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Abstract  

Climate change has fundamentally altered the water cycle in tropical islands, which is a 

critical driver of freshwater ecosystems. To examine how changes in streamflow regime has 

impacted habitat quality for native migratory aquatic species, we present a 50-year (1967-

2016) analysis of hydrologic records in 23 unregulated streams across the five largest 

Hawaiian Islands. For each stream, flow was separated into direct runoff and baseflow, and 

high and low flow statistics (i.e., Q10, Q90) with ecologically important hydrologic indices 

(e.g., frequency of flooding, low flow duration) derived. Using Mann-Kendall tests with a 

running trend analysis, we determined the persistence of streamflow trends through time. We 

analyzed native stream fauna from ~400 sites, sampled from 1992-2007, to assess species 

richness among islands and streams. Declines in streamflow metrics indicated a general 

drying across the islands. In particular, significant declines in low flow conditions 

(baseflows), were experienced in 57% of streams, compared with a significant decline in 

storm flow conditions for 22% of streams. The running trend analysis indicated that many of 

the significant downward trends were not persistent through time, but were only significant if 

recent decades (1987-2016) were included, with an average decline in baseflow and runoff of
 

10.90% and 8.28%
 
per decade, respectively. Streams that supported higher native species 

diversity were associated with moderate discharge and baseflow index, short duration of low 

flows, and negligible downward trends in flow. A significant decline in dry season flows 

(May–Oct.) has led to an increase in the number of no-flow days in drier areas, indicating that 

more streams may become intermittent, which has important implications for mauka to makai 
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(mountain to ocean) hydrological connectivity, and management of Hawai‘i’s native 

migratory freshwater fauna. 

 

Keywords: Streamflow trends ⸱ Hawaii ⸱ Running trend analysis ⸱ Mann-Kendall ⸱ 

Intermittent streams ⸱ Goby  

Introduction 

Climate change is expected to impact the structure and functioning of tropical streams by 

altering hydrological, thermal, and chemical (e.g., dissolved oxygen) conditions (Strauch, 

MacKenzie, Bruland, & Giardina, 2015; Taniwaki, Piggott, Ferraz, & Matthaei, 2017). 

Stream systems are particularly important in Hawai‘i because they provide more than 50% of 

irrigation water to the islands (Oki, 2003), host endemic stream fauna, and influence the 

condition of nearshore coastal habitats. Understanding how climate change affects these 

resources is of economic, ecological, and cultural importance, which may also translate to the 

many other Pacific Islands with similar climatic and hydrological stressors that are affecting 

island ecology (Harter et al. 2015; Herring et al. 2016). In Hawai‘i, recent departures in 

temperature and rainfall from long-term averages are expected to continue (Mora et al., 

2013). Mean surface temperature in Hawai‘i has increased 0.163°C decade
-1

 from 1975-2006, 

with expected increases in potential evapotranspiration (Giambelluca, Diaz, & Luke, 2008). 

Recent studies show a decline in total rainfall affecting groundwater recharge and the 

groundwater contribution to surface flow in many regions of Hawai‘i (Bassiouni & Oki, 

2013) as well as a decline in rainfall intensity (Chu, Chen, & Schroeder, 2010; Chen & Chu, 

2014; Frazier & Giambelluca, 2017), reducing runoff to streams (Oki, 2004; Bassiouni & 

Oki, 2013; Leta et al., 2017). Additionally, recent increases in the frequency of trade wind 

inversion (TWI) days in Hawaiʻi indicates more consistent rainfall on windward coasts, a 
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decline in high elevation rainfall, an increase in the number of dry days between storms and a 

decrease in leeward rainfall (Cao, Giambelluca, Stevens, & Schroeder, 2007; Longman, Diaz, 

& Giambelluca, 2015). Consequently, the duration of low or no-flow conditions in leeward 

regions are likely to be affected.  

 

Changes in climate have direct effects on streamflow, which is highly variable across the 

Hawaiian Islands. Differences in rainfall and topography drive runoff. Steep topography, 

short peak to ocean distances, and low-order stream systems combined with intense tropical 

rainfall events lead to flashy hydrographs with time to peak discharge on the order of hours 

(e.g., Sahoo, Ray, & De Carlo, 2006). Whereas, underlying geology (e.g., substrate age and 

composition), which varies with island age and level of erosion, influences groundwater 

contributions to baseflows. Vertical dike formations, i.e., low-permeability volcanic 

intrusions, and perched aquifers maintain high elevation groundwater that can contribute 

substantially to stream flows in deeply incised valleys (Lau & Mink, 2006).  

 

Shifts in rainfall will affect both groundwater recharge and streamflow patterns in Hawai‘i 

(Leta El-Kadi, & Dulai, 2018). Statistical and dynamical downscaling of global climate 

model outputs indicate strong dipolar rainfall patterns, with greater contrast between 

windward and leeward areas due to increased orographic rainfall in windward areas and 

reduced rainfall in leeward areas (Zhang, Wang, Hamilton, & Lauer, 2016; Lauer, Zhang, 

Elison Timm, Wang, & Hamilton, 2013; Elison Timm, Giambelluca, & Diaz, 2015). 

However, there is uncertainty in the future rainfall projections for Hawai‘i. For instance, 

statistical downscaling model outputs show some windward areas with no change and others 

with drier conditions, principally on O‘ahu and Kaua‘i (Elison Timm et al., 2015). 

Freshwater in leeward regions can be limited, such that extensive ditch networks are 
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employed to divert surface water from wet to dry areas (see Oki, Wolff, & Perreault, 2010; 

Cheng, 2016). Reduced rainfall in currently dry areas which already have limited freshwater 

resources and high municipal or agricultural demands, will likely have severe influences on 

stream habitats. For instance, since 1971 streamflow in Mākaha Stream on leeward O‘ahu has 

reduced 19–22%, and the extent of perennial flow has reduced from sea level to around 424 

m, whereas before the 1990’s near-continuous streamflow conditions occurred (mean 9 d yr
-1

 

zero-flow) (Mair & Fares, 2010). This is attributed primarily to groundwater pumping, and 

secondly to declining rainfall (Mair & Fares, 2010), which together have reduced available 

habitat for aquatic fauna and impacted upstream-downstream hydrological connectivity. Such 

impacts will likely be exacerbated in the future for leeward streams and may result in streams 

becoming ephemeral, particularly in small catchments, with consequences for native stream 

biota (e.g., Levick et al., 2008; Taylor et al., 2013). 

 

Hawaiian stream fauna includes five species of amphidromous (i.e., freshwater-marine-

freshwater migratory) fishes, two species of amphidromous shrimp, and two species of 

amphidromous snails. Island endemism has made these species susceptible to competition, 

disease, parasites, and predation stresses from introduced species, particularly in streams 

impacted by anthropogenic disturbance in water quality, catchment-scale factors such as flow 

diversion, or instream structures that interrupt longitudinal connectivity (Brasher, Luton, 

Goodbred, & Wolff, 2006; Holitzki, MacKenzie, Wiegner, & McDermid, 2013; Gagne et al., 

2015). With increasing urbanization and land cover changes across the tropics, undisturbed 

habitats are being lost and streams are becoming more suitable for introduced, generalist 

species that are able to tolerate broad environmental conditions (Brasher et al., 2006). With 

additional stressors from changes in climate, native species are in a precarious position. 
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Hence, where native species persist under future climate conditions may depend on the 

presence and distributions of healthy populations within climate refugia.  

