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Summary 

 The temperature response of photosynthesis is one of the key factors determining 

predicted responses to warming in global vegetation models (GVMs). The 

response may vary geographically, due to genetic adaptation to climate, and 

temporally, due to acclimation to changes in ambient temperature. Our goal was to 

develop a robust quantitative global model representing acclimation and 

adaptation of photosynthetic temperature responses. 

 We quantified and modelled key mechanisms responsible for photosynthetic 

temperature acclimation and adaptation using a global dataset of photosynthetic 

CO2 response curves including data from 141 C3 species from tropical rainforest 

to Arctic tundra. We separated temperature acclimation and adaptation processes 

by considering seasonal and common-garden datasets, respectively.  

 The observed global variation in the temperature optimum of photosynthesis was 

primarily explained by biochemical limitations to photosynthesis, rather than 

stomatal conductance or respiration. We found acclimation to growth temperature 
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to be a stronger driver of this variation, than adaptation to temperature at climate 

of origin.  

 We developed a summary model to represent photosynthetic temperature 

responses and showed that it predicted the observed global variation in optimal 

temperatures with high accuracy. This novel algorithm should enable improved 

prediction of the function of global ecosystems in a warming climate.  

 

Key words: Global vegetation models (GVM), climate of origin, growth temperature, Vcmax, 

Jmax, maximum carboxylation capacity, maximum electron transport rate, ACi curves  

 

Introduction 

 The capacity of species to cope with increasing growth temperature is one of the key 

determinants in range shifts and local extinction of species because their distribution and 

range limits closely follow temperature isolines (Battisti et al., 2005). Evidence suggests that 

many species are adapted to their thermal environment of origin (Berry & Björkman, 1980) 

but also exhibit the capacity to adjust to temporal variations in the temperature of their 

environment (Rehfeldt et al., 2001; Valladares et al., 2014). However, the mechanisms that 

determine these responses are not well understood, making it challenging to predict the fate 

of plants in a changing climate. 

Global vegetation models (GVMs) are one of the principal tools used to predict future 

terrestrial vegetation carbon balance (Rogers et al., 2017a; Mercado et al., 2018). The 

temperature response of leaf-scale net photosynthesis (referred to as An-T response hereafter) 

is one of the key processes in these models. The effect of warming on modelled 

photosynthesis depends on the An-T response function used in the model, and in particular, 

the optimum temperature of photosynthesis (ToptA) (Booth et al., 2012). Decades of 

empirical studies have shown that the An-T responses of plants vary geographically, 

suggesting genetic adaptation of species to their climate of origin (Fryer & Ledig, 1972; 

Slatyer, 1977; Slatyer, 1978; Berry & Björkman, 1980; Gunderson et al., 2009). Considerable 

evidence also shows that plants have the capacity to adjust the An-T response following 

temporal changes in ambient temperature, a response known as thermal acclimation (Way & 

Sage, 2008; Hall et al., 2013; Way & Yamori, 2014; Yamaguchi et al., 2016; Way et al., 

2017). In a recent review, Yamori et al. (2014) reported inherent differences in the An-T 

response and its acclimation capacity among photosynthetic pathways (C3, C4 and CAM) and 
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functional types (annual vs perennial, deciduous vs evergreen) that often differ in their 

climatic distributions. However, the current representations of An-T response in GVMs do not 

capture this empirical knowledge well (Smith & Dukes, 2013; Lombardozzi et al., 2015; 

Smith et al., 2016; Mercado et al., 2018). Most GVMs use either a single An-T response 

function for all species or represent broad geographical variation in the An-T response by 

using plant functional type(s) (PFTs)-specific functions without considering thermal 

acclimation. Robust representation of adaptation and acclimation of An-T response in GVMs 

is challenging as we lack a quantitative assessment of acclimation and adaptation of 

photosynthetic temperature responses on a global scale (Stinziano et al., 2017).  

Many GVMs incorporate the biochemical model of C3 photosynthesis (Farquhar et 

al., 1980; Rogers et al., 2017a ; referred to as FvCB hereafter). Therefore it is both tractable 

and valuable to encapsulate the mechanisms of photosynthetic temperature adaptation and 

acclimation in terms of parameters of the Farquhar model (Hikosaka et al., 1999; Dreyer et 

al., 2001; Medlyn et al., 2002b; Dillaway & Kruger, 2010). The model has two key 

parameters, for which the temperature response is particularly important; the maximum rate 

of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity (Vcmax) and the 

maximum potential electron transport rate (Jmax) (Farquhar et al., 1980). GVMs use two basic 

functional forms to characterize the instantaneous temperature response of the key FvCB 

model parameters, namely the standard and peaked Arrhenius functions (Medlyn et al., 

2002a). Most empirical studies of the instantaneous temperature response of Vcmax and Jmax 

have used the peaked Arrhenius model, which has four key parameters; the basal rate of 

either Vcmax or Jmax at a standard temperature of 25
◦
C (Vcmax25 or Jmax25), the activation energy 

(Ea), the de-activation energy (Hd), and the entropy term (∆S). The peaked Arrhenius model 

can also be used to calculate the optimum temperatures of Vcmax (ToptV) and Jmax (ToptJ). 

These parameters have now been documented for a wide range of species from different 

biomes and PFTs (Onoda et al., 2005; Rogers et al., 2017b; Slot & Winter, 2017). Evidence 

suggests that the Arrhenius model parameters vary significantly across plant taxa but also that 

these parameters have the capacity to acclimate to the growth temperature (Crous et al., 2013; 

Crous et al., 2018).  

Several meta-analytic studies have attempted to characterise species variation in the 

model parameters. Medlyn et al. (2002a) compared the temperature response of key FvCB 

model parameters across different species but reported a poor relationship overall between 

the optimum temperature for photosynthesis and the temperature of the growing environment. 
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They reported lower ToptV and ToptJ for plants grown in boreal compared to temperate 

climates, but it was unclear whether this difference was due to inherent genetic differences 

among the boreal and temperate species, or acclimation to prevailing growth temperature. In 

an analysis of 23 species, (Hikosaka et al., 2006) identified two important mechanisms of 

photosynthetic temperature acclimation, namely Ea of Vcmax (EaV) and Jmax (EaJ) and the ratio 

of Jmax: Vcmax (JVr). The most comprehensive synthesis to date of the biochemically-based 

plant photosynthetic temperature response is that of Kattge and Knorr (2007), who compared 

the instantaneous temperature response of Vcmax and Jmax across 36 species. This study found 

a lack of thermal acclimation of EaV and EaJ but reported significant acclimation 

relationships for JVr and ∆S of Vcmax (∆SV) and Jmax (∆SJ). Importantly, Kattge and Knorr 

(2007) synthesised these relationships into a simple and generalizable form that enabled 

direct implementation into GVMs, thus providing a means to quantify the effect of thermal 

acclimation of photosynthesis on terrestrial carbon cycle predictions (Chen & Zhuang, 2013; 

Lombardozzi et al., 2015; Smith et al., 2016) as well as on biophysical consequences in 

future climates (Smith et al., 2017). 

