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Abstract  15 

In this paper we present the seabed maps of the shallow-water areas of Lampedusa and Linosa, 16 

belonging to the Pelagie Islands Marine Protected Area. Two surveys were carried out 17 

(“Lampedusa2015” and “Linosa2016”) to collect bathymetric and acoustic backscatter data through 18 

the use of a Reson SeaBat 7125 high-resolution multibeam system. Ground-truth data, in the form 19 

of grab samples and diver video-observations, were also collected during both surveys. Sediment 20 

samples were analyzed for grain size, while video images were analyzed and described revealing the 21 

acoustic seabed and other bio-physical characteristics. A map of seabed classification, including 22 

sediment types and seagrass distribution, was produced using the tool Remote Sensing Object Based 23 

Image Analysis (RSOBIA) by integrating information derived from backscatter data and bathy-24 

morphological features, validated by ground-truth data. This allows to create a first seabed maps 25 

(i.e. benthoscape classification), of Lampedusa and Linosa, at scale 1:20 000 and 1: 32 000, 26 

respectively, that will be checked and implemented through further surveys. The results point out a 27 

very rich and largely variable marine ecosystem on the seabed surrounding the two islands, with the 28 

occurrence of priority habitats, and will be of support for a more comprehensive maritime spatial 29 

planning of the Marine Protected Area. 30 

 31 
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1. Introduction 1 

Marine Protected Areas (MPAs) play a key role in the promotion of the sustainable use of marine 2 

resources and ecological conservation  (Agardy 1994). The European Framework and national laws 3 

award protect those particular areas by imposing measures to monitor the environmental status of 4 

such areas (e.g. Jameson et al. 2002; Pomeroy et al. 2005; Guidetti et al. 2008; Pieraccini et al. 2016). 5 

The Pelagie Islands Marine Protected Area (Sicily Channel, southern Mediterranean) is characterized 6 

by different geological features (including sedimentary as well as volcanic substrate) corresponding, 7 

in association with specific biological communities, to a diversity of marine habitats. In this context, 8 

the Pelagie Islands MPA launched a project (Di Martino et al. 2015; Tonielli et al. 2016; Innangi and 9 

Tonielli 2017) to assess the conservation status and map the distribution of Posidonia oceanica 10 

meadows (Hemminga and Duarte 2000; Gobert et al. 2006) and coralligenous habitat (Sartoretto 11 

1994; Barbera et al. 2003; Bonacorsi et al. 2012) This is a major issue in the context of biodiversity 12 

conservation in the Mediterranean, as highlighted in the “Action plan for the conservation of the 13 

Coralligenous and other calcareous bio-concretions in the Mediterranean Sea” (Birkett et al. 1998; 14 

UNEP-MAP-RAC 2008). Although these calcareous bio-concretions are considered well represented 15 

in the Mediterranean Sea, in fact, their precise range of distribution is not yet well known (Agnesi 16 

et al. 2009) and information commonly consist of sparse geo-referenced data on species and habitat 17 

occurrences (Martin et al. 2014). For this purpose, multibeam bathymetry and related backscatter 18 

signal are increasingly used to map benthic habitats (or benthoscapes, according to Lacharité et al. 19 

2017), with the support of seafloor samples and/or photographs (e.g. Kostylev et al. 2001; Brown et 20 

al. 2011; Micallef et al. 2012; Innangi et al. 2015; Tonielli et al. 2016). In the Mediterranean these 21 

techniques are useful in determining the presence of the seagrass Posidonia oceanica (L.) Delile ( 22 

e.g. De Falco et al., 2010; Micallef et al., 2012) and coralligenous habitats (e.g. Bonacorsi et al., 2012; 23 

Bracchi et al., 2015, 2017).  Indeed, through a qualitative and quantitative analysis of acoustic 24 

backscatter data, MultiBeam Echo Sounder (MBES) systems have been used in the last decades to 25 

infer a number of physical, geological and biological proprieties of the seafloor, such as surface 26 

roughness (e.g. Stewart et al. 1994; Fonseca and Mayer 2007; Fonseca et al. 2009), sediment grain 27 

size (e.g. Collier and Brown 2005; Bentrem et al. 2006; Lo Iacono et al. 2008; Brown and Blondel 28 

2009), substrate type (e.g. Dartnell and Gardner 2004; Karoui et al. 2009), and distribution of 29 

seagrass meadows and other biota (e.g. Innangi et al. 2008, 2015, 2016; De Falco et al. 2010; 30 

Bonacorsi et al. 2012; Micallef et al. 2012; Bracchi et al. 2015, 2017; Tonielli et al. 2016). Moreover, 31 

it has been shown that the variation of backscatter intensity is related to sediment properties (Briggs 32 
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et al. 2002; Goff et al. 2004; Parnum et al. 2005; Ferrini and Flood 2006; Sutherland et al. 2007). The 1 

aim of this paper is to create seabed maps of the insular shelf of Lampedusa and Linosa through 2 

information obtained from geophysical and ground-truth data. Moreover, we test the capability of 3 

RSOBIA (Remote Sensing Object Based Image Analysis; Le Bas, 2016), i.e. an OBIA application 4 

integrated into ESRI’s ArcMap GIS , as an objective and quantitative method to interpret geophysical 5 

data with time-savings and simplified procedures. Automated classification systems are becoming 6 

more widely used in seabed mapping due to the need for repeatable, statistically-based and 7 

unbiased procedures supporting the verification of acoustic variability in relation to seabed 8 

properties (Biondo and Bartholomä 2017). For marine benthic habitat mapping, these applications 9 

may allow the identification of homogeneous and discrete areas of the seabed characterized by 10 

different biophysical characteristics, such as bathymetry, occurrence of hard/soft substrates, 11 

sediment types and biological structures (Lacharité et al., 2017).  RSOBIA, like eCognition software 12 

made by Trimble (e.g. Lucieer 2008; Diesing et al. 2014; Montereale Gavazzi et al. 2016; Lacharité 13 

et al. 2017; Ierodiaconou et al. 2018), allows to analyze acoustic backscatter mosaic and bathymetric 14 

data characteristics (i.e. depth, roughness and slope) and, through the integration with other data 15 

such as ground-truth information, provides semi-automated acoustic seabed classification of 16 

multibeam images. The produced seabed maps will thus contribute to the mapping of benthic 17 

habitat in shallow water areas around the Pelagie islands and could be of support for a more 18 

comprehensive maritime spatial planning of the Marine Protected Area. Good quality information 19 

on the spatial distribution of vulnerable species and their associated habitats is crucial for successful 20 

conservation measures and critical to decision-makers and managers (Martin et al. 2014).  21 

2. Study area 22 

The Pelagian Archipelago (Sicily, Italy) is located in the Sicily Channel (central Mediterranean Sea, 23 

Fig. 1), lying on the African lithosphere, i.e. the Pelagian Block. This was affected by crustal stretching 24 

active in the Neogene-Quaternary, giving rise to an intraplate rift system (Lentini et al., 1995; Civile 25 

et al., 2010 and references herein). The Sicily Channel is an epicontinental sea, with average depth 26 

of less than -400 m, locally interrupted by deep, tectonically-controlled, NW-SE oriented troughs 27 