 

The response of stream hydrology to changing climate in Hawai‘i is a highly uncertain and 

challenging ecohydrological issue. Understanding patterns across broad rainfall gradients can 

help to identify trends across biomes, and can be used to develop hydrological models of 

future habitat availability, which can be used to better inform habitat management and 

conservation at landscape scales. This research examined 23 streams that were minimally 

impacted by anthropogenic influences, principly ditch diversion, located across five of the 

main Hawaiian Islands, which spatially encompassed a diverse range of climatological and 

geological conditions. We conducted a running trend analysis of current and historical 

streamflow regimes: (1) to examine the hydrographic record for evidence of changes in flow 

regimes; and (2) to determine regions where streams that provide refugia for native species 

may be more susceptible to the impacts of climate change.   

 

Methods 

Study area 

The study was conducted on the five largest Hawaiian Islands (Kaua‘i, O‘ahu, and Moloka‘i 

Maui, and Hawai‘i), USA, located in the central Pacific Ocean between 19° and 22°N, and 

155° and 160°W. Geology of the islands is dominated by volcanic basalt of varying-aged lava 

flows (Macdonald, Abbott, & Peterson, 1970).
 
Mean annual temperatures range from 4 to 

24°C (Giambelluca et al., 2014) and mean annual rainfall ranges from 200 to over 10,000 mm 

(Giambelluca et al., 2013). Many regions experience distinct rainy (November–April) and dry 

(May–October) seasons.  Most precipitation falls as rain, however cloud water or fog can also 
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contribute a significant input of water to precipitation in mountain forests (Scholl, 

Giambelluca, Gingerich, Nullet, & Loope, 2007; Giambelluca, DeLay, Nullet, Scholl, & 

Gingerich, 2011). Climate in Hawai‘i is strongly influenced by the Hadley Cell atmospheric 

circulation pattern in the Pacific Ocean, which drives the northeasterly trade winds (Lau & 

Mink, 2006). Descending air from the Hadley Cell results in an atmospheric inversion layer 

known as the trade wind inversion, which caps cloud growth around 2,200 m and results in 

dry conditions at high elevations (Longman et al., 2015).  

 

Perennial streams mostly occur on the windward sides of the higher elevation, geologically 

younger islands (Maui and Hawai‘i Island) due to the exposure of these regions to persistent 

northeasterly winds and high orographic rainfall (> 5,000 mm yr
-1

), while the leeward sides 

of islands mostly have low precipitation (< 600 mm yr
-1

) and intermittent streams (Figure 1). 

Due to valley incision driving greater groundwater contributions to flow, perennial 

streamflow can occur on leeward slopes on lower elevation, older islands. It is important to 

emphasize though, that baseflows in catchments that drain young, porous lava flows (e.g., on 

Hawai‘i Island) are dominated by rainfall and thus streams respond quickly to reduced 

rainfall in these geologic settings.  

 

Rainfall is also driven by large-scale inter-annual patterns of climate variability, such as the 

El Niño-Southern Oscillation (ENSO) which sharply reduces rainfall during the El Niño 

phase and increases rainfall during the La Niña phase, with phases recurring every 3 to 7 

years, and the Pacific Decadal Oscillation (PDO) which operates on 20 to 30-year intervals 

(Chu & Chen, 2005; Frazier, Elison Timm, Giambelluca, & Diaz, 2017). Negative (cool) 

PDO regimes dominated from 1890-1920, 1947-1976, while positive (warm) PDO regimes 

occurred from 1925-1946, and 1977-1998. From 1998-2014 these decadal phases became 
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fragmented, with a sequence of negative-positive-negative phases lasting between 3-6 years, 

until entering a positive phase in 2014 

(www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/ca-pdo.cfm, accessed 2017; 

www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/, accessed 2017). 

Climatological and hydrological data  

We examined a total of 390 stream reaches gauged by the U.S. Geological Survey (USGS) 

for which daily streamflow and annual peak streamflow (the largest recorded instantaneous 

flow event in a given year) are available from the USGS National Water Information System, 

to select streams with long-term (≥ 50 years) continuous (< 4 years of missing data) stream 

discharge records. In order to assess climate-driven changes in streamflow, the streams also 

needed to be minimally impacted by anthropogenic influences, principly by ditch diversion 

upstream of the gaging station. Based on these criteria, 30 streams were identified as 

unregulated by surface water diversion, and of these we selected 23 USGS stations with 

nearly continuous stream discharge records across the Hawaiian Islands, which encompassed 

17 windward catchments and 6 leeward catchments.  

 

To determine relative changes in storm flow and low-water flow, we separated mean daily 

flow into direct runoff and baseflow with the ‘lfstat’ separation procedure in R (Koffler, 

Gauster, & Laaha, 2016), which employs the Institute of Hydrology (1980) standard baseflow 

separation procedure of 5-day blocks to identify minimum flow, called a turning point. The 

turning points are then connected to obtain the baseflow hydrograph. The volume of baseflow for 

the period is estimated by the area beneath the hydrograph. Baseflow index (BFI), the ratio of 

baseflow volume to total volume of streamflow, was also calculated using ‘lfstat’ R package. 

Baseflow is the proportion of total flow which originates from stored sources, thus values of 

the baseflow index range from 0.15-0.2 for an impermeable catchment with a flashy flow 
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regime, to greater than 0.95 for catchments with high storage capacity and a stable flow 

regime (Gustard & Tallaksen, 2009).  

 

Climate and landscape data were obtained for each watershed from gridded data using 

watershed boundaries upstream of the gaging stations delineated using the “Hydrology” 

toolset in ArcGIS. Annual Penman-Monteith Potential Evapotranspiration and mean annual 

rainfall were averaged from 234 × 250 m grids of annual PET (Giambelluca et al., 2014) and 

daily rainfall (Longman et al., in review), respectively. Soil permeability were obtained from 

30 × 30 m grids (Rea & Skinner, 2012). Similarly, average area weighted habitat degradation 

downstream of the gaging station, which indicates habitat quality for passage of aquatic 

organisms, was obtained from the Hawai‘i Fish Habitat Partnership (Crawford et al., 2016). 

This habitat degradation score is based on multiple measures of anthropogenic landscape and 

stream channel disturbances, e.g., urban and agricultural land use, surface water diversions, 

and fragmentation. 

Trend analysis 

A total of 23 study locations with unregulated streamflow andnearly continuous records were 

included in the trend analysis. We selected a 50-year period from 1967-2016 to represent 

long-term historical conditions, and a 30-year period from 1987-2016 to represent recent 

hydrological conditions and a time of significant global and regional warming (Giambelluca 

et al., 2008; IPCC 2013). Kundzewicz and Robson (2004) recommend 50 years to detect 

significant change in hydrological conditions, although caution must be used in a given 

period to identify long-term patterns of inter- or multidecadal variability (i.e., PDO) (Wilby, 

2006; Hannaford, 2015).  
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We analyzed trends in discharge (baseflow, runoff, total flow) and flow indices with the non-

parametric Sen’s slope estimator (Sen 1968) and Mann-Kendall test (Mann, 1945; Kendall, 

1948) for significance using the R package ‘trend’ (Pohlert, 2017). In contrast to linear 

regression, these tests are recommended for analyzing environmental time series data as they 

are distribution-free, are robust against outliers, and allow missing data (Hess et al., 2001). 