Despite the success of the Kattge and Knorr (2007) algorithms, the functions have 

several limitations. Firstly, the parameterization process did not consider potential inter-

specific differences in photosynthetic temperature response; all changes were attributed to 

differences in growth temperature. Hence, the response incorporates elements of both 

temperature adaptation and acclimation without resolving the extent of the contribution of the 

two processes. Given that acclimation can occur over days and adaptation takes many 

generations, the importance of resolving the relative contribution of the two processes is 

critical. Recently, Mercado et al., (2018)   showed that assuming the relationships represent 

both adaptation and acclimation, or adaptation only, leads to significantly different 

conclusions about the trajectory of future terrestrial carbon storage under warming. Their 

results further highlight the importance of separating photosynthetic thermal adaptation and 

acclimation when simulating current and future carbon storage. However, to date, few studies 

have separated species differences in temperature adaptation from temperature acclimation 

processes (Lin et al., 2013).  

Secondly, the data used to derive the Kattge and Knorr (2007) functions came mainly 

from northern temperate and boreal trees and lacked globally important PFTs such as tropical 

forests and Arctic tundra. As a result, the growth temperature range only varied from 11 to 

29°C (Kattge and Knorr 2007), which is substantially narrower than growth temperatures 
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simulated in GVMs. Therefore, the analysis of Kattge and Knorr (2007) could be improved 

with a broader global dataset directly addressing the relative roles of temperature acclimation 

and adaptation. 

Thirdly, the ability of the acclimation functions to capture the observed differences in 

temperature optima of light saturated net photosynthesis (ToptA) has not been directly tested. 

It is not clear whether making adjustments to ToptV and ToptJ improves the ability of models 

to capture changes in ToptA; some studies have reported similar ToptA values even with 

significantly different ToptJ among species (Vårhammar et al., 2015). Moreover, the 

photosynthetic temperature response is controlled not only by the photosynthetic 

biochemistry, but also by stomatal and respiratory processes. Sensitivity analysis suggests 

that all three component processes are equally important in determining the ToptA at leaf 

scale (Lin et al., 2012) as well as at canopy scale (Tan et al., 2017)   but none of the previous 

review studies addressed how the latter two components affected ToptA. 

Given the need for robust representation of photosynthetic temperature acclimation 

and adaptation in GVMs, and its importance in predicting future global carbon budget 

(Lombardozzi et al., 2015, Smith et al., 2016, Mercado et al., 2018) and climate (Smith et al., 

2017), we quantified and modelled the mechanisms that underlie the observed differences in 

ToptA among species and growth temperatures. We hypothesized that ToptA would be 

strongly driven by adaptation to the climate of origin, while temperature acclimation would 

further modify the temperature optimum in response to seasonal changes in temperature of 

the growth environment. To test these hypotheses, we compiled a global database of 

photosynthetic CO2 response curves measured at multiple leaf temperatures to simultaneously 

resolve the temperature optima of Anet, Vcmax and Jmax. The data comprised a total of 141 

species from tropical rainforests to Arctic tundra. Included in this database were datasets: (i) 

from common-garden studies, which were used to quantify effects of adaptation alone on 

ToptA; and (ii) comprising time course studies that measured plants under contrasting 

prevailing ambient temperatures, which are used to quantify effects of temperature 

acclimation alone. We combined the identified effects of climate adaptation and temperature 

acclimation to derive a general global model of temperature responses that is then tested 

against (iii) a third, independent, biogeographic dataset measured on mature plants growing 

in their native environments across the globe.   
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Materials and methods 

Data sources 

 We compiled a global database of datasets consisting of leaf photosynthetic CO2 

response measurements (referred to as ACi curves hereafter) measured at multiple leaf 

temperatures and saturating irradiance levels. The database covers 141 species from 38 

experiments conducted around the world (Fig. S1, Table S1). Site latitude ranged from 42°48' 

S to 71°16' N and mean annual growing season temperature (long-term average temperature 

of months where mean monthly temperature is above 0°C) ranged from 3 to 30°C.  

The method of data collection was consistent across all datasets. In most datasets, 

measurements were started at ambient CO2 levels (360-400 ppm; depending on the year of 

data collection) and changed stepwise through a series of subambient (40-400 ppm) to 

superambient saturating CO2 concentrations (400-2000 ppm). The same measurement 

protocol was repeated on the same leaf at different leaf temperatures. Measurements were 

made at saturating irradiance (Table S1) using a portable photosynthesis system with standard 

leaf chambers, in most cases the Licor 6400 (Licor Biosciences, Lincoln, NE, USA) although 

some measurements were made with the Walz-CMS system (Walz, Effeltrich, Germany). We 

visually inspected every ACi curve in the dataset for possible outliers and erroneous data 

points (i.e. negative intercellular CO2 concentrations). We used criteria based on De Kauwe 

et al. (2016) to screen individual ACi curves for the analysis performed in this paper. Curves 

were excluded from the analysis if the fitted function (see below) had a r
2
 <0.99 (however, if 

the number of replicates available for a given occasion was limited, the threshold r
2
 was 

reduced to 0.90; ~9% of the total ACi curves included in the analysis).  After screening, the 

dataset contained a total of 3498 ACi curves measured at leaf temperatures ranging from 1 to 

50°C. 

 

Estimating temperature optimum for leaf net photosynthesis (ToptA) 

 Ambient leaf net photosynthesis (Anet) at each temperature was obtained from either the 

initial direct measurements at ambient CO2 concentrations or extracted from the ACi curves. 

For curves where the first point was not measured at ambient CO2 level, we extracted the Anet 

value at the measured sample CO2 concentration falling between 300 and 400 ppm. We 

estimated the temperature optimum for Anet, ToptA, by fitting a widely used model of 

instantaneous photosynthetic temperature response (Gunderson et al., 2009; Crous et al., 
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2013; Sendall et al., 2015; Vårhammar et al., 2015) (Eqn 1) to the net photosynthesis 

measurements. The model is a quadratic equation, expressed as:  

                    
        Eqn 1 

where Anet is the net photosynthetic rate (µmol m
-2 

s
-1

) at a given leaf temperature, T (
°
C), 

ToptA is the temperature optimum for photosynthesis (
◦
C) Aopt is the net photosynthetic rate at 

ToptA, and the parameter b (unitless) describes the degree of curvature of the relationship.  

 

Parameterising biochemical component processes of photosynthesis 

 We used the FvCB model to characterize photosynthetic biochemical component 

processes. The model represents leaf net photosynthesis rate as the minimum of three rates; 

the Rubisco carboxylation limited photosynthetic rate (Wc), the RuBP-regeneration limited 

photosynthetic rate (Wj), and the triose phosphate utilization limited rate (Wp). The widely 

used formulation and parameterization of the FvCB model is of the form (Eqn 2-6). 

                     
  

  
          Eqn 2 

        
  

        
  
   

 
        Eqn 3 

   
 

 

  

        
          Eqn 4 

                  Eqn 5  

  

where Vcmax is the maximum rate of ribulose-1,5-bisphosphate carboxylase-oxygenase 

(Rubisco) activity, Ci and Oi (mol mol
-1

) are intercellular CO2 and O2 concentrations 

respectively, Kc and Ko (mol mol
-1

) are Michaelis–Menten coefficients of Rubisco activity 

for CO2 and O2 respectively,    (mol mol
-1

) is the CO2 compensation point in the absence of 

photorespiration, TPU (µmol m
-2 

s
-1

) is the rate of triose phosphate export from the 

chloroplast, RL (µmol m
-2 

s
-1

) is the non-photorespiratory CO2 evolution in the light, and J 

(µmol m
-2 

s
-1

) is the rate of electron transport at a given light level. J is related to incident 

photosynthetically active photon flux density (Q, µmol m
-2 

s
-1

) by 

 

                             Eqn 6 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

where Jmax (µmol m
-2 

s
-1

) is the potential rate of electron transport,  (mol mol
-1

) is the 

quantum yield of electron transport, and  (dimensionless) is the curvature of the light 

response curve (Farquhar et al., 1980; Medlyn et al., 2002a; Medlyn et al., 2002b; Kattge & 

Knorr, 2007; Sharkey et al., 2007).  

