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33 Abstract

34 Managing reactive nitrogen (Nr) to achieve a sustainable balance between production of 

35 food, feed and fibre, and environmental protection is a grand challenge in the context of 

36 an increasingly affluent society. Here, we propose a novel framework for national 

37 nitrogen (N) assessments enabling a more consistent comparison of the uses, losses and 

38 impacts of Nr between countries, and improvement of Nr management for sustainable 

39 development at national and regional scales. This framework includes four key 

40 components: national scale N budgets, validation of N fluxes, cost-benefit analysis and 

41 Nr management strategies. We identify four critical factors for Nr management to 

42 achieve the sustainable development goals: N use efficiency (NUE), Nr recycling ratio 

43 (e.g., ratio of livestock excretion applied to cropland), human dietary patterns and food 

44 waste ratio. This framework was partly adopted from the European Nitrogen 

45 Assessment and now is successfully applied to China, where it contributed to trigger 

46 policy interventions towards improvements for future sustainable use of Nr. We 

47 demonstrate how other countries can also benefit from the application our framework, 

48 in order to include sustainable Nr management under future challenges of growing 

49 population, hence contributing to the achievement of some key sustainable development 

50 goals (SDGs).

51

52 Key words: Cost-benefit analysis; Environmental protection; Food security; Nitrogen 

53 budget; Nitrogen use efficiency; Socioeconomic barriers; Sustainable development 

54 goals

55

56 Introduction

57 Human activities have more than tripled the global reactive nitrogen (Nr) creation rates 

58 and inputs to terrestrial ecosystems through industrial N fixation (Haber-Bosch process, 

59 HBNF), cultivated biological N fixation (CBNF) and unintended N oxide (NOx) 

60 emissions from fossil fuel combustion, compared to the pre-industrial era 1. The 

61 elevated N inputs to agriculture and forestry have substantially increased the supply of 

62 food, energy and materials, but also result in detrimental effects on the environment, 

63 human health, ecosystem structure and function, and climate 2, 3. About 50% of the 

64 global population in the late-20th century was sustained by food production fertilized 

Page 2 of 31Environmental Science & Technology



3

65 with N derived from the HBNF process 4. However, more than half of the N used in 

66 agriculture is lost to the environment, largely as Nr 1, 5. The same molecule of Nr can 

67 cause a sequence of effects and result in N cascading across multiple scales and 

68 environmental compartments 6, involving complex anthropogenic, biological, chemical, 

69 physical and geological processes 7 (Figure 1). A cost of 70-320 billion Euro have been 

70 attributed to detrimental effects on the environment and human health in Europe 8. 

71 There is a substantial disparity in N use between global regions or countries, ranging 

72 from too much N use in Europe, the United States (US), India or China, to too little in 

73 Africa9, impacting on the sustainability and food security in those regions. The regional 

74 differences in N use are determined by both human activities such as economic 

75 development 1, 5, and natural conditions such as climate and soil conditions 10, 11. 

76 Understanding and managing the disparity in regional N uses and both their beneficial 

77 and adverse effects is crucial for global sustainable development.

78 Around the globe, substantial efforts have been made to understand and 

79 quantitatively assess the N cycles from the field to local/regional scales and the 

80 implication for food production and environmental protection12. The 7th international N 

81 conference held in Melbourne, Australia, in 2016 published the “Melbourne Declaration 

82 on Responsible Nitrogen Management for a Sustainable Future” 

83 (www.ini2016.com/melbourne-declaration) emphasising the need to conduct regional 

84 and global N studies to address the issues of Nr in food security, energy, health, 

85 environment, biodiversity and climate change around the world. The US, the European 

86 Union (EU) and India, have already completed comprehensive assessments of their N 

87 sources, fluxes, and impacts 7, 13, 14. Some regions have implemented a series of policy 

88 measures to reduce Nr losses 15, 16. However, specific findings and policies developed 

89 e.g. in the US and Europe may not be applicable to other regions, because the N 

90 challenges generally differ substantially between regions due to biogeochemical, socio-

91 economical, cultural and political factors 5. Other countries are conducting or intend to 

92 conduct N assessments to improve their Nr management, such as China 17. Here, we 

93 propose a first comprehensive and uniform framework for the compilation of national N 

94 assessments, in order to better understand N cycling at national (or regional) scale, and 

95 to determine which policy can be developed and effectively implemented, as well as 

96 improving the transferability of this understanding and knowledge between regions and 
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97 countries. 

