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Changes in accumulated snowfall over the Antarctic Ice Sheet (AIS) have an immediate and 8 

time-delayed impact on global mean sea level (GMSL). The former is due to the instantaneous 9 

change in freshwater storage over the ice sheet; the latter acts in delayed opposition through 10 

enhanced ice-dynamic flux into the ocean1. Here, we reconstruct 200 years of Antarctic-wide 11 

snow accumulation by synthesizing a newly compiled database of ice-core records2 using 12 

reanalysis-derived spatial coherence patterns. Results reveal that increased snow accumulation 13 

mitigated 20th century sea-level rise by ~10 mm since 1901, with rates increasing from 1.1 mm 14 

dec-1 between 1901 and 2000 to 2.5 mm dec-1 after 1979. Reconstructed accumulation trends are 15 

highly variable in both sign and magnitude at the regional scale, linked to the trend toward a 16 

positive Southern Annular Mode (SAM) since 19573.  Because the observed SAM trend is 17 

accompanied by a decrease in AIS accumulation, changes in the strength and location of the 18 

circumpolar westerlies cannot explain the reconstructed increase, which may instead by related 19 

to stratospheric ozone depletion4.  Our results indicate that a warming atmosphere, however, 20 

cannot be excluded as a dominant force in the underlying increase.  21 

Annual accumulated snowfall over the grounded Antarctic Ice Sheet amounts to ~6 mm of global 22 

sea-level equivalence; thus, both short- and long-term variations have a significant and direct 23 

impact on sea-level change.  GMSL is currently rising5, but the overall contribution from the AIS 24 

remains poorly constrained6.  Advances in satellite technology have vastly improved our 25 

understanding of ice-dynamic thinning and acceleration, around the periphery of the ice sheet6, 7, 26 

yet the potential for ice-sheet-wide observations of snow accumulation fluctuations remains 27 

equivocal, designating mass input as arguably the largest source of uncertainty in AIS mass 28 

balance estimates.  Modeling efforts have significantly reduced this knowledge gap8, yet without 29 
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any advancements in AIS accumulation observations, distinguishing between the varying ability 30 

of and assigning realistic uncertainties to the modeled net precipitation fields is not possible. 31 

Atmospheric models suggest that snowfall over the AIS will likely rise as atmospheric warming 32 

increases its moisture-holding capacity8.  Significant warming trends9, 10 over much of the 33 

Antarctica Peninsula (AP) and West Antarctic Ice Sheet (WAIS) hint at the possibility of 34 

enhanced snowfall, when considering thermodynamical changes alone.  Surprisingly, 35 

investigation into this potential sea-level mitigation has received little attention, which we 36 

surmise stems from (i) the paucity of observed changes at appropriate spatiotemporal scales11 37 

and (ii) the fact that observation-based atmospheric reanalyses are not trustworthy prior to the 38 

satellite era12.  The publication of research11 indicating no substantial change in AIS snow 39 

accumulation between 1957 and 2005 nearly contemporaneously with a study9 that found 40 

significant warming over much of the AIS, except portions of the East Antarctic Ice Sheet 41 

(EAIS), suggests that the relationship between temperature and accumulation is more complex 42 

and strongly supports the need for further study into recent AIS accumulation variability and its 43 

role in the AIS contribution to GMSL. 44 

Ice core records of snow accumulation (SA), the combination of precipitation, 45 

sublimation/evaporation and deposition, wind redistribution, and meltwater runoff, provide 46 

enough temporal context (several decades to centuries) for trend evaluation, yet they fall short of 47 

sampling the entire AIS2 and are noisy due to small-scale variability (e.g., sastrugi)13. We use 48 

