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Abstract Diabatic upwelling of abyssal waters is investigated in the Panama Basin employing the
water mass transformation framework of Walin (1982). We find that, in large areas of the basin, the bottom
boundary layer is very weakly stratified and extends hundreds of meters above the sea floor. Within the
weakly stratified bottom boundary layer, neutral density layers intercept the bottom of the basin. The area of
these density layer incrops increases gradually as the abyssal waters become lighter. Large incrop areas are
associated with strong diabatic upwelling of abyssal water, geothermal heating being the largest buoyancy
source. While a significant amount of water mass transformation is due to extreme turbulence downstream
of the Ecuador Trench, the only abyssal water inflow passage, water mass transformation across the upper
boundary of abyssal water layer is accomplished almost entirely by geothermal heating.

Plain Language Summary This study investigates how abyssal waters become lighter with the
focus on geothermal heating effect. We find that in the Panama Basin, geothermal heating dominates the
upwelling across the upper boundary of abyssal waters. Nevertheless, high turbulence at the abyssal water
inflow passage contributes significantly to lighten the densest waters. Finally, most of the upwelling is found
in the weakly stratified bottom boundary layer, which is hundreds of meters thick, contrary to the common
assumption of it being just meters to 10s of meters thick.

1. Introduction

The diabatic upwelling of abyssal waters is arguably the least well understood part of the meridional overturn-
ing circulation. Introduced by Stommel (1958), the picture of homogeneous, widespread upwelling driven
by turbulent mixing with an average diffusivity of 10−4 m2/s (Munk, 1966) was challenged by direct mea-
surements of deep turbulent dissipation (Polzin et al., 1997). Deep ocean turbulence turns out to be highly
inhomogeneous: at least an order of magnitude larger than the canonical estimate of Munk (1966) in narrow
passages and canyons, and over rough bathymetry, but an order of magnitude smaller in most of the rest of
the ocean. Consequently, there is a prevailing notion that the bulk of the abyssal water upwelling occurs in
localized regions of complex and rough bathymetry.

In recent years, however, it has been argued that bottom-intensified mixing could lead to deep waters becom-
ing denser, rather than lighter, and therefore to diabatic downwelling, rather than upwelling (de Lavergne
et al., 2016; Ferrari et al., 2016; Klocker & McDougall, 2010). The density flux due to diapycnal mixing is com-
monly parametrized as Kz𝛾z , where Kz is the vertical turbulent diffusivity and 𝛾z is the vertical density gradient.
In the deep ocean, stratification rapidly increases upward. Thus, if turbulent diffusivity was uniform in the
vertical, the stronger density flux at lighter densities would cause density flux divergence, that is, buoyancy
convergence, or diabatic upwelling. However, observations show that turbulent kinetic energy dissipation
can rapidly increase with depth above rough bathymetry (e.g., Ledwell et al., 2000). Assuming that the tur-
bulent density flux varies similarly to turbulent kinetic energy in the vertical, this could lead to a density flux
convergence and, consequently, to diabatic downwelling. A conundrum arises in the observation that vast
areas of the deep ocean have favorable conditions for diabatic upwelling to occur, but turbulent mixing is too
weak there (small Kz) to generate as much diabatic upwelling of abyssal waters as we know is needed to sup-
port the global meridional overturning circulation. At the same time, regions of vigorous, bottom-intensified
turbulent mixing imply diabatic downwelling, instead of upwelling.
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Figure 1. The bathymetry of the Panama Basin. Red dots indicate the
locations of conductivity-temperature-depth casts collected between
December 2014 and March 2015. Bathymetry contours mark the depths of
2,000 and 3,000 m. The thick, brown line marks the location of geothermal
heating larger than 500 mW/m2.

Several solutions have been suggested to solve this puzzle. Klocker and
McDougall (2010) observed that, since the area of ocean basins decreases
with depth, the net (integrated) density flow across a given isopycnal of
area S0 can still be larger than the flux across a deeper isopycnal of area
S1, even if Kz increases with depth, resulting in density flux divergence
over the bounded density layer or diabatic upwelling. Following Jackett
and McDougall (1997), we define an isopycnal as a surface of neutral den-
sity 𝛾 , where we subtract 1,000 kg/m3 from the neutral density values. The
difference between the two density surface areas, S0−S1, is called the den-
sity layer intercept with the bottom of the basin. It has been hypothesized
that abyssal water upwelling happens along the bottom boundaries of the
basin and is predominantly set by the size of the bottom intercept areas of
the density layers (de Lavergne et al., 2016; Ferrari et al., 2016; McDougall &
Ferrari, 2017).

Geothermal heating, acting solely at the bottom boundary, contributes to
buoyancy flux convergence within the weakly stratified bottom bound-
ary layer (wsBBL). Modeling studies of various levels of complexity (e.g.,
Adcroft et al., 2001; Emile-Geay & Madec, 2009; Hofmann & Morales
Maqueda, 2009) have debated the importance of geothermal heating
for water mass transformation with simulated contributions ranging from
negligible to over 30%. Using climatologies of hydrographic properties
and available energy fluxes from baroclinic tides and lee waves combined

with the near-field mixing parametrization, de Lavergne et al. (2016) find a 40% contribution of geothermal
heating to the upwelling of the Antarctic Bottom Waters.

The purpose of this study is to compare new observational evidence with the developing theories on
abyssal water mass transformation. We investigate the semienclosed Panama Basin using recently collected
high-resolution hydrographic data. We adopt the water mass transformation framework of Walin (1982),
as explained in section 3, to evaluate the importance of geothermal heating for abyssal water diapycnal
upwelling (section 4).

