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ABSTRACT 19 

Nitrogen (N) deposition poses a severe risk to global terrestrial ecosystems, and managing 20 

this threat is an important focus for air pollution science and policy. To understand and 21 

manage the impacts of N deposition, we need metrics which accurately reflect N deposition 22 

pressure on the environment, and are responsive to changes in both N deposition and its 23 

impacts over time. In the UK, the metric typically used is a measure of total N deposition 24 

over 1-3 years, despite evidence that N accumulates in many ecosystems and impacts from 25 

low-level exposure can take considerable time to develop. Improvements in N deposition 26 

modelling now allow the development of metrics which incorporate the long-term history of 27 

pollution, as well as current exposure. Here we test the potential of alternative N deposition 28 

metrics to explain vegetation compositional variability in British semi-natural habitats. We 29 

assembled 36 individual datasets representing 48,332 occurrence records in 5,479 quadrats 30 

from 1,683 sites, and used redundancy analyses to test the explanatory power of 33 31 

alternative N metrics based on national pollutant deposition models. We find convincing 32 

evidence for N deposition impacts across datasets and habitats, even when accounting for 33 

other large-scale drivers of vegetation change. Metrics that incorporate long-term N 34 

deposition trajectories consistently explain greater compositional variance than 1-3 year N 35 

deposition. There is considerable variability in results across habitats and between similar 36 

metrics, but overall we propose that a thirty-year moving window of cumulative deposition is 37 

optimal to represent impacts on plant communities for application in science, policy and 38 

management.  39 



KEYWORDS: air pollution; biodiversity; cumulative deposition; vegetation; community 40 

ecology; environmental change; nitrogen deposition. 41 

CAPSULE: Measures of nitrogen deposition which incorporate long-term pollution history 42 

explain more spatial variance in plant communities than those which do not. 43 

HIGHLIGHTS: 44 

 We present a large study of N deposition impacts on British vegetation. 45 

 N deposition consistently explains spatial variability in vegetation composition. 46 

 Metrics based on long-term pollution histories are superior to current deposition.  47 

 We propose thirty-year cumulative deposition as an optimum metric.  48 

  49 



INTRODUCTION 50 

Nitrogen (N) deposition is recognised as one of the most severe threats to ecosystems, 51 

arguably exceeded only by climate and land-use change as a hazard to global terrestrial 52 

biodiversity (Bobbink et al., 2010; Dise et al., 2011; Sala et al., 2000). The global budget of 53 

reactive compounds of N is now dominated by anthropogenic production and, while 54 

emissions and deposition are beginning to plateau and decline in some developed countries, 55 

N deposition is rapidly increasing in the developing world (Fowler et al., 2013; Fowler et al., 56 

2015; Galloway et al., 2004; Galloway et al., 2008).  57 

Nitrogen deposition impacts terrestrial ecosystems through multiple mechanistic pathways. 58 

At high concentrations nitrogen, particularly as gaseous ammonia and aerosols, can cause 59 

direct toxic effects on plants and other organisms (Cape et al., 2009; Pearson and Stewart, 60 

1993). N deposition to soils may lead to acidification, base cation depletion and mobilisation 61 

of potentially toxic metals (Bowman et al., 2008; Horswill et al., 2008). Nitrogen deposition 62 

can also increase the susceptibility of organisms to secondary stressors such as climatic 63 

extremes, pathogens and predators (Carroll et al., 1999; Mitchell et al., 2003; Throop and 64 

Lerdau, 2004). However, the impact-pathway which has attracted greatest attention is 65 

eutrophication. Increased nutrient supply may shift the competitive balance between 66 

species, ultimately leading to the exclusion of taxa that are poor competitors for resources 67 

(Bobbink et al., 2010; Wedin and Tilman, 1993). The consequences of these combined 68 

impacts include loss of biodiversity, changed taxonomic and trait assemblages and erosion 69 

of important ecosystem services, ultimately imposing significant societal costs (Jones et al., 70 

2014; Stevens et al., 2006; Stevens et al., 2010). 71 

Managing the environmental impacts of N deposition is an important concern for 72 

environmental policy-makers, managers and regulators. Common roles include the 73 

permitting of new industrial and agricultural emission sources, legislating on appropriate 74 

technologies and monitoring and reporting of impacts to national and international bodies. 75 

These roles require metrics of N deposition which reflect its pressure on the environment. 76 

Currently the metric used in most applications is ‘current deposition’, usually defined over a 77 

period of 1-3 years. In the United Kingdom current N deposition is typically estimated using 78 

the empirical Concentration Based Estimated Deposition model (CBED) (Smith et al., 2000). 79 

CBED output is produced annually based on measured pollutant concentrations, wet 80 

deposition and meteorological data, and is available as both single-year and three-year 81 

means (the latter intended to smooth-out meteorological variation). These ‘current 82 

deposition’ data are used as part of the UK’s national-scale reporting and to assess 83 

‘background’ deposition when considering the impact of additional pollution in permit 84 

applications (Hall et al., 2017). Current deposition data produced in similar ways are also 85 

used internationally by environmental managers and policy-makers.  86 

There are a number of reasons why current deposition data may not optimally represent N 87 

deposition as it affects the environment. Experimental studies show that N deposition 88 

impacts take considerable time to develop (Phoenix et al., 2012). Many long-term studies 89 

have shown hysteresis over 1-3 years but have ultimately shown large change over time-90 

periods of a decade or more (Clark and Tilman, 2008). Similarly, some studies of recovery 91 

have shown limited recovery when N additions are ceased (Isbell et al., 2013). Nitrogen 92 

deposition increases N stocks and concentrations in soil and plant tissue, and increases 93 

primary production, leading to greater N in above- and below-ground pools (Meter et al., 94 



2016; Pornon et al., 2018; Rowe et al., 2014). Nitrogen deposition therefore tends to have 95 

cumulative impacts as these pools build up over time. Time-scales of species response will 96 

depend on the autecology of the species concerned and may vary dependent on their 97 

nitrogen sources and those of their competitors. Short-term modelled N deposition estimates 98 

will also be affected by atmospheric conditions during that period, particularly in terms of 99 

precipitation, and may not always correlate well with longer time-periods. The ecological 100 

impacts of N deposition are primarily long-term processes which are likely to be imperfectly 101 

characterised over a period of less than three years. 102 

An alternative framework is to consider N deposition over a much longer period. Studies 103 

synthesising experimental results through time have found that a strong basis for doing this 104 

is by calculating the total accumulated dose of nitrogen, including both experimental 105 

treatments and background deposition (Phoenix et al., 2012). Similarly, studies investigating 106 

the impacts of N deposition in the landscape have included cumulative atmospheric 107 

deposition as an explanatory variable (Duprè et al., 2010; Payne et al., 2011). However, a 108 

limitation to previous cumulative N deposition calculations has been that they are typically 109 

based on re-scaling current deposition values using national scaling factors (Duprè et al., 110 