These methods have been widely used for quantifying and testing the significance of trends in 

hydrological data (e.g., Marengo, Tomasella, & Uvo, 1998; Burn & Hag Elnur, 2001; 

Bassiouni & Oki, 2013; Murphy, Harrigan, Hall, & Wilby, 2013). We computed trends for 

two periods: 50 years from 1967-2016; and 30 years from 1987-2016, annually and 

seasonally for the ‘wet season’ from November–April and ‘dry season’ from May–October. 

Hamed and Rao (1998) show that positive or negative autocorrelation in a time series can 

confound detection of significant trends. We accounted for autocorrelation using the modified 

Mann-Kendall test (Hamed & Rao, 1998). A comparison of original and modified Mann-

Kendall tests identified the adequate performance of the original Mann-Kendall trend test, 

and thus the original Mann-Kendall tests are presented throughout. The m
3
 s

-1
 per year Sen’s 

slopes were multiplied by 10, and divided by the 1978-2007 mean to give percent change in 

discharge per decade. The 1978-2007 time-period was chosen to coincide with the Rainfall 

Atlas of Hawai‘i 1978-2007 reference period (Giambelluca et al., 2013; Frazier & 

Giambelluca, 2017). 

Running trend analysis  

We conducted a running trend analysis from 1967-2016 to assess the dependency of the trend 

on the selected period of record, and the persistence of the trend through time. For each 

stream, first we calculated the Sen’s slope and Mann-Kendall statistic for a 20-year window 

starting in 1967. Next, we increased the window size incrementally to the end of the series 
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period to give window sizes ranging between 20 and 50 years. Last, we increased the starting 

year, and calculated the trend for window sizes up to 49 years (1968 – 2016). To visualize the 

results, running trend plots in the style of Brunetti et al., (2012) and Frazier and Giambelluca 

(2017) were used.   

Stream taxa 

Presence/absence of native stream taxa collected from 1992 to 2010 using standardized visual 

surveys were provided by the Hawai‘i Division of Aquatic Resources. Visual 

presence/absence of species were determined at discrete points in each stream by a stationary 

observer, in an area no larger than 0.91 × 0.91 m and for a duration 3-7 minutes (Higashi & 

Nishimoto, 2007). Data were available for 404 stream reaches across five of the main 

Hawaiian Islands. In some cases, a few reaches were revisited and contained fish surveys for 

multiple dates. Where this happened, taxa presence within a reach were based on a taxa 

representation in at least one sample (following Steen, Seelbach, & Schaeffer 2008). These 

data included 11 of our study stream sites, one of which recorded no species, and were 

selected from reaches (n=11) located immediately upstream of the USGS gaging station. 

These data include indigenous amphidromous fishes (Lentipes concolor, Sicyopterus 

stimpsoni, Awaous stamineus, Stenogobius hawaiiensis, and Eleotris sandwicensis), 

freshwater shrimp (Atyoida bisulcata, Macrobrachium grandimanus), and snails (Neritina 

granosa); and two Kuhliidae marine fish species (Kuhlia sandvicensis and Kuhlia xenura) 

that facultatively feed in streams.  

Streamflow characterization and multivariate analysis  

We selected a range of ecologically important hydrologic indices (n=16) that characterize 

natural streamflow regimes using five components of flow: magnitude, frequency, duration, 

timing and rate of change of streamflow from mean daily streamflow (date range: 1967-
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2016), defined by Olden and Poff (2003) (Table 2). These data were compiled using the R 

package ‘EflowStats’ (Thompson & Archfield, 2015) for input into a multivariate analysis 

(described below). Prior to the multivariate analyses, hydrologic indices shown in Table 2 

were tested for normality using Quantile-Comparison Plots, and the Shapiro-Wilk Normality 

Test with the R packages ‘Car’ (Fox & Weisberg, 2011) and ‘stats’ (R Core Team, 2016), 

respectively. Where necessary, data were log10 transformed to achieve normality. 

Multicollinearity among the environmental variables was tested using matrices of Pearson 

and Spearman correlation coefficients in the R Package ‘corpcor’ (Schafer et al., 2017), and 

correlated variables (r > 0.5) were removed. The above steps removed indices that were not 

independent of each other, and reduced the streamflow metrics from 16 to the following six 

variables: mean daily discharge (MA1), flood frequency (FH6), low flow duration (DL16), 

baseflow index (defined above), stream flashiness (MA8), and constancy (TA1) (a measure 

of temporal invariance) (see Table 2). Principal Components Analysis (PCA) (linear method) 

was then employed to assess variability in the hydrologic indices among streams and identify 

potential resiliance to climate change for certain flow regimes. The resulting ordination axes 

correspond to the directions of the greatest variability within the data set (Lepš & Šmilauer, 

2003).    

Results 

Climate and hydrology 

Precipitation and streamflow were tightly coupled, with streamflow responding rapidly to 

rainfall at all site locations at sub-daily intervals, which is shown in Figure 2 using Punalu‘u 

Stream, O‘ahu, as an example. Large, rapid streamflow events were common with heavy 

rainfall and occurred in any season. Mean annual stream flows ranged from 0.07-6.27 m
3
 s

-1
, 

and BFI averaged 0.36 (range: 0.12 – 0.75), indicating fairly low, though differing, 
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groundwater contributions to discharge (Table 1). Upper elevation streams (> 1,000 m) all 

had low BFI, likely due to lack of incision into perched water bodies or dike impounded 

aquifers, and slope steepness, which affects transmission rates of rainfall to the stream 

network, and the proportion of rainfall that is retained in the soil (Table 1). High BFI (> 0.5) 

occurred on older islands, particularly in areas with known dike formations (Figure 1; Table 

1). Total precipitation was on average two-fold greater than potential evapotranspiration in 

windward locations, whereas in some leeward areas, potential evapotranspiration exceeded 

total precipitation. 

Annual and seasonal streamflow trends 

Annual baseflows and runoff declined across the Hawaiian Islands from 1967-2016, 

indicating a reduction in water availability in most of the study streams (Table 3). Declines in 

outflows were stronger over the 30-year period from 1987-2016, where baseflows and runoff 

decreased on average 10.90% and 8.28% per decade, respectively. Significant (p < 0.05) 30-

year period downward trends in baseflows and runoff occurred in 57% (13/23) and 22% 

(5/23) of streams, respectively (Table 3, see also Appendix 1). Baseflows and runoff declined 

on all islands during the wet season (November to April), although not all of these trends 

were statistically significant (Figure 3). Overall, streams exhibit declining trends in wet 

season baseflows of 11.83% per decade, and runoff of 10.35% per decade, which were 

significant (p < 0.05) in 57% and 13% of streams, respectively, consistent with annual trends 

(Table 3). Dry season (May to October) streamflow trends across the islands were similar to 

that observed during the wet season. In the dry season, baseflows declined on average 

11.47% per decade, and runoff declined 10.65% per decade, which were significant (p < 

0.05) in 48% and 26% of streams, respectively (Table 3). 

 



 

 
This article is protected by copyright. All rights reserved. 

Alakahi Stream, Hawai‘i Island, had the largest decline in baseflows for the state, at -38.37% 

(dry season) and -46.06 % (wet season) per decade (p < 0.05) (Figures 3a-b). Indeed, all four 

study streams on windward of Hawai‘i Island exhibited strong (> 10% change per decade) 

negative trends in baseflows, which were all significant in the dry season (p < 0.05), this 

included Wailuku River, which drains a basin of 570 km
2
, ~5.5% of the island area. 