2. The Panama Basin

The Panama Basin is almost completely shielded from the rest of the equatorial Pacific Ocean below about
2,500 m (Figure 1). The only deep water exchange pathway is a passage between the Carnegie Ridge and the
South American continental slope called the Ecuador Trench, with a sill depth of about 2,930 m. An inflow
through the trench into the basin at a rate of 0.29 ± 0.07 Sv with neutral density range between 28.016 and
27.967 kg/m3 was estimated in the first part of this study (Banyte, Smeed, et al., 2018). In this study, we show
that the discretized density layer 𝛾 = 27.970 ± 0.001 kg/m3 has the largest incrop area and consequently the
largest water mass transformation rate in the wsBBL driven by the geothermal heating. We conclude that the
upper boundary of the abyssal water layer is between density surfaces 𝛾27.967 and 𝛾27.970. For simplicity, in this
study the density surface 𝛾27.970 is named the upper boundary of the abyssal water layer.

Hydrography reveals that abyssal waters entering the basin experience a strong transformation in the first
200 km downstream of the inflow (Banyte, Smeed, et al., 2018). Over this short distance, all waters denser than
27.988 kg/m3 are transformed into lighter waters. The observed bottom density change of 0.028 kg/m3 is also
reflected in a bottom temperature rise of 0.15 ∘C. Banyte, Smeed, et al. (2018) hypothesized that the intense
turbulent mixing leading to this dramatic water mass transformation is caused by a hydraulic jump resulting
from critical flow through the passage. Abyssal water mass transformation further into the basin is much more
gradual and the bottom density change is estimated to be 0.021 kg/m3 (0.10 ∘C).

3. Theory: Abyssal Water Transformation

Abyssal water mass transformation inside the basin is analyzed using the water mass transformation frame-
work of Walin (1982), assuming steady state conditions for a volume of fluid, ΔV , bound by neutral density
surfaces, 𝛾 and 𝛾 + Δ𝛾 . In general, we follow the notation of Nurser et al. (1999) and use their derivation of
volume and mass conservation for the volume of fluid. The lateral flux of fluid into ΔV is denoted by ΔΨ, the
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Figure 2. Schematics of discretized density layers in an idealized basin along meridional transect (top) and two zonal
transects: near to the source (a) and further into the basin (b). The net inflow into the basin between the seabed and the
isopycnal layer 𝛾 is denoted by Ψ(𝛾). Similarly, G(𝛾) denotes the net water mass transformation rate across the density
surface 𝛾 . Diffusive and geothermal density fluxes are marked by Ddiff and Dsurf . The top figure visualizes formation of
incrops with the area of ΔSI , while zonal transects below—formation of bottom intercept areas at the sloping walls of
the basin. wsBBL = weakly stratified bottom boundary layer.

diabatic flows (water mass transformation) through the bounding density surfaces are denoted by G(𝛾) and
G(𝛾 + Δ𝛾) (Figure 2). The analysis makes the approximation that all density transformations are due to either
geothermal heat fluxes or turbulent mixing, neglecting the effects of cabbeling, thermobaricity, and neutral
helicity. Unlike Nurser et al. (1999), however, we choose G(𝛾) to be positive in the direction of decreasing
density (or decreasing depth). Thus, by this definition, water mass transformation leading to lighter water is
positive (G(𝛾)> 0):

G(𝛾) =
𝜕Ddiff (𝛾)

𝜕𝛾
+

𝜕Dsurf (𝛾)
𝜕𝛾

, (1)

where Ddiff is the net turbulent density flux across isopycnal 𝛾 , positive in the direction of increasing densities,
and Dsurf is the surface density outflux through the seabed of all the water denser than 𝛾 and is caused by
geothermal heating.

Equation (1) links the rate of water mass transformation to the processes causing the said transformation.
A diapycnal volume flux directed from dense to light water G(𝛾)> 0 requires a divergence of density fluxes
driven either by turbulence, 𝜕Ddiff∕𝜕𝛾 > 0, or by geothermal heating, 𝜕Dsurf∕𝜕𝛾 > 0.

The integrated downgradient diffusive density flux across the isopycnal 𝛾 of area SD(𝛾) can be expressed as

Ddiff(𝛾) = − < F(𝛾)> SD(𝛾), (2)

where F(𝛾) is upgradient density flux that is sometimes parametrized through diapycnal vertical diffusivity K z

and density gradient 𝛾z as F(𝛾) = −Kz𝛾z , with z increasing downward. The density fluxes in equation (2) are
averaged over the whole isopycnal as

< F(𝛾)> = 1
SD(𝛾) ∫SD(𝛾)

FdSD. (3)

Similarly, Dsurf(𝛾) can be expressed as

Dsurf(𝛾) = − 𝛼

Cp
< q(𝛾)> SF(𝛾), (4)
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where 𝛼 is the thermal expansion coefficient of seawater and Cp is the heat capacity of seawater. Both are
considered to be constant. < q(𝛾)> is the average geothermal heat flux over the sea floor region of area SF(𝛾)
located underneath isopycnal 𝛾 :

< q(𝛾)> = 1
SF(𝛾) ∫SF (𝛾)

qdSF , (5)

where q is the in situ geothermal heat flux.

Introducing equations (2) and (4) in equation (1), we reach the following expression.

G(𝛾) = gdF + gdq + gF + gq =

= −
(
𝜕F(𝛾)
𝜕𝛾

+ 𝛼

Cp

𝜕q
𝜕𝛾

)
S −

(
F(𝛾) + 𝛼

Cp
q

)
𝜕S
𝜕𝛾

,
(6)

where, for convenience, we have dropped the angle brackets from the average quantities defined in
equations (3) and (5). We have also made the approximation SD ≃ SF = S.