We parameterized Eqns 3 – 6 using the fitacis function within the  plantecophys 

package (Duursma, 2015) in R version 3.3.2 (R Development Core Team, 2012). We 

assumed the Bernacchi et al. (2001) kinetic constants for the temperature response of Kc, Ko 

and    as given in Medlyn et al. (2002a). We used measurement Q in Eqn 6 whenever 

available (see Table S1); otherwise we assumed a fixed value of 1800 µmol m
-2

s
-1

. We 

assumed constant values of α (0.24 mol mol-1) and θ (0.85; unitless) for all datasets (Medlyn 

et al., 2007); these parameter values have a relatively minor effect on the magnitude of 

estimated Jmax (Medlyn et al., 2002a). The estimated parameters, Vcmax and Jmax, are apparent 

values as we assumed infinite mesophyll conductance (gm). The significance of gm for Vcmax 

and Jmax estimates and their temperature response has been discussed elsewhere (Crous et al., 

2013; Bahar et al., 2018), Here, there are insufficient data to quantify gm and hence it would 

have been inappropriate to include in our analysis (see Rogers et al., 2017a).  

We tested two ACi curve fitting routines; one with and one without TPU limitation 

(Eqn 5). Accounting for TPU limitation in the FvCB model did not affect the estimated 

photosynthetic capacities, apparent Vcmax and Jmax (Fig. S2) suggesting that at ambient CO2 

levels, net photosynthesis was rarely limited by TPU (results not shown). Hence, we focused 

on the temperature responses of apparent Vcmax and Jmax as the principal biochemical 

components affecting the ToptA. 

The temperature responses of Vcmax and Jmax were fitted using the peaked Arrhenius 

function: 

   
        

             

             
 

      
            

          
 

      
        

    
 

     Eqn 7  

where kTk is the process rate (i.e. Vcmax or Jmax;  mol m
-2 

s
-1

) at a given temperature, Tk (K), k25 

is the process rate at 25 ºC, R is the universal gas constant (8.314 J mol
-1 

K
-1

), and Ea (kJ mol
-

1
) is the activation energy term that describes the exponential increase in enzyme activity with 

the increase in temperature, Hd (kJ mol
-1

) is the deactivation energy term that describes, e.g. 

decline in enzyme activity at higher temperature due to denaturation of enzymes, and ΔS (J 

mol
-1 

K
-1

) is the entropy term which characterize the changes in reaction rate caused by 
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substrate concentration (Johnson et al., 1942). To avoid over-parameterization, we assumed a 

fixed value of 200000 J mol
-1

 for Hd in Eqn 7 for all species (Dreyer et al., 2001; Medlyn et 

al., 2002a).  

The optimum temperature for kTk is given by:  

     
  

        
  

     
 
         Eqn 8 

 

Assessing the contribution of stomatal and respiratory processes  

The optimum temperature for photosynthesis is determined by stomatal and respiratory 

processes as well as biochemical processes (Medlyn et al., 2002a; Lin et al., 2012). Stomatal 

conductance values are potentially affected by the measurement protocol used in ACi curve 

measurements which rarely replicates the ambient conditions. Therefore, to assess the relative 

contribution of stomatal processes to ToptA, we calculated the net photosynthesis rate at a 

fixed Ci of 275 µmol mol
-1 

from each ACi curve, interpolating the curve using the FvCB 

model with parameters fitted to that curve. A fixed Ci of 275 µmol mol
-1 

was chosen as it 

roughly corresponds to 70% of ambient [CO2]. When the photosynthetic rate is scaled to a 

common Ci, it eliminates the effect of variation in stomatal conductance on photosynthesis, 

isolating the temperature effects on photosynthetic biochemistry. Similar to net 

photosynthesis, the temperature optimum for photosynthesis at a fixed Ci (ToptA275) was 

estimated for each species by fitting Eqn 1. We compared ToptA275 with ToptA to estimate the 

effect of variation in stomatal conductance on the temperature optimum for photosynthesis.  

We fitted standard Arrhenius function (Eqn 9) to RL values obtained from ACi curves 

to assess the effect of respiratory component processes on ToptA. We estimated two 

parameters RL25 (RL at 25°C) and activation energy of RL (Ea). Similar to Jmax and Vcmax, linear 

regression was used to test for temperature adaptation and acclimation of RL.  

       
     

             

           
        Eqn 9 

where, RL25 is the rate of respiration in light at 25°C  
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Test for local adaptation and seasonal temperature acclimation of ToptA 

We divided the database into three subsets: (i) mature plants growing in their native 

environments; (ii) common-garden datasets; and (iii) datasets with seasonal photosynthetic 

measurements. We used a subset of the data collected in mature plants (i) to identify the 

patterns in photosynthetic temperature responses of plants in native environments and for 

model evaluation. Temperature responses in this subset include the effects of both adaptation 

to the native environment, and acclimation to the prevailing temperature. We used the 

common garden (ii) and seasonal measurements (iii) subsets to estimate the relative 

contributions of adaptation and acclimation, respectively, in determining the observed trends 

with temperature for plants in native environments  

For plants growing in native environments, we derived relationships between photosynthetic 

parameters and the prevailing temperature of the growing environment defined as the mean 

air temperature for the 30 days prior to gas exchange measurements (Kattge & Knorr, 2007) 

(Tgrowth), to identify the temporal trends in photosynthetic temperature responses. We derived 

Tgrowth using on-site measured real time daily air temperature for most of the datasets, but for 

three datasets (Hinoki cypress, Japan; Mongolian oak, Japan; and Scots pine, Finland; Table 

S1), we extracted Tgrowth values from the original publications as on-site temperature 

measurements were not available.  We used a general linear model to parameterise the 

observed responses in mature plants dataset (Eqn 10) 

 

                              Eqn 10 

where a and b are the intercept and slope respectively. 

Seasonal datasets provide the opportunity to test the acclimation capacity of different 

species to temporal changes in the ambient temperature of the growing environment. Here, 

we correlated photosynthetic parameters with growth temperature, Tgrowth, defined as the mean 

air temperature for the 30 days prior to gas exchange measurements. Similar to the mature 

plants dataset, we derived Tgrowth using on-site measured daily air temperature for most of the 

datasets. For datasets where real-time meteorological data were not available, we extracted 

Tgrowth values from the original publications.  

