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Abstract: 

Abyssal polymetallic nodule fields constitute an unusual deep-sea habitat. 
The mix of soft sediment and the hard substratum provided by nodules 
increases the complexity of these environments. Hard substrata typically 
support a very distinct fauna to that of seabed sediments, and its presence 
can play a major role in the structuring of benthic assemblages. We 
assessed the influence of seafloor nodule cover on the megabenthic 
ecology of a marine conservation area (Area of Particular Environmental 
Interest 6, APEI6) in the Clarion Clipperton Zone (3950-4250 m water 
depth) using extensive photographic surveys from an autonomous 
underwater vehicle. Variations in nodule cover (1-20%) appeared to exert 
statistically significant differences in faunal standing stocks, some 
biological diversity attributes, faunal composition, functional group 
composition, and the distribution of individual species along the nodule 
cover gradient. The standing stock of both the metazoan fauna and the 
giant protists (xenophyophores) doubled with a very modest initial increase 
in nodule cover (from 1 to 3%). Notably, faunal density determined by 
sample-based rarefaction, was positively correlated with nodule cover, 
while taxon richness, determined by individual-based rarefaction, was 
invariant (c. 60 taxa among 500 individuals). Faunal composition varied 
continuously along the nodule cover gradient. We discuss these results in 
the context of potential seabed-mining operations and the associated 
sustainable management and conservation plans. We note in particular 
that successful conservation actions will likely require the preservation of 
areas comprising the full range of nodule cover and not just the low cover 
areas that are least attractive to mining. 
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Abstract 22 

Abyssal polymetallic nodule fields constitute an unusual deep-sea habitat. The mix of soft 23 

sediment and the hard substratum provided by nodules increases the complexity of these 24 

environments. Hard substrata typically support a very distinct fauna to that of seabed sediments, 25 

and its presence can play a major role in the structuring of benthic assemblages. We assessed the 26 

influence of seafloor nodule cover on the megabenthic ecology of a marine conservation area 27 

(Area of Particular Environmental Interest 6, APEI6) in the Clarion Clipperton Zone (3950-4250 28 

m water depth) using extensive photographic surveys from an autonomous underwater vehicle. 29 

Variations in nodule cover (1-20%) appeared to exert statistically significant differences in faunal 30 

standing stocks, some biological diversity attributes, faunal composition, functional group 31 

composition, and the distribution of individual species along the nodule cover gradient. The 32 

standing stock of both the metazoan fauna and the giant protists (xenophyophores) doubled with a 33 

very modest initial increase in nodule cover (from 1 to 3%). Notably, faunal density determined 34 

by sample-based rarefaction, was positively correlated with nodule cover, while taxon richness, 35 

determined by individual-based rarefaction, was invariant (c. 60 taxa among 500 individuals). 36 

Faunal composition varied continuously along the nodule cover gradient. We discuss these results 37 

in the context of potential seabed-mining operations and the associated sustainable management 38 

and conservation plans. We note in particular that successful conservation actions will likely 39 

require the preservation of areas comprising the full range of nodule cover and not just the low 40 

cover areas that are least attractive to mining. 41 

 42 

  43 
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Introduction 44 

Abyssal polymetallic nodule fields represent a unique deep-sea habitat (Radziejewska 45 

2014). The hard substratum provided by the nodules combined with the background soft sediment 46 

seabed acts to increase habitat complexity, and is thought to promote the occurrence of some of 47 

the most biologically diverse seafloor assemblages in the abyss (Amon et al. 2016, Gooday et al. 48 

2017). This unusual and diverse habitat is potentially subject to imminent large-scale human 49 

impacts in the form of seafloor mining (Gollner et al. 2017, Kuhn et al. 2017). Mining 50 

disturbances are likely to extend over extremely large seafloor areas (Aleynik et al. 2017) and 51 

have a clear potential to drive major changes in the resident fauna (Jones et al. 2017). Predicting 52 

the nature of such changes remains difficult; the ecology of this remote habitat is poorly 53 

understood, in particular, very little is known of the biodiversity associated with nodules 54 

(Veillette et al. 2007, Vanreusel et al. 2016). 55 

The presence of hard substratum is thought to be a key factor in structuring heterogeneous 56 

deep-sea habitats (Buhl-Mortensen et al. 2010, Bell et al. 2016). For example, modest variations 57 

in the availability and the composition of hard surfaces can influence the larval settlement 58 

processes of the seafloor fauna (Van Dover et al. 1988, Roberts et al. 2006). Substratum 59 

selectivity is commonly exhibited by many deep-sea species, including soft corals (Sun et al. 60 

2011), sponges (Lim et al. 2017), and foraminifera (Gooday et al. 2015). The presence and extent 61 

of hard substratum is therefore expected to exert a significant control on the composition of deep-62 

sea benthic assemblages (Levin et al. 2001, Smith and Demopoulos 2003). Seafloor environments 63 

in the deep sea with extensive hard substratum range in nature from landscape-scale features such 64 

as seamounts (Clark et al. 2010) and canyons (De Leo et al. 2010), to widely dispersed pebbles, 65 

cobbles, and boulders referred to as iceberg drop-stones (Meyer et al. 2016), and the similar 66 

human artefact habitat produced by steamship clinker (Ramirez-Llodra et al. 2011). While 67 

individual polymetallic nodules are generally small, 1-20 cm in diameter, nodule fields can 68 
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extend over extremely large areas, many hundreds of km2, as occurs in the Clarion Clipperton 69 

Zone (CCZ) of the central Pacific Ocean (Kuhn et al. 2017). 70 

Polymetallic nodules in the CCZ are thought to support a specialised fauna that differs 71 

from that of nodule-free sediment areas (Thiel et al. 1993, Gooday et al. 2015). Nodule-dwelling 72 

meiofauna such as nematodes, tardigrades, harpacticoids, and foraminifera inhabit the crevices 73 

(Veillette et al. 2007, Miljutina et al. 2010), while sessile macro- and megafauna such as 74 

polychaetes, sponges, cnidarians and xenophyophores are commonly found attached to nodule 75 

surfaces (Gooday et al. 2015, Amon et al. 2016). Consequently, nodule occurrence has been 76 

linked with variations in faunal standing stocks and distributions (Amon et al. 2016, Vanreusel et 77 

al. 2016). However, logistic constrains have limited the detailed monitoring of nodule cover 78 

(Vanreusel et al. 2016, Tilot et al. 2018), restricting the assessment of seafloor ecology along 79 

nodule occurrence gradients. 80 

Recent advances in large-scale seafloor visual imaging (Durden et al. 2016), coupled with 81 

automated nodule-detection algorithms (Schoening et al. 2016, Schoening et al. 2017) now make 82 

such studies possible. Here, we combine extensive nodule coverage and faunal data obtained by 83 

photography from an autonomous underwater vehicle (AUV) to examine the effect of nodule 84 

occurrence on the ecology of megafauna in the CCZ. We include protozoan, invertebrate, and 85 

fish species that can be distinguished in photographs, having body length-scales > 1 cm, as 86 

members of the megafauna. In particular, we consider variations in their standing stock, 87 

biological diversity, and faunal composition along a nodule cover gradient. This work is carried 88 

out within an ‘Area of Particular Environmental Interest’ (APEI), a form of marine protected area 89 

designed as a conservation measure in response to potential future seabed mining in the region 90 

(ISA 2012). Consequently, we also cast our results in the context of the sustainable management 91 

and conservation of this unusual abyssal habitat. 92 

 93 

94 
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Methods 95 

Study area 96 

Our initial study area was a 5500 km2 rectangular region of seafloor centred on 122° 55' 97 

W 17° 16' N within the APEI6 region (Fig. 1). This location was selected to have similar 98 

topographic relief to mining contract areas in the central CCZ. Water depth ranged 3950-4250 m, 99 

and the seafloor landscape comprised a succession of crenulated ridges and shallow troughs 100 

oriented north-south between dispersed level-bottom (<3° slope) areas. General seafloor 101 

conditions were described by Simon-Lledo et al. (submitted) and are only briefly summarised 102 

here. Surface sediments (0-1 cm) were homogenous across the study area, dominated by very fine 103 

silt and clay particles (58-68% <7.8 µm diameter), and having a very low content of total organic 104 

carbon (TOC, 0.44 ± SD 0.05 %). The polymetallic nodules present were of a flattened, 105 

ellipsoidal form with smooth surfaces. The seafloor exposed mean individual nodule area was 2.5 106 

cm2, with most nodules <5 cm2 (90%), and very few >10 cm2 (1%). In individual seafloor 107 

photographs, average nodule cover was 6.4% and ranged from nodule-free to 37%. Nodule cover 108 

was patchy, with extremes of variation occurring at metre-scales (Fig. 1). All results reported 109 

here were acquired April-May 2015, during RRS James Cook cruise JC120; additional 110 

supporting technical detail is provided by Jones (2015). 111 

 112 

Data collection and processing 113 

Seafloor images were collected using a digital camera (FLIR Integrated Imaging 114 

Solutions Inc. Grasshopper2; 2448 x 2048 pixels) mounted vertically beneath the AUV 115 

Autosub6000 (Morris et al. 2014). The AUV was programmed for a target altitude of 3 m above 116 

the seafloor, a speed of 1.2 m s-1, and a photographic interval of 850 milliseconds. At the target 117 

altitude, individual vertical photographs imaged 1.71 m2 of seabed. Three landscape types (Ridge, 118 

Flat, and Trough), delimited by objective analysis of bathymetric data, were surveyed using zig-119 
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zag designs with random start points (Strindberg and Buckland 2004) as detailed by Simon-Lledó 120 

et al. (submitted). A total of 40 individual image transects were surveyed in each landscape-type. 121 

Images taken as the vehicle changed course, i.e. junctions between transects, were removed. In 122 

the remaining straight-line sections, every second image was removed to avoid overlap between 123 

consecutive images and to prevent double counting. To ensure consistency in specimen and 124 

nodule detection, images outside the altitude range 2-4 m were also removed. Four transects were 125 

randomly selected from each landscape-type for subsequent analysis. The full resultant dataset 126 

was composed of data from 10052 non-overlapping images, representing a seafloor area of 18580 127 

m2. 128 

All images were colour corrected, as described by Morris et al. (2014), before manual and 129 

automated analyses were performed to obtain biological and environmental data. Nodule cover 130 

(%) was quantified using the Compact-Morphology-based poly-metallic Nodule Delineation 131 

method (CoMoNoD, Schoening et al. 2017). The CoMoNoD algorithm calculates the size of each 132 

nodule (i.e. seafloor exposed area size) detected in an image, enabling the calculation of 133 

descriptive nodule statistics. Megafauna specimens were identified to the lowest taxonomic level 134 

possible, and their physical dimension measured, using BIIGLE 2.0 (Langenkämper et al. 2017). 135 

Each specimen was assigned to a ‘nodule-attached’ (NA) or ‘nodule-free-living’ (NFL) life-habit 136 

category. The biovolume of individual metazoan specimen was estimated as a proxy for biomass, 137 

using the generalised volumetric method described by Benoist et al. (submitted). 138 

To ensure consistency in specimen identification, a CCZ-standardised megafauna 139 

morphospecies catalogue was developed upon the taxonomic compilation developed by the 140 

International Seabed Authority (available online: http://ccfzatlas.com), which we further 141 

expanded in consultation with international taxonomic experts and by reference to existing 142 

literature (Dahlgren et al. 2016, Glover et al. 2016, Amon et al. 2017, Kersken et al. 2018). The 143 

likely feeding behaviour of each morphospecies was inferred from similar organisms described in 144 
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the literature (Iken et al. 2001). The full dataset comprised 7837 metazoan specimens across 133 145 

morphospecies, and 47133 giant foraminifera (xenophyophores) specimens across 22 146 

morphospecies.  147 

 148 

Data analysis 149 

To perform an initial broad assessment of the potential influence of seafloor nodule cover on the 150 

ecological characteristics of the megafauna, all images from the three landscape types were 151 

pooled. This total image set was ordered by estimated nodule cover, and then divided into ten 152 

subsets at nodule-cover breakpoints chosen to yield approximately equal numbers of megafaunal 153 

observations in each image subset. Metazoan and xenophyophore data were processed separately 154 

on the basis that it was not possible to determine whether the latter were living from the images 155 

(Hughes and Gooday 2004). Across the ten resultant nodule-cover classes, metazoan megafauna 156 

counts ranged 784-787, and xenophyophore counts 4714-4719. To establish measures of 157 

variability in ecological characteristics within the nodule-cover classes, the corresponding image 158 

subsets were resampled using a modified form of bootstrapping (Davison and Hinkley 1997). 159 

Each image subset was randomly resampled with replacement until a minimum of 500 specimens 160 

were encountered, and that process was repeated 1000 times for each nodule-cover class. This 161 

resampling process yielded bootstrap-like samples that ranged in metazoan specimen counts 500-162 