2010; Fowler et al., 2005). In theory this produces a metric which is fully correlated with 111 

current deposition and therefore adds no independent predictive power (Rowe et al., 2014). 112 

In practice cumulative deposition is often calculated from a different baseline (typically 1996-113 

98 in the United Kingdom) and may include measured data for the recent past (Payne, 2014; 114 

Payne et al., 2017), meaning that correlations are weaker (Payne et al., 2011). 115 

Nevertheless, it is clear that cumulative deposition calculations have been unable to fully 116 

account for the changing spatial distribution of N deposition over time. In the UK this 117 

situation has now been changed by the development of better modelling of long-term N 118 

deposition. Recent work has estimated spatially distributed historic N emissions back to 119 

1800 and used FRAME (Fine Resolution Atmospheric Multipollutant Exchange: (Dore et al., 120 

2012; Dore et al., 2007; Matejko et al., 2009)), an atmospheric chemistry and transport 121 

model, to produce estimates of N deposition (Dragosits et al., 2016; Tipping et al., 2017). 122 

There is the potential to build on this to produce a range of indices of N deposition that more 123 

realistically represent long-term N deposition as it affects the environment. However, it is 124 

unclear which of many possible options would be most appropriate. Rowe et al. (2014) and 125 

Rowe et al. (2017) have proposed thirty years of cumulative deposition above the critical 126 

load as a useful measure of N deposition pressure for ‘soil based ecosystems’. However this 127 

is not currently based on any empirical analysis.  128 

The aim of this study is to test the explanatory power of alternative metrics of N deposition 129 

with large vegetation datasets in order to propose an optimal metric.  130 

METHODS 131 

In order to quantify the power of alternative potential metrics of N deposition we compiled 132 

multiple large-scale vegetation datasets, calculated alternative N metrics based on long-term 133 

deposition trajectories, and used ordination to test the explanatory power of these metrics in 134 

explaining vegetation assemblage variability while accounting for other potential controls on 135 

vegetation. We addressed the impacts of N deposition on semi-natural vegetation, focussing 136 

on Great Britain (GB) due to the recent development of long-term N deposition modelling, 137 

strong gradients in N deposition and availability of large-scale vegetation datasets. 138 



Vegetation data 139 

We first assembled large-scale vegetation datasets. In order to be included, datasets 140 

required large-scale spatial coverage, species-level plant identification, and precise 141 

locational information (the latter excludes some ecological surveillance datasets). We 142 

ultimately identified 11 studies and 36 individual datasets which met these criteria and were 143 

available for this project (Figure 1; Table 1). These datasets have been produced for a range 144 

of purposes including classifying vegetation types, quantifying temporal change and 145 

identifying N deposition impacts and indicators. Partly due to these varying motivations the 146 

datasets also differed in terms of when the survey was conducted, quadrat size, the 147 

grouping of species and the specificity of the habitats targeted (Table 1).  Given these 148 

differences, the combination of individual datasets into larger datasets is fraught with 149 

complexity and we considered it more practical to analyse them separately.  150 

We made a number of adjustments to the original datasets prior to analysis. We first aimed 151 

to focus our analysis on meaningful habitat datasets. Studies conducted in the context of 152 

understanding air pollution impacts have often been targeted at specific vegetation 153 

communities, often a single UK National Vegetation Classification (NVC) category. However, 154 

other datasets are much broader in their coverage, including studies which have deliberately 155 

aimed to maximise the range of habitats sampled. In these latter datasets the degree of 156 

replication within a specific NVC category is often limited. For each dataset we made a 157 

decision regarding the maximum degree of habitat specificity which would still allow 158 

adequate sample size. We ultimately focussed our analysis on datasets with differing 159 

taxonomic resolution for the differing surveys, ranging from the specific (e.g. ‘U4 acid 160 

grasslands’ for the Stevens et al. (2004) dataset) to the general (e.g. ‘all grasslands’ for the 161 

Ross et al. (2012) dataset). Some of the datasets comprised re-surveys of older datasets 162 

and for these we focused solely on the re-survey component.   163 

We next aimed to focus our analyses at a spatial scale which was meaningful for the 164 

identification of N deposition impacts. Although N sources can sometimes have very 165 

localised impacts, most impacts are diffuse and widely distributed. UK national pollutant 166 

deposition models typically have an output resolution of 5 km x 5 km, making it impossible to 167 

attribute finer-scale plant community variability to N deposition. Most of the datasets we 168 

considered are based on designs with a number of quadrats (typically 4-5) positioned in a 169 

relatively small ‘site’ (often <1 ha) which will typically fall within a single model cell. For these 170 

datasets we analysed mean vegetation cover data for each such site. However, other 171 

datasets –particularly those originally designed for vegetation classification– are based on 172 

quadrats which may be widely scattered across the landscape. For these datasets we 173 

aggregated data by calculating the mean species coverage of all quadrats within the 5 km x 174 

5 km cells of the .deposition datasets.  175 

The total pool of analysed data represents 48,332 occurrence records in 5,479 quadrats 176 

from 1,683 sites (Table 1). For discussion we categorised the individual datasets into five 177 

groups: heathlands, grasslands, wetlands, montane (encompassing alpine heaths and 178 

grasslands) and sand dune habitats (Table 2). The majority, but not all, datasets included 179 

species composition of all plants including bryophytes, lichens and vascular species.  180 

Nitrogen deposition modelling and data 181 



We developed a range of potential N deposition metrics for each location using recently-182 

developed hind-casted deposition modelling for the UK based on spatially distributed historic 183 

N emissions data and the FRAME model (Dragosits et al., 2016; Tipping et al., 2017) The 184 

FRAME model is an atmospheric chemistry transport model which simulates the emissions 185 

of nitrogen compounds, their vertical diffusion and horizontal transport, atmospheric 186 

chemical transformation and deposition to the surface by wet and dry processes. N 187 

deposition modelling for this study was based on ground coverage of low-growing semi-188 

natural species, as suited to the habitats considered (N deposition estimates for woodland 189 

are generally higher, due to a higher deposition velocity, notably for NH3). The underlying 190 

emissions data is currently available for six time-steps: 1800, 1900, 1950, 1970, 1990 and 191 

2010. These years were selected based on data availability and likely changes in air 192 

pollution, including initial industrial development (19th century), the advent and widespread 193 

implementation of the Haber-Bosch process (first half of 20th century), the peak in emissions 194 

(late 20th century) and subsequent decline. Based on this modelling, we produced grid-cell 195 

specific deposition chronologies for all 5 km x 5 km cells containing vegetation data with 196 

changes between the six tie-points calculated using linear interpolation. We compared these 197 

results to current deposition, as estimated using the standard CBED model used in UK 198 

policy and management. Given the broad spatial and temporal scope of the study we 199 

focused on total N deposition, accepting that somewhat different effects may be produced by 200 

reduced and oxidised forms of N, and by dry and wet deposition (Sheppard et al., 2011; 201 