Significant (p < 0.05) percent per decade declines in baseflows also occurred in north-east 

(windward) Maui (W. Wailuaiki: dry season = -18.83%, wet season = -15.20%; Honokohau 

Stream: wet season = -10.81%), and in all but one study stream on Kaua‘i during the wet 

season (mean: -10.68%), and four out of seven streams during the dry season (mean: -9.20%). 

Declines in baseflow were not significant in the majority of streams located on O‘ahu, which 

had some of the lowest detectable baseflow and runoff trends of the five main Hawaiian 

Islands. However, a significant (p < 0.05) decline in baseflow occurred in Waiakeakua 

Stream (-14.25% and -18.07% per decade in the dry and wet season, respectively), which is 

located in leeward O‘ahu. Significant (p < 0.05) percent per decade declines in runoff were 

detected in the dry season in windward and leeward Kaua‘i (Wainiha River: -13.97%, and 

Kawaikoi Stream: -20.24%, respectively), windward Maui (Hanawï Stream: dry season = -

29.00%, wet season = -17.49%; W. Wailuaiki Stream: dry season = -24.86%), and windward 

Kohala Mountain, North Hawai‘i Island during the wet season (Kawainui Stream: -14.42%; 

Alakahi Stream: -18.51%), and on windward Hawai‘i Island during the dry season (Wailuku 

Stream: -27.10%; Honolii Stream: -22.26%) (Figures 3c-d). Furthermore, comparisons of the 

50-year and 30-year dry-season trends, which averaged -1.24% and -11.47%, respectively for 

baseflow, and -1.58% and -10.65%, respectively for runoff, indicate a marked (average 9 and 

10%) decline in dry-season flows in recent decades (Table 3). We observed a smaller 

difference of 4 and 6% on average, respectively, for baseflow and runoff between the 50-year 

and 30-year wet-season trends.  
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Running trend analysis 

We present running trend plots from 1967-2016 in Figure 4, for five representative gaging 

stations across the islands. Moreover, we have included supplementary plots for all study 

streams, five of which have historical data of up to 92 years in length (see Appendices 2-6). 

Decreases in baseflows dominate the trends and strengthen with time, and for streams on 

Kaua‘i, Maui and Hawai‘i were significant though time if the last decade of record is 

included. These negative trends were not significant throughout all stream records i.e., O‘ahu 

and Moloka‘i, but were detected predominately in recent decades associated with stronger 

downward trends (Figure 4), whereas positive trends tended to dominate the early records. 

Leeward streams on O‘ahu, such as Waiakeakua and Kaukonahua, showed greater number of 

analysis windows with significant (p < 0.05) negative trends than windward streams. 

However, limited data for leeward streams on other islands prevented an assessment of this 

pattern elsewhere. Similar to Wailuku Stream, other windward streams on Hawai’i Island in 

areas that receive lower annual rainfall, such as Alakahi and Kawainui Streams (Figure 1), 

exhibited significant (p < 0.05) declines in baseflow (~12-42%) and runoff (~13-17%) in 

many trend windows, and thus the trends persisted through time (Figure 4; see also Appendix 

5). Halawa Stream, the only unregulated stream gage for Moloka‘i (Figure 1), exhibited 

significant (p < 0.05) declines in runoff, and a tendency to declining baseflow trends in recent 

decades, which were not significant (Figure 4). 

 

Decadal cycles of alternating negative and positive trends are evident in all streams for 

baseflows and runoff, particularly in the longer-term trends (Appendix 6), and generally 

coincide with respective negative (cool) and positive (warm) cycles of the PDO (described 

above in methods) (Figure 4). Strong (> 10 % per decade) declining baseflows and runoff 
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trends were experienced from the late 1970s, and encompass a 21-year positive phase of the 

PDO, which is known to be negatively correlated with rainfall (Chu & Chen, 2005). 

However, the decline in baseflows is present in many streams throughout the record, and the 

marked decline in flows are not constrained to the positive PDO phases alone, but continue a 

downward trend to present day, despite recent alternating shifts in the PDO between positive 

to negative. The significant (p < 0.05) declining trends in baseflow and runoff on windward 

Hawai‘i Island are unaffected by changes to the start year of analysis, and persist throughout 

the flow record to the 2010s.  

Flow intermittence  

Low-flow indicators, in particular, are dominated by decreasing trends. For the 50-yr and 30-

yr periods, 50% and 92% of streams show decreasing trends in the low flow statistic Q90, 

respectively, 29% and 38% of which are significant (p < 0.05) (Table 3). Three study streams 

experienced flow intermittence, where flow ceased for a day or more (Figure 5). No-flow 

days occurred frequently in Kaluanui Stream, a small watershed on windward O‘ahu, and 

Ōpae’ula Stream on the leeward side of the Ko‘olau Mountains, O‘ahu (Figure 5). Both 

streams exhibit interannual variability in flow intermittence, but no trends were observed. 

Alakahi Stream, a similar size stream, on the windward coast of Hawai‘i Island, has begun to 

exhibit no-flow days since 2014, which was unprecedented in the 50-year record, with greater 

than 50-days of no-flow in 2015 (Figure 5).  

Peak stream flows 

Annual peak streamflow is on average two orders of magnitude greater than mean annual 

flow (Table 1). This underlines the rapid response rate of streamflow to high precipitation 

events, where storm pulses may last only a few hours. Peak streamflow did not show 

significant trends over time on most islands, with the exception of Hawai‘i Island (Figure 6). 
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On this island, the magnitude of the highest storm flow has significantly decreased since 

1967, on average 6-16% per decade (p < 0.05) among four gaged streams, with fewer large 

events during the last two decades. Wailuku Stream, Hawai‘i Island, which has the greatest 

drainage area of the study sites (570 km
2
) and is located in an extremely wet part of Hawai‘i 

(total precipitation can reach 10,000 mm yr
-1

), shows decreasing peak flows of 12.45% per 

decade (Figure 6a). 

 

Hydrological regime and native stream organisms  

PCA of the hydrological regime of study streams indicated gradients in baseflow index and 

flashiness, in opposite directions along the principle component Axis 1, accounted for 48% of 

the variation among stream sites (Figure 7). Low flow duration, and discharge, were also 

important environmental variables along Axis 2, which cumulatively accounted for 79% of 

the total variability among stream sites (Table 4). Significant declines in baseflow, which 

may affect habitat availability, occurred in streams of differing hydrological regimes. 

However, study streams on Hawai‘i Island, which drain younger, more permeable soils 

(Table 1) were characterized by low baseflow index (< 0.23), and a strong response to 

climate change (Figures 3 and 7). In addition, it is notable that streams with high baseflow 

(BFI > 0.5; i.e., Punalu‘u, He‘eia, and Waiakeakua on O‘ahu) appear to be more resilient to 

declining streamflow (Figure 7).  