98 The framework and methodology for the national scale N assessment we have 

99 developed addresses several N related Sustainable Development Goals 

100 (www.undp.org/content/undp/en/home/sustainable-development-goals.html), in 

101 particular Zero Hunger (SDG2), Good Health and Well-Being (SDG3), Sustainable 

102 Cities and Communities (SDG11), Responsible Consumption and Production (SDG12), 

103 Climate Action (SDG13) and Life on Land (SDG16), while contributing to other SDGs 

104 and global objectives, e.g. the Convention on Biological Diversity (CBD). The 

105 framework includes four building blocks: (1) national N budget, (2) validation of N 

106 flux, (3) cost-benefit analysis, and (4) Nr management strategies. With these building 

107 blocks, a pathway for Nr sustainable management can be mapped out by integrating the 

108 socioeconomic factors and scientific understanding of the key processes of N cycling. 

109 With these approaches, N assessments in different countries can be compared on the 

110 same basis, contributing to a better understanding of regional N cycles, interactions 

111 across spatial scales, their driving forces and consequences. This will aid policy makers 

112 in formulating national policies towards sustainable Nr management in a wider regional 

113 context and in interaction with international communities, while considering 

114 international trade and cross-transboundary pollution, which exhibit increasingly 

115 important effects on global sustainability. 

116

117 Key scientific questions addressed through N assessments

118 How are N uses and losses affected by natural and human factors? (Q1)

119 Unlike the globally uniform effects of a unit emission of a greenhouse gas on climate 

120 change 18, the environmental impact of a unit of Nr emission depends on the source, 

121 chemical form and location 8, 19. Therefore, the environmental impacts of changes in N 

122 cycles are highly spatially explicit and thus mainly expressed at a regional or even local 

123 scale, and also with cross-boundary impacts 2. Anthropogenic N inputs from different 

124 sources are generally well known, but the variation in their magnitude for some fluxes 

125 such as the biological N fixation (BNF) is still quite uncertain 1. These uncertainties 

126 inevitably cascade through the N cycle on regional scale and result in multiple 

127 consequences, except for climate and ozone depletion impacts of N2O emissions leading 

128 to effects on global scale 6. 
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129 Economic development increases fertilizer use through easier access to and reduced 

130 prices of fertilizer products, whereas improved management practices reduce N 

131 fertilizer use via increasing N use efficiency (NUE) 5. NOx emissions from fossil fuel 

132 combustion are directly related to energy consumption and technological development 

133 levels that control the emission rate during the combustion process 20. NH3 emissions 

134 show a strong temperature dependence, with more NH3 emitted in warmer temperatures 

135 21. Generally, natural factors such as precipitation and temperature affect N cycling 

136 through changing N transformation rates and cycling pathways 11. For instance, in dry 

137 regions more N losses through NH3 emissions to the air occur, while transportation to 

138 groundwater and surface water is commonly found to be higher in humid regions 22. 

139 Overall, regional variations of the N fluxes and their environmental impacts may be 

140 attributed to anthropogenic factors such as economic growth, technological 

141 advancement, policy innovation, and natural factors such as air temperature and 

142 precipitation 5 (Figure 2). These variations result in substantial uncertainties in N flows 

143 and fates 9. Although recent studies have improved our understanding and hence the 

144 more accurate quantification of the global N flows and fates 1, uncertainties regarding N 

145 fluxes are still substantial due to inadequate understanding of N fates and their driving 

146 factors on a regional scale17. More regional work is needed to better understand the 

147 mechanisms and constrain the uncertainties. 

148

149 How to quantify the societal costs and benefits of N uses? (Q2)

150 Quantifying the costs and benefits of N use is one way to address multiple, adverse as 

151 well as beneficial impacts of different chemical forms and sources of Nr (Figure 2). A 

152 consistent approach to the valuation of multiple impacts allows a weighted comparison 

153 of various uses (inputs) and emissions of Nr. Studies on the cost-benefit analysis of N 

154 cycles on a regional scale are scarce, and only selected studies8, 19, 23 attempted a 

155 comprehensive assessment of costs and benefits in monetary terms. Large ranges and 

156 uncertainties exist in these previous estimates, e.g., the cost per kilogram of Nr loss 

157 ranges over one order of magnitude 8, 24. The variation of population exposure to Nr 

158 pollutants in different regions might equally be a major cause of this large range 19. 