Common gardens provide an opportunity to test for adaptation, as species with 

different climates of origin are grown at a common growth temperature. The common garden 

datasets included field trials and experiments in controlled environmental conditions which 
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included two or more species or provenances with contrasting climates of origin. We located 

the seed source of each species or provenance (latitude and longitude) using published 

information (Table S1).  We used 30″ resolution WorldClim climatology data (WorldClim 

1.4;(Hijmans et al., 2005)) to estimate long-term average (1960-1990) air temperature at seed 

source.  With reference to the species selection criteria used in several common garden 

studies (Lin et al., 2013; Vårhammar et al., 2015), we defined mean maximum air 

temperature of the warmest month at species’ seed source as the species’ home temperature 

(Thome) and derived relationships between photosynthetic parameters and Thome to test for 

adaptation of species’ An-T response to climate of origin. We repeated the same analysis with 

two other forms of species’ home temperature, 1. mean growing season air temperature and 

2. mean temperature of the warmest quarter, to test whether our results were altered 

depending on the definition of climate of origin. 

For both common garden and seasonal subsets, we used linear regression against Thome 

and Tgrowth (Eqns 11, 12) to test for temperature adaptation and acclimation, respectively, of 

ToptA, ToptA275, the photosynthetic biochemical parameters (Vcmax, and Jmax), and their 

temperature response parameters (see Eqns 7 and 8). To test the effect of different 

biochemical parameters on temperature optimum for photosynthesis, we used linear 

regression between ToptA275 and temperature response parameters of Vcmax and Jmax.   

 

Representing acclimation and adaptation in vegetation models 

We derived functions to represent photosynthetic temperature acclimation and adaptation in 

GVMs. If a given parameter showed only acclimation to growth temperature, the function 

used was:  

                                Eqn 11  

where, Aac is the parameter value when Tgrowth= 0 and ac is the acclimation coefficient (°C
-1

)  

 

If a parameter showed only adaptation to climate of origin, the function was: 

                            Eqn 12 

 

We combined Eqns 11 and 12 to represent both acclimation and adaptation, defined as  

 

                                                  Eqn 13 
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here,     is the acclimation coefficient corresponding to a unit deviation in Tgrowth  from the 

species’ Thome  (°C
-1

). We parameterised Eqn 11 and 12 independently using data from 

seasonal photosynthetic response studies (Eqn 11)  and common garden experiments (Eqn 

12). Eqn 13 was parameterised using combined seasonal and common garden datasets. We 

implemented the modified functions into the FvCB model (see Duursma, 2015) to simulate 

photosynthetic temperature response curves at a constant Ci of 275 µmol mol
-1

 and tested 

how well the leaf scale photosynthesis model captured the observed temperature optimum of 

photosynthesis in the mature plants dataset. This provided an independent comparison as the 

mature plants dataset was not used to parameterise the temperature acclimation and 

adaptation functions (Eqn 11-13). 

 

Statistical analysis 

Parameters of Eqn 1, 7-9 were estimated in a non-linear mixed model framework (Zuur et al., 

2009) using the nlme function within the nlme package in R version 3.3.2 (R Development 

Core Team, 2012).  Replicate trees and/or leaves of the same species were included as 

random effects in model. However, when datasets contained measurements of multiple 

species (e.g. Brazilian rainforests, Australian rainforests and Australian semi-arid woodland 

datasets, Table S1), individual species were considered as a random variable in the model. 

Similarly, Eqns 11-13 were parameterized in a linear mixed model framework using the 

inverse of the standard error (SE) of each parameter of Eqn 1, 7-9 as the weighting scale to 

account for parameter uncertainty (Zuur et al., 2009; Lin et al., 2015). We tested whether the 

model parameters (Eqn 11-13) significantly differed among datasets (and/or species) by 

fitting linear mixed models with and without random slopes and intercepts for each dataset 

(and or species). These models were then compared using a likelihood ratio test (Zuur et al., 

2009) to determine whether the acclimation and adaptation coefficients differed among 

species. We used standard model validation tools (normal quantile plots and residual plots) to 

test the underlying assumptions in linear mixed models and used marginal and conditional r
2 

values to evaluate the goodness of fit (Nakagawa & Schielzeth, 2013). The complete database 

used for this analysis is available as a public data product (Kumarathunge et al., 2018) and 

code used for the entire analysis is publicly available through 

https://bitbucket.org/Kumarathunge/photom  
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Results 

Temperature optimum for net photosynthesis at saturating irradiance (ToptA) 

The temperature optimum for leaf level net photosynthesis at saturating irradiance (ToptA) of 

mature plants in their natural habitats was strongly correlated with the temperature of the 

growth environment (Tgrowth; mean air temperature of preceding 30 days) (Fig. 1a, Table 1). 

Values of ToptA ranged from 16.3 to 32.4 °C, where the minimum and maximum values were 

observed for Arctic vegetation and tropical evergreen trees, respectively. The rate of increase 

in ToptA was 0.62± 0.07 °C per °C increase in Tgrowth.  

In the seasonal dataset (Fig. 1b), we found strong evidence for acclimation of ToptA to 

the prevailing growth temperature. ToptA showed a significant increasing trend with Tgrowth. 

The mean rate of increase in ToptA was 0.34 ± 0.05°C per unit increase in Tgrowth (Table 1).  

In contrast, no trend was observed with climate of origin in common garden studies (Table 

1). Here, we tested for a relationship between ToptA and the Thome (1960-1990 mean 

maximum air temperature of the warmest month at species’ seed source) and we did not find 

any significant relationship for ToptA with Thome.  (Fig. 1c, Table 1). The results were similar 

for the two alternative definitions of the climate of origin (Table S2). The lack of a significant 

relationship with the species’ home temperature in the common garden datasets suggests that 

the variation in ToptA of mature plants across ecosystems (Fig. 1a) is more strongly driven by 

acclimation to growth temperatures (Fig. 1b) than by local adaptation to climate of origin 

(Fig. 1c).  

 

Temperature optimum for photosynthesis at a common Ci (ToptA275)   

Similar to ToptA, ToptA275 showed a strong correlation with Tgrowth in mature plants 

across ecosystems (Fig. 1d, Table 1). We found no significant differences in either intercept 

or slope of the linear regression between ToptA and ToptA275 vs Tgrowth (Table 1), in both the 

mature (Fig 1a, d) and seasonal (Fig 1b, e) datasets, strongly suggesting that the observed 

variation in ToptA among ecosystems is not due to variation in the stomatal limitation of 

ToptA. This result also suggests that the observed seasonal pattern of ToptA (Fig. 1b) was not 

driven by stomatal processes but rather by the effects of photosynthetic biochemical 

processes. Similar to ToptA, species in common garden studies did not show significant trends 

for ToptA275 with Thome (Fig. 1f).   
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Temperature dependence of biochemical capacities, Jmax & Vcmax 

Similar to ToptA, we found a strong increase in both ToptV and ToptJ with Tgrowth in the 

mature plants dataset (Fig. 2a, d). The slopes of the linear regression with Tgrowth were similar 

for ToptV and ToptJ (0.71±0.20 and 0.63±0.15°C°C
-1

 respectively). These sensitivities are 

similar in magnitude to the sensitivity of ToptA and ToptA275 to Tgrowth in the mature plants 

dataset.  For Vcmax, the trend in Topt was caused by an increase (p≈0.06) in EaV with increasing 

Tgrowth, and a strong decline in ∆SV (Fig. 2b, c). For Jmax, however, there was no change in EaJ, 

only a decline in ∆SJ with increasing Tgrowth (Fig. 2e, f).  