Stevens et al., 2011; Van den Berg et al., 2008; van den Berg et al., 2016).  202 

Nitrogen deposition metrics 203 

We calculated a number of N deposition metrics based on alternative approaches to 204 

summarising the grid-cell deposition chronologies across the available time-steps. We first 205 

considered cumulative N deposition from a static starting-point, an approach used in a 206 

number of previous studies (Payne et al., 2011; Stevens et al., 2016). We considered five 207 

variants based on each of the available time-steps, i.e. cumulative deposition from 1800, 208 

1900, 1950, 1970 and 1990 up to the time of vegetation survey. These metrics –in which 209 

values can only increase over time– reflect the possibility that deposited N gradually 210 

accumulates in ecosystems producing progressively intensifying impacts, while regime-shifts 211 

mean that rapid recovery in vegetation composition is unlikely in at least the medium term 212 

(Isbell et al., 2013; Payne et al., 2017). Cumulative deposition was calculated from the 213 

deposition chronologies using the trapezoidal area method based on all available time-steps 214 

between the start year and the latest year of survey. 215 

We next considered a moving window of cumulative N deposition, with deposition calculated 216 

for the years preceding vegetation survey. We assessed metrics based on cumulative 217 

deposition over windows of 5, 10, 20, 30, 50, 100, 150 and 200 years. These metrics reflect 218 

the accumulation of N in ecosystems over time but also the expectation that recovery will 219 

occur if deposition is reduced. N is likely to be gradually lost from ecosystems over time (due 220 

to denitrification, fire, grazing, leaching etc.) but there is uncertainty in the speed of 221 

ecological recovery due to factors such as the loss of seed-banks, leading to hysteresis 222 

(Basto et al., 2015). Such a moving window of deposition has been suggested as a useful 223 

indicator of N deposition pressure in policy (Rowe et al., 2017; Rowe et al., 2014). Linear 224 

interpolation was used to calculate deposition at the beginning and end of moving window 225 

periods and cumulative deposition calculated based on the trapezoidal area method. 226 



Our third group of metrics was related, but included the critical load as a threshold; metrics 227 

were calculated based on cumulative deposition above the critical load. These alternatives 228 

embed the assumption that the critical load achieves its stated purpose of being a ‘floor’ 229 

below which there are no impacts. In this formulation it is only cumulative deposition above 230 

the critical load that is likely to have ecological impacts. One example of this class of metrics 231 

is the ‘30-year cumulative deposition above critical load’ metric recently proposed by Rowe 232 

et al. (2014). Critical load values used in these calculations were based on current UNECE 233 

values (Bobbink and Hettelingh, 2011) valid for the UK, using the lowest point of range as 234 

generally implemented in UK policy. Where the vegetation communities sampled spanned 235 

habitats with different critical loads, we selected the lowest value. Linear interpolation was 236 

used to calculate the year at which critical load was first exceeded and, where deposition fell 237 

sufficiently, last exceeded, and cumulative deposition calculated as above.  238 

A related alternative metric is to simply consider the number of years that the critical load is 239 

exceeded. The assumption here is that it is the duration of damaging quantities of N 240 

deposition which is the key attribute associated with ecological impacts, rather than the 241 

loading per se. Linear interpolation was used to identify the timing of first and last (where 242 

applicable) critical load exceedance, and the time-period between these points was 243 

calculated. We finally considered the maximum and minimum N deposition that a grid-cell 244 

has received in the modelled period. These metrics reflect the possibility that plant 245 

community variability may be best explained by the greatest or least N deposition pressure 246 

that the ecosystem has received over an extended time period.  247 

Within these general classes there is an almost limitless diversity of metrics that could be 248 

calculated, but since most are strongly conceptually linked and highly correlated, we 249 

focussed on the 33 metrics listed in Table 3. We compared the explanatory power of these 250 

metrics for UK vegetation to those of current N deposition based on the CBED model (Smith 251 

et al., 2000), as currently used in most UK science and management. We considered both 252 

single- and three-year mean deposition values.  253 

Ordination 254 

We tested the link between vegetation community composition and N deposition metrics 255 

using (partial) redundancy analysis (RDA)(van den Wollenberg, 1977). RDA is an extension 256 

of principal components analysis (PCA) which attempts to summarise the variation in a set of 257 

multivariate response variables attributable to one or more explanatory variables. Partial 258 

RDA extends classical RDA by attempting to remove the effect of (‘partial out’) one or more 259 

co-variates (Borcard et al., 1992). We implemented RDA in R using the function rda in the 260 

vegan package (Oksanen et al., 2007; R Development Core Team, 2014). Vegetation data 261 

were Hellinger-transformed prior to analysis (Legendre and Gallagher, 2001; Rao, 1995) to 262 

allow the use of RDA in situations where species may be expected to show unimodal 263 

responses to their environment (Legendre and Gallagher, 2001). The significance of results 264 

was assessed by permutation tests (999 permutations) and summarised in terms of 265 

explained variance and P-value. Our analyses focused on overall vegetation composition, 266 

accepting that different metrics may be appropriate for different species and plant functional 267 

types.  268 

We took three complementary strategies to account for other environmental factors which 269 

might affect vegetation composition in these habitats. We first tested the explanatory power 270 



of each N deposition metric as sole predictor of plant community composition. This test 271 

quantifies the maximum proportion of variance which may be explained by each metric, 272 

ignoring the fact that some of this apparent relationship may actually be driven by other, 273 

correlated, variables. In our second test we made decisions on what are likely to be other 274 

important variables for which we have data. We included climate variables (mean annual 275 

precipitation: MAP, and mean annual temperature: MAT, both from the Hijmans et al. (2005) 276 

dataset), altitude (from the Shuttle Radar Tomography Mission dataset of Farr et al. (2007)) 277 

and ‘historic peak’ S deposition (86-88 data from the CBED model of Smith et al. (2000)) as 278 

covariates in all of these analyses. These analyses with covariates partialled out provide a 279 

more realistic quantification of explained variance but results are partially determined by a 280 

priori judgements of likely importance. In our final set of tests we also included covariates but 281 

with these selected on statistical grounds, rather than prior expectations. In these tests we 282 

used a larger pool of potential covariates including the environmental data used above 283 

(MAT, MAP, Altitude, peak S deposition) but also other variables where available. Some 284 

datasets included considerable contextual environmental data, but these were not available 285 

for all datasets. We included all available environmental variables with a conceivable link to 286 

large-scale vegetation variability in a pool of variables available for selection for each 287 

dataset. We used the automated model-building approach of the ordistep function in vegan 288 

(Oksanen et al., 2007) to construct an optimum model by stepwise selection of variables, 289 

with variables alternately removed and added until the model remained unchanged. 290 