159 Moreover, effects on ecosystem function and services are important, but typically not 

160 included 24, 25. 
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161 A substantial element of human health costs arising from atmospheric Nr pollution 

162 is the quantification of the loss of healthy life years due to exposure to fine (N-

163 containing) particulate matter. NOx contributing to the formation of tropospheric ozone 

164 and to a lesser extent, especially in urban areas, direct exposure to ambient 

165 concentrations of NO2 also affects human health 8. The societal cost of human health 

166 impacts depends on the statistical value attributed to a healthy life year, which is highly 

167 related to the income level of a country 26. This illustrates that national assessments on 

168 the cost and benefit of Nr uses and losses are crucial, as they take into consideration 

169 national characteristics, such as population exposure rate and value of a healthy life 

170 year, and determine the most appropriate parameters for the analysis. To make the 

171 results from different countries comparable, a tiered approach is proposed to quantify 

172 the cost-benefit of Nr uses and losses. We distinguish five tiers that can be developed 

173 from criteria for environmental quality (Tier 1), to impacts of Nr pollution on 

174 ecosystems and health (Tier 2), nationally agreed policy objectives for environmental 

175 quality (Tier 3), metrics to aggregate impacts Nr on human health (e.g. Disability 

176 Adjusted of Life Years, DALY) and ecosystems (e.g. biodiversity or services) (Tier 4) 

177 and a loss or gain of prosperity or welfare in monetary terms (Tier 5). More details 

178 about the five tiers can be found in SI text.

179

180 What are the socioeconomic barriers constraining the more sustainable use of N? 

181 (Q3)

182 To mitigate Nr pollution, previous studies mainly focused on technological options, with 

183 little consideration of the context or the implementation costs of regulations 17. For 

184 instance, the 4R approach (applying N fertilizer with the right type and right amount, at 

185 the right time and right location) has been recommended for many years in the US and 

186 EU 16, but has not been widely adopted in China owing to local constraints 27. Excessive 

187 N fertilization is common in China, as a consequence of the average farm size being 

188 smaller than 0.1 hectare, which restricts the usage of advanced machineries, 

189 communication, information and training required for the implementation of the 4R 

190 approach 27. Cui et al 28 engaged in training activities aiming to enable millions of 

191 smallholder farmers to implement advanced technologies; however, due to the high cost 

192 involved, it is difficult to maintain the skill levels after delivering training or extending 
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193 such capabilities to a wider base of smallholder farmers 29. Meanwhile, income from 

194 such small farms accounts for very little fraction of family income, reducing the 

195 incentive of better agronomic management practices. It implies that the socioeconomic 

196 barriers are sometimes critical for the sustainable use of N, even if technological or 

197 management approaches exist at zero or negative cost to the farmer. Meanwhile, the 

198 cost per unit of prevented Nr emission normally increases with cumulative emission 

199 reduction 8, suggesting it may be necessary to gradually adjust approaches to mitigate 

200 Nr pollution as more stringent emission controls and methods for Nr management are 

201 implemented. Hence, more work is needed to better understand the driving forces and 

202 barriers underlying these non-linear mitigation pathways. Also more work is needed on 

203 cost efficiency and cost-benefit analysis, including considering national and socio-

204 economic characteristics (Figure 2).

205 Apart from the implementation costs of regulations, other barriers such as human 

206 behaviour related factors, e.g., culture, dietary preference, also affect the sustainable use 

207 of N 30 and opportunities to improve management. For instance, western diets (e.g., in 

208 the US) prefer beef over pork, while eastern diets (e.g., in China) prefer pork over beef. 

209 This implies that dietary structure regulations must consider the dietary culture in 

210 different countries to be effective. Policies or regulations developed in some countries 

211 may not transfer well to other countries due to the difference in socioeconomic barriers 

212 that constrain the sustainable use of N. Identifying and quantifying these barriers for the 

213 implementation of sustainable use of Nr through social surveys, sensitivity analyses and 

214 cost-benefit analyses on national scale, working with social science experts and 

215 economists in transdisciplinary contexts, can benefit a wider adoption of N regulation 

216 measures.

217

218 Methodology of the framework

219 Here, we introduce a hierarchical approach of how to conduct N assessments to achieve 

220 a sustainable and efficient use of Nr. The methodology broadly relates to the Driver–

221 Pressure–State–Impact–Response (DPSIR) concept 31 (Figure 3). It comprises four 

222 stages (Figure 4). At the first stage, an integrated N budget is compiled using a mass 

223 balance model to analyse interactions between major components. All the sources, 

224 flows, losses, and the NUE in a country are quantified, including time series to reflect 
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225 the past and current status and trends of Nr use. The first research questions (Q1), and 

226 the Driver and Pressure of the DPSIR concept are addressed at this stage (Figure 3).