The 𝜕S∕𝜕𝛾 is always negative, because horizontal area of isopycnals is increasing with lighter densities located
higher up in the water column. The increase in S happens due to the access of lighter waters to the boundary,
either the bottom of the basin or its walls (Figure 2). Hence, (𝜕S∕𝜕𝛾)Δ𝛾 denotes the bottom intercept area,
which is a sum of incrop area at the bottom of the basin and bottom intercepts at the basin walls.

As 𝜕S∕𝜕𝛾 is negative, the terms gF and gq in equation 6 are always positive. The term gdq, which represents
spatial variation of geothermal heating, we show, is also positive in the Panama Basin. The only negative term
in equation 6 is expected to be gdF on the condition that density fluxes F are bottom intensified.

In the steady state, if there is inflow of abyssal water into the basin, the integrated volume flux between the
seabed and isopycnal 𝛾 (Ψ(𝛾)) increases monotonically approaching the upper boundary of the inflow, above
which the flow reverses, and so must G(𝛾). In other words, the net water mass transformation through the
sequence of isopycnals increases as water becomes lighter. This increase must be associated with a concomi-
tant increase in at least one of the terms of the decomposition in equation 6. We will argue below that the
terms growing the fastest with decreasing 𝛾 are those proportional to 𝜕S∕𝜕𝛾 , namely the terms gF and gq. This
study, consistent with the global analysis of de Lavergne et al. (2016), shows that lighter abyssal waters tend
to have larger bottom intercept areas, typically reaching a maximum for the density range corresponding to
the upper boundary of abyssal waters.

4. Observations
4.1. Data Description
All observational data used in this study were collected between December 2014 and March 2015. The two
cruises on RRS James Cook (JC112) and FS Sonne (SO238) were funded as part of the multi-institute research
project OSCAR (Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrother-
mal fluids at an Axial Ridge) that aims to investigate the coupling of hydrothermal flow between the ocean
and the lithosphere and its impact on the evolution of the oceanic crust and on basin-scale circulation. All of
the 132 conductivity-temperature-depth (CTD) casts went down to approximately 5 m above the bottom. The
vertical distributions of temperature, salinity, and dissolved oxygen were measured with a SBE911plus CTD
system (Sea-Bird Electronics, Inc.). The accuracy of the sensors was 0.001 ∘C, 0.0003 S/m, 1 dB, and 0.1 ml/l
(4.47𝜇mol/kg) for temperature, conductivity, pressure, and oxygen, respectively. This results in density accu-
racy of 0.004 kg/m3. However, the precision of CTD sensors is much greater than their accuracy, which allows
us to accurately evaluate density gradients as small as 10−5 kg/m4 when defining the upper boundary of
the wsBBL. The use of density gradient criteria to identify the wsBBL is discussed further in Banyte, Morales
Maqueda, et al. (2018).

The geothermal heat flux in the basin was estimated by using the age map of the ocean floor (Müller et al.,
1997) as a proxy for the heat flow. This sea floor age data set has a resolution of 0.1∘ × 0.1∘. Then, we applied
the formula of Stein and Stein (1992) linking the age of the bedrock to the heat flow through the crust: q(t) =
510t−0.5, where t is crust age in million years (Myr) and q is the heat flow in milliWatt per square meter (mW/m2).
The ridges traversing the western side of the Basin stand out due to their large heat flow estimate (Figure 1).
It is expected that the Stein and Stein (1992) formula overestimates the geothermal heat flux for very young
crust, as their estimate in that case approaches infinity. Hence, we imposed an upper limit of 550 mW/m2
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Figure 3. Vertical neutral density profiles (gray) with the wsBBL, identified
by the search algorithm presented in Appendix A, marked in black. The
horizontal dashed line marks the upper boundary of abyssal waters. The top
right figure shows the density-pressure relation estimated at the top of
wsBBL with their linear fit marked by the red line. wsBBL = weakly stratified
bottom boundary layer.

on the geothermal heating estimates. The resulting difference in the total
heat flux for the incrop of the 𝛾 = 27.970 ± 0.001 kg/m3 layer is estimated
to be ∼4%.
4.2. The Weakly Stratified Bottom Boundary Layer
To define the boundaries of the bottom intercept areas of density layers,
the bottom densities of abyssal waters must be mapped. However, a near
bottom density measurement might not represent abyssal waters if taken
over shallow locations. Instead, the hydrographic data indicate that a thick
wsBBL covers most of the basin (Figure 3). Assuming that thick wsBBL can
only form at the bottom of the basin, but not over basin walls, such as
shallow ridges, only profiles having a thick wsBBL were taken to map the
bottom density.

The wsBBL was defined as the abyssal region where density gradients are
smaller than 1 × 10−5 kg/m4 (see details in Appendix A), computed over
50 m depth intervals. For this reason only stations with the estimated
wsBBL thickness larger than 50 m were used for mapping. Of the 132 neu-
tral density profiles in the Panama Basin, 78 had wsBBLs thicker than 50 m
and, for these profiles, the median thickness of the wsBBL is 350 m; at seven
sites the wsBBL was found to be over 1,000 m thick.

The density and pressure, 𝛾wsBBL and PwsBBL, at the upper boundary of the
weakly stratified bottom waters are highly correlated with one another

(top right panel of Figure 3) and vary smoothly in space. This is a common property of abyssal waters observed
over most of the global ocean basins (Banyte, Morales Maqueda, et al., 2018). Consequently, we use 𝛾wsBBL to
map bottom density and the linear relation between 𝛾wsBBL and PwsBBL to outline shallow bathymetry (Figure 4)
with details given in Appendix B.

