing the upper bound for the climate

sensitivity (CS) range, we investigated the sensitivity of

the results with RCP4.5 to the cut off of the upper tail

of the beta distribution (B (1.8,2.2)) at 5.0 and 5.5 K

(i.e. zero probability of CS�5.0 and�5.5 K, respec-

tively). For the unconstrained case the influence is very

small; this is not surprising as the weights given to

high CS members are small. For the constrained case, we

have a rather small effective ensemble size which introduces

significant sampling noise. That effect was not observed for

temperature, but had some influence on allowable emis-

sion. After multiplying 8 weights, the biggest weight for one

ensemble member in our experiment was 0.22 (RCP2.6)

or 0.24 (RCP4.5 and SCP4.5 to 2.6), depending on the

emission in 2006�2008, and thus while the main results of

the unconstrained case are robust to maximum cut-off of

climate sensitivity, the constrained case is less robust. These

results are summarised in Table G1.
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Fig. F1. Spatial distribution of the change in land carbon storage for RCP2.6 and SCP4.5 to 2.6.

Panel (a) is the weighted mean of land carbon uptake between 2010 and 2100 (i.e. year 2100 values minus year 2010 values), and (b) is land

carbon uptake in 2100�2300 for RCP2.6. (c) is land carbon uptake in 2100�2300 for SCP4.5 to 2.6. Then panels (d)�(f) are relative

uncertainty across the ensemble, calculated as SD/average in (a)�(c) respectively. After constraint.
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Fig. F2. Ocean carbon uptake (a) for 2010�2100, (b) 2100�2300 for RCP2.6, (c) 2100�2300 for SCP4.5 to 2.6, (d)�(f) relative uncertainty
(standard deviation/average) for (a)�(c). After constraint.

Table G1. Result of the sensitivity tests for climate sensitivity with RCP4.5

Atmospheric temperature (K) Allowable emission (PgC/yr)

Cut-off point Unconstrained Constrained Unconstrained Constrained

6.0 K (original) 1.2�3.4 1.3�3.3 7.4�13.7 9.9�13.0
5.5 K 1.2�3.4 1.5�3.3 7.4�13.7 9.5�12.5
5.0 K 1.2�3.3 1.5�3.3 7.7�13.9 9.8�12.5

The 5�95th percentiles for the peak periods are presented. Temperatures are anomaly from 1980 to 99.
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Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G.,

Bopp, L. and co-authors. 2009. Trends in the sources and sinks

of carbon dioxide. Nat. Geosci. 2, 831�836.
Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia,

H. E. and co-authors. 2009. Global ocean heat content 1955�
2008 in light of recently revealed instrumentation problems.

Geophys. Res. Lett. 36, L07608. DOI: 10.1029/2008GL037155.

Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects:

a review. Atmos. Chem. Phys. 5, 715�737. DOI: 10.5194/acp-5-

715-2005.

Lumpkin, R. and Speer, K. 2010. Global ocean meridional

overturning. J. Phys. Oceanogr. 37, 2550�2562.
Matthews, H. D., Gillett, N. P., Stott, P. A. and Zickfeld, K. 2009.

The proportionality of global warming to cumulative carbon

emissions. Nature. 459, 829�832. DOI: 10.1038/nature08047.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B.,

Frieler, K. and co-authors. 2009. Greenhouse-gas emission tar-

gets for limiting global warming to 28C. Nature. 458, 1158�1162.
DOI: 10.1038/nature08017.

Meinshausen, M., Raper, S. C. B. and Wigley, T. M. L. 2011a.

Emulating coupled atmosphere-ocean and carbon cycle models

with a simpler model, MAGICC6 � Part 1: model description

and calibration. Atmos. Chem. Phys. 11, 1417�1456.
Meinshausen, M., Smith, S. J., Calvin, K. V., Daniel, J. S.,

Kainuma, M. and co-authors. 2011b. The RCP greenhouse gas

concentrations and their extension from 1765 to 2300. Clim.

Change. 109, 213�241. DOI: 10.1007/s10584-011-0156-z.

Meinshausen, M., Wigley, T. M. L. and Raper, S. C. B. 2011c.

Emulating atmosphere-ocean and carbon cycle models with a

simpler model, MAGICC6 � Part 2: applications. Atmos. Chem.

Phys. 11, 1457�1471.
Moss, R., Edmonds, J., Hibbard, K., Manning, M., Rose, S. and

co-authors. 2010. The next generation of scenarios for climate

change research and assessment. Nature. 463, 747�756.
Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S.,

Webb, M. J. and co-authors. 2004. Quantifying uncertainties in

climate change from a large ensemble of general circulation

model predictions. Nature. 430, 768�772.
Oka, A., Tajika, E., Abe-Ouchi, A. and Kubota, K. 2011. Role of

the ocean in controlling atmospheric CO2 concentration in

the course of global glaciations. Clim. Dyn. 37, 1755�1770.
DOI: 10.1007/s00382�010�0959�z.