227 At the second stage, data compiled from independent national field monitoring 

228 programs, remote sensing, and published data are used for comparison with those N 

229 fluxes obtained from the mass balance model from Stage 1 in order to validate model 

230 results. The results of the compiled N budget are total amounts of N fluxes, which differ 

231 from environmental quality objectives, i.e. Nr concentrations. Thus, a downscaling of 

232 national N fluxes to match with data from environmental quality monitoring at an 

233 appropriate, comparable scale is needed. The Pressure and State of the DPSIR concept 

234 will be addressed at this stage (Figure 3).

235 At the third stage, a cost-benefit analysis is applied to estimate both the costs and 

236 benefits of Nr use on ecosystems, human health and economy, considering the excess 

237 and accumulation, respectively the deficiency of Nr in the environment. The second key 

238 research question (Q2) and the State and Impact of the DPSIR concept are addressed at 

239 this stage. 

240 At the final (fourth) stage, the results from the first three stages are integrated to 

241 assess how to build a sustainable future through improved Nr management (e.g., 

242 measures to maximize the benefits while minimizing the costs and damages of Nr uses) 

243 embedded in policies, institutions and regulations. The potential pathways to ensure an 

244 effective implementation of these regulations to overcome the socioeconomic barriers 

245 are also discussed. The last research question (Q3), and the Response of the DPSIR 

246 concept are addressed at this stage.

247

248 N budget modelling

249 To understand the changes of N fluxes, several datasets from both national statistics and 

250 global databases such as the Food and Agriculture Organization (FAO)32and 

251 International Fertilizer Industry Association (IFA) 33 can be accessed and compiled for 

252 analysis. Two types of data should be taken into account: human activities and N 

253 cycling parameters (e.g., NH3 emission, runoff, and denitrification) (Figure 4). The 

254 datasets of human activities cover historical changes of population, urbanisation, 

255 production (industrial, crop, livestock and aquaculture), consumption (food, non-food 

256 goods, energy), international trade (e.g., grains, animal products, fertilizers), land use 
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257 and management related to N cycling, such as manure recycling and wastewater 

258 treatment. Long-term datasets provide the best basis for a comprehensive assessment, 

259 e.g. starting from the year 1961 (the year when FAO database was available). 

260 For N parameters, literature reviews are required to complement data on all of the 

261 relevant N cycling parameters, such as NH3 emission ratios (% of total N applied), 

262 which are indicative of the local situation 34, such as dry climates in Australia. Some 

263 global models containing regionally specific parameters can also be used for the 

264 construction of such a dataset, e.g., IMAGE 35, IMAGE-GNM 36, GLOBIOM 37 and 

265 MAgPIE 38. However, they may not contain all N related subsystems, for instance, as 

266 many models do not include an explicit industry subsystem. To understand the complete 

267 N cycling in a country, we propose a 14-subsystem model which enables a 

268 comprehensive assessment how N flows among different functional units, such as from 

269 cropland to livestock. This 14-subsystem model can also help to quantitatively assess 

270 and subsequently reduce the uncertainties of N fluxes calculation through robustly 

271 constraining the interacting fluxes among different subsystems 17. The 14 subsystems 

272 include industry, cropland, grassland, forest, urban green land, livestock, aquaculture, 

273 pet, human, wastewater treatment, garbage treatment, surface water, groundwater, and 

274 atmosphere. Comprehensive N cycling within the 14-subsystem has been formally 

275 implemented in the CHANS model (Coupled Human And Natural Systems) for China 

276 17, which can be easily adapted and applied to other countries. Other models can also be 

277 used to calculate a complete or parts of a N budget based on similar mass balance 

278 principles, such as IMAGE 35 and MAgPIE 38. 

279 The basic principle of mass balance for the whole system and 14 subsystems is:

280

m

∑
h = 1

INh =
n

∑
g = 1

OUTg +
p

∑
k = 1

ACCk

281 where  and  represent the N inputs and outputs, respectively, and  INh OUTg ACCk

282 represents the N accumulations. Most Nr inputs transfer between subsystems, for 

283 example NOx emissions from fossil fuel combustion deposit onto three major domains, 

284 natural land (i.e., forest, natural grassland and extensive graze land), managed grassland 

285 (including intensive grazing land and cropland) and freshwater and marine water bodies, 

286 and it can undergo further transformations and result in a variety of fluxes in and from 

287 these landscapes. N inputs to a country include HBNF, BNF, fossil fuel combustion, 
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288 imports of N-containing products, and transboundary transports through atmospheric 

289 circulation and surface water flows. N outputs across national boundaries include 

290 riverine N transport to coastal waters, atmospheric circulation that advects Nr away 

291 from a country, denitrification, and N-containing product exports. More details of the N 

292 budget calculation for the 14 subsystems can be found in SI Text.