(Pantelleria, Malta and Linosa grabens; Lanti et al. 1988; Grasso et al. 1991; Civile et al. 2010; Argnani 28 

1990; Fig. 1). Anorogenic (mainly alkaline to peralkaline) volcanism of Neogene-Quaternary age is 29 

developed in correspondence of Pantelleria and Linosa volcanic edifices (Grasso and Pedley 1985; 30 

Calanchi et al. 1989). The Sicily Channel is a high-energy site with a dynamic and highly variable 31 
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current system that exchanges waters between the Western and Eastern Mediterranean Basins. In 1 

particular, a water mass (about 200 m thick) of Modified Atlantic Mediterranean Water (MAW) 2 

flows eastward, (Fig.1, inset) and, after entering the Sicily Channel, splits into two main branches, 3 

the Atlantic Ionian Stream (AIS) and the Atlantic Tunisia Current (ATC) (Fig. 1; Astraldi et al. 2001; 4 

Poulain et al. 2012). This complex circulation patterns, together with bottom structures such as 5 

seamounts, banks, volcanoes, pockmarks and steep-walled basins, are the main factors responsible 6 

for the biodiversity richness of the Sicily Channel, where healthy deep coral communities find 7 

favorable habitat and several pelagic species such as anchovies, bluefin tuna and fin whales have 8 

spawning and feeding areas (UNEP-MAP-RAC 2015). This study focuses on Lampedusa and Linosa 9 

shallow-water marine area. Lampedusa is the largest island of the Pelagian archipelago, showing a 10 

surface area of 20 Km2 and a maximum elevation of 133 m above sea level. It is entirely made of 11 

sedimentary rocks (mainly biolitites and calcarenites), ranging in age from Late Miocene to Late 12 

Pleistocene (Grasso and Pedley 1988). Linosa Island differs from Lampedusa because it is the 13 

emerging tip of a larger volcanic complex, lying on the western shoulder of the Linosa graben (Fig.1; 14 

Grasso et al., 1991). The island shows a surface area of about 5.4 km2 and has a maximum elevation 15 

of about 195 m above sea level. Despite their different nature, both islands show, in shallow-water, 16 

the occurrence of insular shelves covered by terraced, submarine depositional bodies. These 17 

represent a common feature on steep and narrow shelves such as on insular, volcanic or 18 

tectonically-controlled margins (Chiocci et al. 2004).  19 

3. Methods 20 

3.1 Acoustic data acquisition and processing  21 

Geophysical data were collected by the Institute for Coastal Marine Environment of the National 22 

Research Council (IAMC-CNR) of Naples (Italy) around Lampedusa and Linosa islands down to 50 m 23 

and to 190 m of depth, respectively (see “MBES lines” in Fig. 2), during two oceanographic surveys, 24 

“Lampedusa 2015” and “Linosa 2016”. Both surveys were performed using a pole-mounted Reson 25 

SeaBat 7125 400 kHz MBES, providing sub-centimetric resolution. The vessels were equipped with 26 

an Omnistar Differential Global Positioning System (DGPS) and an IxSea Octans 3000 gyrocompass 27 

and motion sensor that provided positioning data (with sub-meter accuracy) and attitude data 28 

(0.01° accuracy). A Valeport miniSVS sound velocity probe and a sound velocity profiler were used 29 

to provide the real-time surficial sound speed for the beam steering and the velocity profile required 30 

for the depth computation. The Reson PDS2000 4.1.2.9 version was used for logging and processing 31 
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MBES bathymetric data: tide data, recorded during acquisition, were applied to all dataset to set up 1 

the real depth before starting the despiking process to generate a final 2.5x2.5 m resolution grid 2 

model. Backscatter data were also collected by MBES systems as snippet data (De Falco et al. 2010; 3 

Innangi et al. 2015). Snippet data processing was carried out using FMGeocoder Toolbox (FMGT) in 4 

Fledermaus 7.6 version (QPS 2016). These data were corrected for receiver gain, transmit power, 5 

transmit pulse width, spherical spreading, attenuation in the water column, area of ensonification, 6 

beam pattern, speckle noise and, finally and most importantly, for angular dependence and local 7 

slope (Mallace 2012; QPS 2016). The final mosaic was exported as a geo-referenced TIFF image with 8 

a 2.5 m pixel size and imaged using a grey scale in which higher backscatter values correspond to 9 

darker areas. A range of signal values spanning from -60 dB to -25 dB was adopted in the maps. The 10 

MBES used for this study was not calibrated to obtain absolute backscatter levels. Consequently, 11 

backscatter data presented are in relative (dB) units and cannot be compared with absolute values 12 

reported in other studies, as in De Falco et al. (2010). However, the backscatter facies have been 13 

locally calibrated with ground-truth information derived from sea-bottom samples and video 14 

images, enabling to infer the nature of the different substrata.   15 

3.2 Ground-truth information 16 

During the surveys, sea-bottom samples and video images were collected as ground-truth 17 

information. During the “Lampedusa 2015” survey, due to the boat’s limited dimension, direct 18 

assessment was carried out through video-camera inspections. A GoPro Hero 3 White camera with 19 

1080p resolution, 5 MP photos with 3 fps burst mode with integrated flat lens housing, remotely 20 

controlled, was used. During “Linosa 2016”, both seafloor samples and direct observations were 21 

carried out by using, respectively, a Van Veen grab and a Pollux III R.O.V (Remote Operated 22 

Underwater Vehicle) equipped with two video cameras (high and low resolution). Figure 2 shows 23 

the locations and the coordinate points of the ground-truth data at Lampedusa and Linosa. Seafloor 24 

samples were photographed on deck and their lithological macroscopic features described. Then, 25 

several sub-samples were taken from the homogenized sample and grain-size analyses were 26 

performed in laboratory. The sediments were washed with hydrogen peroxide solution (30% v/v) 27 

and distilled water; the gravel/sand fraction (4-0.125 mm) was analyzed using dry sieving. Grain size 28 

fractions were classified according to the Udden-Wentworth scale (after Pettijohn et al., 1987) and 29 

according to Folk 1980 (Table 1). 30 

3.3 RSOBIA 31 
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RSOBIA (Remote Sensing Object Based Image Analysis) application was used to segment and classify 1 

the seabed of Linosa and Lampedusa with an automatic object-based image analysis (see 2 

https://conference.noc.ac.uk/product/rsobia-software). RSOBIA is a new toolbox for ArcMap 10.4 3 

that segments the data layers into a set of polygons. The tool operates by taking multi-layered raster 4 

imagery and segments data into geographic areas with similar statistical properties. Segmentation 5 

and Classification are key techniques for image analysis and this tool gives quick and easy results.  6 

Imagery derivative processing techniques are provided for ease of use but also include texture 7 

analysis techniques such as homogeneity, dissimilarity, contrast and others (Grey Level Co-8 

occurence Matrices – GLCMs; https://conference.noc.ac.uk/product/rsobia-software). In detail, 9 

segmentation is the process of partitioning a dataset into clusters of contiguous elements that are 10 

similar with respect to a range of selected parameters (Hillman et al. 2017). Each polygon is defined 11 

by K-means clustering and region-growing algorithm, for finding areas and boundaries in the 12 

imagery as well as associated mean and standard deviation of the pixel values within the polygon 13 