Taking the bathymetry into account, the density map reveals the pathway of abyssal waters as they fill the
basin. The densest waters, as expected, are channeled along the deepest trenches in the eastern part of the
basin. However, as they fill the basin, the bottom waters become lighter, and their PwsBBL becomes shallower,
which leads to weaker topographic constraints. In the east of the basin, the narrow trenches are the main arter-
ies along which the dense water spreads. In the west, the similarly narrow trenches are completely flooded
with nearly homogeneous bottom waters, the upper boundary of which is located some 800 m higher up in
the water column (Figure 3). Overall, shallow PwsBBL supports wsBBLs that can become over 1,000 m thick over
deep trenches.
4.3. Incrops
The term incrop was used by de Lavergne et al. (2016) to refer to the bottom intercept area of ocean density
layers, by analogy with the density layer outcrops at the sea surface. In the same way as outcrops at the sea
surface can be associated with mixed layers hundreds of meters deep, incrops can result in equally thick
wsBBLs along the abyssal water spreading path. However, nearly flat isopycnals can be interrupted by sloping

Figure 4. Map of interpolated 𝛾wsBBL (left) and recomputed PwsBBL (right). The squares indicate the location of the
conductivity-temperature-depth casts. The thin black line delineates the 2,900 m isobath, which approximately
corresponds to the PwsBBL(𝛾 = 27.970) value. The thick gray line indicates the location of the spreading axial ridges in
the basin. wsBBL = weakly stratified bottom boundary layer.
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Figure 5. Spatial distribution of the largest bottom intercept area,
corresponding to the neutral density layer 𝛾 = 27.970 ± 0.001 kg/m3. Blue
dots mark the incrop area ΔSI , while the red dots mark the bottom intercept
at the walls of the basin computed as a residual of ΔS − ΔSI . Black lines
show the 3,000 m isobath.

bathymetry along continental slopes, oceanic ridges, and sea mounts, cre-
ating thin wsBBLs just a few meters thick, as observed for example on the
continental slopes (e.g., Moum et al., 2004). We call the latter regions the
walls of the basin.

In this study, only profiles with wsBBL thicker than 50 m were used for bot-
tom density interpolation, as when the wsBBL is thin a CTD profile may
not sample the densest water. The resulting bottom density map reflects
the map of incrops—bottom intercept areas of discretized density lay-
ers that are allowed to have thick wsBBL if only bathymetry permitted it.
At the same time, the bottom intercept areas at the sloping walls of the
basin cannot be directly observed either from our data or from historical
data sets, because most of the CTD profiles stop at least 5 m above the
bottom. Instead, such areas are inferred from maps of stratification and
bathymetry by assuming flat 𝛾wsBBL surfaces at the depth of PwsBBL. In this
way, the map of incrops as shown in Figure 4 can be complemented with
the bottom intercept areas at the basin walls as shown in Figure 5 (details in
Appendix B).

In the Panama Basin, the density layer 𝛾 = 27.970 ± 0.001 kg/m3 is esti-
mated to have the largest incrop area: about 75% of the total bottom
intercept area is estimated to reside over the western side of the basin,
where this density layer intercepts the bottom of the basin, while the

remaining 25% of the bottom intercept is located away from the incrop, along the continental slopes and
the flanks of shallow ridges (Figure 5). However, while isopycnal 𝛾27.970 has the largest incrop area, the lighter
isopycnal 𝛾27.950 finishes to fill the bottom of the basin. This means that all of the density layers lighter than
𝛾27.950 do not form incrops with thick wsBBL, but have bottom intercept areas at the walls of the basin form-
ing very thin wsBBLs (less than 50 m thick). In this study, waters with densities higher than 𝛾 = 27.970 kg/m3

are referred to as the abyssal water layer.

For abyssal waters, incrop areas tend to be larger for lighter densities (Figure 6c), reaching a maximum for
the upper boundary of abyssal waters at 𝛾27.970. The bottom intercept areas at the basin walls are also slightly
increasing with lighter waters, but less sharply than incrops. Furthermore, for most of the lighter abyssal
waters, the areas of the bottom intercepts at the walls are smaller than the incrop areas for the same den-
sity layers. Therefore, although the total area of density layers is monotonically increasing as waters become
lighter (Figure 6a), this does not mean that hypsometry (increase in the area of the ocean basins at shallower
depths) defines the size of the bottom intercept areas for the abyssal waters in the basin.

The spatial extent of abyssal isopycnals is strongly controlled by transformation processes which prevent them
from spreading uniformly through the basin (Figure 4). It is instructive to estimate the hypothetical intercept
area of the abyssal waters in the basin if they could spread horizontally without transformation to fill the basin.
In this case, the intercept area would be controlled purely by the basin average stratification and by hypsom-
etry. We have done this calculation using the PwsBBL − 𝛾wsBBL relation discussed above (Figure 7). Bathymetry
by itself would allow larger spatial extents of all abyssal waters up to the isopycnal 𝛾27.950, with the largest dif-
ferences estimated below 𝛾27.970 isopycnal. Hence, the area of abyssal waters is controlled not by hypsometry
but by the existence and extent of incrops.
4.4. Geothermal Heating Contribution to Water Mass Transformation
In a semienclosed basin, such as the Panama Basin, in steady state, volume conservation dictates that inte-
grated abyssal water volume influx into the basinΨ(𝛾) is equal to water mass transformation across the abyssal
water boundary 𝛾 . Hence, the isopycnal corresponding to the lightest abyssal waters that inflow into the
Panama Basin through the Ecuador Trench passage will experience the largest diapycnal upwelling. They also
happen to have the largest incrop area, as was shown above. Both turbulent diffusion and geothermal heating
contribute to density flux divergence over the incrops (the terms gF and gq in equation (6) are always positive).
In this section, we evaluate the contribution of geothermal heating to abyssal water mass transformation.