Oort, A. H. 1983. Global atmospheric circulation statistics,

1958�1973. NOAA Prof Pap. 14, 180.

Orr, J., Najjar, R., Sabine, C. and Joos, F. 2000. Abiotic-HOWTO

Revision: 1.16. Online at: http://www.cgd.ucar.edu/oce/klindsay/

ocmip/HOWTO-Abiotic.pdf

Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M. and co-

authors. 2009. Aerosol indirect effects*general circulation model

intercomparison and evaluation with satellite data. Atmos.

Chem. Phys. 9, 8697�8717. DOI: 10.5194/acp-9-8697-2009.

Raupach, M. R. 2013. The exponential eigenmodes of the carbon-

climate system, and their implications for ratios of responses to

forcings. Earth Syst. Dynam. 4, 31�49.

Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao,

C. and co-authors. 2013. Radiative forcing in the ACCMIP

historical and future climate simulations. Atmos. Chem. Phys.

13, 2939�2974. DOI: 10.5194/acp-13-2939-2013.

Smethie, Jr., W. M. and Fine, R. A. 2001. Rates of North Atlantic

Deep Water formation calculated from chlorofluorocarbon

inventories. Deep-Sea Res. PT1. 48, 189�215.
Smith, S. J. and Wigley, T. M. L. 2006. Multi-gas forcing

stabilization with the MiniCAM. Energ. J. (Special Issue

No. 3), 373�391.
Tachiiri, K., Hargreaves, J. C., Annan, J. D., Oka, A., Abe-Ouchi,

A. and co-authors. 2010. Development of a system emulating

the global carbon cycle in earth system models. Geosci. Model

Dev. 3, 365�376.
Tachiiri, K., Ito, A., Hajima, T., Hargreaves, J. C., Annan, J. D.

and co-authors. 2012. Nonlinearity of land carbon sensitivities

in climate change simulations. J. Meteorol. Soc. Jpn. 90A,

271�276.
Talley, L. D., Reid, J. L. and Robbins, P. E. 2003. Data-based

meridional overturning streamfunctions for the global ocean.

J. Clim. 16, 3213�3226.
Taylor, K. E., Stouffer, R. J. and Meehl, G. A. 2009. A summary

of the CMIP5 experimental design. Online at: http://cmip-

pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_22Jan11_marked.pdf

Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R.,

Easterling, D. and co-authors. 2007. Observations: surface and

atmospheric climate change. In: Climate Change 2007: In The

Physical Science Basis. Contribution of Working Group I to the

Fourth Assessment Report of the Intergovernmental Panel on

Climate Change (eds. S. Solomon, et al.), Cambridge University

Press, Cambridge, UK and New York, NY, USA, pp. 235�336.
van Vuuren, D., den Elzen, M., Lucas, P., Eickhout, B.,

Strengers, B. and co-authors. 2007. Stabilizing greenhouse gas

concentrations at low levels: an assessment of reduction

strategies and costs. Clim. Change. 81(2), 119�159. DOI:

10.1007/s10584-006-9172-9.

Wise, M. A., Calvin, K. V., Thomson, A. M., Clarke, L. E., Bond-

Lamberty, B. and co-authors. 2009. Implications of limit-

ing CO2 concentrations for land use and energy. Science. 324,

1183�1186.
Yokohata, T., Annan, J. D., Hargreaves, J. C., Jackson, C. S.,

Tobis, M. and co-authors. 2011. Reliability of multi-model

and structurally different single-model ensembles. Clim. Dyn.

39(3�4), 599�616. DOI: 10.1007/s00382-011-1203-1.

Yoshikawa, C., Kawamiya, M., Kato, T., Yamanaka, Y. and

Matsuno, T. 2008. Geographical distribution of the feedback

between future climate change and the carbon cycle. J. Geophys.

Res. 113, G03002. DOI: 10.1029/2007JG000570.

Zheng, D. L., Prince, S. D. and Wright, R. 2003. NPP Multi-

Biome: gridded estimates for selected regions worldwide, 1989�
2001, R1. Online at: http://daac.ornl.gov/cgi-bin/dsviewer.pl?

ds_id�614, the Oak Ridge National Laboratory Distributed

Active Archive Center, Oak Ridge, Tennessee, U.S.A. DOI: 10.

3334/ORNLDAAC/614.

24 K. TACHIIRI ET AL.

http://www.cgd.ucar.edu/oce/klindsay/ocmip/HOWTO-Abiotic.pdf
http://www.cgd.ucar.edu/oce/klindsay/ocmip/HOWTO-Abiotic.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_22Jan11_marked.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_22Jan11_marked.pdf
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=614
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=614
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=614
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=614
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=614
http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=614