 

The native freshwater fauna were dominated by Awaous stamineus, Atyoida bisulcata, 

Sicyopterus stimpsoni, and Lentipes concolor, which were present in 46%, 38%, 36%, and 

36%, respectively, of 404 surveyed streams (Figure 8). Similar species assemblages were 

found in a subset of the study streams (n=12), with Atyoida bisulcata, Lentipes concolor and 
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Awaous stamineus most often present (Table 5). These species are known to prefer fast-

moving water in upper reaches (Kido, 2008), which is where the majority of the study sites 

are located due to requirement of more natural, unregulated streams for the climate 

assessment. Across the islands, native species richness followed the pattern: Moloka‘i > 

Kaua‘i > Maui and Hawai‘i Island > O‘ahu. Very few stream reaches (n=3) were sampled on 

Moloka‘i, however high native species presence on this island is consistent with other studies 

(e.g., Kudo, 2013). 

 

Kaluanui and Punalu‘u streams, on windward O‘ahu, and Wainiha stream, which drains a 

basin along the Nā Pali Coast of Kaua‘i, had notably higher presence of native species (3-5 

species; Table 5). These streams exhibit “very low” habitat degradation along the river 

corridor (Crawford et al., 2016; Table 1). Punalu‘u and Wainiha streams are characterized by 

high baseflow index (≥0.5), whereas Kaluanui stream has a very different hydrological 

regime, with a low baseflow index of 0.17, indicative of a very flashy hydrograph (Table 1; 

the site aligns with high flood frequency and flashiness in Figure 7). The similarity in 

community composition of these sites reflects the adaptability of native Hawaiian fish to 

variable hydrological conditions. Small streams with similar hydrology, such as Kalihi and 

‘Ōpae‘ula, O‘ahu, and Honopou, Maui (Figure 7), may be susceptible to reductions in flow, 

further impacting habitat for native species, especially where periods of no-flow may already 

occur (e.g., ‘Ōpae‘ula). 
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Discussion 

Streamflow regime 

Changes in the hydrological conditions of streams due to climate warming and changing 

atmosphere-circulation patterns are likely to be diverse and complex as catchment hydrology 

responds to shifts in precipitation, evapotranspiration, and altered vegetation assemblages 

(Safeeq & Fares, 2012; Elison Timm et al., 2015; Strauch et al., 2017a). Climate model 

projections predict that after 2050, most of the tropics will experience average temperatures 

outside of their historic range every month (Mora et al., 2013). This is of greatest concern for 

island species, which are adapted to narrow climate variability. However, there is uncertainty 

in the direction and significance of hydrological changes resulting from climate shifts in the 

future (e.g., Zhang et al., 2016; Elison Timm et al., 2015). This extends to the many islands 

across the Pacific and elsewhere that are experiencing declining precipitation, increased 

occurrence of extreme climatic events (i.e. droughts/floods), increased water shortages and 

municipal demands, and sea level rise, which threaten ecosystem functioning and structure of 

unique biological communities (Covich, Crowl, & Scatena, 2003; Nurse et al., 2014; 

Polhemus, 2017; Werner, Sharp, Galvis, Post, & Sinclair, 2017). For instance, Covich et al. 

2006 report significant reductions in the abundance of Macrobrachium spp. in Puerto Rican 

streams due to reduced habitat quality during drought conditions, whereas extreme high flows 

associated with hurricanes and storm events had little influence on species abundance.  

 

In the present study, we identified declines in streamflow regimes over the last 50 years 

(1967-2017) with significant trends toward lower flow conditions over the past three decades. 

The running trend analysis highlighted that many of the significant trends did not persist 

through time, but were only significant if the last few decades of record were included in the 
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analysis. Our findings are supported by similar patterns in rainfall trends, which have 

significantly declined across the Hawaiian Islands from 1920 to 2012 (Frazier & 

Giambelluca, 2017).  

 

Our running trend analysis also highlighted the decadal variability in baseflow and runoff, 

which both closely tracked short-term 20-30 year fluctuations between drying and wetting 

rainfall trends. These were attributed to the approximate recurrence of alternating positive – 

negative PDO phases (Figure 4; Appendix 6) (see also Diaz & Giambelluca, 2012; Frazier & 

Giambelluca, 2017), which highlight the difficulty of separating natural multidecadal 

variability from underlying consequences of climate change. Interestingly, declining trends in 

baseflows continued downward to present day despite the fragmented nature of the last PDO 

shift (from ca. 1998-2014) (www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/ca-

pdo.cfm, accessed 2017). This adds support to the suggestion by Diaz and Giambelluca 

(2012) that the relationship between PDO and rainfall has decoupled in recent years, though 

further data is needed to confirm this result. There is some uncertainty about whether the 

declines in streamflow could be attributed to natural variability associated with PDO, which 

has also been described in the rainfall data (Frazier et al., 2017), and thus continued 

monitoring is of paramount importance in this respect. Nevertheless, our results indicate a 

close coupling between changes in rainfall and hydrological regime. By examining trends in 

moving windows, we were able to limit bias associated with the start year and length of 

analysis to provide a robust assessment of trends in streamflow through time. This adds to a 

previous times series analysis that identified significantly decreasing stream flows from 1913 

to 2008 (Bassiouni & Oki, 2013).   
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Low flow conditions (i.e., baseflows), in particular, exhibited significant downward trends, 

with implications for habitat availability and the sustainability of water resources.  A decline 

in baseflow indicates reduced groundwater recharge from rainfall and fog drip (Lau & Mink, 

2006). Fog drip, or cloud water interception contributes a substantial portion of the total 

recharge in Hawai‘i (Giambelluca et al., 2011). Significant and marked reductions in 

baseflow and runoff occurred on Hawai‘i Island and Maui, which correlates with spatial 

patterns noted by Frazier and Giambelluca (2017), who showed that Hawai‘i Island and 

northeastern Maui have experienced significant changes in rainfall amounts.  

 

That said, not all streams exhibited significant trends. Baseflow trends on O‘ahu and 

Moloka‘i were mostly non-significant. These findings are corroborated by generally non-

significant rainfall trends on O‘ahu and Moloka‘i, with the exception of some mountainous 

areas in the Ko‘olau Range on O‘ahu (Frazier & Giambelluca, 2017). While other studies 

have reported downward trends in extreme rainfall events for O‘ahu (classified as rainfall > 

25.4 mm day
-1

; Chu et al., 2010; Chen & Chu, 2014), these analyses were restricted to 

leeward areas of the island. The dampened baseflow trends on O‘ahu and Moloka‘i may also, 

in part, be the result of differences in soil substrate characteristics that influence catchment-

wide recharge. These islands have more developed soil substrates, lower soil permeability 

(Table 1), and exposed dike complex formations (Figure 1) compared to younger Hawaiian 

Islands, which is likely to increase the residence time of water in soils, increase infiltration 

and recharge to groundwater aquifers that supply streamflow, and therefore delay the 

response to decreased precipitation.  

 

Conversely, younger islands such as Hawai‘i and Maui, are more likely to exhibit a rapid 

response in streamflow to changing rainfall due to young volcanic substrates that are 
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characterized by high permeability and shallow groundwater. We also note that two of the 

streams on Hawai‘i Island exhibiting some of the strongest declines in streamflow (i.e., 

Alakahi and Kawainui) were located at high elevation (>1000 m) above the valley incision, 

whereas most other gages from our study sites are at the base of gulches where substantial 

groundwater (dike or perched) can contribute to baseflow. The results of this study show that 

watersheds on Maui and Hawai‘i Island are exhibiting a particular vulnerability to drying 

conditions. The 30-year decreasing trends in dry season (May–October) baseflow and runoff 

were more severe than the 50-year trends (1967-2016), and if these strong declines continue 

into the future, this may reduce water availability during periods of lower rainfall, 

exacerbating hydrological drought, and affecting the provision of ecosystem services. 

