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Abstract The abyssal demosponge Plenaster craigi inhabits the Clarion-Clipperton Zone (CCZ) 30 

in the north-east Pacific, a region with abundant seafloor polymetallic nodules with potential 31 

mining interest. Since P. craigi is a very abundant encrusting sponge on nodules, understanding 32 

its genetic diversity and connectivity could provide important insights into extinction risks and 33 

design of marine protected areas. Our main aim was to assess the effectiveness of the Area of 34 

Particular Environmental Interest 6 (APEI-6) as a potential genetic reservoir for three adjacent 35 

mining exploration contract areas (UK-1A, UK-1B and OMS-1A). As in many other sponges, 36 

COI showed extremely low variability even for samples ~900 km apart. Conversely, the 168 37 

individuals of P. craigi, genotyped for 11 microsatellite markers, provided strong genetic 38 

structure at large geographical scales not explained by isolation by distance. Interestingly, we 39 

detected molecular affinities between samples from APEI-6 and UK-1A, despite being separated 40 

~800 km. Although our migration analysis inferred very little progeny dispersal of individuals 41 

between areas, the major differentiation of OMS-1A from the other areas might be explained by 42 

the occurrence of predominantly northeasterly transport predicted by the HYCOM hydrodynamic 43 

model. Our study suggests that although APEI-6 does serve a conservation role, with species 44 

connectivity to the exploration areas, it is on its own inadequate as a propagule source for P. 45 

craigi for the entire eastern portion of the CCZ. Our new data suggest that an APEI located to the 46 

east and/or the south of the UK-1, OMS-1, BGR, TOML and NORI areas would be highly 47 

valuable.  48 



 

Introduction 49 

The Clarion-Clipperton Zone (CCZ), a vast area located in the equatorial NE Pacific, 50 

encompasses a broad range of habitats, including abyssal hills, seamounts, fracture zones, and 51 

extensive abyssal plains, as well as strong gradients in export flux (Wedding et al. 2013). Abyssal 52 

plains of the region can contain high concentrations of polymetallic nodules (potato-sized 53 

concretions of manganese, iron, cobalt, copper and nickel), with sediments around nodules 54 

typically consisting of a mixture of well oxygenated siliceous oozes and deep-sea clays (Mewes 55 

et al. 2014). Importantly, these polymetallic nodules provide a great abundance of hard substrate 56 

for sessile organisms and appear to support faunal communities distinct from nearby abyssal soft 57 

sediments (Mullineaux 1987; Thiel et al. 1993; Smith & Demopoulos 2003; Veillette et al. 2007; 58 

Amon et al. 2016; Vanreusel et al. 2016). In fact, epifaunal densities are significantly higher in 59 

areas with dense nodule coverage, with some major taxa such as alcyonacean and antipatharian 60 

corals being virtually absent from nodule-free areas (Vanreusel et al. 2016). 61 

The nodule-rich CCZ represents the most important area for deep-sea mining exploration 62 

worldwide (an actual exploration area of ca. 6 million km2; Lodge et al. 2014), with mining 63 

operations potentially to be initiated by 2025 (Smith & Demopoulos 2003; Glover & Smith 2003; 64 

Smith et al. 2008a). Small-scale impact experiments conducted so far in the CCZ suggest that the 65 

local environmental impacts of nodule mining will be substantial (Borowski & Thiel 1998; Thiel 66 

et al. 2001; Smith et al. 2008b; Miljutin et al. 2011; Jones et al. 2017), and will directly affect 67 

abyssal epifauna (Amon et al. 2016; Vanreusel et al. 2016). Importantly, mining may not only 68 

impact areas where nodules are removed, but will aslo disturb adjacent areas through re-69 

deposition from sediment plumes, potentially impacting larger seafloor areas than those directly 70 

affected by nodule removal (Oebius et al. 2001; Smith et al. 2008a). The long-term effects of this 71 

sediment re-deposition is not understood. These issues were central to the establishment by the 72 

International Seabed Authority (ISA) of a network of representative protected areas, termed Areas 73 

of Particular Environmental Interest (APEIs), across the CCZ, where exploration and mining 74 

activities are prohibited (Wedding et al. 2013). The CCZ is characterized by gradients in 75 

environmental conditions (e.g., surface-productivity and export flux, depth, and sediment 76 



 

characteristics; ISA 2010) along an east-west and also a north-south axis, leading to marked 77 

variation in nodule size and coverage, but also changes in faunal composition along these 78 

gradients (Glover et al. 2002; Smith et al. 2008a; Wedding et al. 2013). The APEI network was 79 

designed accordingly, preserving the gradients of faunal distribution reflecting the biogeography 80 

and connectivity of marine benthic fauna across the region (Wedding et al. 2013). 81 

 To maximise protection of biodiversity over broad areas, like the CCZ, an understanding 82 

of biogeography, at both the species and community levels, is crucial (Wedding et al. 2013). To 83 

achieve this, the evaluation of species’ ranges and their levels of population connectivity and 84 

turnover are needed (Baco et al. 2016). Efforts to determine the population genetic connectivity 85 

in deep-sea invertebrates have mainly been focused on chemosynthetic environments (Vrijenhoek 86 

2010; Taylor & Roterman 2017). However, as stated by Taylor & Roterman (2017) in their recent 87 

review, the ephemeral nature and non-equilibrium conditions characteristic of these particular 88 

habitats could limit their comparability to other more common and stable deep-sea habitats. 89 

Molecular connectivity of marine invertebrates in non-chemosynthetic deep-sea habitats has 90 

barely been assessed and two recent reviews on this topic (Baco et al. 2016; Taylor & Roterman 91 

2017), concluded that there is a clear need to assess the connectivity of deep-sea organisms from 92 

a variety of habitats, life history types, taxonomic groups, and depth zones. This is especially true 93 

for studies at abyssal depths and deeper since, to date, there is only one genetic study of species 94 

occurring below 5,000 m depth (Ritchie et al. 2017). For the CCZ very little information is 95 

available on the biogeography and connectivity of fauna inhabiting this region (Glover et al. 2002; 96 

Paterson et al. 2015; Janssen et al. 2015). Despite the prominent occurrence of nodules (i.e. hard 97 

substrate) in this abyssal region, the majority of connectivity studies conducted in the CCZ have 98 

focused on selected infaunal taxa (annelids and crustaceans) living in the sediment (e.g. Paterson 99 

et al. 1998; Glover et al. 2002) and with only a few using a molecular approach (Smith et al. 100 

2008b; Janssen et al. 2015).  101 

The recently-described abyssal demosponge Plenaster craigi Lim & Wiklund, 2017 (Lim 102 

et al., 2017) appears to be a good model species to assess the molecular connectivity and to 103 

establish biogeographic patterns from local to large spatial scales within the CCZ for a number 104 



 

of reasons (Taboada et al. 2017). Plenaster craigi, potentially endemic to the central abyssal 105 

Pacific, is a remarkably common encrusting element of the nodule fauna, highly (or perhaps 106 

totally) dependent on nodules that provide the substrate where adults live attached (Lim et al. 107 

2017). Thus, populations of this organism will surely be eliminated from the mined areas as 108 

nodules will be removed or become buried by sediment plumes. As filter-feeders, these organisms 109 

are likely to be vulnerable to sediment plumes generated in the water column after mining, as 110 

suggested by studies on shallow-water sponges (Schönberg 2016). Also, although nothing is 111 

known about its reproductive traits, P. craigi may be like most other sponges and it is assumed to 112 

have a limited dispersal phase through lecithotrophic larvae, with most larvae spending short 113 

periods of time in the water column– usually less than two weeks (see Maldonado 2006). So this 114 

species may have relatively limited dispersal ability compared to species with planktotrophic 115 

development.  116 

Here we present the first study on the molecular connectivity and dispersal capabilities 117 

of an abyssal sessile invertebrate, the sponge P. craigi, from four different areas in the eastern 118 

CCZ: the APEI-6 area and three sampling sites within adjacent exploration contract areas UK-1 119 

[UK-1 Stratum A (UK-1A), UK-1 Stratum B (UK-1B)], and Oceans Minerals Singapore OMS-1 120 

Stratum A (OMS-1A) (Fig. 1A). The aim of this study is to assess whether APEI-6 may serve as 121 

a genetic reservoir and source of propagules for P. craigi if the above-mentioned exploration 122 

areas are disturbed by mining in the future. A fragment of the mitochondrial cytochrome c oxidase 123 

subunit I –COI– and 14 microsatellite markers previously isolated and characterized (Taboada et 124 

al. 2017) were used to assess the connectivity of the populations of P. craigi. In addition, 125 

oceanographic models were applied to investigate their relationship with connectivity patterns 126 

observed.   127 



 

Material and methods 128 

Sample collection, preservation and sampling design 129 

A total of 180 specimens of the demosponge P. craigi were collected from four different areas 130 

within the CCZ: APEI-6 and UK-1A, UK-1B and OMS-1A (Table 1). UK-1A and UK-1B 131 

correspond to the UK exploration contract area while OMS-1A corresponds to the Oceans 132 

Minerals Singapore exploration contract area (Fig. 1). Samples were collected during three 133 

different oceanographic cruises: ABYSSLINE AB01 cruise (Oct 3–27, 2013), which studied the 134 

UK-1A and UK-1B areas on board the RV Melville, ABYSSLINE AB02 cruise (Feb 12–Mar 25, 135 

2015) exploring the OMS-1 area on board the RV Thomas G Thompson, and MIDAS-JC120 136 

cruise (April 15–May 19, 2015) exploring the APEI-6 area on board the RRS James Cook. The 137 

separate specimens of P. craigi were found attached to polymetallic nodules primarily collected 138 

using a USNEL type boxcore (0.25 m2), but additionally from multicore, Brenke epibethic sledge, 139 

Agassiz trawl, and a ROV (Table 1). Sample and specimen handling followed the protocol in 140 

(Glover et al. 2015). Nodules were carefully observed individually under the stereoscope and 141 

once the sponges were found they were photographed; sponges were then removed from the 142 

nodule with a scalpel or forceps, preserved in either 80–95 % ethanol or RNAlater, and 143 

immediately stored at -20ºC until DNA extraction.  144 

Due to proximity between some of the samples collected in the different sampling sites 145 

some of the samples from the different areas were pooled together (i.e. APEI-6_Flat1 to APEI-146 

6_Flat8 as APEI-6_Flat; APEI-6_Ridge1 to APEI-6_Ridge6 as APEI-6_Ridge; APEI-6_Trough1 147 

to APEI-6_Trough4 as APEI-6_Trough; APEI-6_Deep1, APEI-6_Deep2 and APEI-6_Nodule as 148 