‘snow accumulation’ over ‘surface mass balance’ because we are restricted to areas where the 49 

latter is positive, which is the case for nearly the entire grounded AIS14. Atmospheric reanalyses 50 

provide spatiotemporally complete precipitation-minus-evaporation (P−E) products that are 51 

nearly equivalent to SA over the dry, grounded AIS, and are most trustworthy over the satellite 52 
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era (1979–present). Notable biases in reanalysis P−E exist15, 16, however, they reproduce a 53 

significant portion of the interannual variability17.  Here, we modify the methodology in ref.11 to 54 

reconstruct 19th and 20th century SA over the entire grounded AIS and surrounding islands using 55 

a combination of ice core records and atmospheric reanalysis P−E. A long-term, observationally 56 

based reconstruction of SA is necessary to (i) ensure that any significant trends are observable 57 

over the noise, (ii) quantify the role of AIS SA on observed sea-level change, (iii) better quantify 58 

the relative importance of thermodynamical versus dynamical precipitation change, and (iv) 59 

provide an AIS-wide observation-based SA record, along with uncertainties, for robust 60 

evaluation of global and regional atmospheric AIS net precipitation estimates. 61 

Combining 53 ice core records with the spatial patterns of P−E from three reanalyses, we 62 

reconstruct the 1801-2000 annual SA over the grounded AIS and surrounding islands (Fig. 1a; 63 

Supplementary Table S1 and Supplementary Figs. S1-S2).  We only show results from 64 

reconstruction based on MERRA-2 P−E fields: RMERRA2. The RMERRA2 performed better than the 65 

ERA-Interim- and CFSR-based reconstructions (RERAI and RCFSR) because: (i) the reanalysis 66 

showed the least bias in total magnitude (Supplementary Fig. S3) and (ii) exhibited the highest 67 

skill in reproducing the observations (see Supplementary Methods; Supplementary Fig. S4 and 68 

Supplementary Table S2). Here, we refer to the performance of the reconstruction and not the 69 

reanalysis product itself. In addition, we find that the reconstructions replicate a significant 70 

portion of the reanalysis P−E variability between 1980 and 2000 even though a few of the ice 71 

cores used do not (Supplementary Fig. S5). 72 

Trends in SA over the 20th century (1901−2000) and late 20th century (1957−2000) indicate that 73 

inhomogeneous patterns of change dominate any AIS-wide signal (Fig. 1a-c), and that mass is 74 

being significantly redistributed regionally over the AIS since the 1957–58 International 75 
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Geophysical Year (IGY) and likely since the onset of the 20th century.  Integrated over the entire 76 

ice sheet, however, we observe a clear and significant positive trend in SA (Fig. 2a).  A steady 77 

increase is found over the EAIS, although it has reversed in the late 20th century (Fig. 2b) even 78 

though local trends strengthened in the latter half (Fig. 1b).  We also observe a strong see-saw 79 

pattern of increased SA over the AP and eastern WAIS contrasted with decreased accumulation 80 

over the western WAIS. After nearly a century of decreasing SA over the AP, we find a rapid 81 

and potentially accelerating increase over the 20th century (Fig. 2d), whereas the gains and losses 82 

from western and eastern WAIS largely balance (Fig. 2c). Because the reconstruction is 83 

spatiotemporally complete, we determine the net SA contribution to GMSL over the 20th century 84 

by integrating the annual accumulation relative to the 19th century mean (1801–1900; Fig. 2) 85 

through time. 86 

Between 1901 and 2000, SA over the AIS and its peripheral islands mitigated GMSL by 1.12 ± 87 

0.45 mm dec-1; however, that rate has more than doubled to 2.47 ± 0.76 mm dec-1 after 1979 88 

(Fig. 3a).  We determine that only the EAIS (0.77 ± 0.40 mm dec-1) and WAIS (0.28 ± 0.17 mm 89 

dec-1) mitigated GMSL over the 20th century, but recent SA increases over the AP suggest that it 90 

will enter the 21st century as a source of significant GMSL mitigation (0.62 ± 0.17 mm dec-1). 91 

Decreasing EAIS SA since 1979 indicates a potential slowdown in mitigation from this sector, 92 

while the opposite is true for the AP.  It is critical to note that these sea-level mitigation values 93 

are based only on mass input to the AIS and do not account for the observed increases in mass 94 

output from glaciers that are in dynamic imbalance such as Pine Island and Thwaites6, 18.   95 