293

294 N fluxes validation and uncertainty

295 The validation of N fluxes calculated in the N budget model requires monitoring data 

296 from independent sources. The national scale N fluxes are downscaled to provincial, 

297 county or watershed scale to match and compare with the monitoring data. Two 

298 approaches can be used for downscaling: first, applying the national scale assessment to 

299 provincial, county or watershed scale if the available data is sufficiently spatially 

300 resolved; second, allocating total N fluxes on national scale to smaller scales through 

301 proxy indexes or modelling. The calibration of the modelled N budget is required if the 

302 validation results suggest a consistent and systematic bias. Then the newly calculated N 

303 fluxes need to be revalidated with monitoring data until sufficient agreement is 

304 achieved. Two types of monitoring data can be utilized for this: ground based 

305 monitoring and remote sensing (including Earth Observation) (Figure 4). Ground based 

306 monitoring covers Nr concentrations in the environment (air, water and soil). The data 

307 can typically be obtained from openly accessible repositories of regulatory monitoring 

308 networks, as well as published or ongoing research activities. However, the Nr 

309 concentrations monitored cannot be used to validate the N fluxes calculated within the 

310 budget model directly, as metrics and spatial resolution often differ. Thus, spatial 

311 patterns or temporal trends of these Nr concentrations in the environment are used to 

312 validate and calibrate the calculation of N fluxes. Meanwhile, some models which 

313 quantitatively assess atmospheric transmission of pollutants such as the Community 

314 Multi-scale Air Quality model (CMAQ) can be used to link the N fluxes to the Nr 

315 concentrations in the environment 39. 

316 Remote sensing data can also be used to monitor the Nr concentrations in the air. 

317 Column concentrations of NH3 and NO2 from satellite instruments such as Infrared 

318 Atmospheric Sounding Interferometer (IASI), MOderate resolution Imaging 

319 Spectroradiometer (MODIS) or Multi-angle Imaging SpectroRadiometer (MISR) 
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320 generate spatially explicit maps of Nr concentrations for comparison with N budget 

321 results 34, 40-42. Some re-sampling and weighted mean methods are typically applied to 

322 make spatial correlations comparable 40, 41. A spatial and temporal correlation analysis 

323 between N budgets and satellite monitoring results can be conducted for the validation 

324 (Figure 4). Normalized Difference Vegetation Index (NDVI) and land use data can be 

325 used to validate the national vegetation and crop production datasets to ensure spatial 

326 patterns of statistical data are robust 43. 

327 The accuracy of N fluxes is critical for the subsequent costs-benefit analysis and 

328 design of management strategies. This accuracy is limited by our understanding of N 

329 cycles, the quality of the data, and the applicability of the calculated coefficients. The 

330 input-output calculations of the 14 subsystems are based on our current understanding 

331 of N cycles, and uncertainty quantifications have been introduced in areas where we 

332 consider our understanding to be less advanced, such as denitrification 17. The quality of 

333 basic official data e.g. on food production and population consumption is important to 

334 the overall uncertainty of the estimation. We believe that the official statistics are a 

335 sufficiently reliable source of data for the analyses, and the confidence rating for the 

336 related N fluxes such as HBNF and N in food (and straw), goods production and 

337 consumption (from FAO statistics) can be considered as very high32. Nevertheless, N 

338 cycling parameters usually have large uncertainty ranges because they are affected by 

339 many natural (e.g. temperature) and anthropogenic (e.g. technology) factors 34. Thus, N 

340 fluxes that are calculated from statistical data and N parameters have much higher levels 

341 of uncertainty compared to the primary N fluxes such as food production. To offset 

342 these uncertainties, the independently-calculated or measured data can be used to 

343 calibrate these N fluxes (Figure 4). For example, soil carbon sink can be used to validate 

344 the uncertainties of estimates on soil organic N accumulation 17.

345

346 Cost-benefit analysis

347 Benefits of Nr use are the results of increased production of the “good”, decreased 

348 production of the “bad” outputs or decreased costs of measures or practices 8, 44. Nr costs 

349 are the result of decreased production of the “good”, increased production of the “bad” 

350 or increased cost of measures or practices. Cost-benefit analysis of N can be applied to 

351 estimate the societal cost associated with N mitigation strategies (including the cost of 
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352 implementation of measures) or to calculate values and trends of societal net and gross 

353 cost of N pollution (excluding the cost of measures). 