Inclusion decisions were made on the basis of permutation-based significance tests (999 291 

permutations). Stepwise selection was conducted using all environmental variables -other 292 

than those related to nitrogen deposition- to identify an optimum suite of co-variates. This 293 

suite of co-variates was then used in a final RDA with each nitrogen deposition metric as an 294 

explanatory variable. The process was repeated afresh for every analysis, so each includes 295 

a degree of randomness. These analyses provide a more objective alternative to a priori 296 

selection of covariates but the use of permutation tests mean results may vary between 297 

runs, there is a risk that covariates identified may not be the most ecologically plausible, and 298 

selected covariates might differ between different N deposition metrics.  299 

Each of the above approaches has been applied in previous studies relating plant 300 

communities to nitrogen deposition, and collectively they provide a robust range of 301 

complementary information on the explanatory power of N deposition metrics. We ultimately 302 

conducted 3,564 individual ordinations for each of the 36 vegetation datasets, 33 N 303 

deposition metrics and three approaches to co-variates. This inevitably produces very 304 

complex results. We propose that a useful metric should be consistently significant in these 305 

analyses (P<0.05) and explain a maximal proportion of compositional variance. Therefore 306 

we suggest that a useful measure to assess the relative performance of alternative N 307 

deposition metrics across analyses is the mean significant variance explained, with non-308 

significant analyses assigned a zero-score. Collectively these analyses ultimately enable us 309 

to answer the question: what is the most ecologically-informative metric of nitrogen 310 

deposition?  311 

RESULTS AND DISCUSSION 312 

Properties of the datasets 313 

The pool of vegetation data assembled spans most major UK semi-natural habitats, with the 314 

exception of woodlands. Sampling locations are widely distributed (Fig. 1; Supplementary 315 



Fig. 1) but, due to the inclusion of three large Scotland-specific datasets (Table 1) the overall 316 

data has a bias towards the north of Britain. As the northern Highlands and Western Isles 317 

are the least-polluted regions of the UK, the overall dataset also has a high representation of 318 

sites with low N deposition, but with high variability within and between individual habitat 319 

datasets. Most datasets also capture considerable variability in other environmental controls 320 

on vegetation (Table 2).  321 

All studied sites have experienced an increase in N deposition over the time period 322 

considered (Fig. 2). A typical trajectory would be similar to Fig 2A, with a gradual increase 323 

through the 19th and early 20th centuries, increasing rapidly in the late 20th century and then 324 

declining to 2010. However, there is considerable variability across sites. In some sites the 325 

decline between 1990 and 2010 is more (Fig. 2B), or less (Fig. 2C) steep, and in a minority 326 

of sites there is no decrease at all (e.g. Fig. 2D). In some sites the initial increase is earlier 327 

(Fig. 2C) or later (Fig. 2D). In most sites the critical load value is exceeded by the late 20th 328 

century and remains exceeded (Fig. 2A), while in some sites the critical load is never 329 

exceeded (Fig. 2E) or is exceeded and then subsequently no longer exceeded (Fig. 2F). 330 

Given the general similarity in many trajectories, there are correlations between many of the 331 

metrics derived from these data (Supplementary Table 1). Correlations are particularly 332 

strong within ‘families’ of metrics, particularly over similar time periods. Correlations are 333 

notably weaker between current N deposition and longer-term metrics.  334 

Nitrogen deposition and British vegetation 335 

The first clear finding of our ordination analyses is that N deposition consistently explains 336 

significant variance in the composition of British plant communities (Fig. 3). Across all 337 

vegetation datasets and co-variate approaches it is rare that at least one N metric does not 338 

explain significant variance (Supplementary Figure 2). The proportion of variance explained 339 

is typically small, but this is unsurprising given the many and varied controls on vegetation. 340 

Variance explained by N deposition metrics was greatest in analyses without co-variates and 341 

least in analyses with stepwise selection of co-variates, suggesting that some co-variates 342 

available for the stepwise model-building but not selected a priori may have been important 343 

for some habitats. N deposition is clearly an important control on UK vegetation which can 344 

be robustly identified in field data; however its impact is likely to often be subordinate to 345 

factors such as land-use and climate.   346 

The majority of published spatial gradient studies addressing N deposition impacts on 347 

vegetation have deliberately targeted sites with a range of N deposition and have aimed to 348 

minimise the impact of co-variates. These designs will have increased the probability of 349 

identifying N deposition impacts. By contrast, many of the datasets addressed here did not 350 

consider N in their sampling design. That N is still shown to be significant in most analyses 351 

provides convincing evidence for the impact of N deposition. Our dataset also includes a 352 

number of habitats with comparatively restricted distributions which have not been 353 

considered in previous studies, including coastal cliffs and tall grass mires (Supplementary 354 

Figure 2). Our results provide the first evidence for N deposition impacts occurring widely in 355 

these habitats in the UK landscape.  356 

Individual species correlations with N are not the primary focus of this study but we note that 357 

consistent significant correlations (Supplementary Table 2) mostly match other evidence. For 358 

instance, negative correlations between N and Racomitrium lanuginosum in heath and 359 



montane habitats (Jones et al., 2002; Van Der Wal et al., 2003), Plantago lanceolata 360 

(Mountford et al., 1993) and Lotus corniculatus in dunes and grasslands (Stevens et al., 361 

2016) and positive correlations between N and Festuca ovina (Hartley and Mitchell, 2005) in 362 

grassland and montane habitats and Deschampsia flexuosa in heathland habitats (Barker et 363 

al., 2004) are all well-established from independent studies.  364 

Optimum metrics 365 

Given the number of individual vegetation datasets and metrics, combined with the three 366 

approaches to considering co-variates, there is considerable complexity in results 367 

(Supplementary Figure 2). Straightforward results should not be expected when dealing with 368 

large and diverse datasets from ‘real world’ landscapes, but it is possible to draw some 369 

general conclusions.  370 

The first clear result is that current deposition generally performed poorly compared to 371 

metrics which consider long-term N deposition trajectories. Whether based on a single year 372 

or a three-year mean, current N deposition typically explained lower variance and was less 373 

frequently significant at P<0.05 than most other N deposition metrics (Supplementary Figure 374 

2). For instance, considering the aggregated significant results with step-wise model-building 375 

(Fig. 3), 3-year current deposition was the worst-performing metric overall, explaining 56% 376 

lower mean significant variance than the best-performing metric. This result supports 377 

considerable previous research suggesting that the long-term history of N deposition is an 378 

important determinant of current status (Phoenix et al., 2012).  379 

The conclusion that long-term metrics tend to out-perform current deposition holds for most -380 

but not all- of the component datasets (Supplementary Figure 2). The most notable 381 

exception is for sand dune habitats where current N deposition more frequently explained 382 

significant variance than long-term metrics (Supplementary Figure 2M-O). In some analyses, 383 

for some dune habitats, current N deposition also explained a larger proportion of variance 384 

and across all dune analyses it was rare for greater variance to be explained by long-term 385 

than current metrics. This distinctive response of sand dune habitats is interesting as, in a 386 

recent field study, Aggenbach et al. (2017) found that high N deposition does not necessarily 387 

lead to increases in N pools, with model simulations suggesting a mechanism whereby N 388 

deposition suppresses symbiotic fixation of atmospheric N2. While these results are solely 389 

for calcareous dunes they imply a plausible mechanism whereby N deposition may lead to 390 

vegetation change but without sustained increases in N stock. It is also likely that less N is 391 

retained in dunes than other systems due to limited soil organic matter. The absence of a 392 

cumulative impact of N on soil stocks might thereby explain the apparently superior 393 

correlations with current than long-term N in dune habitats.  394 

In the United Kingdom, current and longer-term N deposition values are the products of 395 

different pollutant deposition models: the empirically-based CBED for current deposition 396 