We decomposed the observed trends across biomes shown in Fig. 2 by looking at 

seasonal datasets (Fig. 3) and common garden studies (Fig. 4) independently to identify the 

effect of seasonal acclimation and local adaptation of photosynthetic biochemical component 

processes. We found a strong increase in ToptV and ToptJ with Tgrowth (Fig. 3a, d). The rate of 

increase in ToptJ per unit increase in Tgrowth was slightly higher than the ToptV (Table 1) but 

the difference was not significant. Further, these sensitivities were found to be similar to the 

sensitivity of both ToptA and ToptA275 to Tgrowth. Similar to the mature plants dataset, we found 

a significant positive trend for EaV and a decreasing trend (p≈0.08) for ∆SV with increasing 

Tgrowth. (Fig. 3b, c). For Jmax, however, there was no change in EaJ, only a strong decline in 

∆SJ with increasing Tgrowth. (Fig. 3e, f). 

We found no evidence to support adaptation of ToptV, EaV and ∆SV to climate of 

origin as there were no significant trends observed with temperature at species’ seed source 

(i.e. Thome) in the common garden dataset (Fig. 4a, b, c). These observations were consistent 

with the lack of significant trends for ToptA in the common garden dataset. However, ToptJ 

and ∆SJ showed significant trends with Thome (Fig. 4d, e, f; Table 1), suggesting adaptation of 

both parameters to climate of origin. The results were similar for the two alternative 

definitions of the climate of origin (Table S2). 

 

The balance between Jmax and Vcmax 

We found no detectable correlation between Tgrowth and the basal rate of Vcmax at a 

standard temperature 25°C for mature plants in their natural habitats, but the basal rate of Jmax 

showed a strong decrease (Fig. 5a, b).  The ratio of Jmax:Vcmax at 25°C (JVr) showed a 

significant decrease with increasing Tgrowth (Fig. 5c, Table 1). We excluded the Scots pine, 
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Finland dataset when fitting linear regression as the JVr value significantly departed from the 

general trend, and was therefore identified as an outlier (black circle in Fig. 5c).   

Basal rates of Vcmax and Jmax did not show significant trends with Tgrowth, but JVr 

responded negatively to Tgrowth in the seasonal dataset (Fig. 5d: f). We found no evidence to 

support adaptation of basal rates of Vcmax and Jmax to climate of origin; no parameters showed 

any significant trend with Thome in the common garden dataset (Fig. 5g, h, Table 1). However, 

there was evidence of adaptation of JVr to climate of origin, as JVr showed a significant 

decrease with Thome in the common garden dataset (Fig. 5i, Table 1).  

 

Assessing the role of day respiration 

We found no detectable trends (Fig. S3, Table 1) for either RL25 or Ea of mature plants 

in native environments. Similar results were found for common garden studies and no 

seasonal trends were observed for either RL25 or Ea in the seasonal dataset. However, the data 

showed a slight negative trend for RL25:Vcmax25 ratio with increasing Tgrowth (of mature plants 

in native environments) and Tgrowth (of seasonal datasets) (Fig. S4). Also we observed 

negative Ea values in all three datasets (Fig. S4). 

 

Model to represent acclimation and adaptation in vegetation models 

Our results provide evidence that changes in the temperature response of 

photosynthesis among datasets are principally driven by acclimation of photosynthetic 

biochemistry to growth temperature. Both EaV and JVr showed strong acclimation to growth 

temperature with significant (albeit weak) acclimation of ∆SV. We found little evidence to 

support local adaptation of photosynthetic biochemistry to climate of origin. Only JVr and 

∆SJ showed statistically significant, but weak signals of local adaptation. We further tested 

whether variation in EaV and JVr can explain the seasonal acclimation of temperature 

optimum of photosynthesis observed in the seasonal dataset using linear regression analysis 

(JVr and EaV vs ToptA275). We found a strong negative trend for the relationship between JVr 

and ToptA275 (Fig. 6a). ToptA275 increased by ~6°C for a unit decrease in JVr. Also, we found 

significant trend between EaV and ToptA275; ToptA275 increased by ~0.2°C for a unit increase 

in EaV (Fig. 6b). Therefore, the observed trends in ToptA of mature plants in native habitats 

(Fig. 1a) can be explained by the effect of growth temperature on EaV, ∆SV, JVr and the 
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effects of both growth temperature and climate of origin on ∆SJ and JVr. Hence, 

photosynthetic temperature acclimation and adaptation can be implemented in GVMs using 

these parameters. Therefore, we modified the baseline peaked Arrhenius functions (Eqn 8) to 

represent i) temporal variability of EaV and ∆SV using Eqn 12, ii) geographical and temporal 

variation of JVr ratio at 25°C and ∆SJ   using Eqn 13. The full final model is given in Table 2.  

We found that the new temperature response functions were able to predict the 

temperature optima of photosynthesis observed in field-grown mature plants with a high 

degree of accuracy (r
2
=0.80). The slope (1.09±0.15) and intercept (-2.20±4.10) of the linear 

regression between the predicted and observed ToptA were not significantly different from 

unity and zero respectively (Fig. 7a, Table S3). Our new model outperformed the Kattge & 

Knorr (2007) algorithms, which tend to underpredict ToptA (Fig. 7b, Table S3). Further, the 

use of PFT-specific values of Vcmax, together with a standard unacclimated photosynthetic 

temperature responses (Leuning, 2002), was not able to predict the observed variability in 

ToptA as it predicts a ToptA ≈ 25°C for all datasets (Fig 7a).  Note that the mature plant dataset 

was not included in fitting Eqn 11-13, so that the predicted ToptA275 in Fig. 7a was 

independent of the data used to derived the model parameters.  

 

Discussion 

 We developed new mathematical functions to represent the photosynthetic temperature 

response in vegetation models to account for both acclimation to growth temperature and 

adaptation to climate of origin using a global database that contains more than 140 species. 

We found acclimation to growth temperature to be the principal driver of the photosynthetic 

temperature response, and observed only a few modest effects of adaptation to temperature at 

the climate of origin. The observed variation of temperature optimum for leaf net 

photosynthesis was primarily explained by the photosynthetic biochemical component 

processes rather than stomatal or respiratory processes. The new temperature response 

functions presented here capture the observed ToptA across biomes with higher degree of 

accuracy than previously proposed algorithms. 
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Adaptation of ToptA to climate of origin 

  Despite a significant range in long term mean temperature at species’ seed sources, we 

found no predictable relationship for ToptA with climate of origin when species were grown 

in common gardens. Therefore, our results do not support the hypothesis ToptA is adapted to 

species’ climate of origin (hypothesis 1). Our results contrast with previous studies which 

found that ToptA is related to species climate of origin (Fryer & Ledig, 1972; Slatyer, 1977; 

Slatyer, 1978; Robakowski et al., 2012), but there are a number of studies which compare the 

temperature response of photosynthesis and report a lack of local adaptation of ToptA (Ledig 

& Korbobo, 1983; Gunderson et al., 2000). We propose two hypotheses to explain the lack of 

local adaptation of ToptA; i) there is a lack of specialization in photosynthetic biochemistry  in 

relation to climate of origin and ii) the capacity of species to adjust their ToptA to temporal 

variations in local thermal environment could mask ecotypic thermal adaptation of ToptA 

(Robakowski et al., 2012). 