(Le Bas 2016; see also Wagstaff et al. 2001; Blaschke 2010; Li et al. 2014). The attribute for each 14 

polygon can be extended with imagery attributes of pixel mean and standard deviation of each data 15 

layer, and wherever ground-truth point data is available. In this way the results from samples, where 16 

available, have been utilized to characterize the class type. The adopted segmentation process has 17 

been taken from RSGIS library of analysis and classification routines (Bunting et al. 2014), specifically 18 

modified to be suitable for the ESRI ArcGIS software under Windows operating system. The RSOBIA 19 

toolbar consists of three sections (Fig. 3), respectively designed for: i) obtaining mathematical 20 

derivatives from a single band imagery, such as slope maps from topography (Fig. 3a); ii) creating 21 

polygonised feature data either by multi-band imagery, or by a combination of single layer grids 22 

making a multi-layered dataset (Fig. 3b); iii) performing the classification and interpretation of 23 

polygonised features (further details on RSOBIA toolbar can be found in Le Bas, 2016). The 24 

segmentation with RSOBIA needs the definition of three main parameters: Number of Clusters, 25 

Minimum Object Size (the minimum size of any output polygon in terms of pixels, that is the 26 

resolution) and Layer Weights (Fig. 3c). In this study, for both islands, we adopted 10 as the number 27 

of clusters, as it was shown to be the optimal number of clusters after several trials, and 20000 as 28 

object size, in relation to the map scale. We decided to run a preliminary test on the segmentation 29 

procedure based on the study by Lacharité et al. (2017), which used backscatter (Fig. 4a) and depth 30 

(Fig. 4b) data layers (BD), from snippet and bathymetry multi-layered raster, where the former was 31 

assigned twice the weight than the latter in order to prioritize substrate composition rather than 32 
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local variability in depth. Given the geological and morphological differences of the seabed between 1 

the two islands object of this study, we decided to test a second, customized segmentation based 2 

on backscatter, depth, roughness (Fig. 4c) and slope (Fig. 4d) data layers (BDRS), the first one three 3 

times the weight of the others. Such segmentation is intended to also include DTM-derived variables 4 

(such as slope and roughness), however enhancing the role of backscatter signal by increasing its 5 

importance in the segmentation. Hereafter we will refer to these two segmentation approaches as 6 

BD and BDRS, respectively.  7 

4. Results 8 

4.1 Seabed characteristics 9 

4.1.1 Linosa 10 

The DTM of Linosa shows an articulated morphology, dominated by the occurrence of well-11 

developed insular shelves down to about 100-120 m depth, all around the SW-S-SE sectors and 12 

offshore the NW of the island (see Fig. ESM1A). The resulting backscatter mosaic of Linosa Island 13 

(Fig. ESM1B) does not show a high variability of the acoustic facies, probably due to the nature of 14 

the volcanic substratum, that tends to oversaturate the acoustic signal, and of the overlying 15 

deposits.  In detail, the southern insular shelf (Fig. 5) has a sub-rounded shape and extends for over 16 

1.5 km from the coastline seaward, with an average slope of 3°. It is characterized by two main slope 17 

breaks, at depth of around 45/50 m and 90/100 m (section T’1 in Fig ESM1A), that correspond to 18 

the outer edge of  two prograding terraced depositional bodies, lying on the inner part and at the 19 

edge of the insular shelf, respectively (Romagnoli, 2004). In this sector, between -20 and -30 m 20 

depth range, an irregular patter is evident, both in morphology and in backscatter data. In particular, 21 

the acoustic mosaic shows an intermediate backscatter interrupted by elongated patches of higher 22 

backscatter (ranging in values from -55 to -35dB). This speckled patter is interpreted as due to 23 

irregular P. oceanica meadows (similarly to what was indicated for the Malta offshore by Micallef 24 

et al. 2012). This hypothesis was confirmed by the ROV 6 video images collected at around -33 m 25 

(Fig. 5, sector 1), showing the seagrass organized in dense patches that cover volcaniclastic and 26 

bioclastic coarse sand. Ground-truth data acquired in this sector, below the lower limit of P. 27 

oceanica (at about 38–39 m depth), confirm that the observed more homogeneous seabed pattern 28 

with high backscatter signal, corresponds to coarse volcaniclastic sand and gravel interspersed with 29 

maërl (see Sample 10 in Fig. 5 and in Table 1). Moving down to 50 m depth (i.e. below the edge of 30 

the shallow-water depositional terrace, see transect T’1 in Fig. ESM1A), more regular acoustic facies 31 
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occur, with medium-low backscatter (-45/-48 dB), likely corresponding to a finer-grained 1 

sedimentary cover on the seabed. The ROV 7 video images (Fig. 5, sector 2), acquired near a small 2 

morphological high, show the presence of widespread rhodolith and maërl beds (Barbera et al. 3 

2003; UNEP-MAP-RAC 2008; Martin et al. 2014) interspersed with bioclastic coarse sand and gravel. 4 

ROV14, carried out at the end of transect T’1 (Fig. ESM1A) on the outer shelf, in an area 5 

characterized by homogeneous pattern of medium/low backscatter (-45/-50 dB, Fig. ESM1A), 6 

showed particularly well-developed Mediterranean coralligenous assemblages in natural conditions 7 

(Laborel 1961; Ballesteros 2006; UNEP-MAP-RAC 2008; Bonacorsi et al. 2012), hereafter described 8 

according to the video acquisition (i.e. moving upslope from 150 m to 80 depth Fig. 5 sector 3).  9 

Medium to fine bioclastic sand and mud are present on the seabed at -150 m (sample 6 in Fig. 5, 10 

sector 3 and in Table 1); subsequently, along the ROV transect, the volcanic bedrock is covered by 11 

increasing coralligenous concretions (at -135 m, Fig. 5, sector 3). At about 100–85 m depth the 12 

Lithophyllum stictaeforme (Areschoud) Hauck and coralligenous assemblages appeared to increase 13 

in size proportionally with decreasing depths (see samples 7 and 8 in Fig. 5 sector 3). At about 83-14 

80 m depth (Rov14 video frame and sample 9 in Fig. 5, sector 3), a coral community organized in 15 

small banks with sponges, hydrozoans, bryozoans, serpulids, echinoderma, tunicates, and other 16 

organisms was recognized (see also Pérès and Picard 1964; Laborel 1987; Ballesteros 2006). Moving 17 

westwards, in the area offshore the Linosa village, ROV 15 was acquired between 30 and 70 m depth 18 

range (Fig. 6, sector 1). A relatively homogeneous pattern of intermediate backscatter (with slightly 19 

higher values, -45 dB, at shallow depth and lower values, -35 dB, at increasing depth) corresponded, 20 

on ROV images, to a mixture of medium-coarse bioclastic (predominant at -70 m) and volcaniclastic 21 

(predominant at -30 m) sands. In shallow water (-30 m) a few specimens of P. oceanica are also 22 

present on the seabed. No grab samples are available for this transect. Most of the submarine 23 

western flank of Linosa shows, down to -80/90 m, a higher backscatter value (about -35 dB) 24 

compared to surrounding areas (see Fig. ESM1B). Sample 3 (Table 1), collected at -53 m on this 25 

acoustic facies is made of volcaniclastic medium sand (Fig. 6, sector 2). More to the north-west, 26 

images from ROV 11 and Sample 5 at about 130 m depth show the occurrence of bioclastic very 27 

coarse sand (Fig. 6, sector 3) with scattered rhodoliths/maërl and, at shallower depth (-80 m), 28 

abundant encrusting organisms on bedrocks (Fig. 6, sector 3). Off the northern coast of Linosa, a 29 