354 To quantify the societal value of these goods such as crops, livestock, biofuel, and 

355 non-fertilizer industrial N products, a straight forward approach would be to apply 

356 market prices and purchasing power parity (PPP) correction. Unlike the goods that can 

357 be valued by using marketing prices, other benefits such as ecosystem service (ES) need 

358 to be estimated based on non-market valuation approaches such as those presented in 

359 the framework of Millennium Ecosystem Assessment (MEA) 45. Apart from the 

360 valuation of Nr contributions to climate change effects that can also be estimated based 

361 on carbon price on the global market, the non-market values of other services are 

362 mainly quantified using willingness-to-pay (WTP) approaches, or restoration costs 25 

363 (Figure 4). 

364 The costs include the market costs to produce synthetic ammonia and its 

365 derivatives, the costs of damage to the environment, human health, ecosystems, climate, 

366 and society (e.g., reductions of labour productivity and crop yield), and costs to mitigate 

367 Nr pollution. The costs of intended Nr uses are typically straightforward to quantify by 

368 including values based on market prices of resources and other inputs to produce these 

369 products or services 8. For human health damage costs, the values for mortality and 

370 morbidity (e.g. loss of a healthy human life year), as well as costs arising from 

371 healthcare systems need to be quantified through N critical loading experiments and 

372 dose-response-effects modelling 8, 46. For ecosystems and resource degradation, the 

373 restoration cost or WTP to prevent or restore biodiversity loss and associated ES can be 

374 used 25. 

375

376 Scenario analysis and management

377 The findings from the first three stages provide an integrated picture of the N cycling in 

378 a country from the past to the present, and their costs and benefits. To maximize the 

379 benefits of Nr uses while minimizing its costs, scenario analyses can be conducted to 

380 understand how different measures affect the sustainable uses of Nr (Figure 4). Firstly, 

381 sensitivity analysis tests which parameters exert dominant effects on the target N fluxes 

382 by using N budget models such as MAgPIE and CHANS 17, 38. Then, the potential 

383 changes in N fluxes and their costs and benefits under different scenarios can be 
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384 assessed. Various management strategies can be identified based on the results of the 

385 scenario analysis, considering both the potential of N flux changes and the related costs 

386 and benefits. 

387 Scenario analysis. For scenario development, several parameters, including NUE, 

388 N recycling ratio, dietary pattern and food waste ratio, have been identified to have 

389 substantial effects on the mitigation of Nr losses 17, 38. Human N requirement (mainly 

390 food N) is determined by dietary patterns and food waste ratios, and the overall N 

391 requirement and loss (N budget) can be estimated through integrating the NUE and N 

392 recycling ratios17. These four parameters can be estimated based on following 

393 equations:

394 NUE =
N in products

Total N input for production

395 where NUE refers to the efficiency to produce N containing products in a system, such 

396 as cropland, livestock, aquaculture, etc. N in products refers to N contained in the final 

397 products such as crops, meat & eggs, fishes. Total N input for production refers to the N 

398 used such as N fertilizer in cropland and feed for livestock. High NUE refers to a higher 

399 ratio of Nr contained in final useful products, and lower amounts of Nr lost to the 

400 environment 5. 

401 N recycling ratio =
N reused

Total N residue

402 where N recycling ratio refers to the ratio of Nr reused for production, such as the 

403 manure recycled to cropland for production. N reused refers to the part of Nr residue or 

404 waste reused for production, and Total N residue refers to total N residue generated 

405 such as total manure generated. The N recycling ratio mainly includes the recycled 

406 content of livestock and human excretion and straw returned to the agricultural 

407 production systems. This can increase the NUE indirectly through reducing the overall 

408 N losses. 

409 Dietary pattern =
Animal protein

Total protein consumed

410 Food waste ratio =
Food waste
Food supply

411 where dietary pattern refers to the ratio of human protein consumption provided by 

412 animal products such as meat and eggs. Total protein consumed includes both vegetal 
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413 and animal proteins. The food waste ratio refers to how much of food supplied is not 

414 consumed, usually wasted during storage, distribution and disposal. Regulations of 

415 dietary pattern and food waste mainly benefit the sustainable Nr uses through reducing 

416 the overall Nr demands by the end-users30. 

417 To simulate these Nr uses and losses, shared social pathway (SSP) storylines 

418 present a useful approach to estimate the population, urbanization and per capita GDP in 

419 the future 38. Many studies on the mitigation of N losses followed the scenarios of IPCC 

420 with regard to future projections of greenhouse gas emissions, although the behaviour of 

421 carbon is not always consistent with that of N 47. Therefore, the new scenarios 

422 specifically designed with N in mind here are recommended for use in N assessments.