565, and xenophyophore counts 500-587. We adopted these specimen-count based methods to 163 

recognise and control the impact of specimen number on the estimation of biological diversity 164 

and faunal composition parameters (Sanders 1968, Forcino et al. 2015, Simon-Lledo et al. 165 

submitted). 166 

A range of ecological parameters was calculated for each of the 10 × 1000 bootstrap-like 167 

samples, including metazoan and xenophyophore numerical density (ind m-2) and metazoan 168 

biovolume density (ml m-2 ≈ g fresh wet weight m-2). To examine the range of diversity 169 
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characteristics, Hill’s diversity numbers of order 0, 1, and 2 (Jost 2006) were calculated as 170 

metazoan morphospecies richness (SN), the exponential form of the Shannon index (Exp H´), and 171 

the inverse form of Simpson’s index (1/D).  We also calculated morphospecies density (SA), 172 

based on an additional set of bootstrap-like samples generated following the same procedure, but 173 

with a controlled minimum seabed area encompassed by each sample, that was set to the smallest 174 

seabed area (c. >700 m2) obtained in the specimen-controlled set of bootstrap-like samples used 175 

to calculate the rest of parameters. Variation in metazoan community composition was assessed 176 

by 2d non-metric multidimensional scaling (nMDS) ordination of all 10000 bootstrap-like 177 

samples, based on square-root transformed faunal density and use of the Bray-Curtis dissimilarity 178 

measure (Clarke 1993). The resultant dimension 1 scores (MDS-d1) were used as a univariate 179 

measure of faunal composition.  180 

Mean (median in the case of biovolume assessment) values of these various parameters 181 

were calculated from each bootstrap-like sample set, together with corresponding 95 % 182 

confidence intervals based on the simple percentile method (Davison and Hinkley 1997). Data 183 

processing and analyses described above were performed using a custom R (R Core Team, 2014) 184 

script incorporating multiple functions of the ‘vegan’ package (Oksanen et al. 2018). 185 

In addition to the general analyses of ecological responses to the nodule cover gradient, 186 

we considered landscape-type-related variations in those responses by undertaking a separate 187 

analysis within each landscape-type. This material is provided in Appendix 1. 188 

 189 

 190 
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Results 191 

Standing stocks  192 

Metazoan and xenophyophore density were significantly and substantially lower in the 193 

lowest nodule-cover class (Fig. 2a). We found no significant correlation between density and 194 

nodule availability (Table 1); density variation of both groups across the nodule gradient 195 

described a rapid asymptote, stabilising in cover levels >2-3%. In contrast, metazoan biomass 196 

density showed a high dispersion rate and no significant variations along the nodule cover 197 

gradient (Fig. 2a). 198 

Biological diversity  199 

Diversity measures calculated with controlled number of individuals exhibited no 200 

significant correlation with nodule cover (Table 1). Morphospecies richness (SN) was near 201 

constant across nodule-cover classes with no indication of any significant difference between any 202 

pair of classes (Fig 2b). Exp H’ was more variable across classes, but exhibited no coherent 203 

substantive change across the nodule gradient. In contrast, 1/D showed a significantly lower 204 

value in the lowest nodule class. On the other hand, morphospecies density (SA; calculated with 205 

controlled seabed area) was significantly correlated with nodule cover (Table 1). SA was 206 

consistently lower than SN across the nodule gradient, though marginally (confidence intervals 207 

overlapped), except in the lowest nodule class, where SA was significantly and substantially 208 

lower than SN. 209 

Faunal composition 210 

Assemblage 211 

Two-dimensional MDS ordination of bootstrap-like samples showed that metazoan 212 

assemblages progressively differed across the nodule gradient (Fig. 3a); the lowest and the 213 

highest nodule-cover classes yield the largest dissimilarity rates. MDS-d1 was strongly and 214 
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significantly correlated with nodule cover (Table 1). MDS-d1 score in the lowest nodule class 215 

was substantially and significantly different from all other cover classes (Fig. 3b). 216 

Functional groups  217 

Neither nodule-attached (NA) nor nodule-free-living (NFL) faunal density was 218 

significantly correlated with nodule cover (Table 1). However, in both cases density in the lowest 219 

nodule-cover class was significantly lower than in any other class (Fig. 4a). Both deposit-feeder 220 

and suspension-feeder faunal density was significantly and substantially lower in the lowest 221 

nodule-cover class, while predator and scavenger density showed no significant variations across 222 

the nodule cover gradient (Appendix 2; Fig. B1). Variation in suspension and deposit-feeder 223 

density across the nodule gradient described a rapid asymptote, yet none of the three functional 224 

groups densities exhibited a significant correlation with nodule cover (Appendix 2; Table B1). 225 

Taxonomic groups  226 

Among the 15 most abundant morphospecies (Appendix 2: Fig B3) a graded series of 227 

distributions across nodule-cover classes was apparent (Appendix 2: Fig B4; Table B1). For 228 

example (Fig. 4b): (i) negative monotonic, Porifera msp-5, strong and statistically significant 229 

correlation with nodule cover (Table 1); (ii) unimodal, C. cf bayeri, statistically significant 230 

difference between tails (classes 1, 8-10) and centre (classes 2-6) of the distribution; (iii) positive 231 

unimodal, Lepidisis msp, strong and statistically significant correlation with nodule cover (Table 232 

1). The density of Polychaete msp-5 and Actinia msp-18 was significantly and substantially lower 233 

in the lowest nodule-cover class, while density of Ophiosphalma sp., Columnella msp, and 234 

Irregularia msp-1 was also lower in the lowest nodule-cover class, though marginally (Appendix 235 

2: Fig B4). Among major taxa levels (i.e. most dominant phyla) a graded series of distributions 236 

across nodule-cover classes was also apparent (Appendix 2: Fig B2 and Table B1). 237 

 238 
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Discussion 239 

We found substantial and statistically significant variations in megafaunal standing stock, 240 

biological diversity, and faunal composition along a gradient of seafloor nodule cover. These 241 

responses were generally graded with nodule cover. However, in many cases the magnitude of 242 

change between the first two cover classes was particularly marked. Both of these observations 243 

are of direct relevance to sustainable management and conservation concerns in relation to seabed 244 

mining in the CCZ and similar environments elsewhere. 245 

 246 

Standings stocks 247 

Differences in metazoan density across the nodule cover gradient were predominately 248 

driven by variations in suspension feeder abundance, particularly anthozoans living attached to 249 

nodules; the abundance of which was substantially and statistically significantly reduced in the 250 

lowest nodule class (Appendix 2: Fig. B1; Fig. B2b). Hard substrata provide a stable anchor point 251 

for suspension feeders and enable the placement of food-catching structures into faster off-bottom 252 

currents (Wildish and Kristmanson 2005). Enhanced densities of hard substratum attached fauna 253 

has been observed on bedrock in seamounts or canyons (Clark et al. 2010, Baker et al. 2012, 254 

Jones et al. 2013), in areas with drop-stones (Jones et al. 2007, Meyer et al. 2016), and in 255 

polymetallic nodule fields (Amon et al. 2016, Vanreusel et al. 2016). Our results provide 256 

additional detail that suggests a non-linear, asymptotic relationship between standing stock and 257 

nodule cover (Fig. 2a). This response may be simply explained by resource limitation (Tilman 258 

1982), i.e. hard substratum is initially limiting, but food resource (i.e. advecting organic particles) 259 

becomes limiting as attached suspension feeder density increases (Jeffreys et al. 2009). Variation 260 

in suspension-feeder density at the landscape-type scale sustains this hypothesis and suggest that 261 

the transition between limiting resources (i.e. from nodules to food) occurs at nodule cover > 2-262 

3% (Fig. 5a).  263 
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Xenophyophore density showed a rapid asymptotic relationship with nodule cover in the 264 

broad assessment but a different pattern in each area when investigated at the landscape-type 265 

level, with a clearly higher abundance in the Ridge (Fig. 5b). Other studies have documented 266 

enhanced xenophyophore density on elevated terrain, e.g. seamounts (Levin and Thomas 1988, 267 

Wishner et al. 1990) and abyssal hills (Stefanoudis et al. 2016), and their dominance in the 268 

megafauna and high taxonomic diversity in the CCZ (Amon et al. 2016, Gooday et al. 2017). 269 

Although sediment-dwelling species are well-known, nodules clearly represent a very important 270 

habitat for xenophyophores (Gooday et al. 2015, Kamenskaya et al. 2015). While the specific 271 

feeding modes of xenophyophores remain uncertain (Gooday et al. 1993, Laureillard et al. 2004), 272 

the nodule-attached forms are most likely suspension feeders, and the sediment-dwellers most 273 

likely deposit feeders (Gooday et al. 2017). Yet our results suggest that, although nodule resource 274 

may limit the development of a part of the xenophyophore fraction (i.e. suspension feeder forms), 275 

geomorphological variations are a stronger control on the overall xenophyophore standing stock. 276 

 277 

Biological diversity 278 

Variation between morphospecies richness and morphospecies density was evident in the lowest 279 

nodule class (Fig. 2b), suggesting either a lower faunal density and/or a lower evenness between 280 

taxa abundances where nodule resource is limiting, yet no reduced taxa richness, as previous 281 

CCZ megafauna assessments suggested (Amon et al. 2016, Vanreusel et al. 2016, Tilot et al. 282 

2018). However, previous studies typically used fixed-area samples, in fact reporting taxa 283 

density. For instance, Tilot et al. (2018) compared richness between areas with varying nodule 284 

abundance based on subsample units with fixed seabed areal cover, yet ranging in size from ~150 285 

to ~450 individuals, which possibly generated strong biases in richness estimations as these are 286 

highly sensitive to the number of individuals surveyed (Gotelli and Colwell 2001). Distinction 287 

between morphospecies richness and density becomes particularly relevant in the assessment of 288 
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nodule-field communities, as the lower megafaunal density characteristic of areas with low 289 

nodule cover can lead to the underestimation of taxonomic richness. In turn, if richness appears to 290 

be essentially invariant with respect to nodule cover, indices more sensitive to the variation in 291 

taxa evenness (i.e. heterogeneity diversity) may consequently be more appropriate monitoring 292 

targets. 293 

Heterogeneity diversity measures indicated a clearly reduced diversity in the lowest nodule class, 294 

markedly so in the case of 1/D index (Fig. 2b). Our results concur with Amon et al. (2016) that 295 

nodule availability does not need to be high to promote higher megafauna diversity (although not 296 

necessarily richness), and with Vanreusel et al. (2016) that suspension feeder abundance 297 

distribution appears to lead (most) of this variation. Lower diversity in the lowest nodule class 298 

was predominantly generated by two combined factors: (i) general reduction in the abundance of 299 

almost all suspension feeder taxa, and (ii) extremely high numerical dominance of one taxon 300 

(Porifera msp-5), possibly better adapted to the environmental conditions in the lowest nodule 301 

class. On the other hand, landscape-type level analyses showed a clearly higher diversity in the 302 

Ridge compared to the Trough in areas with low nodule cover (2-3%; Appendix 1: Fig. A2e-f), 303 

possibly resulting from a more balanced taxa evenness, generated by the higher deposit feeder 304 

taxa abundance within the Ridge (Simon-Lledo et al. submitted). Structurally more complex 305 

habitats can provide a wider range of niches and diverse ways of exploiting the environmental 306 

resources, promoting species coexistence in the deep-sea benthos (Levin et al. 2001). Hence, our 307 

results suggest that nodules may act as ‘keystone structures’ (Tews et al. 2004) in the regulation 308 

of habitat complexity at fine scales (tens of meters), while geomorphological variations 309 

presumably modulating bottom water flows and deposition patterns (Mewes et al. 2014, Peukert 310 

et al. 2018), may play an important role at larger scales (few kilometres) (Simon-Lledó et al. 311 

submitted). 312 
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Faunal composition 313 

Our data suggest that faunal composition changes continuously with nodule cover across the full 314 

spectrum of the gradient studied. The first step on that gradient (from nodule class 1 to 2) was, 315 

however, substantially greater than those that followed (Fig. 3). This initial ‘jump’ is consistent 316 

with the change from an overwhelmingly background sedimentary habitat to a mosaic habitat 317 

with a varying admixture of nodule hard substrata to that sediment background. A higher 318 

dissimilarity of the lowest nodule-class assemblage was somewhat expected, since most of the 319 

APEI6 megafaunal community (70% of taxa richness) were nodule-dwelling taxa (Simon-Lledo 320 

et al. submitted) with reduced abundance in the lowest nodule class (Appendix B: Fig. B4). These 321 

populations may simply not find enough suitable substratum to develop where nodules are 322 

limited, as typically occurs in the smaller-sized meio- and macrofaunal communities (Mullineaux 323 

1987, Veillette et al. 2007). This first, sharply defined, faunal composition change numerically 324 

supports that even subtle increases in nodule availability can drive substantial variations in 325 

megafaunal communities (Amon et al. 2016). Yet the following, rather continuous variations, 326 

suggest a potential diversification of habitats along the nodule gradient beyond the simple 327 

presence or absence of a minimum nodule resource level.   328 

We found a clear shift in dominance from sponges (predominantly Porifera msp-5) in the lowest 329 

nodule class to cnidarians in the remaining classes, and within the latter, an alternation of 330 

dominance between primnoid soft corals, anemones, and bamboo corals with increasing nodule 331 

cover. This suggests that other environmental drivers may potentially co-vary along the nodule 332 

cover gradient. For instance, nodule size was positively linearly correlated with nodule cover 333 

(rp=0.72, p<0.001), with mean surface areas of nodules found in the lowest cover class (median: 334 

1.66 cm2; IQR: 0.44) being almost half the size of those in areas with the highest coverage 335 

(median: 2.87 cm2; IQR: 0.42). Such comparably larger nodule sizes are commonly found in 336 

areas with lower sediment accumulation rates and relatively stronger bottom-current speeds 337 

(Skornyakova and Murdmaa 1992, Mewes et al. 2014). Variable development of particular deep-338 
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sea suspension feeder populations can be regulated by bottom current speeds (Thistle et al. 1985, 339 