NNW-SSE oriented insular shelf develops for over 1 km far from the island, corresponding to the 30 

Secca di Tramontana shoal (Fig. ESM1A and Fig. 7). It partly corresponds to the remnant of a largely 31 

dismantled eruptive center located to the N of the island (Lanti et al. 1988; Lanzafame et al. 1994). 32 
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The flanks of Secca di Tramontana appear to be asymmetric, with a steeper eastern side (about 25°) 1 

affected by a wide scar corresponding to a canyon head (Romagnoli 2004) and a less steep (5° on 2 

average) terraced western flank (transect T’2 in Fig. ESM1A). On the Secca di Tramontana shoal the 3 

seabed shows high backscatter values at the top (ranging from -35 to -30 dB at around 20-25 m 4 

depth), probably due to the high reflectivity of the bedrock, which by far corresponds to the main 5 

component of the backscatter strength. Two ROV video-inspections were carried out on the western 6 

side of the shoal to determine the P. oceanica extension. ROV 1 at 25 m depth and ROV 2 at 28 m 7 

depths showed well-developed and dense P. oceanica meadows lying on a rocky substrate (Fig. 7, 8 

sector 1) while, both at lower (-20 m) and higher (-48 m) depth, P. oceanica is absent, except for 9 

scattered tufts, while photophilic algae predominate (Fig. 7, sector 1 and sector 2). The NE and E 10 

submarine flanks of Linosa are quite steep (slope between 14 and 25°) and affected by active gullies 11 

and canyon heads also in shallow water, due to the lack of well-developed insular shelf here (except 12 

in the sector SE of the island; Fig. ESM1A). Backscatter in these areas is mainly high, with alternating, 13 

local low-backscatter areas (Fig. ESM1B). Sample 4 was collected in one of the clearer acoustic facies 14 

visible in this sector (about -58 dB; Fig. 8, sector 1), indicating the occurrence of mainly bioclastic 15 

fine sand with a limited volcanic fraction.  In the SE sector, the shelf extends with a ENE-WNW 16 

elongated shape for about 1,7 km from the island. On its surface, some erosional remnants can be 17 

observed among which, in particular, two flattened and strongly eroded sub-conical eruptive 18 

centers, each around 160 m in diameter (Fig. ESM1A and Fig. 8, sector 2 and 3). These two 19 

dismantled volcanic cones show concentric summit features (erosional remnants) and are 20 

characterized by intermediate backscatter values (-50 to -45 dB). On the eastern volcanic cone at 21 

about 100 m depth, ROV 4 showed a seabed covered by coralline alga Lithophyllum stictaeforme 22 

and other calcareous-coral algae (Fig. 8, sector 2). Moving upslope, from about 95-90 m to 50 m 23 

depth, well-developed rhodolith beds completely cover the underlying substrate made of bioclastic 24 

and volcaniclastic coarse sand (Sample 1 in Fig. 8, sector 2 and Table 1), while at the end of the video 25 

acquisition (depth around 33 m), a rocky substrate, covered with photophilic algae, was observed 26 

on the top of the volcanic cone (corresponding to a speckled, intermediate backscatter pattern; Fig. 27 

8, sector 2).  Similarly, ROV 5 surveyed the characteristics of the seabed close to the western cone 28 

and on its top, starting at -88 m (Fig. 8, sector 3). Here the video images showed dense rhodolith 29 

beds as well, decreasing with depth and replaced upslope by mäerl beds and coarse volcaniclastic 30 

sands (Sample 2 in Fig. 8, sector 3 and Table 1). In turn, mäerl disappears at around -50 m, where a 31 

rocky substrate covered with photophilic algae can be found.  32 
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4.1.2 Lampedusa 1 

The high-resolution DTM of Lampedusa (depth range of 2-50 m, Fig. ESM2A) shows a rugged 2 

seafloor all around the island within the first 20-40 m depth, due to extensive rocky outcrops, 3 

localized talus deposits and relict morphologies  on the seabed, as  P. oceanica meadows on ‘matte’ 4 

facies (as defined by Francour et al., 2006; see Fig.es ESM2A and B). Locally, vertical scarps 10-20 m 5 

high are present, such as in the eastern and northern shallow-water sectors. As recognizable on 6 

morphological sections (see Fig. ESM2A), the shallow water areas have different characteristics. 7 

Along the northern coast of the island the seabed is steeper (3.80° on average) (see figure 4 in 8 

Tonielli et al., 2016) and dips down to over -50 m. Conversely, along the southern sector of the 9 

island, the seabed slopes with a gradually decreasing gradient (about 1.80° on average) in the depth 10 

range of 10-50 m. In the SW and SE sectors, in particular, gently-sloping, terraced morphologies 11 

extend from the coast seaward (with average slope of 1.20°to 0.7°, respectively; see bathymetric 12 

transects T1 and T2 in Fig. ESM2A). This setting is due to both the geological structure of the island 13 

(see Grasso and Pedley, 1985) and the occurrence of erosive-depositional features, such as erosive 14 

surfaces and overlying sedimentary bodies. As showed for the island of Linosa, the acoustic 15 

backscatter mosaic is made up by the range of signal values ranged from -60 dB (lighter tones, 16 

corresponding to low backscatter) to -25 dB (dark grey tones, considered as high backscatter). Direct 17 

inspections with GoPro Hero 3, located in selected sites (Fig. 2a and Fig.es ESM2A and B) allowed to 18 

locally calibrate some of the acoustic facies in the southern and eastern submarine areas around 19 

Lampedusa and to better define some specific seabed features. In detail, figure 9 shows the 20 

bathymetry and the acoustic (backscatter) facies of the SW terrace (morphological transect T1 in 21 

Fig. ESM2A). In the deeper, gently-sloping area at about 30/40 m depth, characterized by alternating 22 

low (-55/50 dB) and high (-40 dB) acoustic backscatter, local bathymetric irregularities were 23 

observed on the seabed. These corresponded to a dune field (area of 0.22 Km2), with NNE-SSW 24 

oriented asymmetric crests, wavelength between 25 and 50 m and a maximum height of about 2 m 25 

(Tonielli et al. 2016). Video 3 was recorded on the dune field, to verify the presence of maërl or 26 

rhodoliths as reported by  Di Geronimo and Giaccone 1994 (see also Giardina and De Rubeis 2012). 27 

The ROV images (Fig. 9, sector 1) showed an undulating and irregular seabed covered with soft 28 

sediments, likely composed of medium-fine sand. Given the limited resolution of the images, we 29 

were unable to verify the presence of maërl or rhodoliths on the seabed. Moving upslope on the 30 

SW terrace, video 2 (Fig. 9, sector 2), recorded at a depth ranging between 10 and 38 m, in 31 

correspondence of an irregular seafloor with shortly spaced, v-shaped furrows and with variable 32 
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backscatter, the presence of Cymodocea nodosa (Ucria) Aschers was revealed on a sandy seabed.  1 