 With respect to hypothesis (i), Rubisco activity is one of the key photosynthetic 

biochemical determinants and one of the most temperature responsive physiological process 

(Galmés et al., 2015). Several lines of evidence suggest that Rubisco catalytic properties, 

including the relative specificity for CO2/O2 (Sc/o), the Michaelis–Menten constants for CO2 

(Kc) and O2 (Ko), and the maximum turnover of carboxylation (kc), differ among species that 

have evolved under different thermal environments (Andersson & Backlund, 2008; Galmes et 

al., 2014). However, it is not clear whether these differential responses are due to genetic 

adaptation of Rubisco kinetics to climate of origin or to the temporal effects of growth 

temperature. Galmés et al. (2015) argued that closely related species could be less adapted to 

their current thermal environment due to past strategies that limit adaptation of Rubisco to 

new thermal regimes (Lambers et al., 2008). This hypothesis was further supported by Savir 

et al. (2010) who suggested point mutations may not cause a significant improvement in 

Rubisco activity due to its close optimality in the net photosynthetic rate (Tcherkez et al., 

2006). As a result, the adaptive evolution of Rubisco to novel thermal environments may be 

rare, as adaptation to a local environment will be working against the selective pressure to 

cope with seasonal and annual temperature variations and would reduce species fitness, and 

expansion into new niches with different thermal environments.  Other than the parameters 

∆SJ and JVr, our results do not show evidence for thermal adaptation of photosynthetic 

biochemical parameters. Thus we suggest that the lack of local adaptation of ToptA. may be 
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partially explained by the lack of specialization in photosynthetic biochemistry, particularly 

Rubisco kinetic properties to species climate of origin.  

 Regarding ii), we suggest that the capacity of Rubisco kinetic properties to adjust to 

temporal variations in growth temperature could potentially mask the species’ pre-adaptive 

responses to their original thermal environments. Here, we show strong evidence for the 

acclimation of ToptA to species Tgrowth which is primarily due to the variations in 

photosynthetic biochemical component processes JVr, EaV, ∆SV and ∆SJ in relation to the 

seasonal temperature dynamics.  Potential mechanisms by which the kinetic properties of 

Rubisco could be altered in response to changes in temperature include structural changes in 

the Rubisco enzyme itself (Huner & Macdowall, 1979; Huner, 1985; Yamori et al., 2006); 

changes in the concentration of other photosynthetic enzymes such as Rubisco activase 

(Yamori et al., 2005,Yamori et al., 2011); expression of cold/heat stable isozymes (Yamori et 

al., 2006); and by alterations in membrane fluidity (Falcone et al., 2004). A number of 

previous studies have demonstrated short-term acclimation of Rubisco kinetics to growth 

temperature (Medlyn et al., 2002b; Yamori et al., 2006; Kattge & Knorr, 2007; Lin et al., 

2013; Yamaguchi et al., 2016; Smith & Dukes, 2017; Crous et al., 2018) although the 

sensitivities of the responses varied. In addition, studies that have compared the  acclimation 

capacity of multiple species in common growth temperatures have shown similar direction 

and magnitude of short-term temperature acclimation of ToptA (Berry & Björkman, 1980; 

Sendall et al., 2015) and Rubisco kinetics (Lin et al., 2013; Smith & Dukes, 2017) across 

species irrespective of their climate of origin.  Therefore, we argue that the capacity of 

species to adjust their photosynthetic biochemistry to temporal variations in growth 

temperature provides a fitness advantage over that of local climatic adaptation of ToptA and 

its related mechanisms, by enabling species to optimize carbon balance in their current 

habitat (Hikosaka et al., 2006).  

 The lack of a temperature adaptation response in this study contrasts with the results of 

a previous meta-analysis which found both evolutionary changes and an acclimation effect on 

ToptA (Yamori et al., 2014). Our common garden studies compared closely related species (or 

provenances of the same species) in most cases. The most climatically divergent sets of 

species included in this study were those of Vårhammar et al. (2015) (lowland and montane 

tropical species) and Dillaway and Kruger (2010) (North American boreal and temperate 

deciduous species; see Table S1). In contrast, Yamori et al. (2014) compared temperature 

responses of C3, C4 and CAM plants and found evidence of evolutionary shifts among these 
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functional groups. Other common garden studies with taxonomically diverse species have 

also provided evidence for evolutionary changes in ToptA in relation to climate of origin 

(Cunningham & Read, 2002; Reich et al., 2015).  

 

Acclimation of ToptA to growth temperature 

 Our observations of seasonal photosynthetic temperature response datasets suggest that 

the seasonal plasticity in ToptA is principally driven by (i) the adjustment of the temperature 

response of the Rubisco limited photosynthetic rate and (ii) the balance between Rubisco 

limited and electron transport limited photosynthetic rates. These two mechanisms control the 

seasonal shifts in ToptA as follows.  First, at biologically relevant leaf temperatures, the light 

saturated net photosynthetic rate is mostly limited by Rubisco activity (Rogers & Humphries, 

2000; De Kauwe et al., 2016; Yamaguchi et al., 2016). An increase in EaV along with a 

decrease in ∆SV increases the Rubisco-limited photosynthetic rate with temperature, and thus 

affects the shape of the photosynthetic temperature response. The rate of increase in EaV with 

Tgrowth in this study (1.14 kJ mol
-1

 
◦
C

-1
) aligns closely with previous reports (Hikosaka et al., 

2006: 1.01 kJ mol
-1

 
◦
C

-1
). A number of potential causes have been suggested for variations in 

EaV across species, including mesophyll conductance to CO2 diffusion (Bernacchi et al., 

2002; Warren et al., 2007; Walker et al., 2013; von Caemmerer & Evans, 2015), kinetic 

properties of Rubisco (Yamori et al., 2006),  distribution of leaf nitrogen among 

photosynthetic proteins (Yin et al., 2018) and the influence of other enzymes that affect the in 

vivo activity of Rubisco (Onoda et al., 2005). Further, the Rubisco activation status could also 

be a significant factor contributing to the observed trends in EaV with Tgrowth as evidence 

suggested that, plants have the capacity to maintain high Rubisco activation status through an 

increase in Rubisco activase concentration and expression of heat stable Rubisco activase 

isoforms (Crafts-Brandner & Salvucci, 2000; Sage et al., 2008; Yamori et al., 2014). 

However, not all authors find a change in EaV with growth temperature. Kattge and Knorr 

(2007) did not find any temperature acclimation in EaV. They argued that the choice of a 

standard, rather than peaked, Arrhenius model to fit the temperature response for Vcmax 

without considering the deactivation energy would be a possible reason for the observed 

acclimation responses of EaV in previous studies (e.g. Hikosaka et al. 2006). However, here 

we used the peaked Arrhenius model, and thus the acclimation of EaV that we observed is not 

an artifact of model choice. 
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The second important mechanism for acclimation was a change in the magnitude of 

JVr, as has also been observed by (Kattge & Knorr, 2007; Crous et al., 2013; Lin et al., 2013; 

Crous et al., 2018). The ratio determines the transition between the two limiting steps, Wc and 

Wj. As the temperature responses of Wc and Wj  are different from each other with different 

optimum temperatures (Topt of Wc < Topt of Wj), ToptA is potentially determined by the 

limiting step (von Caemmerer & Farquhar, 1981; Hikosaka, 1997). At higher JVr, the 

photosynthetic rate is mostly limited by RuBP carboxylation, therefore, ToptA tends to be a 

lower value and vice versa.  