Smith and Demopoulos 2003), and also by the size of the available hard structures (Meyer et al. 340 

2016), especially in soft corals (Watanabe et al. 2009). Areas with larger and hence potentially 341 

more physically stable nodules possibly provide a more suitable long-term anchoring point for 342 

bamboo coral taxa, enabling their greater final colony height compared to, for example, primnoid 343 

soft corals (Lapointe and Watling 2015, Cairns 2016). In turn, the presumably stronger bottom 344 

current speeds in areas with large nodule size perhaps limits the development of primnoids, 345 

which appear to find a suitable habitat in areas with comparably lower nodule availability (4-6%). 346 

Therefore, we hypothesise that factors interrelated with nodule availability, like nodule size or 347 

bottom current speeds possibly act as environmental filters, ultimately controlling population 348 

recruitment rates. 349 

 350 

Conclusions 351 

Sustainable management and conservation 352 

Our results suggest that areas less likely to be exploited by deep-sea mining (i.e. low to 353 

intermediate nodule-cover classes) would not serve the preservation of the full range of taxa that 354 

live in polymetallic nodule fields. Although these may act as source populations of taxa that also 355 

lives in high nodule abundance areas (i.e. actinians or bryozoans), our results show that these 356 

cannot support abundant populations of the fauna found in high nodule cover areas (i.e. bamboo 357 

corals). Moreover, the potential deposition of sediment plumes in non-directly exploited areas 358 

(Aleynik et al. 2017) may also compromise the preservation of source populations for most 359 

suspension feeder taxa (Bluhm 2001), that represent the vast majority of the metazoan standing 360 

stock at the CCZ (Amon et al. 2016, Vanreusel et al. 2016), and appear to be the most sensitive 361 

fauna to variations in nodule cover (i.e. this study). This suggests that the combined effects of 362 

nodule removal and sediment plume deposition are likely to generate biodiversity and standing 363 
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stock losses at the landscape scale, with the corresponding loss in rate processes and ecosystem 364 

services provided by the megafauna. 365 

Simplistically, a nodule field could be considered as two habitats: (a) the background sedimentary 366 

habitat, and (b) the hard substratum environment of the nodules. More realistically, and certainly 367 

at the physical scales inhabited by megafauna, the nodule field is likely better considered as a 368 

mosaic habitat comprising those two components. However, our results make clear that the 369 

mosaic habitat does not support a single biotope, nor indeed two biotopes; within the limits of the 370 

nodule cover gradient that we have been able to study, faunal composition exhibits continuous 371 

variation. Equally, it is also clear that we do not yet fully understand the drivers of ecological 372 

variation along the nodule cover gradient. Consequently, sustainable management and 373 

conservation plans (Levin et al. 2016, Durden et al. 2017), together with the monitoring 374 

programmes that support them, must recognise this complexity and uncertainty if they are to be 375 

effective.  376 

In closing, we should note that our primary analyses have concerned a broad assessment of 377 

nodule cover using data drawn from three distinct abyssal landscape types. These landscape-scale 378 

variations in environmental and ecological characteristics (Simon-Lledo et al. submitted, 379 

Supplementary material Appendix 1) add an additional layer of complexity that can be expected 380 

to operate at the physical scale of individual conservation areas (Area of Particular 381 

Environmental Interest in the CCZ) and potential mining operation areas. 382 

 383 

 384 

 385 

 386 

 387 
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Figures (legends) 633 

Figure 1. Study area location and sampling operations within the APEI6 of the CCZ (North 634 

Pacific Ocean). (a) Bathymetric survey chart of the study location. Landscape types depicted in 635 

dark lines (left to right: Flat, Ridge, and Trough). White rectangles indicate AUV sampling areas 636 

targeted within each landscape. (b) Map of the eastern CCZ showing contractor areas, Areas of 637 

Particular Environmental Interest, and study location. (c) to (e) Full AUV imagery dataset 638 

collected at each landscape type. Colour of survey tracks represents the nodule coverage level of 639 

the seabed, obtained from automatic detection in survey images using the CoMoNoD algorithm 640 

(Schoening et al. 2017). (c) Flat survey. (d) Ridge survey. (e) Trough survey. 641 

 642 

Figure 2. Variation in (a) standing stock and (b) diversity with nodule cover at the APEI6 643 

seafloor. Points indicate mean (median for metazoan biomass) values of each parameter 644 

calculated from each nodule-cover class bootstrap-like sample set. Error bars represent 95% 645 

confidence intervals. (a) Density of metazoans and xenophyophores (left y-axis), metazoan 646 

biomass density (right y-axis). (b) Metazoan diversity: morphospecies richness (SN), 647 

morphospecies density (SA), Exponential Shannon index (Exp H’), and Inverse Simpson index 648 

(1/D). 649 

 650 

Figure 3. Variation in community composition with nodule cover at the APEI6 seafloor. (a) 651 

nMDS plot describing 2D ordination of dissimilarity (distance) between the assemblages of each 652 

bootstrap-like sample. Ellipses represent 95% confidence intervals for each nodule-cover class 653 

bootstrap-like sample set. (b) Variation of nMDS dimension-1 with nodule cover. Data are mean 654 

values of the parameter as calculated from each nodule-cover class bootstrap-like sample set. 655 

Error bars represent 95% confidence intervals. 656 
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Figure 4. Variation in metazoan density (a) life modes and (b) selected morphospecies (sponge: 657 

Porifera msp-5; primnoid soft-coral: Callozostron cf bayeri; bamboo soft-coral: Lepidisis msp), 658 

with nodule cover. Data are mean values of the parameter as calculated from each nodule-cover 659 

class bootstrap-like sample set. Error bars represent 95% confidence intervals. 660 

 661 

Figure 5. Example of landscape-type variation in faunal response to nodule cover. Variation in 662 

the density of (a) suspension-feeder metazoans and (b) xenophyophores with nodule cover. Data 663 

are mean density values as calculated from each nodule-cover class bootstrap-like sample set for 664 

each separate landscape-type analysis (Flat, Ridge, Trough). Error bars represent 95% confidence 665 

intervals. 666 
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Tables 679 

Table 1. Spearman’s rank correlations of ecological parameters with nodule cover. Summary 680 

results of tests performed between mean (median for metazoan biomass density) values of each 681 

parameter calculated from each nodule-cover class bootstrap-like sample set, with detail of 682 

significant differences between nodule class 1 (mean cover = 1.1%) and the rest of classes (cover 683 

>2%). Distinct class 1: no overlap of the confidence interval of the lowest nodule-cover class 684 

with any other class. Note that correlation approach fails to detect significance in the variation of 685 

unimodal responses. 686 

Distinct   

class 1 

       Correlations 

rs p-value 

Standing stock 

  Xenophyophores  (ind m-2) yes -0.297 0.404 

Metazoans  (ind m-2) yes 0.345 0.328 

Metazoan biomass (g fwwt m-2) no 0.624 0.053 

NA metazoa (ind m-2) yes 0.466 0.174 

NFL metazoa (ind m-2) yes 0.224 0.533 

Porifera msp-5 (ind m-2) no -0.976 <0.001*** 

C. cf bayeri (ind m-2) no -0.6 0.067 

Lepidisis msp (ind m-2) no 0.952 <0.001*** 

Diversity and composition 

Morphospecies richness (SN) no 0.248 0.405 

Morphospecies density (SA) no 0.721 0.018* 

Exponential Shannon (Exp H') no 0.478 0.161 

Inverse Simpson (1/D) yes 0.345 0.328 

MDS-dimension 1 yes 0.891 0.001** 

 687 
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Supplementary material 
 

Appendix 1: Additional analyses within landscape type 
 

The dataset was collected in three landscape types (LT), ‘Flat’, ‘Ridge’, and ‘Trough’ 

(main text, Fig. 1). To assess the potential influence of LT on ecological responses to the nodule 

cover gradient, we additionally carried out separate analyses within each LT. As in our broad 

analysis, images were ordered by nodule cover and divided into nine cover classes at breakpoints 

to yield an approximately equal number of megafauna specimens in each class. Megafauna data 

from each cover class, in each LT, was then subjected to a boostrap-like resampling procedure to 

produce 1000 targeting a minimum of 250 specimens per sample. Faunal density and diversity 

measures (as in main text) were calculated for each boostrap-like subsample, and 95% confidence 

intervals derived by the simple percentile method (see main text). 

 

Figure A1. Areal distribution of nodule cover within each landscape type. 
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Figure A2. Variation of different ecological parameters across the nodule coverage gradient of 

each different APEI6 landscape type. Data are mean values of each parameter as calculated from 

each nodule cover class bootstrap-like sample set. Error bars represent 95% confidence. (a) 

Metazoan density. (b) Xenophyophore test density. (c) Morphospecies richness. (d) 

Morphospecies density. (e) Exponential Shannon index. (f) Inverse-Simpson index.  

  

(a) (b)

(c) (d) 

(e) (f) 
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Appendix 2: Additional results of broad ecological assessment 
 

 

 

 

 
 

 

Figure B1. Variation in the density of three functional groups with nodule cover at the APEI6 

seafloor. Data are mean density values of different metazoan types (SF: suspension feeders; PSC: 

predators and scavengers; DF: deposit feeders) calculated from each nodule cover class 

bootstrap-like sample set. Error bars represent 95% confidence intervals. 
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Figure B2.  Variation in the density of taxonomical groups with nodule cover at the APEI6 

seafloor. Data are mean density values of the six most dominant metazoan phyla as calculated 

from each nodule-cover class bootstrap-like sample set. Error bars represent 95% confidence 

intervals. (a) Sponges. (b) Cnidarians. (c) Bryozoans. (d) Annelids. (e) Echinoderms. (f) 

Arthropods: crustaceans. 

 

 

 

 

 

(a) 

(b) 

(c) (d) 

(e) (f) 
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Figure B3. Top-15 most abundant metazoan morphospecies recorded at the APEI6 seafloor 

during JC120 AUV survey. Scale bars indicate 50 mm. (a) Porifera msp-5. (b) Cladorhiza cf 

mexicana. (c) Polychaete msp-5. (d) Irregularia msp-1. (e) Mastigoteuthis sp. (f) Ophiosphalma 

sp. (g) Columnella msp (Bryozoa). (h) Smithsonius msp (Bryozoa). (i) Aspidodiadematidae msp. 

(j) Actinia msp-18. (k) Actinia msp-22. (l) Callozostron cf bayeri. (m) Calyptrophora cf 

persephone. (n) Bathygorgia cf profunda. (o) Lepidisis msp. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) 

(o) 

(l) 

(m) (n) 
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Figure B4. Variation in morphospecies density with nodule cover at the APEI6 seafloor. Data are 

mean density values of top-15 most abundant metazoan morphospecies as calculated from each 

nodule cover class bootstrap-like sample set. Error bars represent 95% confidence intervals. (a) 

Porifera msp-5. (b) Cladorhiza cf mexicana. (c) Polychaete msp-5. (d) Irregularia msp-1. (e) 

Mastigoteuthis sp. (f) Ophiosphalma sp. (g) Columnella msp (Bryozoa). (h) Smithsonius msp 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (l) (k) 

(m) (o) (n) 
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(Bryozoa). (i) Aspidodiadematidae msp. (j) Actinia msp-18. (k) Actinia msp-22. (l) Callozostron 

cf bayeri. (m) Calyptrophora cf persephone. (n) Bathygorgia cf profunda. (o) Lepidisis msp. 

 

 

 

Figure B5. Variation in the density of selected metazoan taxonomic groups with nodule cover. 

Lines represent mean density values of each group as calculated from each nodule-cover class 

bootstrap-like sample set fitted by weighted least-squares, using a local polynomial regression. 

 

 

 

 

 

 

 

 

 

 

 

 

Page 42 of 83Limnology and Oceanography



For Review Only

 

 

 

Table B1. Spearman’s rank correlations of all ecological parameters with nodule cover. 

Summary results of tests performed between mean density (ind m
-2

) values of different metazoan 

groups as calculated from each nodule cover class bootstrap-like sample set and nodule cover 

variation, with detail of significant differences between nodule class 1 (mean cover = 1.1%) and 

the rest of classes (cover >2%). Distinct class 1: no overlap of class 1 confidence interval with 

any other class.  

 

 
Distinct 

class 1 

Correlations 

rs p-value 

Functional group 
  

Deposit feeders yes -0.15 0.676 

Predators and scavengers no 0.28 0.425 

Suspension feeders yes 0.50 0.138 

Taxonomic Phylum 

Annelida yes 0.10 0.777 

Bryozoa yes 0.78 0.008** 

Cnidaria yes 0.49 0.150 

Arthropods: crustaceans no 0.83 0.003* 

Echinodermata yes -0.25 0.489 

Porifera no -0.84 0.002* 

Morphospecies 

Polychaete msp-5 yes 0.18 0.627 

Columnella msp yes 0.76 0.011* 

Smithsonius msp no 0.50 0.138 

Actinia msp-18 yes 0.47 0.174 

Actinia msp-22 no 0.83 0.003* 

C. cf persephone no -0.36 0.310 

B. cf profunda no 0.55 0.098 

Lepidisis msp no 0.95 0*** 

C. cf bayeri no -0.60 0.067 

Irregularia msp-1 no -0.03 0.934 

Aspidodiadematidae msp no -0.54 0.108 

Ophiosphalma sp no -0.03 0.934 

Porifera msp-5  no -0.93 0*** 

C.cf mexicana no -0.24 0.511 

Mastigoteuthis sp no 0.44 0.200 
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  National Oceanography Centre

               European Way

             Southampton, SO14 3ZH

                        11th of June 2018

Dear Sir/Madam,

Would you please consider the attached manuscript "Megafaunal variation in the abyssal landscapes 

of the Clarion Clipperton Zone (CCZ)" for submission to Progress in Oceanography. We believe that 

the attached research paper addresses an important topic that is highly appropriate for PiO. 