Episodes of severe to extreme drought, which are closely linked to El Niño events 

(Giambelluca, 1991; Chu, Yan, & Fujioka, 2002), periodically occur across large areas (up to 

55%) of the state, particularly in leeward areas of Hawai‘i Island, and have worsened in the 

recent past, lasting for multiple years (http://droughtmonitor.unl.edu/; accessed 12/14/2017). 

Given the reported dominance of drought in Hawai‘i and the reduced baseflows during the 

dry season presented herein, declining groundwater recharge may result in enhanced 

seasonality of lower flow conditions. In the current study, we observed an increase in the 

number of no-flow days that is consistent with the increase in the number of consecutive dry 

days between storms, particularly since the 1980’s (Chu et al., 2010; Kruk et al., 2015). A 

possible driver is an abrupt positive shift in the trade wind inversion frequency of occurrence 

around 1990, which has led to drier conditions in high elevations (Longman et al., 2015), 

with ecological responses in endemic vegetation (e.g., Krushelnycky et al., 2016). Observed 

shifts in forest species composition from native dominated to non-native dominated species is 

also likely to alter watershed hydrology, increasing canopy evaporation and runoff while 

decreasing groundwater recharge (Strauch et al., 2017a).   
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Native stream taxa and interacting stressors 

Changing patterns of streamflow observed in this study, such as declining baseflow and 

recharge, decreasing magnitude of storm flows, and increasing flow intermittence, will likely 

have multifaceted ramifications for stream organisms. We found that differences in baseflow 

index and stream flashiness were dominant hydrological variables separating the streams 

(Figure 7). Baseflow index indicates groundwater contributions to streamflow, important for 

sustaining habitats during interstorm periods. Stream flashiness and flood pulses have 

important controls on the ecological functioning and productivity of streams, e.g., by 

influencing channel formation and heterogeneity, downstream transport of sediments and 

nutrients, and flushing of coarse woody debris from river channels (Junk, Bayley, & Sparks, 

1989; Larned 2000; Tockner & Stanford, 2002). In addition, flood pulses may induce 

ecological responses, as they lead to freshets in stream mouths and estuaries that may be an 

important signal for juvenile native fish to transition from the ocean and into streams 

(Nishimoto & Kuamo‘o, 1997; Radtke et al., 2001; Murphy & Cowan, 2007). Declines in 

peak flows were significant in streams on Hawai‘i Island (see Figure 6), if these trends 

continue into the future, particularly in small watersheds, they may lead to hydrological 

changes that impact native fish recruitment and migration behavior. 

 

PCA indicated that streams of differing hydrological regimes show declining flow, indicating 

that climate-driven declines in streamflow are likely to affect a diversity of stream 

environments across Hawai‘i. Interestingly, Kaluanui Stream, O‘ahu, one of the smallest in 

this study (2.85 km
2
), with low mean annual flow of 0.13 m

3
 s

-1
 (Table 1), supported the most 

native species (in terms of species presence/absence) (Table 5), but exhibited a small number 

of no-flow days, typically less than 10 consecutive days yr
-1

 (maximum 25 days yr
-1

), which 

occurred irregularly in dry and wet seasons (Figure 5). Seemingly, a short period of flow 
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intermittence is sustainable for native freshwater species without substantially impacting 

migration, with this stream providing sanctuary for a diverse community of native species. 

Streamflow on windward O‘ahu is driven by orographic rainfall. However, declines in 

baseflow are correlated with increases in stream temperature (Strauch, MacKenzie, & 

Tingley 2017b), which may affect the suitability of certain habitats to support native fauna. 

That said, there appears to be limited groundwater supply to support baseflows in Kaluanui 

Stream (BFI = 0.15), which could present a vulnerability in the future should rainfall decline 

in the dry season, though predictions for the mid-late 21
st
 century point to an increase in 

windward rainfall (Zhang et al., 2016; Elison Timm et al., 2015). Of particular concern are 

streams in drier areas that, conversely, are expected to get drier under future climate 

conditions (Zhang et al., 2016; Elison Timm et al., 2015).  

 

The effects of climate change on native stream species are likely to be compounded by other 

threats to habitat quality such as water abstraction and diversion that impede movement, 

pollution, land use change, and competition from more generalist invasive species (Brasher, 

2003; Gingerich & Wolff, 2005; McIntosh, Schmitz, Benbow & Burky, 2008; Craig et al., 

2017). Streamwater diversion and abstraction is of particular concern in Hawai‘i. For 

example, comparisons of diverted streams on east Maui show reductions in habitat 

availability to as low as 27% of natural conditions (Gingerich & Wolff, 2005). Other studies 

report the consequences of baseflow removal of all or nearly all baseflows and thus on 

available habitat for native stream biota (e.g., Mair & Fares, 2010; Oki et al., 2010).  
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Surface water diversions in streams on Moloka‘i corresponded to lower abundances of native 

fishes, and greater species overlap in assemblages along the reaches attributed to disruptions 

to downstream dispersal and upstream migration (Brasher, 1997). In addition, Mair & Fares 

(2010) report that Mākaha Stream, located on leeward O‘ahu, no longer flows perennially to 

the ocean, with long durations of no-flow (> 4 months) during dry weather, attributed to high 

groundwater pumping rates in Mākaha Valley. Consequently, no native species are present 

(Parham et al. 2008), presumably due to poor habitat availability through higher water 

temperatures in remaining pools, habitat fragmentation, and disruption of connectivity along 

the river corridor to the ocean. This is detrimental to migratory native aquatic fauna, which 

require adequate flow conditions for dispersal to the ocean and recruitment to streams as 

juveniles (Radtke, Kinzie, & Shafer, 1998; Brasher, 2003). Groundwater abstraction and 

water diversion have fundamental impacts on the functioning of Hawaiian streams that can 

far exceed the percent declines observed in this study (e.g., Gingerich & Wolff, 2005; Mair & 

Fares, 2010; Oki et al., 2010). Thus, if we are to effectively buffer systems against the 

impacts of climate change, streamflow protection and restoration efforts that return flows to 

diverted streams and improve habitat quality, will become increasingly important for the 

persistence of key native species. 

Conclusions 

We have described the long term changes in streamflow using running trend analysis, and 

evaluated native species richness and differences in the natural flow regime among stream 

sites across five of the main Hawaiian Islands. Running trend analysis has enabled 

assessments of the potential impacts of climate on streamflow regime and the possible 

consequences on freshwater habitats across Hawai‘i and has highlighted dominant trend 

directions linked with the starting point and length of analysis. Although periodicities 
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associated with the PDO could explain the observed temporal variability of streamflow, the 

significant decline in baseflows and increase in no-flow days in streams located in drier areas 

are cause for concern. Impacts of reduced flows on habitat quality pose added stresses to 

native species that are already threatened by urbanization, pollutants, changes in land use, and 

invasive species. Notably, streams with high baseflow on O‘ahu were more resistant to 

declining streamflow, which in pristine streams could provide refuge for native species. 