Close to the SW edge of the island, video number 1 (Fig. 9, sector 3) allowed to check the nature of 2 

the rugged seabed and the speckled acoustic facies observed in very shallow water, between 5 and 3 

10 m depth. Here the occurrence of very coarse, heterogeneous materials (well-rounded pebbles 4 

and boulders) on poorly sorted gravel is observed, at the foot of the submerged cliff. On the western 5 

flank (Fig. 9, sector 4) the acoustic facies was spotted, presumably indicating an irregular substratum 6 

with coarse-grained sediment (characterized by backscatter values of -30 to -25 dB) covered by P. 7 

oceanica (corresponding to lower backscatter values of about –40 dB).  Due to adverse weather 8 

conditions, it was not possible to acquire video images in this sector, but the occurrence of Posidonia 9 

is supported by previous Authors (see Tonielli et al. 2016 and references therein) and the 10 

interpretation of similar acoustic facies (see also Micallef et al. 2012; Truffarelli et al. 2012). P. 11 

oceanica meadows on ‘matte’ facies was present, instead, offshore the southern sector of the 12 

island, where backscatter pattern showed circular areas values with a more homogeneous, 13 

intermediate pattern (Fig. 9, sector 5; see Innangi et al. 2015 for 'matte' description). Video 4 14 

allowed to check the lower limit of the P. oceanica meadows that here gradually thin out, both in 15 

terms of density of leaves and height, at about 38 m depth on a sandy seafloor (Fig. 9, sector 5). 16 

Offshore the SE part of the island a NNW-SSE oriented, 4-6 m-high scarp delimited the SE terraced 17 

sector westward between 30 and 50 m of depth  and corresponded to a morphological step (Fig. 10, 18 

sector 1 and T2 transect in Fig. ESM2A), in agreement with the main structural lineaments 19 

recognized on the island (Grasso and Pedley 1985). The rugged seafloor and irregular acoustic facies 20 

with intermediate backscatter (values around -45 dB) and elongated patches of high backscatter, 21 

characterizing this area down to -30/-40 m, is due to the presence a well-developed P. oceanica 22 

meadow, as confirmed by video 7 (Fig. 10, sector 2). In deeper areas, a relatively flat seabed with a 23 

high backscatter pattern occurs. Finally, offshore the eastern flank of Lampedusa, in 24 

correspondence of a large and irregular embayment, the seabed is characterized by large variation 25 

in the backscatter signal, probably due to the occurrence of sedimentary flows down the submarine 26 

flank (Fig. ESM2B). Video 5 (Fig. 10, sector 3) and 6 (Fig. 10, sector 4) were both recorded in this 27 

area:  Video 5, from a low-gradient area at depth of 30 m on a medium/high backscatter patch, 28 

documents the absence of any seagrass on the medium-coarse sand covered seabed, while video 6 29 

at around 25 m depth revealed well-developed and dense P. oceanica meadows over a rocky bottom 30 

characterized by speckled backscatter pattern. 31 

4.2 Results of RSOBIA  32 
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According to the segmentation approach adopted to analyze the seabed at Linosa through RSOBIA 1 

(section 3.3 and Fig. 4 for derivatives), two different results were obtained for the BD and BDRS 2 

segmentations (Fig. 11a and 11b, respectively). A similar approach was followed to analyze the 3 

Lampedusa data with RSOBIA (see ESM3.1 and ESM3.2). A pairwise comparison of the two adopted 4 

segmentations for a sector offshore Linosa can be seen in figure 12 (and in ESM3.3 for Lampedusa). 5 

It showed that BD (in red) and BDRS (in green) segmentations offer comparable results, although 6 

BD is less sensitive to local facies variations and, at Linosa, it is comparable to a simple contouring 7 

of isobaths (Fig. 11a). Accordingly, it was preferred to apply the BDRS segmentation (see section 8 

3.3). The differences obtained between the two segmentations at Linosa are likely related to the 9 

fact that, given its volcanic nature, it shows a greater morphological variability of the seafloor with 10 

respect to Lampedusa. On the other hand, BD and BDRS segmentations were largely overlapping for 11 

Lampedusa, (even if BDRS appears as more sensitive, see Fig. ESM3.3).  This suggests that the use 12 

of BD segmentation is more suitable for regular and smoother seafloor without extensive variation 13 

in roughness and slope (such as observed in the application of Lacharité et al. 2017, on a large shelf 14 

sector offshore Canada), while BDRS slightly outperforms BD in case of larger variability in the 15 

seafloor morphology.  Starting from the results of BDRS segmentation and the acquired ground-16 

truth data, the seabed maps of Linosa and Lampedusa have been proposed.  17 

4.3 Seabed maps 18 

4.3.1 Linosa 19 

For Linosa, the seabed characteristics appears strongly dependent on the benthic habitat: both ROV 20 

investigations and grab samples showed, in fact, a prevalent and widespread bioclastic sedimentary 21 

cover on the seabed and the occurrence of very well-developed coralligenous habitats, with 22 

abundant rhodoliths and maërl beds. Therefore in order to create the seabed map of Linosa (at scale 23 

1: 20 000), extending the information from ground-truth into areas with similar characteristics, the 24 

results of RSOBIA segmentation (i.e. each majority class of the BDRS classification, Fig. 11b) were 25 

associated with benthoscape classes (sensu Lacharité et al. 2017), obtaining the following eight 26 

categories and corresponding characteristics (Fig. 13): 27 

 B – Bedrock: homogeneous pattern of high backscatter, high roughness and variable slope. 28 

Locally the bedrock is colonized by seagrass and/or by photophilic algae (e.g. see Rov1 and 29 

2 in Fig. 7). 30 
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 VP – Volcaniclastic sand with P. oceanica: intermediate backscatter interrupted by elongated 1 

patches of high backscatter, intermediate roughness (due to presence of seagrass) and low 2 

slope. The seabed composition is characterized by volcaniclastic coarse sand and gravel 3 

(cobbles and pebbles), with scarce bioclastic sand fraction interspaced with maërl (see Rov8 4 

and sample 10 in Fig. 5, sector 1). 5 

 VB – Volcaniclastic and Bioclastic sand: high backscatter pattern, low roughness and low 6 

slope. Seabed composition characterized by volcaniclastic coarse sand with few bioclastic 7 

sand fraction interspaced with maërl (e.g. see sample 3 in Fig. 6, sector 2). 8 

 BV – Bioclastic and Volcaniclastic sand: homogeneous pattern of high backscatter, 9 

intermediate roughness and high slope. Seabed composition characterized by maërl and 10 

bioclastic coarse sand with fewer volcaniclastic sand fractions (e.g. see ROV11 in Fig. 6, 11 

sector 3). 12 

 RM – Rhodolith and Maërl beds: homogeneous pattern of medium/low backscatter, low 13 

roughness, low slope. The seabed composition is characterized by rhodolith and maërl beds 14 

and bioclastic coarse/medium sand (e.g. see ROV7 in Fig. 5, sector 2 and ROV4 in Fig. 8, 15 

sector 2). 16 

 RML – Rhodolith, Maërl and Lythophyllum beds: homogeneous pattern of medium/low 17 

backscatter, low roughness, low slope. The seabed composition is characterized by rhodolith 18 

maërl and Lythophyllum beds that cover bioclastic medium/fine sand (e.g. see Rov14 in Fig. 19 