Our paper explores the influence of seafloor landscape on benthic megafauna communities in the 

abyssal Pacific. We targeted one of the proposed marine protected areas (Area of Particular 

Environmental Interest 6) set up by the International Seabed Authority to protect the environment 

from the harmful effects of potentially imminent polymetallic nodule mining. There is an urgent 

need for baseline ecological analyses such as the present study, since knowledge of the drivers 

structuring biological communities in the area is scarce, yet essential for effective regulation.

We analysed a large image dataset, covering ~15,000 m2 of seafloor, which we demonstrate , 

through analysis of sampling effort, to be enough to provide good quality and stable estimates of 

key biological metrics.  Our analysis detected clear differences in community structure, biodiversity 

levels, and fauna standing stock between characteristic landscape types, showing that local 

geomorphological variations at the landscape scale can play an important role in the structuring of 

the CCZ megabenthos. Changes in terrain have long been hypothesised to be important in the 

ecology of the abyss, but these effects have primarily been assessed in topographically prominent 

environments, such as canyons, ridges, and seamounts. Very few studies have assessed such 

patterns in abyssal plains, and this is the first to demonstrate that biodiversity can be modulated by 

terrain variations at the CCZ. The results have highly relevant conservational value. Differences 

found between formerly assumed homogenous abyssal landscape types flag the importance of 

taking geomorphological variations into consideration during the development of environmental 

policies at the CCZ. 

Possible referees:

Dr. Lenaick Menot. Ifremer, Plouzané, France: lenaick.menot@ifremer.fr
Dr. Diva Amon, Natural History Museum, London, UK: divaamon@gmail.com 
Prof. Dr. Ann Vanreusel, Ghent University, Belgium: ann.vanreusel@ugent.be 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Page 45 of 83 Limnology and Oceanography

mailto:lenaick.menot@ifremer.fr
mailto:divaamon@gmail.com
mailto:ann.vanreusel@ugent.be


For Review Only

Authors remarks:

This is the first time that this manuscript has been submitted to any journal. All authors participated 

in the research and/or article preparation and have approved the final article. Authors declarations 

of interest: none. The funding sources of this article, listed in the main text, had no involvement in 

the study design, nor in the collection, analysis, or interpretation of data. We would like to use 

colour for figures in print.

Yours faithfully

Erik Simon-Lledó 

Telephone: +44 7596414311

Email: esl1n13@soton.ac.uk

  

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Page 46 of 83Limnology and Oceanography



For Review Only

Highlights
 Used objective landscape classification based on AUV surveys to explore the influence of 

geomorphology in the structuring of abyssal megafauna 

 Statistically significant differences in megafauna standing stock, functional structuring, 
diversity, and faunal composition were found between landscape types.

 Lower megafauna density and diversity were found in a bathymetric valley (Trough area), 
which can have important implications for mining exploitation

 Evaluation of the effect of the sample unit size supported our results and highlighted the 
importance of the choice of sampling unit in abyssal sampling, particularly at the CCZ.
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3Present address: University of Hawaii at Manoa, Honolulu HI, USA, 96822.
4GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
5School of Environmental Science, University of Liverpool, Liverpool, UK

*Corresponding author: e.simon-lledo@soton.ac.uk

1. Introduction
The likelihood of polymetallic nodule mining in the Clarion Clipperton Fracture Zone (CCZ) has attracted 
considerable scientific attention (Levin et al., 2016; Van Dover et al., 2017; Wedding et al., 2015). The 
potential impacts of mining are likely to extend over extremely large seafloor areas (Aleynik et al., 2017; 
Glover & Smith, 2003). Such disturbance may lead to major change in the benthic fauna (Jones et al., 2017) 
and full recovery might take thousands of years (Glasby et al., 1982). Sixteen nodule mining exploration 
contract areas (75,000 km2 each) were granted in the CCZ between 2001 and 2014 by the International 
Seabed Authority (ISA) (Wedding et al., 2015). The ISA also allocated a series of nine Areas of Particular 
Environmental Interest (APEIs) beyond these claim areas, where exploitation is prohibited (ISA, 2012). The 
APEIs were designated to preserve source populations of species for future recolonization of disturbed areas 
(Lodge et al., 2014). However, the majority of these APEIs remain unstudied; it is not clear if their 
environmental conditions and faunas are similar to those of the mining claims (Glover et al., 2016a). As a 
result, improved knowledge of the drivers structuring biological communities in the CCZ is urgently needed 
to test the presumed functionality and current spatial arrangement of the APEIs system, and to re-assess the 
regional environmental plan (ISA, 2012).

The CCZ is generally considered as an extensive abyssal plain delimited by the topography of two WSW-ENE 
trending fracture zones, Clarion and Clipperton. There is a gradual increase in water depth from east (4000 
m) to west (5000 m) owing to the sinking of older, cooler oceanic crust to the west (Pushcharovsky, 2006). 
However, slight variations in spreading rate appear to have shaped the CCZ seafloor into a series of 
bathymetric highs and lows with a characteristic spacing of 1 to 10 km, elongated perpendicular to fracture 
zones (Klitgord & Mammerickx, 1982; Olive et al., 2015). These horst and graben structures shape the CCZ 
seafloor as a succession of ridges, valleys, and intervening ‘flat’ zones. This topographic variation is thought 
to be generally characteristic of the abyssal environment worldwide (Harris et al., 2014). The very low influx 
of terrigenous sediments to the CCZ prevents the blanketing of this topography, as may occur on abyssal 
plains adjacent to continental margins (Smith & Demopoulos, 2003).

Abyssal plains represent some 70% of the world’s seafloor (Harris et al., 2014) and are considered the largest 
ecosystems on Earth (Ramirez-Llodra et al., 2010). They are poorly explored but appear to have high species 
richness, including very many undescribed taxa (Smith et al., 2006). Despite their name, abyssal plains can 
have significant topography that influences the diversity and composition of deep-sea fauna (Durden et al., 
2015; Leitner et al., 2017; Stefanoudis et al., 2016). This ecological variation appears to result from the 
interconnected effects of topographically-driven variation of local current dynamics (Thistle et al., 1991), 
sediment composition (Durden et al., 2015), and food supply (Smith and Demopoulos, 2003; Morris et al., 
2016). However, habitat complexity derived from abyssal landscape geomorphology may have been 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Page 48 of 83Limnology and Oceanography

mailto:e.simon-lledo@soton.ac.uk


For Review Only

2

underappreciated in global estimations of ecological heterogeneity at the deep-sea floor (Durden et al., 
2015; Morris et al., 2016); a factor that might be particularly significant to the ecology of the CCZ.

The CCZ appears to have one of the highest levels of deep-sea megafaunal (>1 cm length) species richness 
(Kamenskaya et al., 2013; Tilot et al., 2018). Morphospecies richness estimations from imagery data can rise 
above 200 taxa in local assessments (Amon et al., 2016). True species diversity and genetic biodiversity is 
expected to be much higher (Glover et al., 2015). Given their smaller body size, even higher local diversity is 
to be expected in the meio- and macrofaunal assemblages of the CCZ (De Smet et al., 2017; Pape et al., 
2017). Epifauna, particularly suspension feeders, appear to have higher numerical densities in locations with 
higher nodule coverage (Vanreusel et al., 2016), with nodule-free areas having an higher proportion of 
deposit feeders, such as holothurians (Stoyanova, 2012). However, the precise role of nodules, and other 
local environmental factors, in the ecology of CCZ megafauna at the CCZ is still poorly understood. Faunal 
composition analyses are scarce, and most quantitative studies have been based on relatively small sampling 
unit areas (<1000 m2) and low replication levels. Meaningful comparison across the CCZ is also hampered by 
a lack of standardization between studies.

Reliable estimation of ecological parameters relies on appropriate sampling of the populations under 
investigation. It is often these parameters that serve as the sole basis for conservation management 
decisions (Andrew & Mapstone, 1987; Magurran, 2004). Investigation of the pros and cons of different 
sampling strategies is commonplace in terrestrial and shallow-water marine ecology (Andrew & Mapstone, 
1987; Buckland et al., 2001; Heck Jr et al., 1975) but rarely tackled in deep-sea studies, except for diversity 
estimators (Etter & Mullineaux, 2001; Grassle & Maciolek, 1992; Soetaert & Heip, 1990). In part, this lack of 
research stems from logistic constraints, however, the need is no less. In the CCZ, a key factor may be the 
very low numerical density of the megafauna, such that identifying an appropriate sampling unit size may be 
a particular issue (Benoist et al., submitted; Durden et al., 2016). Studies that demonstrate appropriate 
sampling to support their conclusions are key in ecology, not least those concerned with the regulation of 
mining activities (Durden et al., 2017a; Levin et al., 2016).

Our study assesses the ecology of the megafauna in the dominant landscape types of APEI6 in the eastern 
CCZ. We define the landscape types by objective analysis of the bathymetry, establish corresponding 
sedimentary environmental conditions by direct sampling, and further environmental characteristics and 
faunal data by extensive seafloor photography from an autonomous underwater vehicle (AUV). In this 
contribution we examine landscape-type-related variations in standing stock, diversity, and faunal 
composition and how these parameters, and their interpretation, might vary with the choice of sampling 
unit size.

2. Materials and methods

2.1.Study area 

The CCZ basin floor is covered by extensive polymetallic nodule fields that add to the seabed heterogeneity 
and constitute a unique deep-sea habitat (Radziejewska, 2014). Seafloor nodule coverage can be extremely 
patchy and change drastically over tens of metres (Peukert et al., 2018). Surface sediment is mainly 
composed of Cenozoic pelagic clays and radiolarian oozes (ISA, 2010). The average carbonate compensation 
depth (CCD) is around 4500 m (Mewes et al. 2014), although much shallower to the east (~3500 m) than the 
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west (~5000 m) (Radziejewska, 2014). Bottom currents are generally weak (<10 cm s-1), but direction shifts 
and periods of stronger flows are not infrequent (Aleynik et al., 2017). The supply of sinking food particles to 
the seafloor is extremely low (Lutz et al., 2007), although higher in the APEI6 area than in western areas 
(Veillette et al., 2007).

Fig. 1.  Bathymetric survey chart of the study location within the APEI6 of the CCZ (North Pacific Ocean). Depth (in 
metres) is indicated by the colour bar. Landscape types mapped using objective classification depicted in dark lines. 
Yellow dashed line shows seafloor bathymetric profile depicted in Figure 2. A map of the eastern CCZ is inset, showing 
exploration licenced areas (black polygons), Areas of Particular Environmental Interest (green polygons), and study 
location (red square). 

All results reported here relate to the APEI6 area, and were acquired during RRS James Cook cruise 120 
(Jones, 2015). The survey represented a 5,500 km2 rectangle of seafloor centred on 122° 55' W, 17° 16' N 
(Fig. 1),  chosen to have similar topographic relief to mining contract areas in the central CCZ. Water depth 
ranged 3950-4250 m, and the seafloor landscape comprised a succession of crenulated ridges and shallow 
troughs oriented north-south between dispersed level-bottom (<3° slope) areas.

2.2.Survey design
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2.2.1. Bathymetric mapping and landscape characterisation

Multibeam data were collected with the shipboard Simrad EM120 system (191 beams) and processed using 
CARIS HIPS and SIPS software (TeledyneCARIS; v8.0). The resultant digital elevation model (~100 m 
horizontal resolution) was used to calculate broad bathymetric position Index (bBPI) (Weiss, 2001) and 
terrain ruggedness index (TRI) (Wilson et al., 2007) using SAGA v. 2.1.4 software (Conrad et al., 2015). BPI 
was calculated using an inner radius of 500 m and an outer radius of 10,000 m, and TRI was calculated with a 
500 m radius circular neighbourhood. These areas were selected to be representative of the landscape-scale 
geomorphological variation that was the target of this study. After visual inspection of the generated 
datasets, classification thresholds were set to map ridge (bBPI: 50 to 100; TRI: 0 to 150), trough (bBPI: -100 
to -50; TRI: 0 to 150), and flat (bBPI: -100 to 50; TRI: 0 to 50) areas. Contours were drawn using ArcGIS v10 
(ESRI, 2011) along threshold values of each dataset, and used to delimit representative polygons. Three 
polygons each representing a characteristic landscape type were chosen for stratified-random sampling: Flat 
area, Ridge area, and Trough area (Fig. 2). Data were projected in Universal Transverse Mercator projection, 
Zone 10N, using the World Geodetic System 1984 datum.

Fig. 2. Survey Landscape type study areas investigated at the APEI6. A) Seafloor bathymetric profile depicted as yellow-
dashed line in Fig 1. B to D: Detail of sampling operations: grey lines indicate full AUV image survey tracks, thick white 
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lines highlight replicate sampling units selected for analysis, and yellow dots represent coring stations. Study areas 
surveyed: B) Flat area. C) Ridge area. D) Trough area.