Geothermal heating in the Panama Basin is highly variable in space. The three spreading ridges on the western
side of the basin emit large geothermal heat fluxes (Figure 1) in comparison to the basin average flux of 210
mW/m2. Yet while heat fluxes directly over the ridges have in all likelihood an important effect on the local
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Figure 6. Surface area of the neutral density surfaces (a), bottom intercept area (b), incrop area (c), and bottom intercept area at the walls of the basin (d)
computed as a residual of (b) − (c). Profiles in (b) to (d) are calculated for a density increment of 0.002 kg/m3. Gray lines represent the results of the spatial
interpolation of randomly chosen 70% of the observed profiles repeated 1,000 times, their mean (solid black line) and two standard deviations (dashed line).
The horizontal line marks the upper boundary of abyssal waters.

circulation, the incrop areas of the lightest abyssal waters extend well beyond the ridges, which suggests
that the contribution of geothermal hot spots to the total density flux divergence over the incrops is modest.
For example, approximately 2% of the total bottom intercept area of the isopycnal 27.970 ± 0.001 kg/m3 is
located above geothermal sources larger than 550 mW/m2, contributing only 10% to the total water mass
transformation associated with geothermal heating in this layer.

As spreading ridges are located on the western side of the basin, the average geothermal heating q

Figure 7. Ratio of the maximal area of a density layer allowed by
hypsometry to the observed area: Smax(𝛾)∕S(𝛾).

enveloped by lighter densities is increasing, 𝜕q∕𝜕𝛾 < 0 (Figure 8). Accord-
ingly, the term gdq in equation (6) is positive. For abyssal waters, the
estimated average density gradient of q is of the order of −5 W⋅m−1⋅kg−1.
Due to large incrop areas, abyssal waters have exceptionally small ratios
of isopycnal surface area, S, to bottom intercept area, ΔS, which we show
in the section below to be ∼5 for density layers with Δ𝛾 = 0.002 kg/m3

increments. As a result, a comparison of terms gdq and gq reveals that
gdq is ∼25% of gq and has a nonnegligible contribution to the abyssal
water upwelling.

The lightest abyssal water layer 27.970 ± 0.001 kg/m3 has the largest bot-
tom intercept area and receives the largest amount of geothermal heat at
around (1.7 ± 0.3) × 1010 W (Figure 8); the error analysis for this estimate
is presented in Appendix B. This geothermal heating is associated with an
estimated abyssal water upwelling of gq = 0.32±0.07 Sv across the density
surface 𝛾27.970. These calculations have been made with a thermal expan-
sion coefficient of 𝛼 = (1.5 ± 0.15) × 10−4 per K and a heat capacity of
seawater of Cp = 3992 J⋅kg−1⋅K−1. Since the abyssal water inflow into the
basin is 0.29 ± 0.07 Sv (Banyte, Smeed, et al., 2018), these estimates show
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Figure 8. Geothermal heat fluxes over: (a) the total bottom intercept area of an isopycnal layer, (b) incrop area only, (c) basin wall, computed as a residual of
(a) − (b), only. All profiles were calculated for a density increment of 0.002 kg/m3. The average geothermal heat flux over the entire area covered by an isopycnal
is shown in (d). Gray lines represent the results of the spatial interpolation of randomly chosen 70% of the observed profiles repeated 1,000 times, their mean
(solid black line) and two standard deviations (dashed line). The horizontal line marks the upper boundary of abyssal waters.

that geothermal heating is the dominant process causing water mass transformation in the basin, when away
from the highly turbulent region of the Ecuador trench.

In conclusion, the abyssal water upwelling in the Panama Basin is strong both due to the strong geothermal
heating, which is estimated to be three times the global average, and also due to the spatial distribution of
geothermal hot spots located at the far-end from the abyssal water inflow passage.
4.5. The Influence of Stratification on Water Mass Transformation
Observations show that turbulent energy dissipation can increase by at least an order of magnitude over areas
of rough topography (e.g., Waterhouse et al., 2014). The bottom intensification of mixing is only modest over
smooth sea floors. Away from the boundaries, the ocean seems to have a more or less uniform background
diffusivity of Kz

b = 10−5 m2/s. This raises the question of how this small background diffusivity affects the
abyssal and deep water upwelling in the Panama Basin. Here we investigate whether interior water upwelling
driven by constant turbulent diffusivity in an environment where stratification increases rapidly above the
wsBBL can be significant in comparison to water upwelling at the boundaries.

The total surface area of density layers (S) is significantly larger than the size of their bottom intercept areas
(ΔS), especially for waters lying above the abyssal water layer. Stratification increases with height above the
bottom, which with a large surface area of isopycnals, could dominate the vertical divergence of the turbulent
density flux and, correspondingly, the diabatic upwelling in the basin’s interior. For the case of weak back-
ground diffusivity, taken as a constant for both basin’s interior and at the upper boundary of the wsBBL, the
terms gdF and gF in equation (6) can be compared. In this case, density fluxes are parametrized as F(𝛾) = K z

b𝛾z .

Comparing terms gdF and gF in equation (6) with parametrized density fluxes

gdF

gF
=

Δ𝛾zS(𝛾)
𝛾zΔS(𝛾)

, (7)

where the density discretization interval is Δ𝛾 = 0.002 kg/m3, Δ𝛾z and ΔS(𝛾) are equal to (𝜕𝛾z∕𝜕𝛾)Δ𝛾 and
(𝜕S∕𝜕𝛾)Δ𝛾 , respectively.
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Figure 9. Average density-pressure (left) and density gradient profiles (right) over the incrops discretized with density
increments of 0.002 kg/m3. The spatial average of 𝛾z along isopycnal weighted by the incrop areas is marked by empty
circles. The red profile represents the average profile located over the largest incrop area of 𝛾27.970. The horizontal line
marks the upper boundary of abyssal waters.