(Smith et al., 2000) and the chemical transport model FRAME (Dore et al., 2007) for longer-397 

term deposition. Results from the two models are strongly correlated and are frequently used 398 

in tandem. However, it is possible that an unquantified proportion of the difference in metric 399 

performance detected here is due to differences in model performance.  This possibility has 400 

implications for policy given that permitting decisions and much national reporting are based 401 

exclusively on CBED.  402 



The second clear overall result is that metrics which do not embed the habitat-specific critical 403 

load value have consistently superior performance over those which do. For instance, 404 

considering the aggregated significant results with step-wise model-building (Fig. 3), 405 

cumulative N deposition metrics which do not embed the critical load explain 22% greater 406 

mean significant variance than those which do. This difference is even more marked in the 407 

analyses without co-variates (+26%) or with a priori selected co-variates (+31%). Previous 408 

work has advocated a metric based on cumulative deposition above the critical load 409 

(CUM.CL.30Y) for application in UK policy (Rowe et al., 2014). This metric typically performs 410 

better than current deposition (DEP.CUR.3) but is considerably weaker than an equivalent 411 

metric which does not embed the critical load (CUM.30Y)(Fig. 3). 412 

In some datasets from low-deposition regions there were few if any sites with N deposition 413 

above the critical load and metrics which embedded the critical load consequently included 414 

many zeroes. These metrics unsurprisingly explained little or no variance. More surprisingly 415 

however, in many of these datasets, many metrics which did not embed the critical load did 416 

explain significant variance. For instance, all of the tall grass mire locations were below the 417 

critical load: metrics which embedded the critical load explained no variance but all metrics 418 

which did not embed the critical load did explain variance in analyses without co-variates. 419 

There are two possible explanations for this result: either the apparent correlations are 420 

spurious or, N deposition is having impacts at deposition levels below the critical load. We 421 

consider the former possibility unlikely given that the result is robust to the inclusion of co-422 

variates for many large-scale controls on vegetation and is replicated across several 423 

datasets. These results therefore provide evidence for sub-critical load impacts.   424 

Generally, the best performing metrics are those based on cumulative N deposition without 425 

embedding the critical load. Choosing between cumulative deposition from a fixed starting 426 

point and cumulative deposition over a moving window is difficult on statistical grounds as 427 

metrics are highly correlated and results consequently similar (Fig. 3). Moving window 428 

metrics typically explain fractionally more variance when considering stepwise selection of 429 

co-variates. We propose that moving windows are also likely to be more useful in practice as 430 

they allow for gradual decreases over time, whereas cumulative deposition from a fixed start 431 

point can only increase (Rowe et al., 2014). There is similar difficulty in selecting amongst 432 

different cumulative periods as these metrics are also typically highly correlated. Based on 433 

the stepwise selection of covariates approach (Fig. 3), which is arguably the most robust, the 434 

greatest mean proportion of significant variance was explained by CUM.30Y: a thirty year 435 

moving window of N deposition. This metric also performed competitively without covariates 436 

and with a priori selected covariates. Thirty years is the period of cumulative deposition 437 

previously identified on the basis of expert opinion by Rowe et al. (2017) and Rowe et al. 438 

(2014) and used in modelling N deposition impacts by Payne et al. (2017). This period of 439 

deposition therefore has some prior existence in science and policy. The 30 year cumulative 440 

deposition metric offers superior explanatory power to current deposition alone. For 441 

instance, considering analyses without co-variates, across all 36 vegetation datasets thirty 442 

year cumulative deposition explained 23% more variance than single-year current deposition 443 

and explained significant variance (P<0.05) in six datasets (17%) in which current deposition 444 

did not (Fig. 4). On this basis we suggest that cumulative deposition over a thirty year 445 

moving window is a good candidate for the most ecologically-meaningful metric. We focus 446 

on overall plant communities across habitats but we acknowledge it is possible that different 447 

metrics may be most useful when the conservation interest is in particular groups of plants. 448 



For instance, there is some experimental evidence that shorter time-scales might be more 449 

relevant to bryophytes and lichens than to vascular plants (Jones, 2005; Rowe et al., 2014). 450 

This might imply that shorter periods of cumulative deposition could be appropriate where 451 

bryophytes are the central focus. Similarly, our results imply that shorter deposition periods 452 

might be more optimal for sand dunes than for other habitats. However we believe that there 453 

is value in selecting a single metric and propose thirty year cumulative deposition as a strong 454 

candidate for this role.  455 

CONCLUSIONS 456 

This is the largest study thus-far to assess the role of N deposition as a cause of variability in 457 

UK vegetation, in terms of both sample size and the range of habitats considered. Nitrogen 458 

deposition is significant in most analyses. The size of the effect is often smaller than that of 459 

other drivers of change, but is nevertheless consistent and widespread. These results add to 460 

the increasing body of evidence that N deposition is having far-reaching impacts in UK 461 

habitats. A related conclusion is that there is evidence for N deposition impacts even in 462 

datasets where most or all of the sites are below the critical load, strongly implying that 463 

current critical loads may be set too high for at least some habitats. Finally, our study 464 

provides convincing evidence that current N deposition –as widely used in science and 465 

policy- is not the most meaningful metric to represent N deposition as it affects vegetation. It 466 

is highly probable that many impacts of N pollution develop incrementally over time and that 467 

metrics which incorporate this history better explain spatial patterns of pollution impacts in 468 

the UK landscape. One implication of this finding is that as N deposition falls, recovery is 469 

unlikely to be rapid. We propose thirty years of cumulative deposition as a more ecologically-470 

informative metric of N deposition for further development and application.  471 
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 740 

Figure 1. Distribution of sampling sites across all surveys. See Supplementary Figure 1 for 741 

mapping of individual studies and Tables 1 and 2 for details of surveys. 742 
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 744 

 745 

Figure 2. N deposition chronologies for selected sites included in the vegetation surveys. A) 746 

Coed Poeth (EDM); B) Allt Cragach (PAYN); C) Gladhouse (B.AGRASS); D) Hilldavale 747 

(B.CHEATH); E) Bennadrove (PAYN) and F) Cawdow (TU.BOG). N deposition values are 748 

vegetation-specific estimates for low-growing semi-natural habitats (e.g. heaths, bogs, 749 

grasslands, montane). Plots show modelled tie-points (circles) and interpolated trends 750 

(lines). Dotted horizontal lines show critical loads for the habitats concerned. For dataset 751 

codes refer to Table 2. 752 



 753 

 754 

Figure 3. Compositional variance explained by alternative N deposition metrics for all habitats. Background shading denotes different ‘families’ 755 

of metrics. See Table 3 for metric codes.  756 
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 759 

 760 

Figure 4. Comparison of single-year current deposition (DEP.CUR1) and 30 year cumulative 761 

deposition (CUM.30Y) for all vegetation datasets (without co-variates) in terms of explained 762 

variance (A) and P-value (B). Dashed horizontal line shows P=0.05.  763 
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Table 1. Key details of the component vegetation datasets utilised in this study.  