Streams on Maui and Hawaii Island had higher native species richness, but also exhibited 

more vulnerability to climate change. The findings in this study indicate the importance of 

returning natural flows to streams, particularly where water abstraction and diversion have 

significantly reduced flows, so that we may plan now for future changes in the hydrological 

regime of streams.  
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Tables 

Table 1: Watershed characteristics: elevation at the stream gage, drainage area, and soil 

permeability (top 61 cm); and mean annual streamflow, instantaneous peak streamflow, 

baseflow index (BFI), Penman Monteith potential evapotranspiration (PET), total annual 

rainfall, and average area weighted habitat degradation downstream. Note that EB = east 

branch; NF = north fork; LB = left branch; W = west. 

Stream USGS 

Gage # 

Elevation 

(m) 

Drainage 

area (km2) 

Soil per-

meability 

(cm hr-1)a 

Annual 

flow  

(m3 s-1)b 

Peak 

flow 

(m3 s-1)c 

BFI 

Annual 

PET 

(mm)d 

Annual 

rainfall 

(mm)e 

Habitat 

degrad- 

ationf 

KAUA ‘I:           

Kawaiköï 16010000 1042 9.89 17.79 0.88  99.00 0.24 2,402 2,924 Low 

Wai‘alae 16019000 1164 5.41 17.88 0.54  55.78 0.22 2,388 2,963 Low 

EB, NF 

Wailua 16068000 152 16.16 8.53 1.31  107.29 0.50 2,364 2,856 Moderate 

LB 

‘Ōpaeka‘a 16071500 140 1.94 4.25 0.07  7.74 0.63 2,832 2,300 Moderate 

Halaulani 16097500 119 3.11 8.94 0.32  43.57 0.54 2,687 2,891 Moderate 

Hanalei 16103000 18 47.94 8.29 6.27  456.01 0.47 2,051 3,830 Moderate 

Wainiha 16108000 293 27.07 13.31 3.57  156.39 0.45 1,821 4,230 Very Low 

O‘AH :           

NF 

Kaukonahua 16200000 351 3.57 10.16 0.41  50.13 0.25 2,762 4,926 Moderate 

Kalihi 16229000 142 6.63 7.40 0.16  39.52 0.38 3,317 2,757 Very High 

Waiakeakua  16240500 90 2.72 9.89 0.13  18.73 0.61 3,126 3,258 Very High 

He‘eia 16275000 83 2.49 4.73 0.07  12.94 0.72 2,629 2,502 Moderate 

Punalu‘u 16301050 65 7.20 8.90 0.68  62.66 0.75 2,406 4,342 Very Low 

Kaluanui 16304200 34 2.85 9.33 0.13  24.79 0.15 2,330 3,949 Very Low 

‘Ōpae‘ula 16345000 341 7.80 10.16 0.38  59.58 0.17 2,751 3,829 Moderate 

MOLOKA‘I:           

Hälawa 16400000 64 12.12 10.80 0.83 73.84 0.23 2,347 2,664 Very Low 

MAUI:           

Hanawï 16508000 402 8.52 20.32 0.66  72.35 0.22 1,944 5,657 Very Low 

W Wailuaiki 16518000 472 9.30 15.41 0.83  116.19 0.21 1,984 4,147 Very Low 

Honopou 16587000 368 1.53 13.58 0.14  28.15 0.38 3,316 3,296 Low 

Honokōhau 16620000 265 10.83 10.53 1.02  74.34 0.47 1,853 4,520 Very Low 

HAWAI‘I:           

Wailuku 16704000 332 569.80 25.45 6.16  589.26 0.22 1,834 2,090 High 

Honoli‘i  16717000 469 31.18 32.98 3.38  293.69 0.22 1,648 5,244 High 

Kawainui  16720000 1237 3.99 2.35 0.39 26.30 0.12 2,071 3,011 Low 

Alakahi  16725000 1189 2.15 2.34 0.21 11.15 0.14 2,048 2,937 Low 
a
Rea and Skinner 2012; 

b
USGS mean annual flow from 1987-2016; 

c
USGS instantaneous peak annual flow 

from 1987-2016; 
d
Giambelluca et al., 2014; 

e
mean annual rainfall from 1987-2014: Longman et al (in review); 

f
habitat degradation from Crawford et al., 2016. 
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Table 2: Stream flow metrics defined by Olden and Poff (2003) used in this study to assess 

differences in flow regime (e.g. magnitude, frequency, duration, timing, and rate of change) 

among study sites. 

Flow metric Code Definition 

Magnitude of flow: 

     Average flow  MA1 Mean of daily flow 

   Stream flashiness  

 

MA6, 

MA7, 

MA8 

Ratio of 10%:90%,  

20%:80%,  

25:75% exceedance 

   Minimum annual flow  ML14 Ratio of min.to median annual flow 

   Baseflow index † Ratio of baseflow to total streamflow 

   High flow index  MH16 10% exceedence value / median flow 

Frequency of high/low flow: 

     Low flood pulse count  FL1 Mean no. of flow events < 25th percentile 

   Freq. of low pulse spells FL3 Mean no. of flow events < 5th percentile 

   High flood pulse count FH1 Mean no. of flow events > 75th percentile 

   Flood frequency  FH6 Mean no. of flow events 3x median flow  

Duration of high/low flow: 

  
   Low flow duration DL16 

Mean pulse duration for flow < 25th 

percentile 

   Number of zero-flow days  DL18 Mean annual zero-flow days  

   High pulse duration DH15 Mean duration of flow >75th percentile 

Timing 

     Constancy of flow TA1 (see Colwell, 1974) 

Rate of Change 

     Rise rate 

 

RA1 

 

Mean change in flow days in which 

change is positive 

†Baseflow calculated using ‘lfstat’ R package. 
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Table 3: Trends of annual hydrological metrics for unregulated streams for 50-year (1967-

2016) and 30-year (1987-2016) periods. Trend magnitude computed using Sen’s Slope for 

linear change expressed as % per decade of the 1978-2007 reference period. The percentage 

of streams (leeward n=6; windward n=17; combined n=23) with significant trends (p < 0.05) 

are shown (in brackets). The wet season is from Nov.–Apr., and the dry season is from May–

Oct. 

 
 50-year trend in Sen’s Slope (%) 

(1967-2016) 

30-year trend in Sen’s Slope (%) 

(1987-2016) 

 Leeward  Windward  Combined  Leeward  Windward  Combined  

Annual baseflow -3.64 (33) -3.05 (29) -3.20 (30) -9.71 (33) -11.32 (65) -10.90 (57) 

Annual runoff -3.22 (17) -2.79 (12) -2.90 (13) -4.77 (0) -9.51 (29) -8.28 (22) 

Wet season baseflow -6.59 (33) -5.18 (35) -5.55 (35) -11.46 (50) -11.96 (59) -11.83 (57) 

Wet season runoff -6.75 (17) -5.7 (29) -5.95(26) -9.21 (0) -10.75 (18) -10.35 (13) 

Dry season baseflow -2.09 (0) -0.94 (29) -1.24 (22) -9.88 (33) -12.03 (53) -11.47 (48) 

Dry season runoff 0.24 (0) 2.06 (12) -1.58 (9) -8.82 (17) -11.29 (29) -10.65 (26) 

Instantaneous peak flow -5.21 (0) -0.85 (18) -1.98 (13) -5.45 (0) 

 

-4.25 (18) -4.56 (13) 

High flows (Q10) -4.02 (33) -3.60 (24) -3.71 (26) -9.59 (33) -11.28 (35) -10.84 (35) 

Low flows (Q90) -0.77 (33) -1.41 (24) -1.24 (26) -13.28 (33) -12.35 (41) -12.59 (39) 
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Table 4: Eigenvalues and cumulative percentage variance for each Principle Components 

Analysis (PCA) axis of streamflow variables for 23 streams. 