423 Management. Solutions for better managing Nr under different scenarios may not 

424 be adopted solely due to high cost, if benefits are not recognised or quantified 24. 

425 Therefore the results from the cost-benefit analysis and scenarios analysis on the 

426 optimisation of N fluxes to achieve cost-effective solutions for a sustainable future need 

427 to be integrated. The costs and benefits of each scenario could be quantified to identify 

428 optimal solutions. Furthermore, whether these selected solutions for the sustainable use 

429 of Nr are feasible requires further analysis of the socioeconomic barriers 27, 48. These 

430 barriers can be economic structure (e.g., farm size), population density, culture, religion, 

431 consumer or even dry climate. Thus, social scientists should be involved in assessing 

432 the feasibilities of the proposed solutions. Finally, several N sustainability indices can 

433 be used to translate the scientific results to the public and policy makers to make real 

434 impacts, such as the N footprint concepts49. N fluxes and their costs and benefits are 

435 incorporated into the indices to reflect the quality of products and their environmental 

436 effects. 

437

438 Implications of N assessment

439 This paper presents a generally applicable framework for a comprehensive, 4-stage 

440 national scale N assessment, covering all relevant Nr issues towards a better N 

441 management in a country. While national N budgets have already been completed in 

442 some countries, Nr related challenges vary with regions and countries and are intricately 

443 linked with local socioeconomic development 7, 14, 17. Parts of this framework have been 

444 successfully applied to EU50 and China17, compiling a comprehensive N budget and 
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445 illustrating potential future trends under different scenarios. We believe that a wider 

446 application of the N assessment to other countries can contribute to a substantial 

447 improvement of global sustainable use of N. 

448 The framework and methodology proposed in this study are inherently 

449 interdisciplinary and require the integration of expertise from both natural sciences (e.g., 

450 Environmental Science, Soil Science, Ecology, Earth Science, etc.) and social sciences 

451 (e.g., Economics, Management, Policy, Law, etc.). Unlike previous studies on N 

452 cycling, this study designs an approach for the development of a comprehensive, 

453 comparable N assessments, including the interaction between N cycling and 

454 socioeconomic issues. Novel interdisciplinary methods proposed here range from site-

455 scale monitoring and validation, to regional surveys and remote sensing datasets, 

456 combined with budget calculation, modelling, econometric and policy assessment. This 

457 framework will advance our knowledge on how to sustainably use Nr at a national scale, 

458 and how to face the challenges of Nr releases under future global change and growing 

459 population pressures. 

460

461 Application for China

462 To feed an increasingly affluent population, China uses about one third of global Nr to 

463 produce food. Nevertheless, it still imports over 100 million tons of grain to meet 

464 China’s national food demand32. Unfortunately, a large amount of Nr is lost to the 

465 environment during the production and consumption of food at the country scale, 

466 resulting in serious environmental pollution in China. At the same time, substantial 

467 socioeconomic developments have taken place since the late 1970s 19, 51. To solve the 

468 double challenge of producing more food with less pollution, we applied our framework 

469 of N assessment to China for the period of 1980 to 2015. 

470 Nitrogen budget. Results showed that total Nr input to China increased from 25 to 

471 71 Tg N yr-1 between 1980 and 2015, of which 74% and 89% derived from 

472 anthropogenic sources in 1980 and 2015, respectively (Figure 5). After input to the 

473 boundary of China, Nr cascades through the 14 subsystems, and produces about 20 Tg 

474 N yr-1 in food and feed, while losses to the environment amount to around 50 Tg N yr-1 

475 in 2015. Agricultural sources are responsible for approximately 91% of total NH3 

476 emissions; fossil fuel combustion accounts for 90% of total NOx emissions; agricultural 
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477 and natural sources (forest and surface water) together dominate N2O emissions in 

478 China. Agricultural sources and human sewage contribute most of the Nr discharge to 

479 surface water, while agricultural sources and landfill leaching are responsible for the 

480 bulk of Nr discharges to groundwater. More detailed information about the N fluxes in 

481 China can be found in Figure S1.

482 Nitrogen flux validation. The modelled Nr fluxes to the environment were 

483 validated using data from ground based national monitoring networks of air and water 

484 quality and remote sensing data providing column concentrations of NH3 and NO2 
19, 34. 

485 N fluxes to air (NH3 and NOx emissions) were well validated using remote sensing data 

486 with a regression (R2) of more than 0.7, while N fluxes to water showed a less strong 

487 regression (R2 ~0.5). This is due to the complex N cycling processes which occur in 

488 water bodies and e.g. denitrification. Increasing the number of monitoring sites for 

489 water N concentrations could help to reduce the uncertainty by providing more data for 

490 a robust validation of N fluxes to water bodies.