Name and 
references 

Key details Individual datasets  

Terrestrial Umbrella 
nitrogen gradient 
surveys (Field et 
al., 2014). 

Vegetation survey was conducted in four broad habitats across Great Britain in 2009: bog (Eunis class D1), upland 
heaths, lowland heaths (both Eunis F4.2) and sand dunes (Eunis B1.4). 22-29 sites were surveyed for each habitat with 
locations selected to span the N deposition gradient. In each site five, 2 m x 2 m quadrats were positioned in a 
homogeneous area using random numbers. Cover of vascular plants and mosses was estimated, liverworts were not 
included in the survey. The acid grassland dataset also included in the published paper is a subset of the Stevens et al. 
(2004) dataset listed below and was not considered separately.  

Terrestrial Umbrella- bogs; 
Terrestrial Umbrella- lowland 
heaths; 
Terrestrial Umbrella- sand 
dunes; 
Terrestrial Umbrella- upland 
heaths 

Edmondson 
regional heathland 
survey 
(Edmondson et al., 
2013). 

Fourteen heathland sites were sampled in England and Wales in 2005. Sites were selected on the basis of consistent 
vegetation type (NVC H12). Five 50 cm x 50 cm quadrats were positioned randomly in each site and moss and liverwort 
cover recorded as presence-absence (higher plants were not surveyed).  

Edmondson- heather 
moorlands 

Moorland regional 
survey (Caporn et 
al., 2014). 

Twenty two heathland sites were surveyed in northern England, north Wales and eastern Scotland in 2006. Sites were 
late building phase NVC H12 upland heathlands, selected to span the N deposition gradient. Presence-absence of all 
plant species (including liverworts) was recorded in each of five, 50 cm x 50 cm quadrats in each site.  

Moorland Regional Survey- 
heaths 

Stevens acid 
grassland survey 
(Stevens et al., 
2006; Stevens et 
al., 2004). 

Sixty four acid grassland sites (NVC U4) were surveyed across Britain in 2002 and 2003. Sites were randomly selected 
based on mapped habitat distribution to span the N deposition gradient with additional criteria around site size and 
accessibility. Five sampling points were randomly selected within a 100 m x 100 m area. At each point a 2 m x 2 m 
quadrat was surveyed and species cover estimated. 

Stevens- acid grasslands 

McVean and 
Ratcliffe survey and 
resurvey (McVean 
and Ratcliffe, 1962; 
Ross et al., 2012) 

Surveys of plant communities in the northwest Scottish Highlands were undertaken between 1952 and1959 with the aim 
of producing a phytosociological classification of the vegetation. Plant surveys were conducted on the Domin scale in 
quadrats which varied in size from 1-4 m

2
 (the latter most frequent), recording all species including bryophytes and 

lichens. A resurvey project was undertaken in 2007-2008 with original survey plots relocated with as much accuracy as 
feasible (Ross et al., 2010). Re-survey vegetation surveys followed the original methodology in as much detail as 
possible, including using quadrats of the same size. Re-surveys were conducted based on percentage cover-estimates 
which for comparability were subsequently converted to Domin scores. Only the re-survey dataset, consisting of 254 
individual records, was used in this study. Analyses were based on quadrats grouped into Wetland, Moorland, 
Grassland and Alpine Heathland classes following the original authors. 

McVean- alpine; McVean- 
grassland; McVean- 
moorlands; McVean- 
wetlands 

Armitage 
Racomitrium heath 
survey (Armitage et 
al., 2014) 

Thirty six Racomitrium heath sites were surveyed across Europe, of which here we focus on 27 UK sites in Wales, 
Cumbria, the Southern Uplands and the Highlands of Scotland. Sites were selected to span the geographic range of the 
habitat while covering a range of environmental drivers. In each site between 8 and 16, 1 m x 1 m quadrats were 
equally-spaced in an area of between 1ha and 1km

2
. The cover of all species (including bryophytes and lichens) was 

estimated.  

Armitage- Racomitrium 
heaths 

Birse and 
Robertson surveys 
(Birse, 1980, 1984; 
Birse and 

This dataset is the product of a large survey project over two time periods. Original surveys were conducted between 
1958 and 1987 with the aim of producing a phytosociological classification and re-surveys were conducted between 
2004 and 2014. Re-surveys followed the original protocols as closely as possible and only this re-survey dataset was 
used here. Quadrat sizes ranged from 1m

2
 to more than 9m

2
 but were typically 4 m

2
. Re-surveys were conducted based 

Birse- acid grasslands; Birse- 
calcareous; grasslands; 
Birse- Calluna heaths; Birse- 
Lolium grasslands; Birse- 



Robertson 1976) 
and re-surveys 
(Britton et al., 2009; 
Britton et al., 
2017a; Britton et 
al., 2017b; Mitchell 
et al., 2017) 

on percentage cover estimates which, for comparability with the original study, have been converted to Domin scores 
and reconverted to percentages. Cover of rock and bare ground were not considered in the analysed data. We 
considered habitats as grouped by the survey authors, focussing on those which were more abundant: Calluna heath 
(NVC: H10,H11,H12,H13,H15,H17), Vaccinium heath (H18,H19,H20), Racomitrium heath (U10), acid grassland 
(U1d,U1e,U4a,U4c,U4d,U4e,U13,U20), calcareous grassland (CG2,CG10,CG11), Lolium grassland, (MG6,MG7), 
mesotrophic grassland (U4b,SD8,MG1,MG3,MG5,MC9), wet grassland, (M6,M10,M22,M23,M24,M25,M26,M27,MG9, 
MG10,SD17) swamps (S9,S19,S11,S19,S27,S28), and springs (M32,M37). Where quadrats were intermediate between 
NVC classes they were included in both options. Data were aggregated to the 5 km x 5 km resolution of the N 
deposition model.  

mesotrophic grasslands; 
Birse- Racomitrium heaths; 
Birse- springs; Birse- 
swamps; Birse- Vaccinium 
heaths; Birse- wet grasslands 

Scottish coastal 
(re)survey (Lewis et 
al., 2016; Pakeman 
et al., 2015; 
Pakeman et al., 
2016; Pakeman et 
al., 2017; Shaw et 
al., 1983) 

Original surveys were conducted between 1975 and 1977 (most frequently 1976) as part of the Scottish Coastal Survey 
project (Shaw et al., 1983). Repeat surveys were conducted between 2009 and 2013 (most frequently 2010) with 
original locations located based on available information from the original survey (Pakeman et al., 2017). Only the re-
survey dataset was used in the analyses presented here. A minimum of five, 5 m x 5 m quadrats were recorded for each 
site. Vascular plant cover was estimated by species and lichen and bryophyte cover was estimated collectively. The 
data are from 91 individual coastal locations but some of the sites are large so rather than simply aggregating quadrat 
results by these sites we aggregate on the basis of grid cells used by the N deposition models. The data were divided 
into 15 broad habitats, as defined by the original authors (Pakeman et al., 2015), of which 10 had sufficient data to 
warrant detailed analysis. 18 unidentified species, some taxa only identified to genus and some sites without full details 
were removed prior to analysis.  