 The acclimation capacity of ∆SV observed in this study (-0.38 J mol
-1

 K
-1

) was lower 

compared to the -1.07 J mol
-1

 K
-1 ◦

C
-1

 reported in (Kattge & Knorr, 2007). The higher 

sensitivity observed in Kattge and Knorr (2007) would potentially be explained by the lack of 

variation in EaV. Both EaV and ∆SV are correlated: a high sensitivity in EaV to Tgrowth would 

potentially cause ∆SV to be less sensitive and vice versa.  

 We observed changes in JVr with temperature in all three datasets (Fig. 5), but only the 

mature plant dataset showed a change in either of the two terms contributing to this ratio. In 

this dataset, the reduction in JVr is driven by a reduction in Jmax25, whereas in the other two 

datasets, there is no overall effect on either Vcmax25 or Jmax25. Some previous studies have 

observed changes in Vcmax25 with growth temperature in more limited datasets (Way & Oren, 

2010; Lin et al., 2013; Ali et al., 2015; Scafaro et al., 2017; Crous et al., 2018; Smith & 

Dukes, 2018), but here we did not find any consistent pattern in Vcmax25. It appears that JVr 

responded strongly and consistently to growth temperature, but whether this is achieved by 

increasing Vcmax, decreasing Jmax, or both, is highly variable. We speculate that the global 

pattern in Jmax observed in Figure 5b may be a response to increasing light availability in the 

tropics, following the co-limitation hypothesis, as proposed by Dong et al. (2017), rather than 

a response to growth temperature.  

 

Improved temperature response functions for photosynthetic capacity  

 We demonstrate acclimation to growth temperature to be the principal driver, and only 

a few modest effects of adaptation, in photosynthetic temperature responses at global scale.  

Our results highlight the limitation of using a fixed set of parameters to determine ToptA, and 

challenge the use of PFT-specific Vcmax25 and Jmax25  with a fixed set of temperature response 

parameters without accounting for temperature acclimation and adaptation (Leuning, 2002) in 

global vegetation models (Harper et al., 2016; Rogers et al., 2017a). We also demonstrate 

that the current representation of photosynthetic temperature acclimation (Kattge & Knorr, 
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2007) that has been implemented in some vegetation models (Smith & Dukes, 2013; 

Lombardozzi et al., 2015; Smith et al., 2016), was not able to predict the observed patterns in 

ToptA across biomes.   

 We proposed new algorithms for temperature response that are based on a broad range 

of data, account for both geographical and temporal variability in photosynthetic biochemical 

component processes, and are able to capture observed variation of ToptA across biomes with 

a high degree of accuracy. The temperature response functions that we propose have a broad 

temperature domain (~ 3 – 37 °C) which should enable their use in GVMs without outer 

domain uncertainties  (Stinziano et al., 2017)), a limitation of the algorithms proposed 

previously (Katte & Knorr, 2007) that are widely implemented in GVMs (BETHY, CLM4.5, 

Orchidee). Due to these advantages, our new photosynthetic temperature algorithms provide 

an improved representation of geographical and temporal variability in ToptA and should 

ultimately improve the accuracy of predicted future C cycle in GVMs.  
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Supporting Information 

Fig. S1 Distribution of the dataset used in this study 

Fig. S2 Relationship between apparent Vcmax and Jmax values derived using two ACi curve 

fitting routines; with and without accounting for TPU limitation  

Fig. S3 Temperature response parameters of photosynthetic respiratory component 

processes 

Fig. S4 RL25 : Vcmax25 ratio at a standard leaf temperature 25°C  

Table S1 List of data sources  

Table S2  Results of the linear mixed effect models fitted for common garden dataset to test 

for adaptation of photosynthetic temperature response parameters to species’ climate of 

origin 

Table S3 Results of the linear regression analysis between observed and modelled 

temperature optimum for photosynthesis at a fixed Ci of 275 µmol mol
-1

 using model 

parameterizations given in Table 2 in the main text and Kattge & Knorr (2007) algorithm.  

 

Fig. 1 Temperature optimum for (a–c) leaf net photosynthesis (ToptA) and (d–f) net 

photosynthesis at an intercellular CO2 concentration of 275 µmol mol
-1

 (ToptA275) of mature 

plants growing in their native environments (a, d), species in field (grown at ambient growth 

temperatures) measured at least in two or more seasons (b, e) and species or provenances 

from contrasting climates of origin grown in common growth temperatures (common gardens 

or controlled environments; c, f) . Tgrowth is the mean air temperature of preceding 30 d. Thome 

is the long-term (1960–1990) mean maximum temperature of the warmest month at species’ 

seed origin. Different colours in (a, b) depict plant functional types: orange, tropical 

evergreen angiosperms (EA-Tr); light blue, arctic tundra; red, temperate deciduous 

angiosperms (DA-Te); blue, temperate evergreen angiosperms (EA-Te); green, boreal 

evergreen gymnosperms (EG-Br); purple, temperate evergreen gymnosperms (EG-Te); in (c–

f) different datasets. The thick black lines are: (a, d) least-squares linear regression fits; (b, c, 

e, f) linear mixed-effect model fits with random intercepts for each dataset. The thin lines in 
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respective colours are the fitted random intercept models for individual datasets. Error bars 

represent ± 1 SE. 

Fig. 2 Biochemical temperature response parameters for the mature plants dataset in relation 

to mean air temperature of preceding 30 d (Tgrowth). Different colours represent plant 

functional types as in Fig. 1(a, d). Solid and dotted lines in each panel are the least-squares 

linear regression fits (this study; coefficients and r
2
 values given in Table 1) and the linear 

models proposed by Kattge & Knorr (2007), respectively. Error bars represent ± 1 SE. 

Legend follows Fig. 1(a, d).  

Fig. 3 Biochemical temperature response parameters for the Seasonal dataset in relation to 

mean air temperature of preceding 30 d (Tgrowth). Data were measured on field-grown plants 

(including whole-tree chamber experiments) in two or more seasons. Solid and dotted lines in 

each panel are the linear mixed-effect model fits (this study; coefficients and r
2
 values are 

given in Table 1) and the linear models proposed by Kattge & Knorr (2007), respectively. 

Error bars represent ± 1 SE. Legend follows Fig. 1(b, e).  

Fig. 4 Biochemical temperature response parameters for the Common garden dataset in 

relation to the long-term (1960–1990) mean maximum temperature of the warmest month at 

species’ seed origin (Thome). Data were measured in species or provenances from contrasting 

climates of origin grown at common growth temperatures (common gardens and controlled 

environments). Solid lines in each panel are the linear mixed-effect model fits (this study; 

coefficients and r
2
 values are given in Table 1). Error bars represent ± 1 SE. Legend follows 

Fig. 1(c, f). 