APEI-6_Deep-Nodule; UK-1A_BC06 and UK-1A_EB03 as UK-1A_BC06-EB03; UK-149 

1A_BC08 and UK-1A_BC05 as UK-1A_BC08-BC05; UK-1B_BC06 and UK-1B_MC25 as UK-150 

1B_BC06-MC25; UK-1B_BC18 and UK-1B_MC13 as UK-1B_BC18-MC13; UK-1B_EB09 151 

and UK-1B_BC04 as UK-1B_EB09-BC04; OMS-1A-EB06, OMS-1A-BC11, and OMS-1A-152 

BC08 as OMS-1A-EB06-BC11-BC08; OMS-1A-BC25, OMS-1A-MC23 and OMS-1A-BC26 as 153 

OMS-1A-BC25-MC23-BC26). Original sampling sites collected during oceanographic cruises 154 



 

are found in Table 1 and pooled sampling sites considered in this study are shown in Table 2. 155 

Thus, a total of four areas and 30 different populations were identified in our study (Table 1–2). 156 

 157 

Body size of P. craigi 158 

Prior to DNA extraction, all preserved organisms were photographed in the lab using a Zeiss 159 

AxioCam Hrc camera attached to a stereoscope. The maximum length and maximum width of 160 

complete individuals were measured using the software AxioVision. These measurements were 161 

made to test whether there was any link between body size and (i) apparent cohorts inferred from 162 

the molecular analyses or (ii) different ecological variables. Linear correlation analysis between 163 

maximum length and maximum width using R (https://www.r-project.org/) indicated a moderate 164 

adjusted R-squared coefficient (R2 = 0.473) and significant correlation between variables (p < 165 

0.05); thus we used maximum length as the variable for size-frequency distributions. The 166 

correlation between maximum length vs. maximum width was plotted in R. One-way analyses of 167 

variance (ANOVAs) were conducted on maximum length using StatPlus vs 6 168 

(www.analystsoft.com) (1) using sample areas (APEI-6, UK-1A, UK-1B and OMS-1A) as 169 

factors, (2) within APEI 6 using the four different sampling stations as factors (APEI-6_Flat, 170 

APEI-6_Ridge, APEI-6_Trough and APEI-6_Deep), and (3) between samples assigned to  cluster 171 

1 from the APEI-6 and UK-1A areas (see Results below). The Tukey-Kramer post-hoc test 172 

implemented in StatPlus was used to identify significant pairwise differences between areas. 173 

  174 

DNA extraction and genotyping 175 

Genomic DNA was extracted from a portion of tissue (approx. 1 mm3) of each of the 180 176 

individuals collected from the four different areas using the Tissue and Blood Qiagen extraction 177 

kit (Qiagen, www.qiagen.com) following the protocol provided by the manufacturer to a final 178 

elution of 100 μL. Prior to genotyping using microsatellites, we amplified and sequenced a 179 

fragment of the gene cytochrome c oxidase subunit I –COI– using the primers PorCOI2fwd and 180 

PorCOI2rev (Xavier et al. 2010) from a selection of 65 individuals from the four different areas 181 

(Supplementary Table S1). This COI fragment includes the Erpenbeck’s ‘I3-M11’ fragment 182 

https://www.r-project.org/
http://www.analystsoft.com/
http://www.qiagen.com/


 

(Erpenbeck et al. 2006), which has shown to be suitable to address intraspecific variability in 183 

other sponges (e.g. López-Legentil & Pawlik 2009; Xavier et al. 2010). Each PCR reaction mix 184 

contained a 21 μL of Red Taq DNA Polymerase 1.1x MasterMix (VWR), 1 μL (10 μM) of each 185 

primer and 2 μL of DNA extraction of each individual. For DNA amplification, the following 186 

PCR protocol was used [94 ºC/5 min – (94 ºC/1 min – 55 ºC/1 min – 72 ºC 1 min) x 38 cycles – 187 

72 ºC/5 min]. Sequencing was conducted on an ABI 3730XL DNA Analyser (Applied 188 

Biosystems) at the Natural History Museum –NHM– molecular labs using the primers (forward 189 

and reverse) mentioned above.  190 

Owing to the low intraspecific variability observed in the COI fragment (see Results), we 191 

genotyped all individuals using the 14 microsatellite loci (1Ple, 2Ple, 3Ple, 4Ple, 5Ple, 6Ple, 8Ple, 192 

11Ple, 12Ple, 13Ple, 14Ple, 16Ple, and 19Ple) described by Taboada et al. (2017), using the PCR 193 

conditions described therein. The sizes of the fluorescently labelled PCR products were estimated 194 

using GeneScan 500 LIZ (Applied Biosystems, Foster City, CA, USA) on an Applied Biosystems 195 

3130xl DNA analyser at the NHM molecular labs. Allele peaks were checked and edited using 196 

Geneious vs 8.1.7 (Kearse et al. 2012) before being placed into amplicon size “bins” and exported 197 

for analysis. Genotyping failed in 12 individuals (11 from APEI-6 and 1 from UK-1A) and thus 198 

results reported below for microsatellite analysis refer to 168 individuals from a total of 30 199 

sampling stations (Table 1, 2).  200 

In order to test for the occurrence of cryptic species between organisms from cluster 1 201 

and the rest of specimens (see Population differentiation in Results section for details about cluster 202 

assignation), apart from using the information from the I3-M11 fragment, we sequenced a 203 

fragment of 28S rRNA of a random selection of nine individuals assigned to the two different 204 

clusters (Supplementary Table S1). Primers used were 28Sa and 28Srd5b (Giribet et al. 2002; 205 

Schwendinger & Giribet 2005), and DNA amplification followed the PCR protocol [95 ºC/5 min 206 

– (95 ºC/1 min – 55 ºC/1 min – 72 ºC 1 min) x 38 cycles – 72 ºC/10 min]. Sequencing was 207 

conducted on an ABI 3730XL DNA Analyser (Applied Biosystems) at the NHM molecular labs 208 

using the primers mentioned above. Additionally, we performed a spicule analysis of a selection 209 



 

of four individuals of these sequenced specimens to inspect for morphological differences (see 210 

Spicule Analysis section below). 211 

 212 

Genetic diversity in P. craigi populations 213 

Tests for linkage disequilibrium were performed using Genepop through probability tests for each 214 

pair of loci in each population with the level of significance determined by the following Markov 215 

chain parameters: 5,000 dememorization steps, 1,000 batches and 5,000 iterations per batch. 216 

Significance was adjusted by a false discovery rate method (Benjamini & Yekutieli 2001). Since 217 

three of the microsatellites appeared to be in linkage disequilibrium (see Results), all results refer 218 

to a total of 11 microsatellites. 219 

Number of alleles (Na), number of private alleles (Pa), estimations for the observed (Ho) 220 

and expected (He) heterozygosity, and the fixation index (FIS), commonly used as an inbreeding 221 

coefficient, were performed using GenAlEx 6.5 (Peakall & Smouse 2006, 2012). Genetic (gene) 222 

diversity was calculated with GENODIVE vs 2.0b23 (Meirmans & Van Tienderen 2004) 223 

although for comparative purposes with other studies we will use He as a measure for genetic 224 

diversity. We used Genepop web version 4.2 (Raymond & Rousset 1995; Rousset 2008) to obtain 225 

values for departure from Hardy–Weinberg equilibrium (HWE) by locus and population 226 

(sampling site) using a probability test with level of significance determined by the following 227 

Markov chain parameters: 5,000 dememorization steps, 1,000 batches and 5,000 iterations per 228 

batch. Significance was adjusted by a false discovery rate method (Benjamini & Yekutieli 2001). 229 

These descriptors for the genetic diversity were calculated for the different sample sites separately 230 

and grouping samples into the four different areas. Additionally, these descriptors were also 231 

computed for the different areas considering samples of cluster 1 and cluster 2 separately. 232 

 233 

Population differentiation in P. craigi 234 

In order to test for population differentiation in P. craigi we used COI sequences from a selected 235 

number of individuals (65) from the four different areas (Supplementary Table S1) and genotyped 236 

11 microsatellites for a total of 168 individuals (Table 1). COI overlapping sequence fragments 237 



 

were assembled into consensus sequences using Geneious vs. 8.1.7, and aligned using Q-INS-I 238 

option of MAFFT (Katoh et al. 2002). The COI alignment was used to construct an un-rooted 239 

haplotype network with the program PopART (http://popart.otago.ac.nz) using the TCS network 240 

option (Clement et al. 2000). 241 

Fragments of 28S sequenced to test for the occurrence of cryptic species were assembled 242 

and aligned as described above for COI. 243 

To examine evidence of clonality, multilocus genotypes of the 168 individuals studied 244 

here were compared in GenAlEx 6.5 (Peakall & Smouse 2006, 2012) using the 245 

‘Multilocus/Matches’ function, which outputs a list of pairwise comparisons and the number of 246 

differing locus genotypes ignoring missing data. After confirming the absence of clones and also 247 

the lack of evidence of cryptic speciation (see Results), we performed four different methods to 248 

assess population structure and differentiation in the 168 individuals of P. craigi using the 11 249 

microsatellites: two of these methods used a clustering approach (STRUCTURE and the 250 

discriminant analysis of principal components –DAPC–) and the other two were based on 251 

distances (FST estimations and the analysis of the molecular variance –AMOVA–). 252 

 253 

Clustering methods. Samples were assigned to genetically homogenous populations (K) inferred 254 

using a Bayesian clustering algorithm without prior geographical information with the program 255 

STRUCTURE 2.3.4 (Pritchard et al. 2000). An admixture model was used with correlated allele 256 

frequencies and 150,000 MCMC iterations (burn-in of 50,000), repeated 10 times for each value 257 

of K from 1 to 30. The most likely value of K was determined using Evanno’s ad hoc ΔK statistic 258 

(Evanno et al. 2005) calculated and plotted using Structure Harvester web v0.6.94 (Earl & 259 

vonHoldt 2012). The 10 replicates of optimal K were aligned using the FullSearch algorithm in 260 

the software package CLUMPP v1.1.2 (Jakobsson & Rosenberg 2007), then visualized using 261 

DISTRUCT v1.1 (Rosenberg 2004). STRUCTURE was also run, using the same specifications 262 

mentioned above, considering members of cluster 1 and cluster 2 separately. 263 

 We also performed Discriminant Analysis of Principal Components –(– with the adegenet 264 

package (Jombart 2008) implemented in R. DAPC defines clusters using the clustering algorithm 265 

http://popart.otago.ac.nz/


 

k-means on transformed data with principal component analysis. The algorithm k-means is then 266 

run sequentially with increasing values of k, and different clustering solutions are compared using 267 

the Bayesian Information Criterion. The number of principal components giving rise to the model 268 

with the highest predictive capacity were inferred with the cross-validation optimisation 269 

procedure using 100 replicates and the default parameters. The optimal cluster solution should 270 

correspond then to the lowest value of root mean squared error. We applied the DAPC analysis 271 

for: (i) the complete matrix of all samples grouped in the four different regions (APEI-6, UK-1A, 272 

UK-1B and OMS-1A) and in the 30 different sites; (ii) the complete matrix of all samples grouped 273 

by the cluster 1, the APEI-6 and UK-1A without samples assigned to cluster 1, UK-1B and OMS-274 