491 Cost-benefit analysis. Integrating Nr emissions and population exposure 

492 assessments, we calculated that using 2015 Nr fluxes, Nr emissions to the air (including 

493 NH3, NOx and N2O) caused the loss of 16.5 million life years annually in China, a much 

494 higher value than the loss of 2.6 million life years found in EU 8, 17. If converted, these 

495 losses of life years equate to a monetary value of around 200 billion US dollars 

496 annually. Further analyses of other cost-benefit assessment components, such as 

497 ecosystem service impacts due to Nr loss to water bodies are still ongoing.

498 Scenario analysis. An explicit consideration of the following four proposed factors 

499 in the analysis could help to better explore potential interventions to mitigate Nr losses. 

500 We found that increasing N use efficiency, optimising diets, increasing N recycling and 

501 reducing food waste could decrease total N losses during food production and 

502 consumption by about 50%, 25%, 30% and 10%, respectively. Combining feasible 

503 changes in these four factors could reduce N losses by the year 2050 to about 60-70% of 

504 2015 levels. 

505 Management. However, to achieve these reductions, socioeconomic barriers need 

506 to be addressed as indicated previously. We found that increasing farm size (current 

507 average of <0.1 hectare each farm) is the crucial challenge for the implementation of 

508 regulatory measures in China, especially interventions to increase NUE and recycling 
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509 ratio. High labour costs suggest a low level of mechanisation and automation in small 

510 farms, which inhibits the application of precision agriculture and fertilization 

511 technologies, as well as management based on scientific knowledge and information on 

512 application methods 27. Increasing farm size has been integrated as a viable intervention 

513 into the recommendations to achieve the goal of a zero increase and even reduction in 

514 fertilizer use in China. Nevertheless, more sophisticated assessments are still ongoing to 

515 identify further socioeconomic barriers that inhibit the sustainable use of Nr in China.

516
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697 Figure Legend

698 Figure 1. Major transformation pathways of the global N cycle. Red arrows 

699 represent the pathways of the human meditated N cycle; grey arrows represent the 

700 pathways dominated by microbial activities; green arrows represent the pathways 

701 dominated by plants; blue arrows represent the pathways dominated by atmospheric 

702 chemical reactions. Abbreviations: BNF, biological N fixation; CBNF, cultivated 

703 biological N fixation; Denitri, denitrification; HBNF, Haber-Bosch N fixation; Nitri, 

704 nitrification.

705

706 Figure 2. Simplified view of managing N for sustainable development highlighting 

707 the three major scientific questions. (Q1) How are N uses and losses affected by 

708 natural and human factors? (Q2) How to quantify the societal costs and benefits of N 

709 use? (Q3) What are the socioeconomic barriers constraining the more sustainable use of 

710 N? Nr, reactive N.

711

712 Figure 3. Conceptual diagram depicting the linkage between the DPSIR scheme 

713 and the framework of N assessment in this study. DPSIR, Driver–Pressure–State–

714 Impact–Response; Q1-Q3 represent the three major scientific questions need to be 

715 addressed in Figure 2. (Q1) How are N uses and losses affected by natural and human 

716 factors? (Q2) How to quantify the societal costs and benefits of N use? (Q3) What are 

717 the socioeconomic barriers constraining the more sustainable use of N? NUE, N use 

718 efficiency.

719

720 Figure 4. An overview of the methodological framework. It describes the approaches 

721 to mass balance modelling, validation, cost-benefit analysis and management for the 

722 sustainable future use of Nr. BNF, biological N fixation; NDVI, normalized differential 

723 vegetation index; WTPs, willingness to pay.

724

725 Figure 5. A simplified N cycling schematic for China for the year 2015. Pathways 

726 marked in green refer to ‘natural’ fluxes (to some extent altered by atmospheric Nr 

727 deposition), those in blue are intentional anthropogenic fluxes, and those in orange are 

728 unintentional anthropogenic fluxes. Not all N fluxes were included due to space limits. 
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729 Nat, Natural; exp., export; wwt, wastewater treatment.
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730 Figure 1
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733 Figure 2

734
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736 Figure 3
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740 Figure 4

741

Page 29 of 31 Environmental Science & Technology

http://pubs.acs.org/action/showImage?doi=10.1021/acs.est.8b06370&iName=master.img-004.jpg&w=440&h=340


30

742 Figure 5
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