In general, the vertical density gradient is highly variable along any density surface: the strongest abyssal strat-
ification occurs near the inflow passage of the Ecuador Trench and the weakest at the incrops. The incrops are,
by definition, accompanied by thick wsBBLs. Above the wsBBL, the vertical isopycnal density gradient tends
to increase with decreasing densities (right panel of Figure 9). However, the profiles near the Ecuador Trench
demonstrate how ocean dynamics affect the abyssal water stratification: waters just above 𝛾27.970 have weaker
density gradients than below. This is because these lighter waters are part of the outflow of homogenized
deep waters from the Panama Basin into the open Pacific.

Despite the tendency for the stratification in any single water column to increase with decreasing density, the
basin averaged stratification does not necessarily follow this pattern. The reason for this is the incrop area, and
therefore the area of weak stratification, that gradually increases for lighter abyssal waters. Large incrop areas
result in a large weight of weak stratification in the basin average of 𝛾z(𝛾). In the Panama Basin, the basin aver-
age of 𝛾z(𝛾) varies by less than 10% at the upper boundary of abyssal water layer, in the density range between
𝛾27.976 and 𝛾27.970 (black circles in right panel of Figure 9). Furthermore, the ratio of the total isopycnal surface
area (S) to the bottom intercept area (ΔS) is also exceptionally small: varying between 2 and 7 (Figure 10), due
to either large ΔS, or S being much smaller than hypsometry allows it: S < Smax (Figure 7). As a result, diabatic
abyssal water upwelling at the incrops dominates over the basin-wide abyssal water upwelling (gdF∕gF < 1).

Figure 10. Ratio of the area of the isopycnal layer centered at 𝛾 to the
bottom intercept area of the same layer: S(𝛾)∕ΔS(𝛾), where ΔS(𝛾) = 𝜕S(𝛾)

𝜕𝛾
Δ𝛾

with Δ𝛾 = 0.002 kg/m3. The horizontal line marks the upper boundary of
abyssal waters.

A reverse outcome is expected for the deep waters above the abyssal
water layer. The ratio S to ΔS is expected to grow significantly for deep
waters controlled by hypsometry. For example, for deep waters immedi-
ately above the abyssal water layer, the S∕ΔS ratio grows rapidly from an
estimated value of 5 for the density layer 27.970 ± 0.001 kg/m3, to 40 for
the isopycnal 𝛾27.95 (at ∼2,30 m depth), which is still within the semien-
closed basin. At the same time, the basin average density gradient grows
at the rate of 5 × 10−6 kg/m4 per density step of 0.002 kg/m3, reach-
ing a density gradient of 8 × 10−5 kg/m4 for the same isopycnal of 𝛾27.95

(Figure 9), resulting in the ratio of 2.5 in equation (7). The ratio is expected
to increase even further with lighter waters, following the increase of ratio
S∕ΔS. As a result, upwelling of deep (but not abyssal) waters is much more
likely to be basin-wide, along the whole density surfaces, as originally
suggested by Stommel (1958), unless the bottom-intensified turbulence
drives significant water mass transformation at the walls of the basin.

In conclusion, for abyssal waters, boundary upwelling is much more
important than for the deep waters above them, because abyssal waters
have access to the bottom of the basin resulting in formation of incrops
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Figure 11. Spatial integral of density flux divergence above the weakly stratified bottom boundary layer for the
exceptionally intense bottom intensification of turbulence (Case 1) and for the strong bottom intensification of
turbulence (Case 2). The integration area is divided into sections: incrops, walls of the basin, where weakly stratified
bottom boundary layer is very thin, and sum of both. Horizontal lines mark the upper boundary of the abyssal water
layer 𝛾27.970 and the lightest isopycnal with the access to the bottom of the basin 𝛾27.95. Note the different x axis in two
figures.

and, overall, exceptionally large bottom intercept areas of density layers. This becomes even more significant
when turbulence intensifies with depth, which is investigated below.
4.6. Bottom-Intensified Mixing
To understand the turbulence-driven deep water mass transformation in the basin, a more realistic
parametrization of turbulence must be implemented. Two scenarios are addressed here: (1) turbulent density
flux is strong near the bottom and rapidly decreases with height above the bottom, and (2) turbulent den-
sity flux is an order of magnitude weaker near the bottom and only slowly decreases in height. The first case
represents highly turbulent regions, while the second case corresponds to normal conditions.

Specifically, density flux is parametrized as an exponential function following Ferrari et al. (2016), with
the reference to the global estimates of turbulent dissipation (𝜖) over ridges and rough topography
(Waterhouse et al., 2014):

F(h) = F0e−h∕d, (8)

where F0 is density flux at the bottom, h is height above the bottom, and d is an e-folding scale of the expo-
nential function. However, density fluxes only above the wsBBL were considered h> PwsBBL, because wsBBL
is a layer where mixing efficiency reduces due to a very weak stratification and diffusive density fluxes at the
bottom are zero.

Following Ferrari et al. (2016), in Case 1, the case of extreme bottom intensification of turbulence, density
fluxes are parametrized with parameters F0 = 2 × 10−8 kg⋅m−2⋅s−1, and d = 500 m. Such a parametrization is
comparable to the turbulent dissipation intensification measured over some parts of the mid-ocean ridges,
where dissipation changes by an order of magnitude in 1,000 m above bottom (Waterhouse et al., 2014). In the
case of normal turbulence enhancement with depth (Case 2), density fluxes are parametrized with parameters
F0 = 2 × 10−9 kg⋅m−2⋅s−1, and d = 1, 000 m. Such parametrization is comparable to the turbulent dissipation
intensification as measured over the rough topography (Waterhouse et al., 2014).