1A; (iii) APEI-6, UK-1A and UK-1B after removing from the analysis samples from cluster 1 275 

and all samples from OMS-1A; (iv) samples of APEI-6 and UK-1A belonging to cluster 1; and 276 

(v) cluster 2 samples, which included samples of the four different regions (APEI-6, UK-1A, UK-277 

1B and OMS-1A) without members of cluster 1. 278 

Distance methods. Population differentiation was estimated with the FST statistic between 279 

pairwise sampling sites using an infinite allele model in Arlequin vs 3.0 (Excoffier et al. 2005). 280 

Significance of FST values was evaluated by performing 20,000 permutations and corrected based 281 

on the false discovery rate method (Benjamini & Yekutieli 2001). Pairwise FST values grouping 282 

all samples by area were also estimated using the same specifications mentioned above. MICRO-283 

CHECKER 2.2.3 (Van Oosterhout et al. 2004) was used to detect the presence of null alleles, 284 

error scoring owing to stuttering or large allele dropout and error. As the presence of null alleles 285 

in well-differentiated populations is known to yield an overestimation of population 286 

differentiation (Chapuis & Estoup 2006), we repeated our analysis excluding loci suggesting 287 

presence of null alleles. In all cases, the corrections only affected the second or third decimal 288 

place in the FST value for the pairwise comparisons between areas (not affecting significance of 289 

values) and consequently the effect of presence of null alleles was disregarded. Significance of 290 

FST values was also calculated for the different areas considering samples of cluster 1 and cluster 291 

2 separately. 292 



 

An Analysis of Molecular Variance (AMOVA) was used to determine the hierarchical 293 

distribution of genetic variation. To run this analysis, we grouped the sites in the different areas 294 

(APEI-6, UK-1A, UK-1B and OMS-1A). The significance of the AMOVAs was calculated with 295 

20,000 permutations of the original data in the program Arlequin. Additionally, AMOVA was 296 

also calculated for the different areas considering samples of cluster 1 and cluster 2 separately. 297 

 298 

Spicule analysis 299 

We checked spicule composition of three individuals of cluster 1 (APEI-6_Flat.16, UK-1A.7, 300 

UK-1A.8) and one from cluster 2 (APEI-6_Flat.14). A small piece of tissue of the different 301 

specimens was first digested in nitric acid using a hotplate and subsequently washed twice with 302 

distilled water. Spicules were cleaned in absolute ethanol, mounted on a stub and coated with 303 

gold/palladium. Images of spheroxyasters were taken using a Zeiss Ultra Plus field emission 304 

scanning electron microscope at the NHM Imaging and Analytical Centre (IAC). 305 

 306 

Dispersal patterns in P. craigi 307 

Isolation by distance (IBD). A Mantel test (100,000 permutations) was performed in GENODIVE 308 

to test IBD using the whole data set of 168 individuals from the 30 populations and also using 309 

only a subset of individuals not including individuals from cluster 1 (see Population 310 

differentiation in Results). Geographical distances between sites were estimated using 311 

GENODIVE using the coordinates for every site. These distances were log-transformed and 312 

correlated to Slatkin’s linearized pairwise FST estimates (FST/1-FST). 313 

 314 

Detection of last-generation migrants. We performed a population assignment analysis 315 

calculating the likelihood ratio thresholds for the populations grouped in the four areas (APEI-6, 316 

UK-1A, UK-1B and OMS-1A) based on the Monte Carlo test with an α of 0.002 and 1000 317 

replicated data sets using GENODIVE. This method assigns or excludes reference populations as 318 

possible origins of individuals on the basis of multilocus genotypes. Genetic assignment methods 319 

allow inferring where individuals originated, providing estimates of real-time dispersal through 320 



 

the detection of immigrant individuals. The detection of last-generation migrants was performed 321 

in GENODIVE using a random 0.005 frequency (estimated to outperform tests) in 4,000 322 

permutations. This test provides the likelihood of an individual belonging to a given population. 323 

 324 

Migration patterns among areas. Effective population size (expressed as Θ=4Neμ) and migration 325 

(M) were estimated with a Bayesian approach as implemented in LAMARC vs 2.1.10 (Kuhner 326 

2006). Following suggestions by Kuhner (2006) we randomly reduced sample sizes for each area 327 

to 15 in order to increase run efficiency. Default values were used for effective population size 328 

and migration parameters. We performed Bayesian analyses with five replicates with 10 initial 329 

chains of 5,000 MCMC each, burn-in period of 1,000, and two final chains of 100,000 MCMC 330 

each with a burn-in period of 1,000. Three simultaneous heating searches (1, 1.1, and 2) were 331 

performed per replicate. LAMARC infers approximate credibility intervals (CIs) around most 332 

probable estimates (MPE) for each parameter. Parameter conversion was verified by examining 333 

stationarity in parameter trends over the length of the chains and Effective Sample Sizes (ESS) 334 

parameter using TRACER vs 1.6 (http://beast.bio.ed.ac.uk/Tracer). We interpreted ESS values > 335 

250 as an indication that sampled trees were not correlated and thus represent independent 336 

simulations. Number of immigrants per generation per area was calculated using Θ and M (ΘM). 337 

LAMARC analyses were also run for members of cluster 1, selecting randomly 15 individuals 338 

from each area (APEI-6 and UK-1A). 339 

Directionality of recent migration patterns was obtained with the diveRsity package in R 340 

(https://diversityinlife.weebly.com/), which uses the method described in Sundqvist et al. (2016) 341 

to plot the pairwise relative migration levels between populations from microsatellite allele 342 

frequency data. The sampling sites were pooled into the four different areas (APEI-6, UK-1A, 343 

UK-1B, and OMS-1A). We used the statistic Nm (i.e. the effective number of migrants), a more 344 

generally suitable measure of migration (Sundqvist et al. 2016), with a bootstrap of 10,000. 345 

However, since the method is still in experimental stages, results should be interpreted with 346 

caution. Additionally, migration patterns using diveRsity were also calculated for the different 347 

areas considering samples of cluster 1 and cluster 2 separately. 348 



 

 349 

Detection of genetic breaks and correlation with geographical discontinuities. The occurrence of 350 

possible barriers determining the genetic structure of P. craigi populations was evaluated using 351 

the software BARRIER v2.2 (Guerard & Manni 2004). This program links a matrix of 352 

geographical coordinates with their corresponding distance matrix (FST), and applies the Fnier’s 353 

maximum distance algorithm to identify a desired number of ‘barriers’ to gene flow among sites 354 

(i.e. zones where genetic differences between pairs of sites are the largest). This was done using 355 

the whole data set of 168 individuals from the 30 populations and also using only a subset of 356 

individuals not including individuals from cluster 1 (see Population differentiation in Results). 357 

 358 

Modelling of larval dispersal by currents  359 

The passive transport of larvae was simulated within a 9-year (Oct 2008–Sept 2017) record of 360 

daily velocity fields from the GOFS 3.0 1/12° global analysis of the HYCOM hydrodynamic 361 

model (Chassignet et al. 2007). A fourth order Runge-Kutta advective scheme was used with a 362 

1-day timestep and a random horizontal diffusive component (diffusion coefficient kx=1 m2s-1) 363 

representing unresolved scales of motion.  In the absence of detailed understanding of larval 364 

behaviour and vertical positioning, transport was simulated within the horizontal model layer at 365 

3,500 m depth, representing the lower water column at a level that is largely unobstructed by 366 

topography. Modelled currents at this depth are weak (the mean instantaneous current speed in a 367 

box encompassing the sample sites is 2.2 cm s-1, and the mean residual flow speed, the mean of 368 

the underlying mean flow, is 0.5 cm s-1; Aleynik et al. 2017). Larval connectivity between sites 369 

X and Y (the four different areas in our study) was assessed by continuously releasing ‘particles’ 370 

(1,000 per day) from site X throughout the first 4 years of the record, and determining the 371 

probability that they pass within a 25 km radius of site Y at any time within the following 5 years. 372 

Advection over this timescale should not be interpreted as representing the dispersal of a single 373 

larval generation, but as representing the cumulative dispersal of multiple generations, albeit 374 

represented as a single continuous pathway, so there is an implicit assumption that suitable 375 

benthic habitat exists along the pathway. 376 



 

The reproductive effort of adults (determining timing and number of larvae in the water 377 

column), and the larval development and behaviour, determine how larvae interact with currents 378 

and ultimately influence the timing, distance and trajectory of larvae among habitats (Hilario et 379 

al. 2015). Sympatric shallow-water sponges may substantially differ in their timing for sexual 380 

reproduction and these differences appear to be related to changes in seawater temperature 381 

(Riesgo & Maldonado 2008). To our knowledge, the only work studying seasonality in relation 382 

to sexual reproduction in deep-sea sponges was conducted in the North Atlantic and concluded 383 

that the reproduction of Radiella sol Schmidt, 1970 was not asynchronous and remained at a 384 

constant low level, while Thenea abyssorum Koltun, 1964 showed highly synchronized 385 

gametogenesis and was linked to seasonal pulses of particulate organic carbon (Witte 1996). Since 386 

the flux of phytoplankton to deep-sea waters in the equatorial Pacific appears to be quasi-387 

continuous, albeit with phytodetrital pulses (Smith et al. 1996), we assumed that, similarly to R. 388 

sol and in the absence of any reproductive data in P. craigi, the sponge studied here may have a 389 

constant low level of reproduction throughout the year. 390 

 391 

Evaluating bottleneck events & population decline 392 

We tested for recent effective population size reductions (bottlenecks) based on allele data 393 

frequencies using the software BOTTLENECK vs. 1.2.02 (Cornuet & Luikart 1996). This 394 

software assumes that “populations that have gone through a recent reduction of their effective 395 

population size show a reduction of the allelic diversity and heterozygosity, even though the allele 396 

frequencies are reduced faster than the heterozygosity” (Cornuet & Luikart 1996). The statistical 397 

analyses using a "sign test" (Cornuet & Luikart 1996) and a "Wilcoxon sign-rank test" (Luikart 398 

& Cornuet 1998) can be applied when more than 5 (but less than 20) loci are included, and we 399 

selected only the two most extreme models of mutation: infinite allele model (IAM) and the 400 

stepwise mutation model (SMM).   401 



 

Results 402 

I3-M11, 28S and spicule analyses 403 

Grouping of samples in cluster 1 (see Population differentiation section below for details about 404 

assignation to individuals to clusters), with specimens showing high molecular affinities despite 405 

being several 100’s km apart, made us suspect about the occurrence of cryptic species in our 406 

samples. Thus, a combination of molecular (28S and COI sequences) and morphological 407 