2.2.2. Direct sampling

Five sediment sampling stations, with a minimum separation of 100 m, were randomly selected within each 
study area (Fig. 2.B-D). Two Megacore  (Gage and Bett, 2005; 10cm internal diameter) samples were 
collected per station. Each sample was initially sliced and split by sediment depth. Sediment grain-size 
distributions were assessed from one core in 0-5 and 5-10 mm depth horizons, by laser diffraction using a 
Malvern Mastersizer 2000 after homogenisation (grains >2 mm removed), dispersal in 0.05% (NaPO3)6 

solution, and mechanical agitation. Grain-size distributions obtained for the two horizons were averaged for 
presentation. The 0-10 mm horizon from the second core were assessed for sediment chemistry. Total 
carbon (TC) and total nitrogen (TN) contents were measured in duplicate (reproducibility <±5%) using a Carlo 
Erba NC 2500 CHN Elemental Analyser. Total organic carbon (TOC) was determined after de-carbonation of 
the samples using the acid HCl vapour method of (Yamamuro & Kayanne, 1995).

2.2.3. Photographic survey

Seafloor photographic images were collected using two digital cameras (FLIR Grasshopper2; 2448 x 2048 
pixels), one mounted vertically, and one forward oblique facing on the autonomous underwater vehicle 
(AUV) Autosub6000 (Morris et al., 2014). The camera layout and the underwater navigation system were set 
as described in Morris et al. (2014). The AUV was programmed for a target altitude of 3 m above the 
seafloor, a speed of 1.2 m s-1, and a photographic interval of 850 milliseconds. At the target altitude, 
individual vertical photographs imaged 1.71 m2 of seabed.

In each area, a zig-zag survey design (Fig. 2.B-D), with random start point, was chosen to maximise sampling 
efficiency while minimising design-based bias in the spatial distribution of the replicate sampling units 
(Buckland et al., 2001; Strindberg & Buckland, 2004). A total of 40 sampling units, the straight line zig and zag 
sections, were surveyed in each area. Four sampling units were randomly selected in each area for 
subsequent analysis. Images taken as the vehicle changed course, i.e. junctions between sampling units, 
were discounted. In the remaining straight line sections, every second image was discounted to avoid 
overlap between consecutive images and the risk of double counting. To ensure consistency in specimen 
detection, images outside the altitude range 2-4 m were also discounted. The total seabed area analysed 
from each of the randomly selected sampling units was then standardised to c. 1320 m2 (range 1321-1324 
m2) by random selection from the remaining constituent images, typically 715 photographs (range 555-781; 
SM, Table A.1). All images used for data generation were colour corrected as described by Morris et al. 
(2014).

2.3.Data analysis

2.3.1. Environmental assessment

Sediment grain size statistics were calculated using Gradistat v.8 software (Blott & Pye, 2001), applying the 
geometric method of moments (Krumbein, 1936). Mud content was calculated as the proportion of particles 
<63 μm. Carbonate content wet weight (% wt) was calculated from the difference between TC and TOC 
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(assuming all carbonate was CaCO3). The ratio of total organic carbon to total nitrogen (C:N) was calculated 
as the molar ratio.

Nodule seafloor coverage (% cover) and total surface covered by nodules (m2) were quantified from AUV 
imagery using the Compact-Morphology-based poly-metallic Nodule Delineation (CoMoNoD) method 
(Schoening et al., 2017). CoMoNoD attempts to detect all polymetallic nodules present in an image and 
calculates their areal extent (cm2) based on an ellipsoidal shape projection, to correct for potential 
underestimation resulting from sediment cover. Only nodules ranging from 0.5 to 60 cm2 (i.e. with maximum 
diameters of ~1 to ~10 cm) were considered for analysis to avoid inclusion of large non-nodule formations. 
Angular-shaped cobbles to large rocks and whale bones (min. diameter >10 cm) coated in ferromanganese 
crust were manually counted and measured. Average nodule cover (%) and total nodule area extent (m2) 
were calculated across the selected images of each sampling unit.

2.3.2. Megafauna assessment

Images used for megafauna data generation were reviewed in random order to minimise time or sequence-
related bias (Durden et al., 2016). Specimens (>10 mm) were identified to the lowest taxonomic level 
possible (morphospecies: msp), measured using the BIIGLE-DIAS software (Bielefeld Image Graphical Labeller 
and Explorer: Deep-sea Image Annotation System; (Langenkämper et al., 2017), and assigned to an 
“attached to hard substrata (i.e. nodules or rocks)” or “attached to sediment/unattached” life habit. To 
ensure consistency in identification, a megafauna morphospecies catalogue was developed and maintained 
in consultation with international taxonomic experts and by reference to the existing literature (Amon et al., 
2017; Cummings et al., 2014; Dahlgren et al., 2016; Glover et al., 2016b). The likely feeding behaviour of 
each morphospecies was inferred from similar organisms described in the literature (i.e. Cummings et al., 
2014; Iken et al., 2001). Individual metazoan specimen biovolume was estimated, as a proxy for biomass, 
from two body measurements using the generalised volumetric method described of Benoist et al. 
(submitted). Despite being comparable in size to metazoan morphospecies, xenophyophores were analysed 
separately since it is not possible to determine whether they are living from images (Hughes & Gooday, 
2004).

A range of ecological parameters were calculated for each replicate sampling unit, including numerical 
density (ind m-2) and proxy biomass density (ml m-2≈ g fresh wet weight m-2). To examine the range of 
diversity characteristics, Hill’s diversity numbers of order 0, 1, and 2 (Jost, 2006) were calculated as 
morphospecies richness (S), the exponential form of the Shannon index (exp H´), and the inverse form of 
Simpson’s index (1/D), using the ‘vegan’ package implemented in R (Oksanen et al., 2007). Additionally, 
sample-based morphospecies rarefaction curves were fitted using the analytical method proposed by 
Colwell et al. (2012), using Estimate S v.9.1 software (Colwell, 2013), by randomly resampling sample data of 
each study area without replacement, while exp H´ and 1/D accumulation curves were calculated with 
replacement. K-dominance curves were also generated to explore dominance patterns (Clarke, 1990).

2.3.3. Statistical analyses

Generalized linear models (GLM) (Dobson & Barnett, 2008) were built to test whether statistically significant 
variation in environmental or biological parameters was apparent between study areas, using the ‘car’ 
package (Fox et al., 2016) implemented in R (R Core Team, 2017). Models were fitted with quasi-Poisson 
errors in non-negative integer metrics (i.e. density, S) with over-dispersion (Gardner et al., 1995), and with 
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normal errors applied to non-integer variables (i.e. mean grain size, exp H´, 1/D ) (Freund & Littell, 1981). 
Differences in proportional metrics (i.e. nodule coverage, mud content, or functional group percentages) 
were tested with beta-regression models (Ferrari & Cribari-Neto, 2004) using the ‘betareg’ package (Cribari-
Neto & Zeileis, 2010). When statistically significant effects were detected in these global test, simultaneous 
tests were applied to make multiple comparisons between individual study areas, using the ‘multcomp’ 
package in R (Hothorn et al., 2008). Homogeneity of variance and normality assumptions were verified by 
visual inspection of model histograms and QQ plots. Statistical significance was reported for p < 0.05.

Variations in community composition between study areas were explored using a range of abundance-based 
multivariate approaches. The Bray-Curtis dissimilarity measure, based on square-root transformed faunal 
density, as calculated using the ‘vegan’ package in R, was used throughout these analyses. Non-metric 
multidimensional scaling (nMDS) ordination was used to visualise variations (‘vegan’ package in R). A one-
way permutational MANOVA (PERMANOVA) analysis (Anderson, 2001), with follow-up pair-wise tests, was 
used to test for statistically significant variations in assemblage composition between study areas, using 
PRIMER v.7 (Clarke & Gorley, 2015). A SIMPER (‘‘similarity percentages’’) analysis was performed to assess 
morphospecies contribution to between-group dissimilarity (‘vegan’ package in R).

2.3.4. Megafauna sampling effort evaluation

To assess the reliability of the biological survey developed in the present study, we investigated the effect of 
varying sampling unit size (seabed area or individuals covered per sample unit) on the accuracy (i.e. 
stabilization of mean value) and precision (i.e. coefficient of variation: CV) of different ecological parameters. 
Image data were first pooled within study area (i.e. across sampling units) and then randomly resampled 
1000 times with or without replacement (depending on the target parameter and approach used: see below) 
into new sampling unit sets of increasing image number size. The mean (or median), the precision (CV), and 
the confidence intervals (95%) of each parameter were calculated at each sample unit size increase, together 
with the mean total seabed area and individuals represented by the images composing each subset. 

Morphospecies rarefaction curves were fitted using the analytical method proposed by Colwell et al. (2012), 
using Estimate S v.9.1 software (Colwell, 2013), by randomly resampling image sets of increasing size 
without replacement. Accumulation curves were interpolated and extrapolated up to 3000 individuals 
sampled, to balance for differences in fauna densities. Additionally, curves were extrapolated up to 15,000 
m2 per study area (see SM-Fig S3). The autosimilarity approach proposed by Schneck and Melo (2010), as 
implemented in the seabed image case by Durden et al. (2016a), was applied to evaluate precision in 
assemblage description. At each sample size, Bray-Curtis dissimilarity was computed between two groups of 
images, each randomly selected without replacement and composed by half the total number of images of 
each set. Metazoan density, biomass density, and exp H´ and 1/D indexes were computed by bootstrapping 
image subsets resampled with replacement (Buckland et al., 2001). Custom R scripts and the ‘vegan’ package 
were used to process image data and calculate all ecological indices.

3. Results

3.1.Environmental assessment
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Surface sediments (0-10 mm horizon) were dominated by radiolarian-bearing pelagic clay to fine silt particles 
(diameter <7.8 μm; 58-68% of particles), and medium to very coarse silt grains (diameter = 7.8-63 μm; 28-
39% of particles). Mean and median particle size, and mud proportion showed no statistically significant 
variation between areas, though larger value ranges were evident among the Ridge area samples (Table 1). 
Subsurface sediments (>50 mm horizon) in the Ridge and Trough showed much greater variability in grain 
size distributions than those in the Flat area (SM, Fig. A.1; Table A.2). Relative proportions of TOC, TN, and 
CaCO3 were almost homogenous across the study areas; no statistically significant differences were detected 
between study areas (Table 1).

The polymetallic nodules observed during the present study were of an ellipsoidal-flat shape with smooth 
surfaces. Mean nodule surface area was 2.5 cm2, with most nodules <5 cm2 (90%), and very few >10 cm2 
(1%). Nodules in the Flat were larger than in the other areas, though not significantly (Table 1). Average 
nodule cover was 6.4% and ranged from nodule-free to 38%. The highest mean nodule coverage was 
recorded in the Flat area (Table 1), although both the within-sampling unit and within-area deviations for 
this metric were high (SM, Table A.1). Nodule coverage did exhibit a statistically significantly difference 
between study areas (Table 1), with a statistically significant pair-wise difference between the Flat and 
Trough areas (Tukey, p < 0.05). Larger (>60 cm2 in surface) hard substratum formations coated in 
ferromanganese crust were especially common in the Ridge area, where angular shaped cobbles, boulders, 
and whale bones were about ten times more abundant than in the other study areas (Table 1). However, the 
inclusion of these structures (total survey area surface <6 m2) to the total hard-substratum availability of 
each sample unit was negligible, even in Ridge samples. 
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 Flat Ridge Trough Error 
fit F-value

Sample parameters  (F2,14)
Sediment mean grain size (μm) 8.1 (7.7 - 8.2) 9.5 (6.8 - 17.6) 9.2 (8 - 12.2) G 0.34

Sediment mud content (%) 92.6 (91.7 - 93.8) 92.5 (79.9 - 95.7) 90.7 (85.6 - 93.2) B 1.01