Fig. 5 Vcmax, Jmax and Jmax:Vcmax ratio (JVr) at a standard leaf temperature (25°C) of (a–c) 

mature plants growing in their native environments; (d–f) field-grown plants measured in two 

or more seasons; and (g–i) species or provenances from contrasting climates of origin grown 

in common growth temperatures (common gardens or controlled environments). Tgrowth is the 

mean air temperature of preceding 30 d. Thome is the long-term (1960–1990) mean maximum 

temperature of the warmest month at species’ seed origin, respectively. Solid lines in each 

panel are the least-squares linear regression fits (b, c), linear mixed-effect model fits with 

random intercepts for each dataset (f, i). One outlier is circled in (c) (see text). Error bars 

represent ± 1 SE. Legend follows Fig. 1. 
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Fig. 6 Relationship between JVr and temperature optimum for photosynthesis at a fixed 

intercellular CO2 concentration of 275 µmol mol
-1

 (ToptA275) (a) and relationship between EaV 

and ToptA275 (b). Data were measured on field-grown plants (including whole-tree chamber 

experiments) in two or more seasons. Lines in each panel are the linear mixed effect 

regression model fits (a,                        , R
2 

= 0.36; b,                

            , R
2 

= 0.49. Error bars represents ± 1 SE. 

Fig. 7 Observed and modelled temperature optimum for photosynthesis at a fixed Ci of 275 

µmol mol
-1

 using model parameterizations given in Table 2. (a) With acclimation and 

adaptation functions developed in this study ( 20.209.1  xy , r
2
=0.80), (b) Kattge & Knorr 

(2007) acclimation function ( 82.1358.1  xy , r
2
=0.83). The crossed circle in the x-axis of 

(a) depicts the predicted ToptA275 with a fixed set of parameters without acclimation and 

adaptation (Leuning, 2002). Colours reflect Plant Functional Types as in Fig 1. Thin lines, 1 : 

1 relationship; thick lines, least-squares regression fit. In (a), the intercepts and the slope of 

the linear regression were not significantly different from zero and unity respectively 

(Supporting Information Table S3). Error bars represent ± 1 SE. 
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Table 1 Results of the linear regression analysis of the parameters of Eqn 1, 8 and 9.  

For common garden and seasonal datasets, linear mixed models were fit accounting for between datasets variations of a given parameter (see the Materials and Methods 

section for details). For mature plants in native environments, parameter values were derived by fitting simple linear regression models (Eqn 10). Values in parentheses are 

standard errors of estimates. Bold values are the significant parameters at   = 0.05. 

 

 

 

 

Mature plants in native environment (Eqn 10) 

 

Seasonal dataset (Eqn 11) 

 

Common garden dataset (Eqn 12) 

 

Parameter a b r2 P-value Aac ac 

r2 

(Marginal) 

r2 

(Conditional) 

P-

value Aad ad 

r2 

(Marginal) 

r2 

(Conditional) P-value 

ToptA 12.5 (1.4) 0.62 (0.1) 0.80 <0.001 18.2 (1.1) 0.34 (0.05) 0.27 0.87 <0.001 24.8 (2.1) 0.07 (0.1) 0.01 0.71 0.309 

ToptA275 14.9 (1.5) 0.63 (0.1) 0.84 <0.001 20.5 (1.2) 0.24 (0.05) 0.16 0.85 <0.001 26.8 (2.3) 0.07 (0.1) 0.03 0.30 0.400 

Biochemical parameters            

Vcmax25 85.3 (16.7) -1.84 (0.8) 0.19 0.404 58.2 (12.0) 0.50 (0.4) 0.01 0.94 0.252 33.4 (28.0) 1.62 (0.9) 0.07 0.91 0.096 

Jmax25 194.7 (24.1) -5.13 (1.2) 0.53 <0.001 141.3(18.8) -1.35 (0.7) 0.03 0.95 0.053 92.7 (47.2) 1.63 (1.6) 0.02 0.95 0.312 

EaV 48.7 (7.8) 0.82 (0.4) 0.14 0.067 39.7 (6.2) 1.14 (0.3) 0.32 0.91 <0.001 79.4 (13.1) -0.37 (0.5) 0.14 0.14 0.450 

EaJ 43.5 (9.8) -0.19 (0.5) 0.05 0.7143 27.2 (5.0) 0.26 (0.3) 0.04 0.82 0.325 51.5 (8.7) -0.38 (0.3) 0.20 0.20 0.247 

∆SV 662.0 (8.7) -1.31 (0.5) 0.30 0.011 645.1 (4.6) -0.38 (0.2) 0.09 0.82 0.089 647.9 (9.5) -0.36 (0.3) 0.08 0.66 0.302 

∆SJ 667.3 (7.8) -1.34 (0.4) 0.36 0.005 653.9 (4.6) -0.85 (0.2) 0.22 0.94 <0.001 662.3 (7.5) -0.99 (0.3) 0.49 0.84 <0.001 

ToptV 24.3 (3.8) 0.71 (0.2) 0.40 0.002 30.3 (1.9) 0.36 (0.1) 0.23 0.77 <0.001 34.3 (3.3) 0.12 (0.1) 0.05 0.36 0.335 

ToptJ 19.9 (2.9) 0.63 (0.2) 0.52 <0.001 27.6 (1.8) 0.31 (0.1) 0.13 0.91 <0.001 24.8 (3.4) 0.42 (0.1) 0.42 0.60 <0.001 

JVr 2.9 (0.2) -0.06 (0.01) 0.66 <0.001 2.3 (0.2) -0.03 (0.01) 0.07 0.17 <0.001 2.5 (0.3) -0.03 (0.01) 0.13 0.64 0.005 

Respiratory parameters           

RL25 2.8 (0.5) -0.09 (0.03) 0.38 0.0037 1.54 (0.42) -0.01 (0.02) 0.01 0.25 0.502 1.16 (0.45) 0.01 (0.01) 0.01 0.61 0.583 

Ea -20.7 (14.3) 1.18 (0.78) 0.07 0.1508 -9.17 (11.49) 0.42 (0.61) 0.02 0.83 0.485 -4.25 (43.38) 0.12 (1.57) 0.01 0.93 0.937 

RL25:Vcmax25 0.036 (0.01) 
-0.001 

(0.0003) 0.22 0.033 0.03 (0.01) 

-0.001 

(0.0003) 0.04 0.60 0.043 0.03 (0.01) 
-0.0005 

(0.0004) 0.06 0.53 0.149 
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Table 2 Parameters of the temperature acclimation and adaptation functions developed in this study.  

Thome, long-term (1960–1990) mean maximum temperature of the warmest month; Tgrowth, mean air temperature of preceding 30 d. Plant functional types: DA-

Te, temperate deciduous angiosperms; EA-Te, temperate evergreen angiosperms; EG-Te, temperate evergreen gymnosperms; EG-Br, boreal evergreen 

gymnosperms; EA-Tr, tropical evergreen angiosperms; Arctic tundra, Arctic spp.  

Parameter Model representation Value Units 

Vcmax25 PFT specific              DA-Te     

EA-Te     

EG-Te     

EG-Br       

EA-Tr      

Arctic tundra        

39.0 

82.9 

42.8 

80.4 

39.4 

78.3 

 

 mol m
-2

s
-1

 

Jmax25 Acclimation + Adaptation Vcmax25 × JVr  mol m
-2

s
-1

 

JVr Acclimation + Adaptation                                        unitless 

EaV Acclimation                  kJ mol
-1

 

EaJ Global mean 40.71 kJ mol
-1

 

∆Sv Acclimation                    J mol
-1

 K
-1

 

∆SJ Acclimation + Adaptation                                      J mol
-1

 K
-1
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