(spicules) analyses were conducted in a selection of individuals to detect the occurrence of cryptic 408 

species within our samples. 409 

Although we found variability in the COI I3-M11 partition in the 65 individuals analyzed, 410 

these differences were not congruent with the two main clusters (cluster 1 and cluster 2) detected 411 

in our population genetic analysis using microsatellites (see below). Thus, we could not assign 412 

any haplotype to any putative cryptic species. Similarly, the fragment of 421 bp of 28S from a 413 

total of nine individuals (four from cluster 1, including two samples from APEI-6 and two samples 414 

from UK-1A; five from cluster 2, including two samples from APEI-6, two from UK-1A and one 415 

from OMS-1A; Supplementary Table S1) showed no differences at all.  416 

For the spicule analysis we focused on the comparison of spheroxyasters since these 417 

spicules were the only ones displaying some morphological variability. We observed no 418 

significant differences among spicules coming from organisms in cluster 1 and cluster 2, either 419 

in their size or in the number of rays per spicule (Supplementary Material Figure 1). The number 420 

of rays did not differ significantly between individuals of the two clusters, ranging from 14–30 421 

for organisms from cluster 1 and 16–26 for organisms from cluster 2. However, there were slight 422 

differences in the ratio number of rays with spines between the two clusters; in cluster 1 the 423 

average was 89 % of rays with spines, whilst in cluster 2 it was 51 %. The size and features 424 

observed in spheroxyasters analysed here match those described in the original description of P. 425 

craigi, with a range of 11.2–13.1–15.4 µm for organisms in cluster 1 and 12.1–13.7–15.5 µm for 426 

cluster 2 (Lim et al. 2017). Importantly, the specimens used for the original description of the 427 

species by Lim et al. (2017) were collected in the OMS-1A area.  428 

 429 



 

Body size of P. craigi  430 

Correlation between maximum length and maximum width in P. craigi individuals measured here 431 

is shown in Supplementary Figure S2. Mean maximum length varied significantly between the 432 

different areas, with maximum lengths ranging from 3624±1265 μm (mean±S.D.)  in APEI-6 to 433 

5133±1776 μm in UK-1B (Fig. 2, Table 3, Supplementary Table S2). Tukey-Kramer post-hoc 434 

tests identified significant differences between APEI-6 samples and UK-1A and UK-1B samples 435 

(the former being significantly smaller than the two latter), and also between OMS-1A and UK-436 

1B samples (the former being significantly smaller than the latter) (Figure 2, Table 3). Significant 437 

differences were also found between individuals assigned to cluster 1 from APEI-6 and UK-1A 438 

areas (Table 3), although no significant differences were found between Cluster 1 vs Non-Cluster 439 

1 samples from the two different areas. No significant differences were detected for any pairwise 440 

comparison from the four different sampling stations within APEI-6 (APEI-6_Flat, APEI-441 

6_Ridge, APEI-6_Trough, and APEI-6_Deep). 442 

  443 

Genetic diversity in P. craigi populations 444 

Three of the 14 loci (4Ple, 6Ple, and 8Ple) used in our analysis showed significant linkage 445 

disequilibrium (LD) in pairwise comparisons with other loci. After removing these three loci from 446 

the analysis, none of the pairwise comparisons showed significant LD. Thus, all the subsequent 447 

analyses describing the genetic diversity and population differentiation in P. craigi are based only 448 

on 11 loci (1Ple, 3Ple, 11Ple, 13Ple, 12Ple, 14Ple, 16Ple, 5Ple, 19Ple, 10Ple, and 2Ple) out of the 449 

14 microsatellites originally characterized by Taboada et al. (2017). 450 

Genotypic variation, measured by the percentage of differences between multilocus 451 

genotypes in pairwise comparisons between the 168 P. craigi samples, showed no identical 452 

genotypes (i.e. absence of clonality). The total number of alleles per population ranged from 12 453 

in UK-1B_BC02 to 114 in APEI-6_Flat, with most of the variation resulting from three 454 

hypervariable microsatellites (i.e. 3Ple, 12Ple, and 16Ple; see Table 2, Supplementary Table S3). 455 

The mean number of alleles per population ranged from 1.091 to 10.364 in UK-1B_BC02 and 456 

APEI-6_Flat, respectively (Table 2, Supplementary Table S3). When considering the populations 457 



 

grouped within the four main areas (APEI-6, UK-1A, UK-1B and OMS-1A), the total number of 458 

alleles ranged from 146 in OMS-1A to 172 in UK-1A, while the mean number of alleles ranged 459 

from 13.273 in both UK-1B and OMS-1A to 15.636 in UK-1A (Table 2, Supplementary Table 460 

S3). Private alleles were not present in all populations and ranged from 1 (mean number of private 461 

alleles = 0.091) in seven populations in the UK-1B and OMS-1A areas (UK-1B_BC17, UK-462 

1B_BC20, UK-1B_BC02, UK-1B_BC03, OMS-1A-EB06-BC11-BC08, OMS-1A-BC12, and 463 

OMS-1A-BC10) to 10 (mean number of private alleles = 0.909) in UK-1A_BC12 (Table 2, 464 

Supplementary Table S3). Private alleles were present in all areas and ranged from 9 (mean 465 

number of private alleles = 0.727) in APEI-6 to 26 (mean number of private alleles = 2.364) in 466 

UK-1A (Table 2, Supplementary Table S3). When grouping samples from cluster 1 and cluster 467 

2, the total number of alleles was 98 in APEI-6 and 103 in UK-1A for cluster 1, and ranged from 468 

111 in APEI-6 to 146 in both UK-1B and OMS-1A for cluster 2 (Supplementary Table S4). The 469 

mean number of alleles was 8.909 in APEI-6 and 9.364 in UK-1A for cluster 1, and ranged from 470 

10.091 in APEI-6 to 13.273 in both UK-1B and OMS-1A for cluster 2 (Supplementary Table S4). 471 

Private alleles were 29 in APEI-6 (mean number of private alleles = 0.704) and 34 in UK-1A 472 

(mean number of private alleles = 0.814) for cluster 1, and ranged from 11 (mean number of 473 

private alleles = 1.000) in APEI-6 to 33 (mean number of private alleles = 3.000) in OMS-1A for 474 

cluster 2 (Supplementary Table S4). 475 

Genetic diversity (He) values varied widely across populations, ranging from 0.170 in 476 

UK-1B_BC02 to 0.705 in APEI-6_Flat, in part due to the relatively low number of individuals 477 

present in some populations (Supplementary Table S3). Genetic diversity was less variable across 478 

areas and ranged from 0.728 in UK-1B and OMS-1A to 0.791 in UK-1A (Supplementary Table 479 

3). Inbreeding coefficient values (FIS) were positive, resulting from heterozygosity deficit, for all 480 

the populations in the APEI-6 area and also for the majority of populations in the other three areas 481 

indicating non-random mating between individuals (Table 2). A few populations in UK-1A, UK-482 

1B and OMS-1A showed negative FIS values because of an excess of observed heterozygotes 483 

(Table 2). When considering the four large areas, FIS values were always positive (Table 2). 484 

Several populations in the four different areas showed significant deviation from HWE, and when 485 



 

considering the four areas together HWE deviations were detected in all of them (Table 2). When 486 

loci possibly affected by presence of null alleles (3Ple, 10Ple, 11Ple and 19Ple) were removed 487 

from the analysis, some of the populations showed no departure from HWE; however, the four 488 

different areas still showed a significant departure from HWE (Table 2). When grouping samples 489 

from cluster 1 and cluster 2, He values were 0.677 in APEI-6 and 0.712 in UK-1A for cluster 1, 490 

and ranged from 0.712 in UK-1A to 0.728 in both UK-1B and OMS-1A for cluster 2 491 

(Supplementary Table S4). FIS values were always positive and HWE deviations were detected 492 

for all the areas in cluster 1 and cluster 2 (Supplementary Table S4). 493 

 494 

Population differentiation in P. craigi 495 

Mitochondrial markers. A fragment of 526 bp of COI was analysed for 65 individuals of P. craigi 496 

occurring in the four different areas (Supplementary Table S1). Only two haplotypes were 497 

inferred in the haplotype network: H1 was the most common haplotype (accounting for 97 % of 498 

the total number of individuals) and occurred in individuals from the four areas (Figure 3); and 499 

H2, differing only in one mutational step from H1, was only present in two individuals from the 500 

UK-1A, namely UK-1A.4 and UK-1A.23 (Figure 3). 501 

 502 

Microsatellites. The optimal number of populations for the whole data set obtained by the 503 

program STRUCTURE recovered two genetically homogeneous groups (k = 2) followed by three 504 

groups (k = 3) (Figure 4A). Results for k = 2 revealed two populations with no clear pattern of 505 

geographic subdivision: (i) cluster 1 (Orange group) included most of the samples in APEI-6_Flat, 506 

all the samples in UK-1A_BC08-BC05 and UK-1A_BC03 and a few samples in the stations UK-507 

1A_BC06-EB03 and UK-1A_BC10; and (ii) cluster 2 (Blue group) contained the rest of the 508 

samples from APEI-6 and UK-1A, and all the samples from the sites in UK-1B and OMS-1A 509 

(Figure 4A). Results for k = 3 revealed substructure in cluster 2, with three populations of 510 

individuals present in different proportions in the four areas (Figure 4A). When grouping samples 511 

from cluster 1 and cluster 2, the optimal number of populations detected was two genetic groups 512 

(k = 2) for cluster 1, and three (k = 3) for cluster 2 (Supplementary Figure S3A-B). 513 



 

DAPC analysis considering all the samples grouped in the four areas showed APEI-6 and 514 

UK-1A as the most similar areas, UK-1B being closer to UK-1A, while OMS-1A was the most 515 

divergent of the areas (Fig. 4B); a similar picture could be observed when analysing the 30 516 

different sites separately (Supplementary Figure S3C). When the samples of the cluster 1 were 517 

separated and considered as a separated area, UK-1B and the remaining samples of APEI-6 and 518 

UK-1A grouped together, while samples from cluster 1 and OMS-1A appeared as the most 519 

divergent ones (Fig. 4C). After removing from the analysis all the samples from cluster 1 and 520 

OMS-1A area, DAPC showed differences between APEI-6, UK-1A and UK-1B, with samples 521 

from UK-1A and UK-1B more closely related than with APEI-6 (Supplementary Figure S4). 522 

When grouping samples from cluster 1, two groups with a significant overlap were detected in 523 

samples from APEI-6 and UK-1A (Supplementary Figure S3D). When grouping together samples 524 

from cluster 2, DAPC showed that APEI-6 and UK-1B samples were the most similar ones, with 525 

UK-1A being closer to UK-1B, and OMS-1A being again the most divergent area (Supplementary 526 

Figure S3E). 527 

When treating all locations separately, FST values were significant for: (i) the majority of 528 

pairwise comparisons between APEI-6_Flat and UK-1A_BC08-BC05 with the rest of sampling 529 

sites; (ii) for UK-1B_BC18-MC13 with UK-1B_BC03 and the majority of OMS-1A sampling 530 

sites; (iii) OMS-1A_BC25-MC23-BC26 with three of the four sites of APEI-6 and three sites of 531 

UK-1A and UK-1B; and (iv) for five of the pairwise comparisons between APEI-6_Ridge with 532 