Sediment TOC (%) 0.42 (0.39 - 0.44) 0.41 (0.35 - 0.45) 0.44 (0.39 - 0.49) B 0.8
Sediment Corg TN-1 4.0 (3.8 - 4.3) 3.8 (3.6 - 4.0) 4.1 (3.7 - 4.5) B 0.85
Sediment CaCO3 (%) 0.33 (0.24 - 0.53) 0.48 (0.26 - 0.66) 0.36 (0.26 - 0.48) B 0.5
Image parameters  (F2,11)
Nodule surface size (cm2) 2.6 (2.3 - 2.9) 2.0 (1.7 - 2.3) 2.1 (1.6 - 2.6) G 2.57
Nodule seabed cover (%) 10.1 (7.2 - 12.3) 6.3 (4.3 - 8.6) 3.8 (1.9 - 6.5) B 6.73**
Nodule seabed cover (m2) 133.8 (95.4 - 162.6) 83.0 (56.4 - 113.8) 50.1 (24.5 - 86.4) G 4.82*
Other hard substrata (items ha-1) 62 (28 - 102) 682 (230 - 1132) 64 (30 - 102) QP 10.26**
Metazoan density (ind m-2) 0.49 (0.42 - 0.54) 0.47 (0.41 - 0.53) 0.32 (0.25 - 0.39) QP 5.23*
Metazoan biomass (g fwwt m-2) 1.6 (1.1 - 2.1) 2.9 (1.5 - 4.2) 2.1 (1.0 - 3.2) G 0.79
Metazoan richness (S) 70.5 (67.2 - 74.0) 64.8 (61.0 - 68.5) 59.5 (50.5- 68.5) QP 2.09
Metazoan exp(H') 29.7 (27.0 - 32.3 ) 28.3 (25.5 - 31.5) 23.4 (18.3 -28.4) G 2.33
Metazoan 1/D 16.4 (14.2 -18.5) 16.4 (13.2 - 19.6) 9.7 (6.2 -13.2) G 4.66*
Metazoan OHS (ind m-2) 0.34 (0.29 - 0.38) 0.28 (0.23 - 0.35) 0.19 (0.13 - 0.25) QP 5.33*
Metazoan OHS (%) 69.3 (60.9 - 74.4) 60.0 (50.2 - 67.3) 57.2 (48.2 - 65.5) B 2.49
Metazoan SF density (ind m-2) 0.39 (0.34 - 0.44) 0.34 (0.29 - 0.39) 0.25 (0.19 - 0.31) QP 4.25*
Metazoan SF (%) 79.8 (77.9 - 81.6) 73.6 (69.6 - 76.1) 77.2 (74.8 - 79.5) B 5.33*
Metazoan DF density (ind m-2) 0.07 (0.07 - 0.08) 0.10 (0.09 - 0.11) 0.05 (0.04 - 0.07) QP 13.90**
Metazoan DF (%) 15.9 (14.4 - 17.4) 21.6 (18.5 - 24.8) 17.2 (14.9 - 19.4) B 5.56*
Xenophyophore density (ind m-2) 2.22 (1.54 - 2.99) 4.09 (3.55 - 4.60) 1.33 (0.48 - 2.6) QP 5.94**
Xenophyophore OHS (ind m-2) 1.15 (0.75 - 1.64) 1.36 (1.01 - 1.71) 0.52 (0.15 - 1.14) QP 2.22
Xenophyophore OHS (%) 50.7 (47.5 - 54.2) 32.8 (28.3 - 37.2) 32.7 (24.3 - 41.3) B 10.22**

Table 1. Environmental and biological features assessed for each landscape type of the APEI6 with detail on the general 
linear models (GLM) applied to explore variations of these parameters between study areas. Sediment parameters: 
measured from surface sediment (0-10 mm) and shown as: mean (minimum - maximum) obtained amongst all replicate 
Megacore samples (n=5) collected in each area. Parameters: particle size; mud content (particles <63 μm) percentage; 
percentages of total organic carbon (TOC) and CaCO3; and molar Corg/Total nitrogen ratio. Image parameters: measured 
from seafloor imagery data and shown as: mean (95% confidence intervals: lower – upper) calculated amongst all 
replicate image samples (n=4) collected in each area. Parameters: seafloor percentage cover and total nodule area 
calculated using the CoMoNoD algorithm on seabed imagery (see text); density of non-nodule (>10 cm) hard substrata 
(boulders and whale bones); total density and proportion of metazoan and xenophyophore individuals (>10mm) split in 
different functional (SF: suspension feeders; DF: deposit feeders) and attachment-type (OHS: on hard substratum) 
categories; biomass (grams of fresh wet weight) density inferred using the generalised volumetric method (see text); 
and diversity: richness, exponential Shannon (exp H’), and inverse Simpson (1/D) indices.
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Fig 3. Examples of metazoan megafauna photographed at the APEI6 seafloor during AUV survey. Scale bars 
representing 50 mm. A) Actiniaria msp-6. B) Actiniaria msp-13. C) Bathygorgia cf. profunda. D) Abyssopathes cf lyra. E) 
Left: Chonelasma sp.; right: Hyalonema sp. F) Cladorhiza cf kensmithi. G) Bathystylodactylus cf echinus. H) 
Nematocarcinus sp. I) Sabellida msp-1 (polychaete). J) Left: Freyastera sp.; right: Caulophacus sp. K) Psychropotes cf 
longicauda L) Benthodytes cf. typica. M) Coryphaenoides sp. N) Typhlonus nasus O and P: probable new Mastigoteuthis 
sp. same specimen photographed with different cameras. O) Vertical view P) Oblique view. Image taken ~1” prior to the 
vertical shot.
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Phylum/Class Group Morphospecies Flat Ridge Trough
(*) (n) OSS OHS OSS OHS OSS OHS

Ctenophora Tentaculata 2 1 1
Porifera Porifera 10 26 45 33 40 52 35

Desmospongidae 7 42 126 53 119 174 342
Hexactinelidae 9 8 19 19 4 17 9

Cnidaria Scyphozoa 2 5 6
Aff. Anthozoa 1 4 7 1 5
Actiniaria 13 49 306 39 242 36 93
Alcyonacea 6 107 821 125 633 52 252
Antipatharia 1 1 1
Ceriantharia 2 8 3 2 1 5 1
Pennatulacea 1 2 1 1 1

Bryozoa Cheilostomatida 4 19 251 44 226 25 95
Annelida Echiura 3 21 20 10

Polychaeta 5 63 152 60 173 34 104
Mollusca Bivalvia 1 74 140 66

Gastropoda 2 8 1 3
Octopoda 1 1 1
Scaphopoda 1 19 7 8
Teuthoidea 1 29 29 22

Arthropoda Aff. Crustacea - 33 36 38
Amphipoda 3 12 11 11
Cirripeda 2 2 23 2 14 3 7
Copepoda 2 12 2 8
Decapoda 8 43 20 30
Isopoda 1 16 17 14
Peracarida 1 7 8 3

Echinodermata Asteroidea 5 14 4 4
Crinoidea 6 1 12 4 20 5 19
Echinoidea 5 60 79 45
Holothuroidea 11 32 19 16
Ophiuroidea 4 78 161 38

Chordata Urochordata 2 3 6 1 1 3 7
Osteichthyes 7 23 18 15

TOTAL 129 817 1770 957 1481 746 969

Table 2. Total abundance and taxonomical classification of metazoan morphospecies groups sampled at each APEI6 
study area. Abundances show how specimens were found: sessile attached to hard-substratum (OHS); sessile on 
sediment or mobile fauna (OSS). (*) “Group” level taxonomical classification is not hierarchical, ranges from Class to 
Family level, to simplify tabulation.
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3.2.Megafauna assessment

3.2.1. Metazoan fauna

A total of 6740 megafauna individuals (>10 mm) were recorded in the 15,840 m2 of seabed examined during 
the present study (Table 2). Megafauna were classified into 129 morphospecies and 11 higher taxonomic 
categories (i.e. Order, Family; Table 2). Rare taxa (≤ 3 records) represented a third of the total 
morphospecies richness. The fauna observed (Fig. 3) were predominantly cnidarians (25 msp; 0.18 ind m-2, 
~70% of which were Alcyonacea bamboo corals), sponges (27 msp; 0.07 ind m-2), annelids (9 msp; 0.04 ind 
m-2), bryozoans (4 msp; 0.04 ind m-2), and echinoderms (32 msp; 0.04 ind m-2). Mollusc, crustacean, fish, 
tunicate, and ctenophore morphospecies were also recorded at lower densities (<0.03 ind m-2; Table 2). The 
metazoan fauna was primarily composed of suspension feeders (78%) and deposit feeders (16%), while 
predators and scavengers were scarce (4%). Almost 80% of suspension feeding individuals were found 
attached to polymetallic nodules or other hard substrata. The proportion of nodule-attached individuals was 
>70% of the total abundance in 37 morphospecies. These “nodule-dwelling” taxa constituted 70% of the 
total abundance, and 30% of the total richness recorded.

3.2.1.1. Patterns in faunal distribution 

Mean metazoan density exhibited a statistically significantly difference between study areas (Table 1), with 
densities in Flat and Ridge areas higher than those in the Trough (Tukey, p < 0.05). We detected statistically 
significantly higher densities of suspension feeders in the Flat area compared to the Trough, and statistically 
significantly higher densities of deposit feeders in the Ridge than in the other study areas (Tukey, p < 0.05). 
Mean density and proportion of predators and scavengers was similar in all study areas (Table 1). Although 
the proportion of the fauna attached to nodules was not statistically significantly different between study 
areas (Table 1), the densities of nodule-attached individuals were statistically significantly higher in the Flat 
than in the Trough (Tukey, p < 0.01). The mean biomass density recorded across all sampling units was 1.22 g 
fwwt m-2 (in c. 1320 m2 observed), with no statistically significant difference detected between study areas 
(Table 1). 

Mean morphospecies richness (S) was higher in the Flat, though we found no statistically significant 
difference between study areas (Table 1). Sample-based morphospecies accumulation curves showed that 
this pattern was consistent at whole study areas sampling level (Fig. 4.A), and extrapolation of image-based 
curves predicted the same scenario even when triplicating the total sampling performed per study area (SM-
Fig. A.2). Variations in diversity between study areas were more evident at progressively higher Hill’s orders 
(q > 0).  Mean exp H’ and 1/D indices were higher in the Flat and the Ridge areas compared to the Trough, 
although these differences were statistically significant only in 1/D index (Table 1). These patterns were 
consistent at whole study areas sampling level (Fig. 4.B-C). We also detected a higher morphospecies 
dominance in the Trough area, and more even abundances in the Flat and Ridge areas (Fig. 5.A).
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Fig. 4. Sample-based diversity accumulation curves calculated for each APEI6 study area. Fauna occurrences of each 
replicate sample were randomly resampled (with or without replacement) 1000 times at each sampling effort level 
(n=1-4). A) Species rarefaction calculated without replacement. B) Exponential Shannon index, calculated with 
replacement. C) Inverse Simpson index, calculated without replacement. Error bars represent 95% confidence intervals 
between runs. 
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Fig. 5. Morphospecies k-dominance curves calculated for each APEI6 study area. Curve lines represent cumulative rank 
abundances calculated as the mean amongst the four replicate samples analysed for each area. Shadowing represents 
95% confidence intervals. A) Curves calculated including only metazoan fauna. B) Curves calculated including 
metazoans and xenophyophores. 

3.2.1.2. Variations in community composition

Cnidarians, sponges, bryozoans, and echinoderms showed the clearest variations in density between study 
areas (Fig. 6). In total, 54% of the morphospecies recorded were present in all three study areas, 22% were 
noted in only two areas, and 24% were detected in one area only area. Most (70%) of the single area records 
were singletons (SM, Fig. A.3) and the rest rare morphospecies (≤ 5 occurrences). Nevertheless, a statistically 
significant difference in faunal composition was detected between the study areas (PERMANOVA, R2 = 0.39, 
p < 0.001) (Fig. 7.A), with statistically significant differences apparent in paired comparisons between the 
Trough and the other study areas (pair-wise PERMANOVA, R2=0.36-0.37, p < 0.05). SIMPER analysis showed 
that variations in the density of 10-15 morphospecies were responsible for 70% of the dissimilarity between 
study areas, but three morphospecies, a sponge (Porifera msp-5) and two soft corals (Lepidisis msp and 
Callozostron cf. bayeri), contributed most to the significant dissimilarities. Total density of Porifera msp-5 in 
the Trough (8.7 ind 100-1 m-2) was four times higher than in the Ridge and Flat areas; total density of Lepidisis 
msp in the Flat (3.8 ind 100-1 m-2) was four times higher than in the Ridge and 20 times higher than in the 
Trough areas; while total density of C. cf bayeri in the Ridge and the Flat (~2.5 ind 100-1 m-2) was four times 
higher than in the Trough area. 

A B

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

Page 61 of 83 Limnology and Oceanography



For Review Only

15

Fig. 6. Density variations of different metazoan taxonomic groups between APEI6 study areas. Points represent the 
mean density of each group calculated amongst the four replicate samples analysed for each area. Error bars represent 
95% confidence intervals. 

Fig. 7. Interpreted megafauna morphospecies composition nMDS for APEI6 samples. Two-dimensional representations 
of nMDS developed on Bray-Curtis resemblance matrix calculated from square-root transformed megafauna 
composition by abundance data. A) nMDS plot developed including only metazoan fauna. B) nMDS plot developed 
including metazoans and xenophyophores. Arrows indicating the (non-linear) trend in water depth and bathymetric 
derivatives suggested for each axis.
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3.2.1.3. Sample unit size evaluation

Estimates of most of the ecological parameters assessed were consistent at the sample unit size used in the 
present study (c. 1320 m2 of seabed) (Figs. 8-9). The maximum precision (CV) reached by each parameter 
with increasing sample unit size ranged from 0.02 to 0.30 (SM, Fig. A.4), yet increases in precision were 
relatively minor for most parameters with unit sizes >300 individuals (700-900 m2), except for autosimilarity, 
which required much smaller sizes (>150 individuals; 300-450 m2) to reach an almost constant precision rate 
(SM, Fig. A.5). Analysis of accuracy yield more variable results. Estimation of mean taxa richness required the 
largest unit size to stabilise (>500 individuals; 1000-1500 m2) (Fig. 8.A-B), while fauna density required the 
smallest (>30 individuals; 50-100 m2) (Fig. 9.A-B). Mean autosimilarity required unit sizes >500 individuals 
(1000-1500 m2) to stabilise (Fig 9.C-F). At this size, mean within-sample similarity was >70% (i.e. two sub-
samples of 250 individuals randomly generated from 500 individuals yield an average similarity >70%). 
Accuracy of biomass density estimates differed between study areas: sample unit sizes >500 individuals were 
required for stabilisation of median values in the Flat and Trough samples, while stabilisation in the Ridge 
occurred >250 individuals. Mean exp H’ stabilized with unit sizes >350 individuals (700-1000 m2) (Fig. 8.C-D), 
while mean 1/D stabilised with >200 individuals (400-600 m2) (Fig. 8.E-F).
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Fig. 8. Variation of the different metazoan community diversity indices used in the present study, as a function of the 
seabed area or number of individuals encompassed by the sample unit size. Lines represent mean values across the 
1000 randomisations performed at each sample unit size increse, for each study area collated sample (n=3) (see 
methods). Shadowing representing 95% confidence intervals. Ticks on x-axis indicate the sampling unit size used in the 
present study (replicate sample areas = 1320 m2). A and B:  Rarefied metzaoan morphospecies accumulation curves. A) 
Area-based accumulatiuon curves. B) Individual-based accumulation curves. Dashed lines represent sample 
extrapolation. C and D: Variation of metazoan exp H’ diversity index. E) Area-based mean exp H’. F) Individual-based 
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mean exp H’. E and F: Variation of metazoan  1/D diversity index. I) Area-based mean 1/D. J) Individual-based mean 
1/D.