Scottish Coastal- acid 
grasslands; Scottish Coastal- 
cliffs; Scottish Coastal- dune 
slacks; Scottish Coastal- 
fixed dunes; Scottish 
Coastal- heathlands; Scottish 
Coastal- mobile dunes; 
Scottish Coastal tall grass 
mire; Scottish Coastal- 
unimproved grasslands; 
Scottish Coastal- wet 
grasslands; Scottish Coastal- 
wet heathlands 

CEH sand dunes 
surveys  
(Aggenbach et al., 
2017; Beaumont et 
al., 2014; Field et 
al., 2014; Jones et 
al., 2008; Jones et 
al., 2004) 

This dataset focuses on selected sand dune systems in a limited number of locations around the UK coast. Cover was 
estimated as a percentage for each species in a 2x2m quadrat. Here the quadrats were grouped to the level of a 5 km x 
5 km cell in the N deposition model. Previous studies have considered the dataset in four broad habitat types: dune 
slacks, semifixed dunes, acid dune grassland and fixed dune grassland. However the spatial distribution of the sites is 
limited giving small dataset sizes once grouped by model cells so we group the semifixed dunes, acid dune grassland 
and fixed dune grasslands as a single ‘dune grasslands’ category. The full dataset as used in some previous analyses 
incorporates data also included in the Terrestrial Umbrella dataset listed above and sites outside the UK; these quadrats 
were excluded here. 

CEH dune grasslands; CEH 
dune slacks 

Payne peatlands 
survey (Payne, 
unpublished) 

Peatland sampling sites were selected based on random points positioned on the British Geological Survey UK peat 
map. Data considered here is for 33 sites which were field-classified as upland bog in a semi-natural condition 
(excluding e.g. afforested sites). In each site all plants with the exception of liverworts were surveyed in four, 50x50cm 
quadrats randomly located immediately adjacent to the randomly-selected coordinates or nearest locatable peat. Plant 
cover was recorded on the Domin scale and is here converted to relative abundance using the Domin2.6 conversion 
(Currall, 1987).  

Payne- bogs 

Britton Racomitrium 
heath survey 
(Britton et al., 2018) 

This survey targeted Racomitrium heath in the UK uplands. Sites were selected to maximise the N deposition gradient 
and within each site a homogeneous 1ha study area was selected. 8-10 1m

2
 quadrats were surveyed per site with 

species cover estimated to the nearest 1%. All species were recorded, with liverworts grouped into a single category. 
Species cover recorded as “<1%” was here given a value of 0.5% and non-plant categories (bare ground, litter etc) were 
excluded. Quadrats were aggregated by sites.  

Britton- Racomitrium heaths 

 



 

Table 2. Full details of vegetation and environmental data for analysed vegetation datasets. Showing key details of datasets, summary codes 

used elsewhere in this paper, environmental details, habitat groupings, number of sampling sites used in final analysis (n) and additional 

variables included in stepwise model-building. Critical loads are based on the lowest point of the range in the most recent compilation (Bobbink 

and Hettelingh, 2011), using established EUNIS habitat conversions. For comparison, the total current N deposition gradient of Great Britain is 

2.6-44.6 kg N ha-1 yr-1 (CBED 2014 data) but all habitats will not be found across this full gradient.  

Dataset Code n Quadrats Species Current N 
dep range 
(kg ha-1 yr-1) 

Critical load 
value (kg 
ha-1 yr-1) 

Mean 
annual 
temperatur
e (°C) 

Mean 
annual 
precipitatio
n (mm) 

Altitude (m) Additional 
environmental 

variables included in 
pool available for 

selection. 

Heathlands 

Birse- Calluna heaths B.CHEATH 67 142 233 4.5-26.3 10 3.6-8.5 772-1894 22-938 Aspect; slope. 

Birse- Vaccinium 
heaths 

B.VHEATH 33 56 152 7.9-26.3 10 3.5-8.3 725-2062 176-1041 Aspect; slope. 

Edmondson- heather 
moorlands 

EDM 14 70 19 20.2-28.7 10 6.8-8.8 998-1347 330-510 Mean annual 
temperature; mean 
annual precipitation; 

growing degree days; 
ozone. 

McVean- moorlands MCV.MOO
R 

79 79 200 3.9-19.6 10 3.3-8.4 887-1735 39-925 Aspect; slope. 

Moorland Regional 
Survey- heaths 

MRS 22 110 50 6.9-33.7 10 4.5-9.0 952-1318 280-530 Mean annual 
temperature; mean 

annual precipitation; litter 
% Nitrogen. 

Scottish Coastal- 
heathlands 

SC.HEATH 36 138 173 2.7-11.8 10 6.7-8.9 641-1484 0-76 - 

Scottish Coastal- wet 
heathlands 

SC.WHEA
TH 

38 107 174 2.9-10.7 10 7.4-8.9 639-1563 0-93 - 

Terrestrial Umbrella- 
lowland heaths 

TU.LH 27 135 87 4.8-18.1 10 6.2-10.3 598-1113 0-280 Growing degree days; 
mean annual 

precipitation; slope; soil 
loss on ignition; soil pH; 

ozone. 

Terrestrial Umbrella- 
upland heaths 

TU.UH 24 120 78 5.6-29.5 10 5.3-9.2 815-1842 255-706 Growing degree days; 
mean annual 

precipitation; slope; soil 



loss on ignition; soil pH; 
ozone. 

Grasslands 

Birse- acid 
grasslands 

B.AGRASS 42 61 192 4.6-21.8 10 3.1-8.2 725-1903 25-927 Aspect; slope. 

Birse- calcareous 
grasslands 

B.CGRASS 41 71 209 5.8-21.6 15 3.6-8.6 798-1939 4-859 Aspect; slope. 

Birse- Lolium 
grasslands 

B.LGRASS 46 58 96 4.6-19.0 10 6.3-8.7 708-1789 7-347 Aspect; slope. 