OMS-1A sites, amongst other comparisons (Supplementary Table S5). However, our FST values 533 

for locations treated separately should be interpreted with caution due to the low number of 534 

specimens analysed in some populations. When grouping samples per area, FST values ranged 535 

from 0.00709 between APEI-6 and UK-1A to 0.11132 between APEI-6 and OMS-1A, and were 536 

significant between all pairwise comparisons except for the comparison between APEI-6 and UK-537 

1A (Table 4). FST values based only in the 7 microsatellites not affected by null alleles showed 538 

the same significant pairwise comparisons as with the whole set of microsatellites 539 

(Supplementary Table S6). When grouping samples from cluster 1, FST value was 0.011 and not 540 

significant between APEI-6 and UK-1A, while when considering samples from cluster 2 all 541 



 

pairwise comparisons resulted significant except for the comparisons between APEI-6 and UK-542 

1B, and between UK-1A and UK-1B (Supplementary Table S7). 543 

Population differentiation using AMOVA, found significant differences between the four 544 

different areas, and also among populations within areas, among individuals within populations, 545 

and among all individuals, with the last representing the greatest source of variation (Table 5). 546 

When grouping samples from cluster 1, no significant differences were found between APEI-6 547 

and UK-1A (Supplementary Table S8); for cluster 2, significant differences were found between 548 

the four different areas, among individuals within areas, and within individuals, with the last one 549 

representing the greatest source of variation (Supplementary Table S8). 550 

 551 

Dispersal patterns in P. craigi 552 

The Mantel tests detected no significant IBD when considering the whole data set of individuals 553 

(p = 0.131) and still was not significant after removing from the analysis individuals from cluster 554 

1 (Orange group) (p = 0.373), which indicates that the genetic structure observed might be related 555 

to other processes (e.g. oceanographic currents, see below).  556 

When considering the whole data set of individuals and setting two major barriers a 557 

priori, the barriers or genetic discontinuities appeared, in decreasing order of importance, 558 

between: (a) all the samples of the APEI-6 area plus three UK-1A sites (UK-1A_BC06-EB03, 559 

UK-1A_BC08-BC05, and UK-1A_BC14) and the rest of sites; and (b) most of the samples from 560 

OMS-1A (OMS-1A_BC21, OMS-1A_BC22, OMS-1A_BC09, OMS-1A_BC23, OMS-561 

1A_BC25-MC23-BC26, and OMS-1A_BC10) and the rest of sites (Supplementary Figure S5). 562 

When removing cluster 1 from the analysis, the barrier between APEI-6 and UK-1A disappeared, 563 

and the three main barriers inferred appeared between (a) most of the OMS-1A sites (OMS-564 

1A_BC10, OMS-1A_BC25-MC23-BC26, OMS-1A_BC23, OMS-1A_BC09, OMS-1A_BC22, 565 

and OMS-1A-BC21) and the rest of sites; (b) UK-1B_EB09-BC04 and UK-1B_BC02; and (c) 566 

OMS-1A-EB06-BC11-BC08, OMS-1A-BC12, and OMS-1A-BC07 (Supplementary Figure S5). 567 

Thus, after removing cluster 1 from the analysis the main barriers appeared to be between OMS-568 

1A and the rest of the sites studied here. 569 



 

The population assignment showed remarkable genetic exchange between areas, 570 

especially for APEI-6 and UK-1A with almost 50 % of their individuals inferred to come from 571 

UK-1A and UK-1B, and from APEI-6 and UK-1B, respectively (Supplementary Figure S6). In 572 

contrast, most of the individuals from UK-1B (73 %) and OMS-1A (97 %) were inferred to result 573 

from self-recruitment (Supplementary Figure S6). Only one last generation migrant was detected, 574 

an individual from UK-1A_BC14 (one of the southernmost sites in UK-1A; Fig. 1) that was 575 

inferred to come from UK-1B. Migration inferred using LAMARC showed no clear pattern of 576 

gene flow among the four different areas, with relatively low and similar numbers of immigrants 577 

per generation among the different pairwise comparisons; similar results were detected after 578 

analysing migration between APEI-6 and UK-1A from cluster 1 (Table 6–7). Migration 579 

directionality among areas using diveRsity detected significant migration both from OMS-1A and 580 

UK-1B to UK-1A (Figure 6F), and no significant migration directionality was detected among 581 

any of the areas when analysing samples from cluster 1 and cluster 2 separately.. 582 

 583 

Modelled larval dispersal by currents 584 

Modelled currents at the 3500 m level used for advective dispersal simulations are strongly 585 

bathymetrically constrained, so mean flow patterns (Fig. 5) showed considerable spatial 586 

complexity. Superimposed on these mean patterns is variability induced in part by the deep 587 

penetration of passing eddies and other flow structures higher in the water column (Aleynik et al. 588 

2017). The dispersal of simulated particles therefore reflects intricate stirring with a weak 589 

underlying tendency towards a net movement to the north and east (Fig. 6A–E; Supplementary 590 

Video S1). The calculated probability of the transport of larvae between sites (Table 8) revealed 591 

stronger connectivity between OMS-1A and UK-1B than between these two sites and UK-1A. In 592 

part this reflects greater separation, but also a residual flow to the east along a gentle bathymetric 593 

slope around 12.5N tends to restrict direct transport between UK-1A and these two sites. APEI-594 

6, while considerably less connected to the other three sites as a result of its separation distance, 595 

is nearly an order of magnitude more likely to receive larvae from UK-1A than from UK-1B or 596 

OMS-1A over a 5-year timescale (potentially representing multiple successive generations).  597 



 

Discussion 598 

No evidence of cryptic species 599 

The extremely low variability of COI I3-M11 partion in samples ~900 km apart showed by P. 600 

craigi in our study is not surprising for sponges. The commonly used Folmer region of the COI 601 

gene (Folmer et al. 1994) has traditionally showed relatively low genetic variation within sponge 602 

species (Worheide et al. 2005), explained by slow mitochondrial COI sequence evolution in 603 

sponges, with very few exceptions (Duran & Rützler 2006; DeBiasse et al. 2010), possibly related 604 

to the active presence of mitochondrial repair mechanisms (Huang et al. 2008). Other 605 

mitochondrial partitions such as the Erpenbeck’s ‘I3-M11’ fragment (Erpenbeck et al. 2006), has 606 

proven to be suitable for population connectivity studies in other sponges (e.g. López-Legentil & 607 

Pawlik 2009; Xavier et al. 2010), but it provided no resolution in our study (Fig. 3). Importantly, 608 

this extremely low COI variability was observed for samples included in cluster 1, which grouped 609 

samples collected from the APEI-6_Flat and several UK-1A sampling sites, two areas ~800 km 610 

apart that showed unexpected gene flow in our analysis (Fig. 4A–B). As for the morphology of 611 

the spicules, it is important to note that similar morphological differences in spheroxyasters from 612 

the specimens of cluster 1 and cluster 2 were already detected in the specimens used in the original 613 

description of P. craigi (Lim et al. 2017); the specimens analysed by Lim et al. (2017) were all 614 

collected from OMS-1A (all of them belonging to cluster 2), which indicates that the 615 

spheroxyasters of P. craigi display a moderate intraspecific variability. Thus, our findings of 616 

homogeneity in COI and 28S, together with our analysis of spicule spheroxyasters morphology 617 

and size (Fig. 3, Supplementary Figure S1), provided no evidence for cryptic species in the 618 

samples used in our study and suggest that all the organisms used in our study belong to the same 619 

species. However, the possibility of members of cluster 1 being a cryptic species should not be 620 

ruled out. For this reason, we decided to run most of the downstream analyses considering 621 

members of cluster 1 and cluster 2 separately. 622 

 623 

Body size in P. craigi 624 



 

The significant size differences observed in the individuals of P. craigi collected from APEI-6 625 

and OMS-1A compared to the ones collected in UK-1A and UK-1B (Fig. 2, Table 3) might be 626 

attributed to specimens in these areas belonging to different age cohorts or explained by 627 

ecological differences in the different areas. Under these premises, three possible scenarios are 628 

presented: (i) a relatively more recent colonization of nodules by P. craigi in APEI-6 and OMS-629 

1A; (ii) population decimations of the sponge causing bottlenecks in APEI-6 and OMS-1A; and 630 

(iii) differences in food availability in the different areas. The first scenario might be plausible in 631 

the case of APEI-6, since most water and gene flow is predominantly northwards, and, therefore, 632 

the individuals in APEI-6 might be the result of a recent colonization. For OMS-1A, though, this 633 

possibility seems less likely since the suggested direction of migration originates mainly from 634 

OMS-1A into the rest of the areas. Thus this hypothesis will not explain why individuals in OMS-635 

1A are significantly smaller than the ones in UK-1B (Table 3). On the other hand, all areas 636 

presented recent signs of bottleneck events (Supplementary Table S9), and, therefore, bottlenecks 637 

could not explain the differences in size observed among areas.  638 

Alternatively, it seems that differences in food availability might explain differences 639 

observed between APEI-6 and UK-1A and UK-1B specimen sizes. Plenaster craigi is a filter-640 

feeding organism relying on suspended particulate organic matter, bacteria and other 641 

microorganisms. The CCZ is known to have an overall westward and northward trend of reduced 642 

primary productivity in the central Pacific (Smith & Demopoulos 2003; Vanreusel et al. 2016), 643 

that has been suggested to yield a significant decline in the polychaete abundance when moving 644 

from the eastern to the western end (Smith et al. 2008b) and also to a decline of epifauna 645 

associated with manganese nodules in areas to the north (Vanreusel et al. 2016). In our case, 646 

smaller specimens of P. craigi found in the north (APEI-6) compared to those in the south (UK-647 

1A and UK-1B) could result from differences in overlying primary productivity and export flux 648 

(Supplementary Figure S7, data extracted from Lutz et al. 2007). However, the reason why 649 

samples from OMS-1A (also in the south) were significantly smaller than samples from UK-1B 650 

despite being at similar latitudes (and only separated by ca. 75 km) and the little differences they 651 

show in POC flux (Supplementary Figure S7) remains unclear. 652 



 

 653 

Genetic diversity in P. craigi 654 

Mean expected heterozygosity (He), commonly used as a measure of genetic diversity, for all loci 655 

across all sites ranged from 0.728–0.791 between the four different areas, with similar values 656 

being reported when considering cluster 1 and cluster 2 separately. Such relatively high genetic 657 

diversity values could be correlated to either high mutation rates and/or relatively stable 658 

population sizes (Kimura 1983). In our case, all populations seemed to have similar effective 659 

population sizes and all showed signs of population bottlenecks, and, therefore, we could not 660 

confirm whether they were stable populations. 661 

The genetic diversity values found in our study are within the range of other studies on 662 

marine sponges using microsatellite markers. Comparisons with data available in these studies 663 