5, sector 3 and Rov4 in Fig. 8, sector 2). 20 

 MB – Mäerl and/or Bioclastic fine sand: homogeneous pattern of low backscatter, 21 

intermediate roughness, high slope. The seabed composition is characterized by maërl and 22 

bioclastic fine sand (e.g. see Rov14 in Fig. 5, sector 3).  23 

 Bfs – Bioclastic fine sand: homogeneous pattern of low backscatter, intermediate roughness, 24 

high slope. The seabed composition is mostly characterized by bioclastic fine sand (see 25 

sample 4 in Fig. 8, sector 2). 26 

Moreover, since Posidonia oceanica on rock is not recognizable in the segmentation procedures, 27 

but only through the video images (ROV1 and 2 in Fig. 7), further information on benthic habitat 28 

distribution (seagrasses) were manually added as overprinted symbols (Posidonia oceanica on rock). 29 

To make the map more consistent, the same was done for the Posidonia oceanica on sand even if 30 

this had been recognized in the segmentation (VP). Overall, it can be noted that the first facies of 31 

the benthoscape classification (“Bedrock” in Fig. 13) is common in the NW (“Secca di Tramontana”) 32 
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and SE shallow-water areas, in correspondence of widely-eroded secondary volcanic edifices on the 1 

insular shelf, and in coastal areas around most of the island, as the prosecution of lava flows in 2 

shallow water. Volcaniclastic sand is abundant along the western shelf, where it is produced by 3 

erosion of tuff rings in the coastal area and reworked in submerged depositional terraces and is 4 

mixed with a bioclastic fraction. This fraction becomes more and more abundant downslope (below 5 

about 50 m depth) and showed scattered rhodoliths and lower grain size with increasing depth. 6 

Conversely, P. oceanica meadows on coarse sand are abundant on the inner insular shelf (first 30 m 7 

depth) all along the S flank of the island, above the thick and laterally continuous depositional 8 

terrace, while the frontal scarp of the terrace is covered by volcaniclastic and bioclastic coarse sand. 9 

Facies dominated by calcareous biogenic concretions (Rhodoliths and mäerl) are widespread on the 10 

outer shelf areas (to the SW-S-SE and NW of the island), from about 60 m to about 100 m of depth, 11 

passing to bioclastic fine sand (with associated mäerl) below that depth. The proposed benthoscape 12 

classification is still preliminary because it is based on a first integration of available data. Further 13 

ground-truth data are necessary to better characterize some acoustic facies not extensively sampled 14 

in this first survey, and related ecological systems. 15 

4.3.2 Lampedusa 16 

In order to create a seabed map for Lampedusa (at scale 1: 32 000), the interpretation of the RSOBIA 17 

shape file focused on BDRS majority classes locally checked through video inspections. Because no 18 

grab sampling is available here, the seabed was, in fact, mainly classified on the basis of its acoustic 19 

facies pattern (i.e. fine sediments exhibiting low backscatter, and coarse sediments corresponding 20 

to high backscatter) and the results of RSOBIA segmentation (majority classes of the BDRS 21 

classification, see section 3.3). So, eight main categories have been described and interpreted with 22 

respect to backscatter, roughness and slope characteristics to produce a preliminary benthoscape 23 

classification of Lampedusa (Fig.14): 24 

 A – Speckled pattern of medium backscatter: interrupted by homogeneous pattern of high 25 

backscatter. It is characterized by high roughness and intermediate slope. The substrate is 26 

mostly composed of bedrock and gravel (Video 1 of Fig. 9, sector 3), but in some sectors 27 

includes patches of P. oceanica (Fig. 9, sector 4).  28 

 B - Homogeneous pattern of high backscatter: characterized by low roughness and low slope. 29 

It presumably represents a substratum with coarse-grained sediment. 30 
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 C - Homogeneous pattern of medium/high backscatter: low roughness and variable slope. It 1 

presumably represents a substratum with coarse/medium sand, generally without any 2 

evidence of seagrasses (Video 5 of Fig. 10, sector3). 3 

 D – Speckled pattern of intermediate backscatter: interrupted by circular and/or elongated 4 

pattern of high backscatter, intermediate roughness and slope. This class include Posidonia 5 

oceanica meadows ‘on matte’ (see ESM2 and Fig. 9, sector 5) with holes at which are almost 6 

always filled with coarse sand. The kind of sediment below the seagrass cannot be 7 

constrained without any grab sampling. 8 

 E -  Speckled pattern of low backscatter:  interrupted by circular and/or elongated pattern of 9 

high backscatter, intermediate roughness and low slope. This class include dense Posidonia 10 

oceanica meadows interspaced with coarse sand (Fig. 10, sector 1 and video 7 of sector2). 11 

An exception to this is witnessed by Video 2 of figure 9 which showed a sandy seabed 12 

covered by Cymodocea nodosa. Future samples will allow to better define the type of 13 

sediment. 14 

 F - Speckled pattern of medium/low backscatter: intermediate/low roughness and slope. This 15 

acoustic facies is the most difficult to classify because it includes both areas with rock and 16 

Posidonia oceanica (Video 6 of Fig. 10, sector 4), and the sector to the south of the island 17 

where the lower limit of the P. oceanica meadows occurs. Posidonia on ‘matte’ here 18 

gradually thins out, both in density of leaves and height (Video 4 of Fig. 9, sector 5). Finally, 19 

it includes the dune sector (Video 3 of Fig. 9, sector 1), likely composed of medium-fine sand. 20 

 G - Homogeneous pattern of low backscatter: low roughness and slope. It likely represents a 21 

substratum with fine grained sediment, without any evidence of seagrasses. This class also 22 

encloses the dune field sector (Video 3 of Fig. 9, sector 1) 23 

 H - Homogeneous pattern of very low backscatter: (very high absorption), low roughness and 24 

slope. It presumably represents a substratum with very fine grained sediment and silt, but 25 

in some cases it includes sectors previously classified by Tonielli et al. 2016 as Posidonia 26 

oceania in patches.  27 

From interpretations given in section 4.1.2 and map of Fig. 14 it appears that the shallow-water 28 

areas in most of the coastal strip, in particular along the W and NE flanks of the island are 29 

characterized by bedrock covered with very coarse and heterogeneous sediments. A sandy seabed 30 

(from coarse-medium size) was present at very shallow depth along the S flank of the island and, in 31 

general, at increasing depth, gradual shifting to finer-size sand. Again, further information on 32 
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benthic habitat distribution (seagrasses) have been manually added as overprint layers, consistent 1 

with video inspections (Fig. 14): 2 

 Posidonia oceanica meadows 3 

 Posidonia oceanica to be verified (this area falls under “Posidonia oceanica in patch” 4 

according the classification of Tonielli et al. 2016) 5 

 Cymodocea nodosa 6 

 7 

5. Discussion 8 

This paper merges together geomorphological, sedimentological and habitat observations at the 9 

Pelagie Islands of Lampedusa and Linosa, resulting in an integrated, multipurpose seabed mapping. 10 

To this aim we applied the RSOBIA methodology and tested it: 1) on different geological substrata 11 