  

Fig. 9. Variation of the different metazoan community parameters used in the present study as a function of the seabed 
area or number of individuals encompassed by the sample unit size. Lines represent mean or median values across the 
1000 randomisations performed at each sample unit size increse, for each study area collated sample (n=3) (see 
methods). Shadowing representing 95% confidence intervals. Ticks on x-axis indicate the sampling unit size used in the 
present study (replicate sample areas = 1320 m2). A and B: Variation of mean metazoa density. A) Area-based mean 
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density. B) Individual-based mean density.C and D: variation of median metazoan biovolume concentration. A) Area-
based median biovolume. H) Individual-based mean biovolume. E and F: autosimilarity curves showing mean Bray-
Curtis dissimilarity index calculated amongst pairs of metazoan samples. E) Area-based autosimilarity curves. F) 
Individual-based autosimilarity curves.

3.2.2. Xenophyophore fauna

Xenophyophore tests (Fig. 10) numerically dominated the megafauna recorded during the present study; 
being overall, six times more abundant than metazoans, and reaching a peak density of 17 ind m-2 in an 
image from the Ridge area. Mean xenophyophore density exhibited a statistically significantly difference 
between study areas (Table 1), with densities in the Ridge higher than those in the Trough (Tukey, p < 0.01). 
The recently described species Aschemonella monile (Gooday et al., 2017a) (Fig. 10.B) dominated the fauna, 
having mean densities of 3.27, 1.51, and 0.85 ind m-2 in the Ridge, Flat, and Trough areas respectively. The 
numerical dominance of xenophyophores has substantial impact on the perception of relative faunal 
diversity among the study areas (Fig. 5.B), inclusion of these foram taxa markedly increased rank 1 
dominance (Berger-Parker index) in the Flat and Ridge areas, indicating a very substantial reduction in 
diversity in the Ridge area particularly. 

Xenophyophores were classified in 23 morphospecies. Xenophyophore faunal composition exhibited 
statistically significant variation between study areas (PERMANOVA, R2= 0.55, p < 0.001), and statistically 
significant differences detected in all paired comparisons (pairwise PERMANOVA, R2= 0.39-0.61, p < 0.05). 
Joint analysis of xenophyophore and metazoan faunal composition yielded comparable results (Fig 7.B) to 
those obtained from the analysis of metazoan taxa only (Fig 7.A); statistically significant variations between 
study areas (PERMANOVA, R2= 0.48, p < 0.001) were led by statistically significant differences between the 
Trough and the other study areas (pairwise PERMANOVA, R2= 0.37-0.45, p < 0.01).

Fig. 10. Examples of xenophyophore megafauna photographed at the APEI6 seafloor during AUV survey. Scale bars 
representing 50 mm. A) Reticulammina msp. B) Aschemonella monile. C) Fan-shaped Psammina msp. D) Indeterminate 
Psamminid msp, possibly Shinkaiya or Syringammina. E) Syringammina cf limosa. F) Triradiate Psammina msp, possibly 
P. multiloculata.
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4. Discussion

4.1.Environmental setting at the APEI6

The high homogeneity in particle size and nutrient availability found across the APEI6 study areas suggests 
that these factors may be consistent over scales broader than the tens of kilometres between areas studied 
here. Our results were somewhat unexpected since variations in sediment grain-size distributions and 
particulate organic matter have commonly been reported between landscape types in previous assessments 
in the north Atlantic abyss (Durden et al., 2015; Morris et al., 2016), where bottom current speed ranges 
(Vangriesheim et al., 2001) are comparable to those expected at the APEI6, but sediments were coarser and 
more heterogeneous. Surface sediment particle sizes at the APEI6 were comparable in range to those found 
in eastern CCZ contract areas (Khripounoff et al., 2006; Mewes et al., 2014; Pape et al., 2017). Although 
sediments in these -more southerly- areas exhibit bimodal particle size distributions, being primarily 
composed of clays and fine silts (<6.3 μm), but with higher proportions of sands (>63 μm) than at the APEI6. 
Ranges of TOC (0.41-0.44%) and C:N ratios (3.8-4.1) were also comparable to those reported in eastern CCZ 
contract areas (Khripounoff et al., 2006; Mewes et al., 2014; Pape et al., 2017). This suggests that the 
sedimentary environment of the APEI6 may be generally representative of the environment found at a larger 
scale (i.e. eastern CCZ), although further exploration in other contract areas would be required to draw more 
precise conclusions in this regard.

Variations in nodule abundance could be indicative of environmental change between study areas. Locally 
stronger bottom-water currents reducing deposition rates are presumed to enhance nodule formation 
(Mewes et al., 2014; Skornyakova & Murdmaa, 1992). Higher nodule abundances in mild slopes and elevated 
seafloors, such as the Flat and the Ridge areas, have commonly been linked with low sedimentation rates 
(Frazer & Fisk, 1981; Mewes et al., 2014). Yet convergent channelling of bottom currents in bathymetric 
valleys, such as the Trough area, has also been suggested to limit deposition enhancing nodule growth 
(Peukert et al., 2018). The more irregular nodule coverage we observed in the Ridge (SM, Table 1) concurs 
with previous descriptions of hilltop environments at the CCZ (Jung et al., 2001; Margolis & Burns, 1976; 
Skornyakova & Murdmaa, 1992). In these, current circulation over rugged seafloor can generate scattered 
redistribution of surface materials (Jung et al., 2001; Nasr-Azadani & Meiburg, 2014; Peukert et al., 2018), 
which may have reduced the sediment blanketing of hard structures (i.e. rock fragments, whale bones) and 
trace fossils (Durden et al., 2017b) within the Ridge. 

4.2.Sample unit size evaluation

Narrowing of the precision range with increasing sample unit size was apparent in all parameters (SM, Fig. 
A.5), as was expected from previous image-based assessments (Durden et al., 2016b), but the accuracy of 
each parameter (Figs. 8-9) showed a different sensitivity to this factor. The sample unit size we used in this 
study (c. 1320 m2 of seafloor) was therefore sufficiently large for reliable estimation of fauna density, 
diversity of higher orders, and community dissimilarity, but was arguably too small for the assessment of 
taxa richness and biomass density patterns, as not all samples collected (SM, Table A.1) contained the 
minimum of 500 individuals suggested by our analysis for a reliable characterisation of these two 
parameters.
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It is conceivable that the higher sensitivity to sample size was a “rarity-driven” effect. On the one hand, the 
low density combined with the high taxa richness we found at the APEI6 yield high rates of taxon rarity in 
our assessment. This is commonplace in abyssal sampling (Smith & Demopoulos, 2003), but has a negative 
effect on the accuracy of those diversity indices more sensitive to rare taxa, such as richness (Magurran, 
2004; Soetaert & Heip, 1990). On the other hand, the high rarity of particularly large individuals appeared to 
restrict the accuracy of biomass density assessment, especially within the Flat and the Trough areas, were 
larger-sized fauna were even rarer. Predominance of the smaller taxa is common in low-productivity abyssal 
habitats (Rex et al., 2006; Smith et al., 2008a), yet large megafaunal species have an important ecological 
role in these environments (Billett et al., 2001; Ruhl et al., 2008), and these appear to require rather large 
sample unit sizes to be best characterised (i.e. 250-500 ind: this study). Higher rarity rates are therefore 
expected in abyssal megafauna surveys as an artefact of lower sample unit sizes, which can influence other 
parameters such as diversity or community composition analysis.

Our results underline that sampling unit evaluation is important for assessing the reliability of ecological 
patterns inferred from abyssal sampling. Minimum sample sizes for accurate estimation exhibited by 
different parameters were extremely variable (range: 30-500 individuals; 100-1500 m2 of seafloor per 
sample unit). This means that with sampling units <400 m2, most biological parameters estimated here 
would have been largely inaccurate and imprecise. For instance, it is likely that no variation in diversity nor 
community composition between areas might have been detected if transect size of this study had been set 
below 600 m2, which would have biased the overall conclusions. This underlines the importance of 
appropriate tuning of the sampling unit size in abyssal ecology, especially at the CCZ, where these may have 
a paramount influence on conservation policy (Durden et al., 2017a; Levin et al., 2016). However, sample 
unit analyses have been commonly ignored in most assessments of megafauna at the CCZ (Stoyanova, 2012; 
Tilot et al., 2018; Vanreusel et al., 2016; Wang & Lu, 2002). This adds a level of difficulty to the already 
constrained comparability between studies in the region (Amon et al., 2016), and bounds the study of 
ecological patterns at the regional scale. 

The use of different sampling devices and methods (i.e. definition of megafauna size, camera altitude, 
sampling unit size), is an ongoing issue for the comparability of image-based analyses (Durden et al., 2016b), 
especially at the CCZ (Amon et al., 2016). For example, megafauna assessments performed by Tilot et al. 
(2018) and Stoyanova (2012) using a different camera set-up reported densities ten times lower than those 
reported by Vanreusel et al. (2016) at the same contractor areas (IFREMER-2 and IOM-2, respectively). The 
application of improved imaging systems may have increased the apparent megafauna densities, influencing 
diversity estimations. This stresses the need for a standardization of both assessment method and 
morphotype taxonomy across the CCZ, to enable more reliable comparisons between the various APEI and 
claim areas, and simplify the detection of possible biogeographical boundaries across the CCZ.  

4.3.Landscape ecology of metazoan megabenthos

Differences in megafauna density across the landscape types studied were predominately driven by 
variations in suspension feeder abundance (Table 1), particularly sessile cnidarians (Fig. 6). Potential 
topographically-enhanced bottom water current speeds have previously been suggested to promote the 
development of suspension feeding fauna in the abyss (Durden et al., 2015; Smith & Demopoulos, 2003; 
Thistle et al., 1985). Suspension feeders usually dominate the megabenthos in the CCZ and show higher 
abundances in areas with higher nodule density (Amon et al., 2016; Stoyanova, 2012; Vanreusel et al., 2016). 
Factors promoting higher nodule densities also enhance the development of suspension feeders (Vanreusel 
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et al., 2016); for example, in the present study most suspension feeders (80%) were attached to nodules. 
Suspension feeder density, and relative abundance, may therefore be related to both the availability of hard 
substrata and local enhancements in bottom water currents, and that the latter two factors may themselves 
be related. These factors suggest that low slopes or elevated topographies, as found at the Flat and Ridge 
areas, enhance suspension feeder densities increasing the overall metazoan standing stock of these areas, as 
compared to depressions, like the Trough area.

Variations in functional composition between study areas were driven by the distribution of deposit feeder 
fauna, suggesting enhanced resource availability for this group in the Ridge. This could indicate a higher food 
supply at the more elevated seafloor of the Ridge, owing to less particulate organic carbon loss during 
sinking (Smith et al., 2008a), but this is likely a small effect at abyssal depths for changes of few hundred 
meters (Lutz et al., 2007). Moreover, sediment TOC exhibited no statistically difference between study areas, 
nor was there a statistically significant difference in the C:N ratio. This suggests that, if there were variations 
in food supply for deposit feeders, these may either have occurred at a finer spatial scale (i.e. patch 
accumulations: Lampitt, 1985; Smith et al., 1996), or be related with the quality rather than the quantity of 
the available resource (Ginger et al., 2001).

Deposit feeder abundance was predominantly composed by ophiuroids (Table 2), and the density of these 
was both positively correlated with xenophyophore test abundance (rs= 0.77-0.79, p < 0.01), as was the 
density of predator and scavenger fauna, although at a weaker level (rs= 0.65, p < 0.05). Biological structures 
can be important in the generation of habitats in the deep-sea (Buhl‐Mortensen et al., 2010). Such 
associations are common in the in the north-eastern Pacific abyss, for instance, sponge stalks can serve as 
microhabitats for species-rich assemblages of suspension-feeder epifauna (Beaulieu, 2001), or for the 
attachment of octopod egg clutches during brooding (Purser et al., 2016). Co-occurrence of xenophyophores 
and ophiuroids has been previously documented in eastern Pacific seamounts (Levin et al., 1986; Levin & 
Thomas, 1988). Levin (1991) suggested that xenophyophore tests represent a sTable A.ubstratum that can 
function as refuge from predators and or nursey habitat for juvenile mobile metazoans, like ophiuroids. 
Xenophyophore test substratum has shown to play a crucial role in the regulation of meiofauna and 
macrofauna communities at the CCZ (Gooday et al., 2017b), and our results suggest that these may also be 
important in the functional structuring of megafauna.