(Duran et al. 2004; Blanquer et al. 2009; Blanquer & Uriz 2010; Dailianis et al. 2011; Guardiola 664 

et al. 2012, 2016; Bell et al. 2014; Pérez-Portela et al. 2015; Giles et al. 2015; Chaves-Fonnegra 665 

et al. 2015; Riesgo et al. 2016, under review; Padua et al. 2017), revealed that He increased as the 666 

sampling range covered larger distances (Fig. 7). Our He values are especially similar to those in 667 

studies covering around 1,000 km, a spatial scale similar to ours.  668 

Even though genetic diversity reported here was high for most of the populations and all 669 

the areas (also when considering members of cluster 1 and cluster 2 separately), high positive FIS 670 

values were also observed, indicating strong levels of inbreeding (i.e. non-random mating 671 

between individuals) in P. craigi. Such inbreeding signatures are also supported by the deviations 672 

from HWE observed in most populations of P. craigi. Signatures of Hardy Weinberg 673 

disequilibrium are often the rule in shallow-water sponges (e.g. Duran et al. 2004; Dailianis et al. 674 

2011; Pérez-Portela et al. 2015; Giles et al. 2015; Chaves-Fonnegra et al. 2015; Riesgo et al. 675 

2016) and also in the deep-water reef-forming sponge Aphrocallistes vastus Schulze, 1886, 676 

although in this case disequilibrium was observed only at global and regional scales and not 677 

within sites (Brown et al. 2017). As it has recently been discussed by Riesgo et al., (2016) and 678 

other studies, reasons explaining the high levels of homozygosity in sponge populations may 679 

include a significant effect of null alleles, high levels of inbreeding, selection against 680 



 

heterozygotes, the Wahlund effect, or a combination of these (Freeland et al. 2011). In P. craigi, 681 

the effect of null alleles should be disregarded since, the four different areas still showed a 682 

significant departure from HWE (Table 2), although some of the populations showed no departure 683 

from HWE when removing the loci possibly affected by the presence of null alleles (3Ple, 10Ple, 684 

11Ple and 19Ple). High FIS values and departure from HWE in P. craigi are likely related to the 685 

biology of the species, as has already been claimed in other studies on shallow-water sponges 686 

(Chaves-Fonnegra et al. 2015; Riesgo et al. 2016). Very little is known about the reproduction of 687 

deep-sea sponges in general (Witte 1996), and nothing about the reproduction of P. craigi in 688 

particular, but we suggest that one of the main reasons behind the high levels of inbreeding and 689 

deficit of heterozygosity might be self-recruitment. This may be a result of limited dispersal of 690 

either gametes or larvae in P. craigi, supported by the observation that deep-sea currents in this 691 

area are weak and dispersal by currents is expected to be small between successive generations. 692 

Self-recruitment also been suggested for other marine sessile invertebrates with larvae with low-693 

dispersal abilities, including both shallow-water (e.g. Chaves-Fonnegra et al. 2015; Pérez-Portela 694 

et al. 2016; Riesgo et al. 2016) and deep-sea species (Le Goff-Vitry et al. 2004). Finally, the 695 

Wahlund effect caused by subpopulation structure should not be ruled out as a possible reason 696 

explaining low levels of heterozygosity, since it has already been documented for sponges 697 

(Chaves-Fonnegra et al., 2015) and cnidarians (Ledoux et al. 2010).  698 

 699 

Population differentiation, connectivity and the effect of oceanic circulation in P. craigi 700 

Our microsatellite dataset provided detailed resolution of the genetic differentiation and 701 

connectivity of P. craigi. The populations studied here showed marked genetic structure at large 702 

geographical scales, as indicated by the significant differences observed between the four 703 

different areas in the AMOVA analysis, together with the low but significant FST values when 704 

comparing the four areas in pairwise groupings, except for the comparison between APEI-6 and 705 

UK-1A (Table 4–5). In this sense, isolation by distance (IBD) could not explain this pattern of 706 

large-scale differentiation and instead two major genetic discontinuities were detected: one 707 



 

separating APEI-6 and some sites of UK-1A from the rest of sites sampled, and another one 708 

separating most of the samples from OMS-1A from the rest of areas (Supplementary Figure S5).  709 

Baco et al., (2016) recently reviewed the incidence of IBD in deep- and shallow-water 710 

marine organisms (no sponges were included in their analysis), and they concluded that scales of 711 

dispersal and connectivity in deep-water organisms are comparable to those reported for shallow-712 

water organisms, which would then justify comparing our results with others for shallow-water 713 

organisms. In this sense, several shallow-water sponges seem to be substantially affected by 714 

oceanographic fronts, ocean depth, and water circulation patterns, showing very little incidence 715 

of patterns following the stepping stone gene flow derived from IBD (e.g. Dailianis et al. 2011; 716 

Chaves-Fonnegra et al., 2015; Riesgo et al., 2016; Padua et al. 2017). Interestingly, no IBD was 717 

detected for a hadal amphipod species of the genus Paralicella occurring in the Pacific, with 718 

geological events and topographical barriers most likely responsible for the major isolation 719 

observed among their populations (Ritchie et al. 2017). In contrast, IBD has also commonly been 720 

reported in shallow-water sponges specially in studies comprising large-scale sampling sites (e.g. 721 

Duran, Pascual, Estoup, & Turon, 2004; Guardiola, Frotscher, & Uriz, 2016; Wörheide, Epp, & 722 

Macis, 2008) or even at smaller scales after removing from the analysis populations occurring in 723 

areas separated by well-known oceanographic barriers (Riesgo et al. 2016), and has commonly 724 

been explained by low dispersal abilities of sponges. There is also a wealth of examples in other 725 

shallow-water organisms showing IBD between their populations, even when considering species 726 

with presumably high dispersal abilities (e.g. Launey et al. 2002; Maier et al. 2005; Zulliger et 727 

al. 2009). 728 

Testing environmental factors responsible for the genetic structure observed is a major 729 

goal in ecological analysis and, at the same time, is one of the major challenges for studies aiming 730 

to describe genetic connectivity in the deep sea (Hansen & Hemmer-Hansen 2007; Taylor & 731 

Roterman 2017). To our knowledge, the combination of ecological and physical models and 732 

population genetics has been attempted for relatively few studies of deep-sea organisms but has 733 

usually provided greater insights into the factors ultimately determining connectivity among 734 

populations (Jorde et al. 2015; Dambach et al. 2016). Our use of oceanographic models to 735 



 

estimate larval transport may explain some of the patterns in the large-scale population 736 

differentiation and connectivity of P. craigi. The major differentiation found for the OMS-1A 737 

area (both in STRUCTURE and DAPC analyses) could be explained by the occurrence of currents 738 

and eddies mainly running northwards from OMS-1A (Fig. 5–6), thus preventing gene flow into 739 

OMS-1A from the other sampled areas, which was also observed in the analysis of the 740 

directionality of the gene flow (Figure 6F). A northward net larval transport would connect UK-741 

1B and UK-1A, which was also corroborated by the low (although significant) FST values found 742 

between these two areas and the affinities found in the DAPC analyses.   743 

We detected signatures of gene flow within samples from cluster 1 recovered in 744 

STRUCTURE, which grouped together samples separated ~800 km apart (e.g. APEI-6_Flat and 745 

UK-1A_BC08-BC05 and UK-1A_BC03), showing significant pairwise FST comparisons between 746 

this group of samples and the rest of sampling sites (Supplementary Table S5). Although relative 747 

migration may not be significant between APEI-6 and UK-1A (Fig. 6F), our particle movement 748 

model suggested larval flow mainly from UK-1A to APEI-6, potentially enabling connectivity 749 

between these two areas (Figure 6) via stepping-stone populations. Thus, despite being separated 750 

by ~800 km, individuals from these two areas assigned to cluster 1 showed closer genetic 751 

affinities between them than they did with individuals from nearby sites only 10s km apart. This 752 

evidence of population structure on 10-km scales could not be explained by our circulation model, 753 

and could be related to cryptic speciation and/or unexplained characteristics of the reproductive 754 

biology of P. craigi causing limited dispersal under some conditions. On the other hand, 755 

connectivity patterns over almost 1,000 km as observed between UK-1A and APEI-6 populations 756 

are not unexpected, since gene flow in the deep sea appears generally more extensive horizontally 757 

over large distances than vertically (e.g. Clague et al. 2012; O’Hara et al. 2014). However, there 758 

is no direct knowledge of the reproductive or larval biology of P. craigi, and our current 759 

understanding of circulation patterns near the CCZ floor remain limited, requiring caution in the 760 

interpretation of our circulation modelling. 761 

Our migration analyses showed very little movement of individuals between areas, with 762 

less than two immigrants per generation in all cases (Table 7). Although relative migration levels 763 



 

were higher from OMS-1A to the rest of the areas, from APEI-6 and UK-1A, and among UK-1A 764 

and UK-1B, in general all migration levels were very low (Table 6). This suggests that sponge 765 

recolonization follow large-scale mining disturbance in the UK-1 and OMS contract areas may 766 

be slow due to the limitations of larval dispersal. For sponges, low migration levels between 767 

populations is not rare, since very few migrants are usually reported among locations (e.g., Riesgo 768 

et al., 2016), and this pattern is also shared with other sessile invertebrates (Pérez-Portela et al. 769 

2015). By contrast, a deep-sea amphipod species of the genus Paralicella displayed a remarkably 770 

high and reciprocal Pan-Pacific migration between hadal trench populations (Ritchie et al. 2017). 771 

Contrasting results for P. craigi and the above-mentioned hadal amphipod may be explained by 772 

the fact that, as for the majority of deep-sea scavenging amphipods, members of the genus 773 

Paralicella are obligate necrophages with direct development and active dispersal through 774 

swimming by juveniles and adults (Van Dolah & Bird 1980). 775 

 776 

Importance for conservation 777 

 A general consensus exists in that there is currently a very limited understanding of the 778 

communities and the species present in the deep-sea regions under the threat of major mining 779 

disturbances, which compromises our ability to manage them sustainably (Hilario et al. 2015). In 780 

the development of a Regional Environmental Management Plan for the CCZ, the need to 781 

establish a series of no-mining areas was developed. These areas were termed Areas of Particular 782 

Environmental Interest (APEI). APEIs have the important proposed role of protecting vulnerable 783 

habitats and their appropriate design is crucial to safeguard the biodiversity and ecosystem 784 

function present in the region (Wedding et al. 2013). However, to date there has been limited 785 

study in the CCZ’s APEIs. There is thus an urgent need to fill fundamental science gaps in these 786 

particular regions, especially for demographic connectivity of the species in these APEIs, one of 787 

the critical parameters to be taken into account in reserve design to avoid irreversible losses after 788 

anthropogenic disturbances (e.g. Wright et al. 2015).  789 

In the light of our results, a critical question to address is: does APEI-6 safeguard 790 

biodiversity and ecosystem function represented in nearby mining exploration areas such as UK-791 



 