AIS-wide SA significantly mitigated 20th century GMSL, but did it result from thermodynamical 96 

or dynamical precipitation change? The Southern Annular Mode (SAM), defined by a belt of low 97 

pressure surrounding the Antarctic that controls the strength and position of the circumpolar 98 
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westerlies, is the dominant mode of atmospheric variability in the high-latitude Southern 99 

Hemisphere19.  Since the 1957–58 IGY, the annual SAM index has exhibited a strong positive 100 

trend3 largely due to anthropogenic ozone depletion and increased atmospheric greenhouse-gas 101 

concentrations20, leading to a contraction of the belt of westerlies towards the Antarctic 102 

continent21.  The pattern and magnitude of SAM-congruent trends and reconstructed SA trends 103 

are remarkably similar (Fig. 1c–d), which indicates that changes in atmospheric circulation are a 104 

dominant force.  Of note, we performed additional reconstructions after first removing the SAM-105 

congruent P−E signal from each reanalysis, and the results are nearly identical; thus, the pattern 106 

is independent and robust (see Supplementary Methods; Supplementary Figs. S6-S7).  Our 107 

reconstructions indicate that the positive SAM trend explains ~80% (n > 20,000 and p << 0.001) 108 

of the spatial variability in the 1957–2000 trends, suggesting anthropogenically driven 109 

atmospheric circulation changes are largely responsible for the snow mass redistribution over the 110 

AIS. 111 

These findings are complicated by the simple fact that a positive trend in SAM phase is 112 

accompanied by a negative trend in AIS-wide net precipitation in all three reanalyses. Thus, if an 113 

evolving SAM was solely responsible for the temporal trends in our reconstruction since 1957, 114 

we would expect that AIS-wide SA would contribute to SLR rather than mitigate. In fact, the 115 

SAM-congruent SA trend reduced the 1957–2000 GMSL mitigation by more than 2.5 mm.  116 

Thus, we investigate the likelihood that the observed SA increases are due to atmospheric 117 

warming over the AIS. Investigation of the trend residuals (Fig. 1e) suggests that there are 118 

underlying positive SA trends over much of the AIS, especially coastal EAIS and most of WAIS 119 

and the AP (Supplementary Table S5).  Because the positive trends are spatially pervasive, they 120 

are likely not attributable to changes in large-scale atmospheric circulation, which imparts a 121 
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unique snowfall signature of often counteracting trends based on the relationship between wind 122 

anomalies and the regional topography22.  Despite uncertainties in the reconstruction, as well as 123 

the SAM trend, the atmospheric warming required to account for the residual trends are 124 

consistent with modelling and observational efforts9, 10, 23 (Table 1).  Specifically, moderate 125 

temperature trends of 0.27, 0.17, and 0.06 °C dec-1 are needed over the AP, WAIS, and the 126 

EAIS, respectively. Strengthening or weakening of the positive trend in the SAM index shifts the 127 

warming between the AP and WAIS, and thus, their combined warming remains nearly 128 

unchanged. Approximately 40% (n > 20,000 and p << 0.001) of the spatial variability in the 129 

residual trends can be explained by the P−E sensitivity to temperature, indicating that the 130 

regions most sensitive to temperature change are experiencing the largest changes.  Thus, we 131 

cannot eliminate a warming atmosphere as the driver of the underlying SA increases.   132 

A prior reconstruction found an insignificant negative trend in AIS-wide SA, suggesting that 133 

accumulation was not mitigating ice losses around the periphery and that atmospheric circulation 134 

variability, not thermodynamic moisture change, is the dominant driver11.  We argue that our 135 

results are not incompatible with their findings.  From a temporal standpoint, we find a positive, 136 

statistically insignificant trend (1.0 ± 1.3 Gt yr-2) between 1957 and 2000; however, when the 137 

peripheral islands are included, the trend narrowly emerges as significant (1.4 ± 1.4 Gt yr-2).  138 

Furthermore, our reconstruction is based solely on the ice-core time series, whereas ref.11 used 139 