 

Method: PCA 

    Summary Table: Total variation is 96.00000   

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Eigenvalues 0.48 0.30 0.1848 0.02 

Explained variation (cumulative) 48.16 78.54 97.02 98.57 
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Table 5: Presence (X) and absence (blank) of native stream species (Lentipes concolor; 

Awaous stamineus; Sicyopterus stimpsoni; Eleotris sandwicensis; Atyoida bisulcata; Neritina 

granosa) for 11 of the study sites. 

 

 FISHES CRUSTACEA MOLLUSCA  

Stream   Lent. 

conc. 

 Awao. 

stam. 

Sicy. 

stim. 

 Elect. 

sand. 

Atyo. bisu. Neri. gran.  No. sp. 

present 

KA A‘I:        

Halaulani       0 

Kawaiköï   X        1 

EB, NF Wailua   X        1 

Wainiha X   X   X   3 

O‘AH :        

Punalu‘u X X    X X 4 

Kaluanui X X X X   X 5 

MAUI:        

Honopou X          1 

W Wailuaiki        X   1 

Honokōhau  X      X   2 

HAWAI‘I:        

Wailuku        X   1 

Honoli‘i X      X   2 

Frequency 

Presence % 

55 36 18 9 55 18  

(Not present: Stenogobius hawaiiensis; Kuhlia sp; Macrobrachium grandimanus). 
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Figure 1: Location of USGS stream gages for streams with unregulated flow† and 

intermittent vs. perennial stream reaches (National Hydrography Dataset layer, last modified 

2016-2017) across the Hawaiian Islands. USGS gage numbers provided in Table 1.  
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Figure 2: Time series of mean daily streamflow and total daily rainfall for Punalu‘u Stream, 

O‘ahu for water year 2014; inset the relationship between daily rainfall and streamflow from 

1990 – 2014.  Discharge data are from the USGS gaging station (#16301050). Rainfall data 

represent average total rainfall for Punalu‘u catchment, upstream of the gaging station 

(Longman et al., in review). 
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Figure 3: Mean annual baseflow trends (top panels) and runoff trends (bottom panels) from 

1987-2016 for wet season (Nov.–Apr.) (left panels) and dry season (May–Oct.) (right panels), 

superimposed on mean annual precipitation (from Rainfall Atlas, Giambelluca et al. (2013)). 

Trend magnitudes computed using the Sen’s estimator of trend slope expressed as a 

percentage of the 1978-2007 reference period. Significant trends (p < 0.05) are highlighted 

with •.  
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Figure 4: Running trend analysis for mean annual baseflow (left panel) and runoff (right 

panel) from 1967-2016 for five representative streams, on Kaua‘i, O‘ahu, Moloka‘i, Maui, 

and Hawai‘i, consecutively from top to bottom panels. Trend magnitudes computed using the 

Sen’s estimator of trend slope expressed as a percentage of the 1978-2007 reference period. 

The open boxes represent trends that are significant at p < 0.05.  
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Figure 5: Time series of the number of no-flow days for three streams that exhibited 

intermittent flow for unregulated streams.  
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Figure 6: Declining annual peak instantaneous streamflow on windward Hawai‘i from 1967- 

2016. Percent per decade trends (Sen’s slope), expressed as a percentage of the 1978-2007 

reference period, and statistical significance from Mann-Kendall tests are shown. 
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Figure 7: Principal components analysis of streamflow regime (i.e. mean annual discharge, 

flood frequency, Baseflow Index (BFI), low flow duration, flashiness (ratio of 25:75% 

exceedance), and constancy (temporal invariance) for streams (n=23) across five of the main 

Hawaiian Islands. The stream names relate to plot locations, and the islands are given by the 

following text in parentheses: K=Kaua‘i; O=O‘ahu; MO=Moloka‘i; M=Maui; H=Hawai‘i. 

Each arrow points in the direction of the steepest increase of the values for the corresponding 

environmental variable. The relative distance between the plots represents the similarity or 

dissimilarity of environmental parameters across the streams. Plot names highlighted in bold 

red indicate streams that exhibit a significant (p < 0.05) decline in baseflow from 1987-2016.  
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Figure 8: Presence of native freshwater species (Awaous stamineus; Sicyopterus stimpsoni; 

Lentipes concolor; Kuhlia sp.; Eleotris sandwicensis; Stenogobius hawaiiensis; Atyoida 

bisulcata; Macrobrachium grandimanus; Neritina granosa) for each of the main Hawaiian 

Islands: Kauai (circle, n=70); Oahu (triangle, n=61); Molokai (square, n=3); Maui (diamond, 

n=117); and Hawaii (hexagon, n=153), superimposed on frequency of presence of species in 

all samples (n=404) (grey bars) across the five islands. Note the small sample size on 

Molokai. Data provided by the Hawaii Division of Aquatic Resources. This dataset represents 

a total of 404 stream reaches, and includes 11 out of our 23 focal streams. 
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Appendix 1: (a) Mean annual baseflow and (b) runoff trends from 1987-2016, superimposed 

on mean annual precipitation (from the Rainfall Atlas of Hawai‘i, Giambelluca et al. (2013)). 

Trend magnitudes computed using the Sen’s estimator of trend slope expressed as a 

percentage of the 1978-2007 reference period. Significant trends (p < 0.05) are highlighted 

with •. 
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Appendix 2: Running trend analysis for mean annual baseflow (left panel) and runoff (right 

panel) for unregulated streams on Kaua‘i. Trend magnitudes computed using the Sen’s 

estimator of trend slope expressed as a percentage of the 1978 to 2007 reference period. The 

open boxes represent trends that are significant at p < 0.05.  
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Appendix 3: Running trend analysis for mean annual baseflow (left panel) and runoff (right 

panel) for unregulated streams on O‘ahu. Trend magnitudes computed using the Sen’s 

estimator of trend slope expressed as a percentage of the 1978 to 2007 reference period. The 

open boxes represent trends that are significant at p < 0.05.   
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Appendix 4: Running trend analysis for mean annual baseflow (left panel) and runoff (right 

panel) for unregulated streams on Moloka‘i (top panel) and Maui (remaining panels). Trend 

magnitudes computed using the Sen’s estimator of trend slope expressed as a percentage of 

the 1978 to 2007 reference period. The open boxes represent trends that are significant at p < 

0.05.   
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Appendix 5: Running trend analysis for mean annual baseflow (left panel) and runoff (right 

panel) for unregulated streams on Hawai‘i. Trend magnitudes computed using the Sen’s 

estimator of trend slope expressed as a percentage of the 1978 to 2007 reference period. The 

open boxes represent trends that are significant at p < 0.05.  
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Appendix 6: Running trend analysis for mean annual baseflow (left panel) and runoff (right 

panel) for five streams with long flow records on Kaua‘i, O‘ahu, Moloka‘i, Maui, and 

Hawai‘i, consecutively from top to bottom panels. Trend magnitudes computed using the 

Sen’s estimator of trend slope expressed as a percentage of the 1978 to 2007 reference period. 

The open boxes represent trends that are significant at p < 0.05.  
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