With turbulence increasing exponentially with depth, the largest turbulent density fluxes are found at the top
of the wsBBL. Just above the PwsBBL, the density flux convergence ΔF(𝛾)∕Δ𝛾 is also at its maximum. Locally,
both the density flux and its convergence decrease with lighter densities above the PwsBBL. Furthermore, large
incrop areas found for lightest abyssal waters result in large spatial integral of density flux convergence <

ΔF(𝛾)∕Δ𝛾 > S (details in Appendix D), which reaches a maximum just above the 𝛾27.970 surface (Figure 11).

The water mass transformation framework used in this study is formulated in density space, hence, density
fluxes expressed against the height above the bottom must be converted to density units by using the local
stratification profile. Stratification profiles as a function of density (see Figure 9) are averaged on density sur-
faces. Thus, having a map of the bottom density, local stratification may be estimated everywhere in the
basin as well. Near the Ecuador Trench, the abyssal water source, abyssal and deep water stratifications, is the
strongest, while over incrops it is the weakest. Hence, by using density flux parametrization as in equation (8),
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Figure 12. Spatially integrated density flux divergence in the Panama Basin for the exceptionally intense bottom
intensification of turbulence (Case 1) and for the strong bottom intensification of turbulence (Case 2). The profiles show
downwelling above weakly stratified BBL (red) and upwelling at the weakly stratified BBL (blue) driven by the
bottom-intensified turbulence, the upwelling driven by the background turbulence (gray) and their total upwelling
(black). Horizontal lines mark the upper boundary of the abyssal water layer and the lightest isopycnal with the access
to the bottom of the basin. Note the different x axis in two figures. BBL = bottom boundary layer.

the bottom-intensified turbulence is much more compressed in density space at the western side of the basin,
where the largest incrops are located. Finally, having the largest incrop area and weak stratification over it, the
spatially integrated density flux divergence peaks sharply at 𝛾27.970 (Figure 11).

Nevertheless, despite the fact that the area of incrop is almost three times larger for 𝛾 = 27.970 ± 0.001 than
the bottom intercept area over the walls, the spatially averaged turbulent density flux convergence is similar
over both the basin walls and the incrop. The reason is the extremely thin wsBBL found at the basin walls,
where much larger turbulent density fluxes result at the upper boundary of the wsBBL. Due to variations in
thickness of the wsBBL over incrops, the maximum density flux F(𝛾) at the top of the wsBBL is on average
twice as small as the chosen F0 value (not shown).

Density flux convergence drives water downwelling. The area integral of this downwelling increases for
lighter abyssal waters, reaches a maximum just above the abyssal water layer, and reduces with decreasing
density for the deep waters above (Figure 12). The strength of the downwelling is highly sensitive to the cho-
sen parametrization of density fluxes. With exceptionally strong bottom-intensified turbulence (Case 1), the
largest downwelling amounts to 0.27 Sv, while upwelling at the wsBBL amounts to 0.47 Sv, which yields a total
upwelling at the upper boundary of abyssal waters of ∼0.2 Sv. An order of magnitude smaller F(𝛾) yields an
order of magnitude smaller water mass transformation rate with the total upwelling estimate of ∼0.04 Sv.

Furthermore, it is interesting to observe that in the Case 2, the diabatic upwelling driven by the background
turbulence of constant Kz

b = 10−5 m2/s is relatively small for abyssal waters, but as soon as density layers
stop having access to the bottom of the basin, above isopycnal 𝛾27.950, the background turbulence becomes
dominant. However, we note that isopycnal 𝛾27.950 spreads at a depth of 2,300 m, and that waters above 𝛾27.950

become free to exchange with the tropical Pacific Basin through passages other than the Ecuador Trench. The
incrops of those lighter waters are located outside the Panama Basin, and only a small part of their bottom
intercepts are located at the walls of the Panama Basin.

In section 4.4, we have estimated that geothermal heating results in a diabatic upwelling rate across the upper
boundary of abyssal water layer that has the same magnitude as the total inflow of abyssal waters into the
basin of ∼0.3 Sv. Hence, the turbulent simulation Case 2 with very weak contribution to the total diabatic
upwelling of only ∼0.04 Sv is a more reasonable scenario than Case 1. All the same, Case 2 represents a strong
bottom intensification of turbulence that is comparable to the turbulent dissipation observed over rough
topography (Waterhouse et al., 2014).

5. Summary and Discussion

The Panama Basin serves as a conveniently small observatory for abyssal water investigation. The basin is
unique in having a single passage for abyssal water inflow into the basin, the magnitude of which is estimated
to be 0.29±0.07 Sv (Banyte, Smeed, et al., 2018) and a strong geothermal heating rate inside the basin. Banyte,
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Smeed, et al. (2018) estimated that about half of the densest abyssal waters inflowing through the Ecuador
Trench become lighter within a distance of 200 km downstream of the sill of the trench. This study analyses
how abyssal waters upwell away from the intensely turbulent narrow passage.

Together with recent studies of Ferrari et al. (2016), and de Lavergne et al. (2016), McDougall and Ferrari
(2017), we confirm that abyssal upwelling happens predominantly within the wsBBL, the latter being formed
when isopycnals intercept the bottom of the basin, which we denote an incrop. The incrop areas increase as
abyssal waters become lighter as they move from the eastern to the western side of the basin. Toward the
west, geothermal heating also intensifies due to the presence of active spreading ridges. This study shows
that abyssal water upwelling through its upper boundary (𝛾27.970) is dominated by the geothermal heating
integrated over the bottom intercept area of this water layer (𝛾 = 27.970 ± 0.001 kg/m3).