(volcanic and sedimentary), 2) on very heterogeneous lithological and morpho-sedimentary 12 

conditions (flat or gentle-sloping sea bed, articulated seabed with scarps, volcanic outcrops or loose 13 

sediment, erosive or depositional features) and 3) over a differently-colonized seafloor. In 14 

particular, we found that among the resulting output (shape files) of RSOBIA, the BDRS 15 

segmentation is the most suitable to build the final benthoscape map. We did not adopt a manual 16 

re-classification based on uncertainties in membership values to individual classes – especially at 17 

the boundaries between coverages – as carried out by Lacharité et al (2017). However, it is 18 

important to keep in mind the role of the operator, that remains crucial for the recognition of some 19 

specific acoustic facies, and the need of abundant ground-truth data to characterize acoustic facies 20 

and to support interpretations. As an example of this, at Linosa, the high density of coralligenous 21 

habitat (i.e. maërl, rhodoliths and Lhytophyllum) causes a saturation of the backscatter signal to 22 

intermediate values, making the seabed classification difficult through the sole use of acoustic 23 

mosaic. In similar cases, such as at Palinuro Seamount (central Mediterranean; Innangi et al., 2016), 24 

or western Sardinia (De Falco et al., 2010) and northern Tyrrhenian sector of Basilicata (Innangi et. 25 

al 2015) the presence of P. oceanica meadows (or other biogenic components) on the seabed tends 26 

to reduce the value of backscatter strength, showing an increase in absorption and giving rise to a 27 

possible mismatch between the acoustic facies of medium and/or coarse sands. Thus, the 28 

integration of ground-truth data and the manual processing is required for adequate interpretation 29 

of the acoustic pattern derived from the RSOBIA output. In the southern shallow-water sector of 30 

Linosa, for instance, where the low seabed slope and superficial currents allow a luxuriant growth 31 

Acc
ep

ted



17 
 

of coralline environment, BDRS segmentation appears more dependent on bathymetric changes 1 

than on backscatter variations and it underestimates the variability in the benthic habitat. Indeed, 2 

by ROV video images it can be observed that the distribution of Lhytophyllum is present here in a 3 

range of depths varying between 100 and 85 meters, while rhodolith beds seem to find their ideal 4 

environment between 60 and 90 meters. The distribution of maërl (composed of spheroidal, 5 

discoidal and ellipsoidal shape branched classes, Peña and Bárbara 2009) is also widely common 6 

around the island. The only well-distinguished facies according to both bathymetry and backscatter 7 

data (well recognized also by BDRS segmentation as majority class 2, Fig. 11b) is the Posidonia 8 

oceanica meadow on the southern part of the island (depth between -20 m to -36 m) lying on a 9 

coarse-sand substrate (characterized by high backscatter, i.e. darker area on the acoustic mosaic). 10 

The occurrence of Posidonia oceanica on rock, on the other hand is not distinguishable without 11 

direct observation, unless it is very dense, both in Linosa and in Lampedusa. Furthermore, where 12 

volcaniclastic sands prevail over bioclastic sands and maërl, the backscatter signal is overbearing in 13 

the BDRS segmentation (i.e. majority class 6, Fig. 11b), as it occurs for fine sand without maërl (i.e. 14 

majority 1, Fig. 11b). At Lampedusa, in absence of grain-size and lithological information, the BDRS 15 

segmentation allowed a preliminary mapping of the seabed typologies, based on morpho-acoustic 16 

data, and will need to be implemented with further investigations. The map obtained through the 17 

object-based method was then integrated with indications of the P. oceanica meadows extension, 18 

obtained through video image analysis and previous interpretation of the morpho-acoustic data 19 

(according to Tonielli et al. 2016). To conclude, the combination of RSOBIA segmentation, ground-20 

truth data and manual processing provide a suitable approach for seabed mapping and for a better 21 

understanding of the fine-scale distribution of benthic habitats. This approach should be supported 22 

by further investigations and sampling of the Pelagie Islands, in order to have more robust 23 

interpretations. 24 

6. Conclusions 25 

The surveys carried out around the Pelagie islands revealed a very rich ecosystem, both for the 26 

development of P. oceanica and for the presence of coralligenous habitats, confirming what had 27 

been previously proposed by predictive modeling for this area (Martin et al. 2014). In particular, the 28 

morphological setting of Lampedusa, with less steep submarine flanks than Linosa and with a 29 

sedimentary substratum, favors the development of P. oceanica meadows. The volcanic seabed at 30 

Linosa, on the other hand, proved to be more suitable for coralligenous environments, characterized 31 
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by pristine coralligenous habitats that need to be preserved. The reasons for such a highly 1 

productive environment around this island may be several, e.g. the presence of upwelling currents, 2 

or its volcanic nature rich in nutrients, or the low human impact that still prevails here. Our first 3 

seabed mapping supports the enlargement of the Marine Protected Area of Linosa, including the 4 

coralligenous habitat identified on this island and that represents a unique heritage for the 5 

Mediterranean Sea. In conclusion on the seabed of Linosa and Lampedusa three important 6 

ecosystems have been identified (i.e. Posidonia oceanica, coralligenous assemblages and mäerl). 7 

These area have been recognized as VMEs (Vulnerable Marine Ecosistems) by the EU and other 8 

official environmental commissions (http://www.fao.org/in-action/vulnerable-marine-9 

ecosystems/en/; e.g. Francour et al. 2006; Bensch et al. 2009; OCEANA 2009; Bernal 2016). The 10 

seabed classification and the recognition of its priority habitats are basic elements for a proper 11 

management of this Marine Protected Area (e.g.  Ehrhold et al., 2006; Bracchi et al., 2015; Le Bas 12 

and Huvenne, 2009; Micallef et al., 2012). Accordingly, as can be seen on the maps, a good extension 13 

of Posidonia oceanica (both for Linosa the for Lampedusa) and a rich coralligenous environment (for 14 

Linosa) has been found out the boundaries of the MPA. Thus, our first seabed mapping supports the 15 

enlargement of the Marine Protected Area of Linosa, and suggests the possibility that these 16 

boundaries should be modified, both as extension and as level of protection. The capability to 17 

classify the seabed in an automated or semi-automated manner could guarantee the objectivity and 18 

repeatability of the application over time (e.g. Lucieer 2008; Lucieer and Lamarche 2011; Huang et 19 

al. 2014; Ismail et al. 2015; Lacharité et al. 2017). The use of RSOBIA (integrated by 20 

geomorphological, sedimentological and habitat observations) proved to be a sound method for 21 

this purpose, allowing an initial seabed classification regardless of the availability of grain size 22 

information (as at Lampedusa) or of the clarity of the acoustic facies (as at Linosa).   23 
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Tables 9 

Table 1 Sediment classification according to Folk (1980) and Wentworth (1987). Left below: histograms of 10 

weight percentage of Wentworth size class. Right below: Folk’s ternary diagram. 11 

Captions 12 

Fig. 1 Location Map of Lampedusa and Linosa islands in the Sicily Channel (Central Mediterranean Sea, Italy). 13 

Bathymetry are taken from EMODnet portal (http://www.emodnet-bathymetry.eu/data-products); the 14 

Pantelleria graben (PG), the Malta graben (MG), and the Linosa graben (LG) are the principal tectonic 15 

depressions of the Sicily Channel. The Atlantic Ionian Stream (AIS) and the Atlantic Tunisia Current (ATC) 16 