1A, UK-1B and OMS-1A? From the P. craigi data, which is limited to a single-species from a 792 

single functional group, it appears that APEI-6 does serve a conservation role (there is species 793 

overlap and connectivity between UK-1A and APEI-6), but on its own may be inadequate, 794 

especially as a source of propagules, since OMS-1A exhibits population isolation with respect to 795 

the other areas and contributes the most to the exchange of genetic diversity in the region. With 796 

regard to the genetic diversity exhibited in each area, UK-1A presented the highest values, 797 

therefore, the loss of this particular population could have repercussions on the overall genetic 798 

diversity of the species. Without further data on P. craigi from other APEIs (e.g. APEI-9 to the 799 

south-west of the study region), it is hard to make firm recommendations, but it would appear that 800 

an APEI designation to the south and/or west of the UK, OMS, BGR (German), NORI (Nauru) 801 

and TOML (Tonga) contract areas would be valuable, potentially supporting gene flow in 802 

westerly and northerly directions. It is notable that there are no mining exploration areas in this 803 

region, and it is thus likely to be suited to APEI designation.   804 
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Tables 1111 
 1112 
Table 1. Details of the samples analyzed in the present study at each of the sampling 1113 
areas. a AG Agassiz trawl, BC boxcore, EBS epibenthic sledge, HB Hydraulic benthic in 1114 
situ sampler (Hybis ROV), MC multicore. b In brackets the number of specimens 1115 
successfully used for microsatellite analysis 1116 
 1117 

Cruise/Area 
Original 

sampling station  
Geara Nb 

Depth 

(m) 
Latitude (N) Longitude (W) 

APEI-6       

JC120 APEI-6_Flat1 BC 3 (3) 4156 17°14.448 123°0.3978 

JC120 APEI-6_Flat2 BC 4 (4) 4161 17°14.9320 123°1.2820 

JC120 APEI-6_Flat3 BC 6 (5) 4153 17°15.019 123°1.7570 

JC120 APEI-6_Flat4 BC 2 (2) 4180 17°13.184 123°2.667 

JC120 APEI-6_Flat5 BC 4 (3) 4162 17°14.381 123°1.584 

JC120 APEI-6_Flat6 MC 2 (2) 4162 17°14.433 123°3.967 

JC120 APEI-6_Flat7 MC 1 (1) 4155 17°15.022 123°1.759 

JC120 APEI-6_Flat8 AG 2 (0) 4169 17°15.455 123°3.5890 

Total Flat   24 (20)    

JC120 APEI-6_Ridge1 BC 3 (2) 4021 17°21.5610 122°54.185 

JC120 APEI-6_Ridge2 BC 4 (2) 4045 17°18.843 122°54.047 

JC120 APEI-6_Ridge3 BC 3 (2) 4028 17°22.00157 122°53.971888 

JC120 APEI-6_Ridge4 BC 1 (1) 4015 17°17.31 122°53.068 

JC120 APEI-6_Ridge5 BC 2 (2) 4012 17°19.672 122°53.271 

JC120 APEI-6_Ridge6 MC 1 (1) 4012 17°17.30046 122°53.07351 

Total Ridge     14 (10)       

JC120 APEI-6_Trough1 BC 1 (1) 4264 17°13.868817 122°48.90019 

JC120 APEI-6_Trough2 BC 5 (2) 4231 17°17.77448 122°50.12778 

JC120 APEI-6_Trough3 MC 2 (2) 4234 17°17.789 122°50.128 

Total Trough     8 (5)       

JC120 APEI-6_Deep1 BC 1 (1) 4297 16°54.7716 122°59.8412 

JC120 APEI-6_Deep2 MC 1 (1) 4297 16°54.7770 122°59.8290 

JC120 APEI-6_Nodule HB 1 (1) 4321 16°53.4309 122°50.6078 

Total Deep_Nodule   3 (3)    

Total APEI-6   49 (38)    

UK-1A             

AB01 UK-1A_BC03 BC 3 (2) 4171 13°52.900 116°28.000 

AB01 UK-1A_BC05 BC 17 (17) 4081 13°47.601 116°42.185 

AB01 UK-1A_BC06 BC 1 (1) 4084 13°57.794 116°34.093 

AB01 UK-1A_BC08 BC 1 (1) 4076 13°48.700 116°42.600 

AB01 UK-1A_BC10 BC 7 (7) 4036 13°45.001 116°30.799 

AB01 UK-1A_BC12 BC 8 (8) 4050 13°51.801 116°32.800 

AB01 UK-1A_BC14 BC 10 (10) 4160 13°43.597 116°40.200 

AB01 UK-1A_EB03 EBS 1 (1) 4130 13°57.437 116°30.101 

AB01 UK-1A_EB04 EBS 3 (3) 4128 13°48.254 116°28.196 

Total UK-1A   51 (50)    



 

UK-1B             

AB02 UK-1B_BC01 BC 5 (5) 4127 12°24.977 116°42.891 

AB02 UK-1B_BC02 BC 2 (2) 4159 12°22.022 116°31.021 

AB02 UK-1B_BC03 BC 5 (5) 4144 12°24.410 116°29.085 

AB02 UK-1B_BC04 BC 1 (1) 4160 12°22.259 116°36.819 

AB02 UK-1B_BC06 BC 2 (2) 4237 12°34.742 116°41.218 

AB02 UK-1B_BC13 BC 2 (2) 4130 12°27.066 116°35.661 

AB02 UK-1B_BC15 BC 5 (5) 4196 12°27.107 116°30.736 

AB02 UK-1B_BC17 BC 3 (3) 4228 12°34.190 116°32.333 

AB02 UK-1B_BC18 BC 10 (10) 4136 12°25.195 116°37.477 

AB02 UK-1B_BC20 BC 3 (3) 4258 12°35.813 116°29.614 

AB02 UK-1B_EB09 EBS 1 (1) 4460 12°21.62 116°41.99 

AB02 UK-1B_MC13 MC 1 (1) 4129 12°27.059 116°35.667 

AB02 UK-1B_MC25 MC 1 (1) 4224 12°34.953 116°39.058 

Total UK-1B   41 (41)    

OMS-1A             

AB02 OMS-1A_BC07 BC 2 (2) 4183 12°07.066 117°20.621 

AB02 OMS-1A_BC08 BC 1 (1) 4114 12°10.868 117°15.659 

AB02 OMS-1A_BC09 BC 5 (5) 4070 12°04.914 117°10.691 

AB02 OMS-1A_BC10 BC 2 (2) 4144 12°00.567 117°10.687 

AB02 OMS-1A_BC11 BC 3 (3) 4090 12°13.0425 117°19.5229 

AB02 OMS-1A_BC12 BC 4 (4) 4044 12°08.695 117°19.526 

AB02 OMS-1A_BC21 BC 6 (6) 4054 12°08.156 117°12.900 

AB02 OMS-1A_BC22 BC 7 (7) 4051 12°05.994 117°11.796 

AB02 OMS-1A_BC23 BC 3 (3) 4095 12°03.278 117°15.103 

AB02 OMS-1A_BC25 BC 3 (3) 4141 12°00.559 117°22.818 

AB02 OMS-1A_BC26 BC 1 (1) 4139 12°01.643 117°19.512 

AB02 OMS-1A_EB06 EBS 1 (1) 4137 12°15.05 117°19.23 

AB02 OMS-1A_MC23 MC 1 (1) 4148 12°00.554 117°22.821 

Total OMS-1A   39 (39)    

GRAND TOTAL     180 (168)       
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Table 2. Descriptors of genetic diversity for all 30 locations and the four areas of P. craigi using the data set containing 11 loci and also the dataset 1119 
using 7 loci after removing the four loci (3Ple, 10Ple, 11Ple and 19Ple) possibly being affected by the presence of null alleles. Some of the sampling 1120 
stations are the result of pooling the original sampling stations from Table 1. N sample size, Na mean number of alleles per locus, Pa mean number 1121 
of private alleles, He expected heterozygosity, Ho observed heterozygosity, FIS inbreeding coefficient, HWE Significant deviation from Hardy-1122 
Weinberg Equilibrium after application of Narum correction (P < 0.05). ns=not significant, ** P<0.01, *** P<0.001 1123 
 1124 

Area/Sampling station N Na   Pa   Ho   He   FIS   HWE   

  11 loci  7 loci 11 loci  7 loci 11 loci  7 loci 11 loci  7 loci 11 loci  7 loci 11 loci  7 loci 

APEI-6                         

APEI-6_Ridge 10 6.364 5.857 0.273 0.286 0.570 0.671 0.700 0.654 0.163 -0.040 *** ns 

APEI-6_Trough 5 4.727 4.143 0.000 0.000 0.564 0.571 0.658 0.597 0.167 0.084 ns ns 

APEI-6_Flat 20 10.364 9.857 0.273 0.143 0.478 0.554 0.705 0.664 0.304 0.140 *** *** 

APEI-6_Deep-Nodule 3 3.364 3.000 0.000 0.000 0.485 0.476 0.571 0.484 0.170 0.040 ns ns 

Total APEI-6 38 13.455 12.857 0.727 0.571 0.516 0.583 0.775 0.735 0.342 0.225 *** *** 

UK-1A                           

UK-1A_BC06-EB03 2 2.273 2.429 0.000 0.000 0.545 0.643 0.500 0.554 -0.080 -0.143 ns ns 

UK-1A_BC08-BC05 18 8.000 7.571 0.636 0.571 0.480 0.549 0.697 0.657 0.326 0.193 *** *** 

UK-1A_BC12 8 6.000 5.286 0.909 1.286 0.365 0.385 0.689 0.628 0.395 0.275 *** *** 

UK-1A_BC03 2 2.636 2.714 0.000 0.000 0.636 0.714 0.466 0.518 -0.383 -0.400 ns ns 

UK-1A_BC14 10 6.273 6.429 0.545 0.857 0.445 0.500 0.658 0.668 0.305 0.229 *** *** 

UK-1A_EB04 3 2.818 2.571 0.000 0.000 0.576 0.619 0.500 0.460 -0.183 -0.343 ns ns 

UK-1A_BC10 7 5.727 5.286 0.000 0.000 0.498 0.469 0.684 0.635 0.317 0.337 *** *** 

Total UK-1A 50 15.636 16.000 2.364 2.857 0.472 0.513 0.791 0.760 0.412 0.340 *** *** 

UK-1B              

UK-1B_BC06-MC25 3 3.364 3.286 0.000 0.000 0.545 0.619 0.571 0.540 0.056 -0.140 ns ns 

UK-1B_BC17 3 3.091 2.857 0.091 0.143 0.545 0.619 0.540 0.508 -0.031 -0.259 ns ns 

UK-1B_BC20 3 3.455 3.286 0.091 0.143 0.470 0.476 0.612 0.587 0.232 0.174 ns ns 

UK-1B_BC01 5 4.091 4.143 0.182 0.143 0.491 0.571 0.595 0.571 0.186 0.019 ** ns 



 