ERA-40 P−E from 1985–2005, which is the source of the negative trend.  We use only 140 

observation-based values due to observing system artifacts in the reanalysis P−E that 141 

compromise trend analysis15.  Additionally, we find that circulation-driven precipitation change 142 

does impart a large signal on AIS-wide trends that are spatially heterogeneous, masking any 143 

underlying increases.  Finally, we observe significant and insignificant decreasing trends over the 144 
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EAIS (-4.5 ± 3.5 Gt yr-2) and AIS (-2.7 ± 3.8 Gt yr-2) since 1979, respectively, matching the 145 

trend sign in the prior reconstruction11.  Thus, the differences of methodology combined with the 146 

strength of the SAM-congruent snowfall signature suggest that our results are not inconsistent 147 

with ref.11.   148 

While the temporal change in SA imparts a clear trend on GMSL mitigation, the spatial patterns 149 

of trend magnitude and sign have potential glaciological implications.  Present-day rates of ice 150 

discharge across the grounding zone likely contain an atmospherically-driven component that 151 

varies in scale and direction depending on its location1. We demonstrate that ice mass is being 152 

significantly redistributed across the AIS, highlighting the need for improved understanding of 153 

expected atmospherically-driven ice dynamical changes to isolate regions of change that exceed 154 

this surface climate signal. 155 

Evaluation of our 200-year reconstruction of AIS-wide SA suggests that climate-change-related 156 

dynamical and potentially thermodynamical forces likely control the observed spatiotemporal 157 

trends with the former outweighing the latter since 1957, masking the underlying positive SA 158 

trends.  We cannot eliminate atmospheric warming as the source of SA GMSL mitigation, 159 

especially considering the temperature trends necessary to account for the residual SA trends are 160 

similar to temperature reconstructions. Recent work4 suggests that increased SA since the mid-161 

20th century might be attributable to stratospheric ozone depletion.  A mechanistic link was not 162 

uncovered, however, exposing the complexity of the relationship between ozone depletion, the 163 

strength and location of the circumpolar westerlies, air temperature, and ultimately accumulation.   164 

Modern-day accumulation over the AIS is 78.6 ± 26.5 Gt yr-1 higher than the 19th century mean, 165 

a value more than 1.5 times the AIS rate of mass loss during the 1990s24. Nevertheless, net AIS 166 

mass loss24 (2720 ± 1390 Gt) over just 26 years (1992–2017) has accounted for 70% of the 167 
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century long SA gains (3815 ± 1105 Gt). An insignificant negative trend in AIS SA hints at the 168 

possibility of a reduction in annual mass gain after 2000; however, even if frozen at 78.6 Gt yr-1, 169 

SA gains are a mere 1/3rd of the AIS mass losses (219 ± 43 Gt yr-1) indicating that SA is not 170 

keeping pace with oceanic-driven ice mass loss.  171 
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Fig. 1 | Trends in reconstructed Antarctic-wide snow accumulation and their relationship 172 

to the Southern Annular Mode.  Absolute accumulation trends over 1901–2000 (a), 1901–173 

1956 (b), and 1957–2000 (c) with regions significance at the 1-sigma confidence level enclosed 174 

by the dashed lines.  The grey open circles show ice core locations.  The 1957–2000 SAM-175 

congruent P−E trend (d) is removed from the reconstructed trend (c), revealing the residual trend 176 

(e) that is not explained by the dominant mode of atmospheric variability in the high-latitude 177 

Southern Hemisphere. 178 

Fig. 2 | Nineteenth and twentieth century relative annual accumulation by Antarctic sector.  179 

Net accumulation over the (a) Antarctic Ice Sheet, (b) East Antarctic Ice Sheet, (c) West 180 

Antarctic Ice Sheet, and (d) Antarctic Peninsula, relative to the 19th century mean (dashed line).  181 

The shaded bounds are the 1-sigma uncertainties.  The solid and dashed colored lines represent 182 

significant and insignificant trends over various intervals, and the slope (m) and intercept (b) are 183 

included in a table above each time series (see Trend Analysis in Methods). 184 

Fig. 3 | Twentieth century cumulative mass and sea-level change due to snow accumulation.  185 

(a) The RMERRA2 cumulative mass (left axis) and equivalent sea-level change (right axis) by 186 