Birse- mesotrophic 
grasslands 

B.MGRAS
S 

73 96 178 4.0-23.3 10 5.3-8.8 672-1886 5-416 Aspect; slope. 

Birse- wet grasslands B.WGRAS
S 

56 80 248 3.3-31.1 10 4.8-8.8 672-1892 0-750 Aspect; slope. 

McVean- grassland MCV.GRA
SS 

56 56 218 5.1-18.8 10 4.3-8.1 979-2067 117-1008 Aspect; slope. 

Scottish Coastal- acid 
grasslands 

SC.AGRAS
S 

53 186 230 2.7-11.2 10 7.1-8.9 641-1487 0-76 - 

Scottish Coastal- 
cliffs 

SC.CLIFF 38 60 175 2.8-10.7 5 6.6-8.9 653-1480 0-46 - 

Scottish Coastal- 
unimproved 
grasslands 

SC.UGRA
SS 

76 270 296 2.7-9.0 10 7.1-8.9 641-1563 0-80 - 

Scottish Coastal- wet 
grasslands 

SC.WGRA
SS 

57 156 224 2.9-9.0 10 7.1-8.9 663-1498 0-118 - 

Stevens- acid 
Grasslands 

CS.AGRAS
S 

64 320 181 7.7-40.9 10 6.0-10.3 568-1989 15-500 Radiation index; cutting; 
management index; 

mean maximum 
temperature; mean 

minimum temperature; 
mean annual 

precipitation; topsoil pH; 
Olsen P; total C. 

Wetlands 

Birse- springs B.SPRI 25 44 191 5.3-20.4 15 3.6-7.1 853-1677 315-1084 Aspect; slope. 

Birse- swamps B.SWAM 33 48 160 3.6-20.9 15 5.7-8.3 655-1528 4-524 Aspect; slope. 

McVean- wetlands  28 28 170 5.1-15.8 5 3.8-8.1 1002-1822 144-945 Aspect; slope. 

Payne- bogs PAYN 33 132 81 3.4-29.2 5 4.5-8.6 815-1790 9-693 - 

Scottish Coastal tall 
grass mire 

SC.TGM 51 114 233 2.7-10.7 15 6.7-8.9 648-1563 0-109 - 

Terrestrial Umbrella- 
bogs 

TU.BOG 29 145 97 4.8-26.7 5 4.4-9.7 755-1778 9-564 Growing degree days; 
mean annual 

precipitation; slope; soil 



pH; ozone; hydrological 
index. 

Montane habitats 

Armitage- 
Racomitrium heaths 

ARM.RHE 26 298 58 8.9-47.9 5 2.9-7.7 1064-2118 690-1103 - 

Birse- Racomitrium 
heaths 

B.RHE 77 134 214 5.8-31.2 5 3.4-8.0 745-1956 14-1114 Aspect; slope. 

Britton- Racomitrium 
heaths 

BRI.RHE 15 148 66 6.0-34.7 5 2.9-7.8 1183-1754 712-1026 - 

McVean- alpine MCV.ALP 91 91 191 4.9-19.4 5 2.9-7.5 1039-1822 295-1145 Aspect; slope. 

Sand dune habitats 

CEH dune grasslands CEH.DUG
R 

34 235 345 3.4-13.1 10 8.1-11.1 603-1105 0-15 - 

CEH dune slacks CEH.SLAC 29 285 362 2.8-11.4 10 8.1-11.1 603-1156 0-29 - 

Scottish Coastal- 
dune slacks 

SC.SLAC 65 198 246 2.7-11.8 10 6.9-8.9 648-1480 0-73 - 

Scottish Coastal- 
fixed dunes 

SC.FDU 121 960 310 2.7-11.8 10 6.6-8.9 646-1656 0-118 - 

Scottish Coastal- 
mobile dunes 

SC.MDU 60 128 136 2.7-11.8 10 6.5-8.9 642-1653 0-109 - 

Terrestrial Umbrella- 
sand dunes 

TU.SD 24 120 190 3.9-12.5 8 8.0-10.4 603-1108 0-119 Growing degree days; 
mean annual 

precipitation; slope; soil 
loss on ignition; soil pH; 

altitude; ozone. 

 

 

  



Table 3. Metrics of N deposition considered in this study. 

Metric family Metric Code 
Current deposition Current deposition over year of survey. DEP.CUR1 

Three-year mean prior to year of survey. DEP.CUR3 

Minimum/Maximum 
deposition 

Minimum deposition 1800 onwards. DEP.MIN 

Maximum deposition 1800 onwards. DEP.MAX 

Cumulative deposition 
based on a fixed start 
date. 

Cumulative deposition since 1990. CUM.1990 

Cumulative deposition since 1980. CUM.1980 

Cumulative deposition since 1970. CUM.1970 

Cumulative deposition since 1950. CUM.1950 

Cumulative deposition since 1900. CUM.1900 

Cumulative deposition since 1800. CUM.1800 

Cumulative deposition 
over a moving window of 
years.  

Cumulative deposition over 5 years prior to 
survey. CUM.5Y 

Cumulative deposition over 10 years prior to 
survey. CUM.10Y 

Cumulative deposition over 20 years prior to 
survey. CUM.20Y 

Cumulative deposition over 30 years prior to 
survey. CUM.30Y 

Cumulative deposition over 50 years prior to 
survey. CUM.50Y 

Cumulative deposition over 100 years prior to 
survey. CUM.100Y 

Cumulative deposition over 150 years prior to 
survey. CUM.150Y 

Cumulative deposition over 200 years prior to 
survey. CUM.200Y 

Critical load exceedance 
(CLE) 

Years of deposition above critical load. 
YRS.CLE 

Cumulative deposition 
over the critical load, 
based on a fixed start 
date. 

Cumulative deposition above critical load since 
1990. CUM.CL.1990 

Cumulative deposition above critical load since 
1980. CUM.CL.1980 

Cumulative deposition above critical load since 
1970. CUM.CL.1970 

Cumulative deposition above critical load since 
1950. CUM.CL.1950 

Cumulative deposition above critical load since 
1900. CUM.CL.1900 

Cumulative deposition above critical load since 
1800. CUM.CL.1800 

Cumulative deposition 
over the critical load, 
based on a moving 
window of years.  

Cumulative deposition above critical load over 5 
years prior to survey. CUM.CL.5Y 

Cumulative deposition above critical load over 10 
years prior to survey. CUM.CL.10Y 

Cumulative deposition above critical load over 20 
years prior to survey. CUM.CL.20Y 

Cumulative deposition above critical load over 30 
years prior to survey. CUM.CL.30Y 

Cumulative deposition above critical load over 50 
years prior to survey. CUM.CL.50Y 

Cumulative deposition above critical load over 
100 years prior to survey. CUM.CL.100Y 

Cumulative deposition above critical load over 
150 years prior to survey. CUM.CL.150Y 

Cumulative deposition above critical load over 
200 years prior to survey. CUM.CL.200Y 
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