UK-1B_BC18-MC13 11 6.909 6.571 0.455 0.714 0.415 0.455 0.649 0.576 0.331 0.200 *** *** 

UK-1B_BC13 2 2.000 2.286 0.000 0.000 0.500 0.643 0.364 0.429 -0.383 -0.489 ns ns 

UK-1B_BC15 5 4.000 3.857 0.182 0.000 0.468 0.521 0.571 0.512 0.147 -0.056 ns ns 

UK-1B_EB09-BC04 2 2.455 2.286 0.000 0.000 0.500 0.571 0.523 0.482 0.093 -0.156 ns ns 

UK-1B_BC02 2 1.091 1.143 0.091 0.000 0.136 0.071 0.170 0.125 0.167 0.333 ns ns 

UK-1B_BC03 5 3.273 2.857 0.091 0.143 0.491 0.543 0.532 0.476 0.101 -0.102 ns ns 

Total UK-1B 41 13.273 13.429 1.364 1.429 0.470 0.517 0.728 0.676 0.328 0.206 *** *** 

OMS-1A                           

OMS-1A_EB06-BC11-BC08 5 4.818 4.857 0.091 0.143 0.491 0.543 0.675 0.649 0.256 0.145 *** ns 

OMS-1A_BC12 4 3.636 3.286 0.091 0.143 0.545 0.536 0.597 0.531 0.045 -0.032 ns ns 

OMS-1A_BC07 2 2.909 2.714 0.182 0.143 0.591 0.571 0.568 0.518 -0.013 -0.111 ns ns 

OMS-1A_BC21 6 5.273 5.143 0.000 0.000 0.536 0.629 0.663 0.610 0.211 0.041 *** ns 

OMS-1A_BC22 7 5.455 5.571 0.455 0.714 0.409 0.449 0.620 0.582 0.317 0.170 *** ns 

OMS-1A_BC09 5 4.273 4.143 0.000 0.000 0.418 0.486 0.636 0.577 0.298 0.119 *** ns 

OMS-1A_BC23 3 2.545 2.571 0.182 0.286 0.515 0.524 0.455 0.429 -0.088 -0.197 ns ns 

OMS-1A_BC25-MC23-BC26 5 4.455 5.000 0.182 0.286 0.559 0.621 0.613 0.663 0.061 0.022 ns ns 

OMS-1A_BC10 2 2.364 2.286 0.091 0.143 0.682 0.857 0.511 0.500 -0.345 -0.695 ns ns 

Total OMS-1A 39 13.273 13.857 2.091 3.143 0.502 0.557 0.728 0.690 0.300 0.179 *** *** 

GRAND TOTAL 168 4.267 14.036 -- -- 0.498 0.543 0.576 0.715 0.115 0.179 *** *** 
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Table 3. Results of the ANOVA analyses on the maximum length of the individuals of 1126 
Plenaster craigi from the four different areas and from individuals assigned to the cluster 1127 
1 from APEI-6 and UK-1A areas. df degrees of freedom, F F-test statistic, F crit F-test 1128 
statistic critical value, MS mean square, N number of individuals, S.D. standard deviation, 1129 
SS sum of squares. *significant value 1130 
 1131 

Summary    

Areas N Mean (µm) S.D. (µm) 

All areas    

APEI-6 48 3624 1265 

UK-1A 35 4641 1529 

UK-1B 41 5133 1776 

OMS-1A 30 3991 1550 

Selected indiv. Cluster 1     

APEI-6 16 3551 1372 

UK-1A 13 4409 861 

 1132 
 1133 

ANOVA       

Source of variation SS df MS F p-value F crit 

All areas       

Between Groups 57128751 3 19042917 8.15 0.00005* 2.66 

Within Groups 350419781 150 2336132    

Total 407548532 153         

Selected indiv. Cluster 1       
Between Groups 5267595 1 5267595 4.60 0.04107* 4.21 

Within Groups 30900318 27 1144456    

Total 36167913 28         
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Table 4. FST values between pairs of areas for P. craigi based on 11 microsatellites. 1135 
*significant values after applying the false discovery rate. 1136 
 1137 

Area APEI-6 UK-1A UK-1B OMS-1A 

APEI-6 -----    

UK-1A 0.00709 -----   

UK-1B 0.06346* 0.06856* -----  

OMS-1A 0.11132* 0.10801* 0.07711* ----- 
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Table 5. Results of the Analysis of Molecular Variance (AMOVA) between the four 1139 
different areas (APEI-6, UK-1A, UK-1B and OMS-1A). *significant values 1140 
 1141 
 1142 

Source of variation d.f. 
Sum of 

squares 

% 

variation 

Fixation 

indices 
P-value 

Among areas 3 38,317 5.09 FCT = 0.05089 0.04665* 

Among populations 

within areas 
26 96,045 8.84 FSC = 0.09314 0.00000* 

Among individuals 

within populations 
138 281,648 24.9 FIS = 0.28931 0.00000* 

Within individuals 168 189 61.17 FIT = 0.38830 0.00000* 
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Table 6. Asymmetric migration rates and Theta (Θ) inferred in Lamarc for P. craigi, with 95% credibility intervals (CIs) in brackets. Values are 1144 
given for all pairwise comparisons among areas and also for areas from cluster 1. 1145 
 1146 

    Migration FROM         

    APEI-6 UK-1A UK-1B OMS-1A Θ MPE (95% CI) 

Migration TO APEI-6 ----- 0.029741 (0.0565–100.0634) 0.023417 (0.03075–54.0640) 0.673238 (0.1285–2.9865) 9.754 (1.1513–10.1146) 

 UK-1A 0.060954 (0.0212–99.4550) ----- 0.094908 (0.1889–23.1797) 0.031797 (0.0748–98.6775) 9.982 (0.4315–10.0744) 

 UK-1B 0.037368 (0.02336–0.9680) 0.206768 (0.0835–99.1444) ----- 0.031205 (0.0356–1.7503) 9.938 (0.4435–10.3329) 

  OMS-1A 0.152319 (0.5496–98.7647) 0.140648 (0.0263–99.0018) 0.121937 (0.0282–80.6290) -----  9.896 (1.2072–10.0198) 

Cluster 1  APEI-6 UK-1A Θ MPE (95% CI)   

 APEI-6 ----- 0.054573 (-0.0827–99.4804) 9.911322 (1.4668–10.0467)   

 UK-1A 0.049394 (0.0539–27.2686) ----- 9.218427 (1.5327–10.031)   

1147 



 

Table 7. Number of immigrants per generation (ΘM) between areas for P. craigi. 1148 
Values are given for all pairwise comparisons among areas and also for areas from 1149 
cluster 1. 1150 
 1151 
 1152 

    Migration FROM     

   APEI-6 UK-1A UK-1B OMS-1A 

Migration TO APEI-6 -----  0.07 0.06 1.63 

 UK-1A 0.15 ----- 0.24 0.35 

 UK-1B 0.09 0.51 ----- 0.30 

  OMS-1A 0.38 0.08 0.08 ----- 

Cluster 1  APEI-6 UK-1A   

 APEI-6 ----- 0.11   

 UK-1A 0.14 -----   
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Table 8. Connectivity matrix between the four sites derived from particle transport 1154 
simulations, representing the probability that a particle transported passively from one 1155 
site passes within a 25 km radius of a second site within a timescale of 5 years. 1156 
 1157 

    Source site     

   APEI-6 UK-1A UK-1B OMS-1A 

Receiving site APEI-6 -----  0.016 0.002 0.002 

 UK-1A 0.00015 ----- 0.177 0.157 

 UK-1B 0.00020 0.157 ----- 0.254 

  OMS-1A 0.00019 0.076 0.426 ----- 
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Figure Legends 1159 
 1160 
Figure 1. Map of the study area. A Map of the CCZ with the mining exploration areas 1161 
and the network of APEI’s. Inset showing the approximate position of the four different 1162 
areas studied (APEI-6, UK-1A, UK-1B, and OMS-1A) B Detail of the APEI-6 identifying 1163 
the different sampling stations in the area (Ridge_1-6, Trough_1-3, Flat_1-8, Deep_1-2, 1164 
and Nodule). C Detail of the UK-1A identifying the different sampling stations in the 1165 
area. D Detail of the UK-1B identifying the different sampling stations in the area. E 1166 
Detail of the OMS-1A identifying the different sampling stations in the area. 1167 
 1168 
Figure 2. Mean and standard deviation of the maximum length of the individuals of P. 1169 
craigi measured in the different areas.  1170 
 1171 
Figure 3. COI haplotype network for P. craigi. Circles are proportional to the number of 1172 
individuals for each haplotype. Colour coding refers to the different areas where samples 1173 
were collected.  1174 
 1175 
Figure 4. A Individual genotype assignment of P. craigi to clusters (K) as inferred by 1176 
STRUCTURE for all studied sites with k = 2 and k = 3. In orange the individuals 1177 
belonging to cluster 1. B DAPC analysis with all samples grouped in the four different 1178 
areas. C DAPC analysis with all samples grouped in the four different areas treating apart 1179 
samples from cluster 1.  1180 
 1181 
Figure 5. Mean flow at 3500 m from HYCOM simulations averaged over the 9-year 1182 
period used for dispersal simulations, 10/2008 to 9/2017.  The underlying image is of the 1183 
model bathymetry and red circles show the 25 km radius receiving circles used for APEI-1184 
6, UK-1A, UK-1B and OMS-1A. 1185 
 1186 
Figure 6.  The distribution of particles after 1, 2, 3, 4 and 5 years (A–E) of continuous 1187 
release and passive transport from APEI-6, UK-1A, UK-1B and OMS-1A subject to 1188 
HYCOM velocities at 3500 m. F Migration directionality between the different areas as 1189 
inferred by diveRsity. Only relative migration from UK-1B to UK-1A and from OMS-1190 
1A to UK-1A resulted significant. 1191 
 1192 
 1193 
Figure 7. Genetic diversity (He) correlation between sponges studied using microsatellite 1194 
markers. Sponges were grouped in ranges of distances (<1 km, 10–100 km, 1000 km, 1195 
2000 km) in order to make results comparable among species. 1. Scopalina lophryopoda 1196 
(Blanquer et al. 2009); 2. Paraleucilla magna (Guardiola et al. 2012); 3. Xestospongia 1197 
sp. (Bell et al. 2014); 4. Xestospongia testudinaria (Bell et al., 201; 5. Scopalina 1198 
lophryopoda (Blanquer & Uriz 2010b); 6. Stylissa carteri (Giles et al. 2015); 7. Ircinia 1199 
fasciculata (Riesgo et al. 2016); 8. Plenaster craigi (this study); 9. Spongia lamella 1200 
(Pérez-Portela et al., 2015); 10. Crambe crambe (Duran et al., 2004); 11. Clathrina aurea 1201 
(Padua et al. 2017); 12. Spongia officinalis (Dailianis et al. 2011); 13. Cliona delitrix 1202 
(Chaves-Fonnegra et al. 2015); 14. Petrosia ficiformis (Riesgo et al., under review); 15. 1203 
Paraleucilla magna (Guardiola et al. 2016). 1204 