Heterogeneity diversity measures indicated clearly reduced diversity in the Trough relative to Flat and Ridge 
areas, markedly so in the case of 1/D index (Fig. 4.C). The dominance component of diversity was higher in 
the Trough (Fig. 5.A) unless xenophyophores were included (Fig. 5. B). The lower metazoan heterogeneity 
diversity of the Trough was caused by a general decrease in the density of most morphospecies, combined 
with a clearly higher abundance of the sponge Porifera msp-5, possibly better adapted to a presumably more 
disturbed environmental regime in this area. Porifera msp-5 was amongst the smallest morphospecies we 
detected (mean diameter: 13.1 ± 3.1 mm; without elimination of individuals >10 mm: 8.8 ± 3.4 mm) and was 
predominantly found (>70%) encrusting nodules. A recent study revealed a similar dominance, also exhibited 
by a small nodule-encrusting sponge (Plenaster craigi) in the eastern CCZ (Lim et al., 2017). Our results 
highlight the importance of a standardized detection of small -and usually predominant- taxa for robust 
assessment of heterogeneity diversity in CCZ megafauna communities. 

Previous CCZ megafauna studies related the presence of nodules with increased metazoan richness (Amon 
et al., 2016; Tilot et al., 2018; Vanreusel et al., 2016). Although we found no direct correlation between 
nodule availability and sample diversity (of any order), it is possible that the overall lower nodule availability 
of the Trough played an important role in the reduction of evenness we observed there, since most of the 
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APEI6 metazoan abundance was composed by nodule-dwelling taxa. However, the survey design applied in 
this study was optimised for the detection of patterns at a relatively broad scale (few kilometres), compared 
to the tens of meters at which nodule coverage variations usually occur at the CCZ (Peukert et al., 2018). 
Moreover, our sampling effort evaluation highlighted that two samples did not contain a sufficiently large 
specimen coverage (<500 ind) to reliably assess richness patterns, and that this may also have affected the 
estimation of richness in previous studies. Further analysis of the APEI6 dataset at a finer spatial scale (in 
prep.) shall further expand and contextualize the precise relation between nodules and both the richness 
and evenness components of megafauna diversity.

Statistically significant differences in megafaunal density, functional composition, evenness and taxon 
composition were variously apparent between the landscape types studied. Previous studies showed that 
even modest topographic elevation (i.e. hills) has substantive effect on abyssal megafaunal compositions 
(Durden et al., 2015; Leitner et al., 2017; Stefanoudis et al., 2016). However, in this study the assemblages of 
the Flat and Ridge (in previous studies: plain and hill areas, respectively) showed a higher similarity, as 
compared to the Trough area, where most taxa densities were somewhat reduced and the dominant 
morphospecies shifted from colonial bamboo corals to a small-encrusting sponge. The higher availability of 
nodule and xenophyophore-test substrata in the Ridge and the Flat possibly increase the heterogeneity of 
these areas, enhancing the development of a more even assemblage type. Variations in heterogeneity 
commonly regulate niche diversification processes (Tews et al., 2004), exerting a fundamental influence on 
the diversity and structure of deep-sea benthic communities (Levin et al., 2001). Thus, our results suggest 
that by regulating nodule and xenophyophore test availability -and presumably bottom current speeds- 
geomorphological variations play a crucial role in the structuring of the CCZ megabenthos at the landscape 
scale.

4.4.Ecological significance of megafaunal xenophyophores

Test densities were almost four times higher in Ridge samples than in the Trough, and almost twice as dense 
as within the Flat area. Previous studies have also described higher relative xenophyophore densities in sites 
with sloping topography and enhanced water motion (Levin & Thomas, 1988; Stefanoudis et al., 2016). The 
feeding modes and strategies of xenophyophores remain uncertain (Gooday et al., 1993; Laureillard et al., 
2004), with passive particle-trapping, suspension or deposit feeding mechanisms noted (Kamenskaya et al., 
2013; Levin & Gooday, 1992). Accepting our inability to distinguish living specimens, that A. monile 
specimens alone represent over 70% of all megafauna observed in the Ridge area suggests considerable 
ecological significance for this taxon, and the xenophyophores as a group. Note that our identification of 23 
xenophyophore morphospecies is undoubtedly an underestimate of their true species diversity, particularly 
in the CCZ where these are exceptionally diverse (Gooday et al., 2017b; Kamenskaya et al., 2013).

Inclusion of xenophyophores substantially affected the assessment of biological diversity, particularly in 
respect to heterogeneity diversity. It is conceivable that this was a ‘true body size’ mismatch effect. For 
example, Levin and Gooday (1992) suggest a protoplasm volume of 1 to 0.01% of test volume. This means 
that the mean test biomass of A. monile at the APEI6 was possibly <1 mg fwwt ind-1 - provided its devoid of 
protoplasm test interior (Gooday et al., 2017a)- while the mean biomass of the smallest taxa recorded in the 
metazoan fraction ranged between 40-60 mg fwwt ind-1. As smaller individuals are largely more abundant in 
the abyss (Smith et al., 2008a), it is likely that the inclusion of xenophyophores artificially reduced the 
heterogeneity diversity, given that ~ 1 mg fwwt sized individuals from other taxa were not possible detect 
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and hence not represented in analyses. Consequently, general interpretation of diversity is probably best 
limited to the metazoan only assessments.

5. Conclusions
This paper presents an ecological assessment of megabenthic faunal distribution in response to seafloor 
geomorphology at the CCZ. Differences in the megafaunal ecology between landscape types of the APEI6 
manifested as changes in standing stock, functional structure, diversity, and community composition. This 
shows that local geomorphological variations can play an important role in the structuring of the CCZ 
megabenthos. Our assessment somewhat concurs with previously reported differences between abyssal hills 
and adjacent plains in North Atlantic megafauna (Durden et al., 2015), and in fish populations at the CCZ 
(Leitner et al., 2017). Yet we have added a level of abyssal landscape heterogeneity (troughs), where 
megafauna showed the clearest variations. Analyses of sampling effort support our results: the collected 
sample size enabled a stable estimation of key biological metrics, but also highlighted limitations in 
understanding of some parameters. 

Benthic ecology has been suggested to be regionally controlled by a gradient of POC-flux to the seafloor at 
the CCZ (Smith et al., 2008b; Veillette et al., 2007). However, local environmental factors presumably 
regulated by local geomorphology, such as bottom water flows (Mewes et al., 2014), or the availability of 
nodule (Peukert et al., 2018) and xenophyophore test (this study) substrata may play a key role at the local 
level, possibly influencing habitat heterogeneity across the CCZ. This complexity needs to be reflected in 
both local (claim-scale) and regional (CCZ-scale) management plans (Durden et al., 2017a; Levin et al., 2016) 
and in the design of future monitoring strategies aimed to characterise and preserve biodiversity in the CCZ. 
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Supplementary material: Appendix A

Table A.1. Summary metadata for each sampling unit analysed during the present study. Coordinates (latitude, longitude; in decimal degrees) indicate the central position of each sampling 
unit. Images (n) are the total number of images processed per transect. Average percentage of polymetallic nodule coverage (± St Dev) was calculated as the mean of the percentage 
coverages values obtained for each transect image using the CoMoNoD algorithm. Visual annotations: Total abundance of fauna (total counts >10 mm), total morphospecies richness, and 
percentage of fauna detected on hard substratum (OHS), separated into metazoan and xenophyophore taxa. Landscape types: FL= Flat, RI= Ridge, TR=Trough

Metazoa XenophyophoresSampling
unit

Centre
latitude (°)

Centre
longitude (°)

Images
(n)

Seafloor
area (m2)

Nodule
cover (%) Abundance Taxa OHS (%) Abundance Taxa OHS (%)

FL 3 17.262 -123.072 774 1322 12.3 (± 3.2) 745 68 75 1722 18 49
FL 33 17.233 -123.027 775 1321 5.4 (± 1.2) 532 76 72 2952 18 58
FL 26 17.225 -123.013 781 1323 10.5 (± 4.0) 634 71 72 2749 18 55
FL 39 17.217 -123.001 778 1321 12.4 (± 5.6) 677 67 56 4365 19 59
RI 2 17.282 -122.878 720 1324 9.1 (± 8.0) 537 63 65 5687 20 36
RI 9 17.297 -122.883 729 1322 5.5 (± 2.1) 552 67 61 4731 20 28

RI 15 17.310 -122.888 666 1323 3.6 (± 1.1) 629 59 47 4508 19 39
RI 21 17.323 -122.891 765 1321 6.2 (± 7.5) 720 70 69 6379 20 30
TR 15 17.264 -122.830 694 1324 1.7 (± 1.4) 382 54 60 1202 18 26
TR 18 17.248 -122.821 555 1322 8.0 (± 3.4) 506 72 43 4217 18 52
TR 25 17.223 -122.817 709 1324 3.2 (± 2.3) 546 65 67 1237 19 45
TR 29 17.220 -122.820 623 1323 1.8 (± 1.9) 280 47 56 419 18 37
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Fig. A.1. Sediment grain-size distributions plots generated for different sediment horizons sampled at the APEI6 
seafloor. Lines representing mean frequency across each of the five replicate megacore samples collected per 
landscape type. Shadowed areas representing maximum and minimum values per replicate set. Each core was initially 
sliced and split into nine different sediment depths (0-5, 5-10, 10-15, 15-20, 20-30, 30-50, 50-100, 100-150, and 150-
200 mm). Sediment grain-size distributions at each horizon were measured independently by laser diffraction. Horizons 
0-5, 5-10, 10-15, 15-20, 20-30, 30-50 were averaged into a 0-50 mm depth.
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Table A.2. Particle size statistics calculated applying a geometric method of moments for different sediment horizons 
sampled at the APEI6 seafloor. Values representing maximum and minimum ranges across each of the five replicate 
megacore samples collected per landscape type. Each core was initially sliced and split into nine different sediment 
depths (0-5, 5-10, 10-15, 15-20, 20-30, 30-50, 50-100, 100-150, and 150-200 mm). Sediment grain-size distributions at 
each horizon were measured independently by laser diffraction. Horizons 0-5, 5-10, 10-15, 15-20, 20-30, 30-50 were 
averaged into a 0-50 mm depth, prior to the statistical processing.

.

 Horizon  Statistic Flat Ridge Trough
Mean 7.15 - 7.61 6.71 - 9.21 7.60 - 8.50
St dev 2.82 - 3.03 2.54 - 4.77 2.99 - 4.04
Skewness 0.96 - 1.50 0.46 - 2.02 0.86 - 1.86
Kurtosis 4.50 - 7.35 3.22 - 8.29 3.79 - 7.50
Mode 7.19 7.19 7.19

0 to 5 cm

D50 6.47 - 6.70 6.29 - 7.40 6.61 - 7.03
Mean 6.50 - 8.52 6.56 - 8.72 7.49 - 11.16
St dev 2.73 - 3.66 2.71 - 2.78 2.95 - 3.97
Skewness 0.89 - 1.56 0.46 - 1.15 0.67 - 1.07
Kurtosis 4.18 - 6.60 3.20 - 5.82 2.73 - 5.20
Mode 7.19 7.19 7.19

5 to 10 cm

D50 5.97 - 6.89 5.98 - 7.95 6.63 - 8.17
Mean 6.06 - 7.24 6.33 - 11.67 6.47 - 20.08
St dev 2.10 - 3.00 2.43 - 6.73 2.48 - 4.72
Skewness 0.06 - 1.08 0.12 - 1.64 0.06 - 0.90
Kurtosis 2.75 - 5.02 2.34 - 6.26 1.79 - 6.14
Mode 7.19 7.19 7.19

10 to 15 cm

D50 6.04 - 6.48 5.87 - 9.50 6.29 - 16.45
Mean 5.77 - 8.55 6.07 - 10.61 6.35 - 20.15
St dev 2.19 - 4.28 2.50 - 2.94 2.56 - 5.07
Skewness 0.01 - 1.93 0.13 - 1.18  - 0.14 - 1.85
Kurtosis 2.59 - 7.50 2.35 - 6.17 1.77 - 8.79
Mode 7.19 7.19 7.19 - 115.00

15 to 20 cm

D50 5.69 - 6.63 5.70 - 10.28 5.93 - 31.85
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Fig. A.2. Morphospecies rarefaction curves extrapolated to ~three times the area sampled at each landscape type for 
the present study. Triangles showing the total size of the sample analysed at each geomorphology. Expected richness 
with sample coverages of 15,000 m2 show a lower richness at the Trough (~107 msp) compared to the Flat (~130 msp) 
and the Ridge (~134 msp) areas, but confidence intervals continued to overlap between curves. Whole 
geomorphological units sample size (5280 m2) covered 85-90% of the expected richness > 15,000 m2.

Fig. A.3. Metazoan morphospecies surveyed for the present study. Venn diagram showing the total number of 
metazoan taxa shared between each combination of landscape types of the APEI6. In brackets: singleton 
morphospecies.
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Fig. A.4. Variations of the coefficient of variatio36n with increasing sample size calculated for the main ecological 
estimators used in the present study. Coefficients of variation were calculated as the standard deviation divided by the 
mean of each estimator at each different sampling effort (see methods), for the whole metazoan dataset collected for 
each landscape type of the APEI6. 
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Fig. A.5. Relative variations of the coefficient of variation with increasing sample size calculated for the main ecological 
estimators used in the present study. Coefficients of variation were calculated as the standard deviation divided by the 
mean of each estimator at each different sampling effort (see methods), for the whole metazoan dataset collected for 
each landscape type of the APEI6, and then divided by the minimum value exhibited in each along the sample size 
spectrum assessed.
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