Recent theories of abyssal water upwelling (de Lavergne et al., 2017; Ferrari et al., 2016; McDougall & Ferrari,
2017) are based on the assumption of a very thin (on the order of 10s of meters) bottom boundary layer, as
are observed to occur in shallow waters (Moum et al., 2004). By contrast, in the Panama Basin, the wsBBL is
hundreds to over a thousand meters thick at some places. Similarly, thick wsBBLs have been identified by
Banyte, Morales Maqueda, et al. (2018) in the global ocean. We argue that oceanic basins have the bottom
surfaces, which allow thick incrops to form. The thickness of the wsBBL can be used as a rule of thumb to
functionally differentiate between the oceanic bottom and its walls.

Finally, we apply a common parametrization of the turbulence-driven density fluxes to evaluate the strength
of the turbulence-driven upwelling at the wsBBL and of the downwelling above it. Due to the opposing effects
of the exponential decrease of density fluxes with height above the bottom and a rapid rate of increase in the
area of isopycnals, the maximum in the diabatic downwelling is found just above the upper boundary of the
abyssal waters. Consequently, the strongest upwelling rate is estimated to occur in the lightest abyssal waters
that have the largest incrop area. Nevertheless, the turbulence-driven upwelling that occurs within the wsBBL
is always larger than the diabatic downwelling above the wsBBL.

In the Panama Basin, geothermal heating could account for almost all of the water mass transformation that
is required to close the abyssal water layer mass balance. From this we deduce that turbulent dissipation is
responsible for only a small part of the abyssal water mass transformation. This conclusion is confirmed by
application of a commonly used parametrization of turbulent density fluxes over the rough topography (Case
2, in section 4.6), which predicts just 0.04 Sv of diapycnal upwelling.

Appendix A: Defining a Weakly Stratified Bottom Boundary Layer

The vertical density gradient 𝛾z was computed over each 50 m with a running step of 10 m. The wsBBL was
defined where the vertical density gradient was smaller than 1 × 10−5 kg/m4 and the thickness larger than
50 m. Sometimes, the water column of weak 𝛾z was interrupted by a short interval of high 𝛾z . In such cases, if
the water column of weak 𝛾z was longer than the thickness of the interval with high 𝛾z , it was assumed that
the latter was an intrusion and, thus, neglected.

Appendix B: Computing the Incrop Area

The 𝛾wsBBL was spatially interpolated with a nearest neighbor algorithm with 50 km radius. In case of no cast
found, a 150-km radius was used, instead. Then, topography that was shallower than the parametrized PwsBBL

of the interpolated 𝛾wsBBL was removed. To evaluate how estimated incrop areas are affected by sampling, we
ran 1,000 simulations with 70% of all the stations randomly sampled without repetition. The full area of the
𝛾 i

wsBBL surface was estimated as the horizontal area of the abyssal region where densities are equal to or larger
than 𝛾 i

wsBBL and deeper than PwsBBL(𝛾i).

The error of bottom intercept area estimates due to sparse sampling is by far the largest. It causes the error for
the incrop area estimate of ∼20% as shown by dashed lines in Figures 6 and 8. The error of linear fit between
PwsBBL and 𝛾wsBBL, by comparison, is much smaller and affects incrop estimates by ∼5%. We could not assess
the error caused by the geothermal heating parametrization, but assume it to be also much smaller than the
sparse sampling error.
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Appendix C: The Vertical Density Gradient

The individual vertical density profiles were grouped by their 𝛾wsBBL with discretization step of 0.002 kg/m3. In
the range of 𝛾wsBBL chosen from 27.900 to 27.990 kg/m3, in total, 45 mean vertical density profiles represent-
ing an incrop area were found. Then, each averaged profile was smoothed with a low pass filter over 400-m
intervals and interpolated on a grid with 1-m increments. The basin-wide average of 𝛾z along neutral density
surface 𝛾 was computed as

< 𝛾z(𝛾)> =
∑

i ΔSI(𝛾i)𝛾 i
z(𝛾)∑

i ΔSI(𝛾i)
, (C1)

where summation is over a number of profiles, representative of the area of the discretized incrop (ΔSI). The
basin-wide average < 𝛾z > for each density surface is marked by a black dot in Figure 9.

Appendix D: Bottom-Intensified Turbulent Density Fluxes

The turbulent density flux at the location i is computed by using the formula:

Fi(z) = F0e−
Hi−zi

d , (D1)

where Hi is a local seabed depth and zi is the depth coordinate increasing with larger densities as in Figure 2.
Only zi < Pi

wsBBLwas considered.

The spatial integration of density fluxes over each discretized incrop is carried out by (1) converting Fi(z) to
density space (Fi(𝛾)), by using a mean stratification profile averaged over the incrop, (2) averaging Fi(𝛾) spa-
tially over the incrop area in density space with analogy to equation (3), and (3) multiplying by the size of an
incrop area ΔSI(𝛾): ∑

x(𝛾i),y(𝛾i)
< F(𝛾i)> |incropΔSI(𝛾i). (D2)

The spatial integration of density fluxes over bottom intercept areas of discretized density layers at the walls
is carried out by (1) coloring the whole region on the walls, where color represents the discretized bottom
density in the bottom density atlas, (2) converting Fi(z) to density space (Fi(𝛾)) depending on the color of
the location with corresponding stratification profile of the incrop, (3) averaging Fi(𝛾) first over the colored
regions, then over the whole bottom intercept area at the walls, and 4) multiplying by the size of the bottom
intercept area at the walls ΔS − ΔSI(𝛾):∑

x(𝛾i),y(𝛾i)
< F(𝛾i)> |walls(ΔS(𝛾i) − ΔSI(𝛾i)). (D3)

The density flux divergence is integrated in a similar way. For example, over incrops, the density flux diver-
gence for isopycnal 𝛾0 +

d𝛾
2

can be written as

∑
x(𝛾i),y(𝛾i)

(
< F(𝛾i + d𝛾)>− < F(𝛾i)>

Δ𝛾
)|incropΔSI(𝛾i). (D4)
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