(Astraldi et al. 2001; Poulain et al. 2012) are shown (The MAW flows are shown in inset). 17 

Fig. 2 a) MBES navigation lines of the survey “Lampedusa 2015” and positions of collected underwater video 18 

inspections; b) MBES navigation lines, positions of collected ROV inspections and grab samples of the survey 19 

“Linosa 2016”. 20 

Fig. 3 RSOBIA toolbar showing both the derivatives a) and the segmentation b) sub-menu. In c) is shown the 21 

Segmentation window; during the standard segmentation process each layer is given equal weighting 22 

regardless of the differing units used on each layer. The user can provide individual layer weights if, for 23 

example, one layer is deemed to provide more important or better imagery. The derivatives functions are 24 

standard grid manipulation techniques; in this study we used slope and roughness functions; the first 25 

calculates the maximum slope (in any direction) in degrees and values created are real numbers between 0.0 26 

and 90.0 but values of -1.0 is used for areas of no data. This function differs from a shaded relief which is a 27 

slope derivative from particular direction.  For roughness, the function calculates the variations in bathymetry 28 

datasets within a neighborhood. This technique combines the variability of slope and aspect in a sampled 29 

area, similarly to the “Benthic Terrain Modeler” developed by Shaun Wallbridge (Wright et al. 2012; Le Bas 30 

2016).    31 

Fig. 4 Raster images used to analyze the Linosa seabed with RSOBIA. a) Snippet mosaic (backscatter), with 32 

brightness values are indicated (low value corresponding to high backscatter and low absorption); b) DTM 33 

image (in meters); c) the surface roughness (in dimensionless value) derived trough RSOBIA; d) the slope 34 

image (in degree) derived trough RSOBIA. 35 

Fig. 5 Bathymetry a) and backscatter b) 3D visualization of the southern part of Linosa. Follow shaded relief, 36 

backscatter imagery, ROV video frame, samples’ photos, description of physical parameters and seabed 37 

composition of three sector investigated in this area of Linosa. See the text for details. 38 

Fig. 6 Bathymetry a) and backscatter b) 3D visualization of the western part of Linosa. In the columns below, 39 

shaded relief images from DTM, backscatter imagery, ROV video frame (where available), samples’ photos 40 

(where available), description of physical parameters and seabed composition of three investigated sector 41 

are reported. See the text for details. 42 
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Fig. 7 Bathymetry a) and backscatter b) 3D visualization of the northern part of Linosa. In the columns below, 1 

shaded relief from DTM, backscatter imagery, ROV video frame, description of physical parameters and 2 

seabed composition of two investigated sectors of Linosa are reported. See the text for details. 3 

Fig. 8 Bathymetry a) and Backscatter b) 3D visualization of the eastern part of Linosa. In the columns below, 4 

shaded relief from DTM, backscatter imagery, ROV video frame (where available), samples’ photos (where 5 

available), description of physical parameters and seabed composition of three investigated sectors of Linosa 6 

are reported. See the text for details. 7 

Fig. 9 Bathymetry a) and Backscatter b) 3D visualization of the western part of Lampedusa. In the columns 8 

below, shaded relief from DTM, backscatter imagery, GoPro video frame (where available), description of 9 

physical parameters and seabed composition of five investigated sectors of Lampedusa are reported. See the 10 

text for details. 11 

Fig. 10 Bathymetry a) and Backscatter b) 3D visualization of the sud-estern part of Lampedusa. In the columns 12 

below, shaded relief from DTM, backscatter imagery, GoPro video frame (where available), description of 13 

physical parameters and seabed composition of four investigated sectors of Lampedusa are reported. See 14 

the text for details. 15 

Fig. 11 RSOBIA segmentation results: a) from BD segmentation; b) from BDRS segmentation and related 16 

Majority class. 17 

Fig. 12 Pairwise comparison of the two adopted segmentations for a sector of Linosa. BD and BDRS 18 

segmentations offers comparable results, though BD less sensitive lo local facies variations. Furthermore, the 19 

BD segmentation is to comparable to a simple contouring of isobaths. 20 

Fig. 13 Benthoscape classification of Linosa Island obtained with the interpretation of RSOBIA-BDRS 21 

segmentation; Seagrasses on rock and on sand have been added manually as over printed symbols. Also the 22 

areas boundaries of the MPA of Linosa were added in map, where the level of protection decrease from area 23 

A to area C (see http://www.minambiente.it/pagina/area-marina-protetta-isole-pelagie). 24 

Fig. 14 Preliminary benthoscape classification of Lampedusa Island obtained with the interpretation of 25 

RSOBIA-BDRS segmentation. Seagrasses have been added manually as over printed symbols. Also the areas 26 

boundaries of the MPA of Lampedusa were added in map. 27 

 28 

Description Electronic Supplementary Material 29 

ESM1 A) High resolution DTM of Linosa island and shallow water offshore (2.5X2.5 m pixel resolution) with 30 

5 m contouring. The location of bathymetric transects T’1 and T’2 is indicated, as well as ground-truth 31 

points (Rov and grab samples position). B) High resolution snippet mosaic of Linosa island and shallow 32 

water offshore (2.5x2.5 m pixel resolution) with 5 m contouring. 33 

ESM2 A) High resolution DTM of Lampedusa island and shallow water offshore (2.5X2.5 m pixel resolution) 34 

with 5 m contouring. The location of bathymetric transects T1 and T2 is indicated, as well as video points 35 

position. B) High resolution snippet mosaic of Lampedusa island and shallow water offshore (2.5x2.5 m 36 

pixel resolution) with 5 m contouring. 37 

ESM3 1 Raster images used to analyze the Lampedusa seabed with RSOBIA. a) Snippet mosaic 38 

(backscatter), where the brightness values are given (low value corresponding to high backscatter and low 39 

absorption); b) DTM image (in meters); c) the surface roughness (in dimensionless value) derived trough 40 

RSOBIA; d): the slope image (in degree) derived trough RSOBIA. 2 RSOBIA segmentation results: a) shows 41 

the BD segmentation; b) shows the BDRS segmentation. The maps show the majority, the most common 42 
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class of all pixels in polygon. This is the main class for interpretation. 3 Pairwise comparison of the two 1 

segmentations for a sector of Lampedusa. The BDRS segmentation shows a better recognition of the 2 

acoustic facies boundaries compared to BD segmentation. For this reason, it was decided to adopt the 3 

BDRS segmentation for the interpretation. 4 

 5 

 6 
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ESM3.1 - R iaster images used to analyze the Lampedusa seabed with RSOBIA. a) Snippet mosaic (backscatter), w th brightness
values are (low value corresponding high backscatter and low absorption); b) DTM image (in meters); c) the surfaceindicated
roughness (in dimensionless value) derived trough RSOBIA; d): the slope image (in degree) derived trough RSOBIA.

ESM3.2 - a) BD segmentation and b) BDRS
segmentation results. The maps show the
majority, the most common class of all pixels in
polygon. This is the main class for interpretation.

ESM3.3 - twoPairwise comparison of the segmentations for a sector of
Lampedusa. BD and BDRS segmentations were similar, and neither one looks
like a counturing. Nerveless in some sector, such as in the figure, some acustic
facies are better delimitetd.

No segmentation and contour lines
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