Antarctic sector over the 20th century, relative to the 19th century mean.  The dashed lines 187 

represent a time-integrated model of mass change based on the linear regression statistics 188 

presented in Fig. 2.  For clarity, the error bounds are included for the AIS only, and their 189 

derivation is described in Methods: Sea-level mitigation. (b) Mass and sea-level mitigation by 190 

2000 for each of the three reconstructions where the vertical lines show error bounds.  The 191 

horizontal bar and shaded area represent the mean and combined uncertainty of all three 192 

reconstructions.  All error bounds represent the ± 1σ range.  193 
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Methods 194 

Snow accumulation over the grounded AIS and its surrounding islands are reconstructed on the 195 

premise that the variability at a specific location has an associated spatial signature (i.e., regions 196 

that have a direct and indirect coherence).  While distance is likely a factor here, we must 197 

recognize the complex interaction of topography and predominant wind direction in generating 198 

orographic effects not controlled by distance alone.  Therefore, we use modeled spatial 199 

signatures from atmospheric reanalysis P−E as the basis of our interpolation weighting scheme. 200 

Because of their aforementioned skill in reproducing the interannual variability17, which largely 201 

controls the skill of the weighting scheme, we use global atmospheric reanalyses over regional 202 

climate models. 203 

The reconstruction method applied here is an improvement upon a prior study11 that provides 204 

sufficient detail to replicate the work; thus, we only briefly describe the methodology and 205 

describe our modifications.  Rather than rely on a single reanalysis model, we generate three 206 

reconstructions based on different atmospheric reanalyses including ERA-Interim, MERRA-2, 207 

and CFSR (see below), whereas ref.11 relied only on ERA-40.  In such a manner, we created 208 

three reconstructions, where each used the same ice-core observations but different modeled 209 

spatial weights, giving no preference to a specific model.  The reanalyses have different 210 

observing and assimilation systems and spatial grids; therefore, it is only reasonable to expect 211 

site-specific spatial signatures to vary to some extent.   212 

Our validation analysis of the reconstructions is very thorough and is thus detailed in the 213 

Supplementary Methods section.  All references within the methods refer to the validation within 214 

the Supplementary Methods section along with several Supplementary Tables and Figures. 215 
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Global atmospheric models 216 

We created annual P−E products from three global atmospheric reanalysis products, specifically 217 

the European Centre for Medium-Range Weather Forecasts “Interim” (ERA-Interim)25, the 218 

NASA Modern Era Retrospective Analysis for Research and Applications version 2 (MERRA-219 

2)26, and the National Centers for Environmental Prediction Climate Forecast System Reanalysis 220 

(CFSR)27.  We specifically use ERA-Interim monthly means of twice-daily 12-hour forecast 221 

accumulations of total precipitation and evaporation, MERRA-2 monthly mean total 222 

precipitation and evaporation, and CFSR monthly mean of 6-hour forecast accumulations of total 223 

precipitation and 6-hour averages of latent heat flux, which are converted to sublimation using 224 

the latent heat of sublimation (2,838 kJ kg-1).   225 

The CFSR data are the combination of two versions of CFSR: version 1 spans 1979–2010 and 226 

version 2 spans 2011–2016.  We repeated the reconstruction using only version 1 data, but the 227 

results did not vary significantly.  To keep consistency with the ERA-Interim and MERRA-2 228 

reanalyses, we use the combined CFSR record (1979–2016). 229 

The modeled spatial signatures are based on the full reanalysis time period (1979–2016: ERA-230 

Interim, CFSR; 1980–2016: MERRA-2) using P−E time series normalized to the overlapping 231 

period with the all ice core records (1980–1988).  The latter ensures all measurements are 232 

relative to the same interval while the former provides as long of a climatological context as 233 

possible for the reconstruction. Similar to ref.11, we generate spatial weights for each ice core by 234 

calculating its shared variance with all locations via the coefficient of determination (r2). 235 

Ice core data 236 
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We use 53 annually resolved ice core records of snow accumulation, the majority of which are 237 

available in a newly compiled database2, that cover a substantial portion of the AIS and a few 238 

surrounding islands (Supplementary Fig. S1).  Of the 80 records in the database, we use 52 for 239 

the reconstruction (Supplementary Table S1).  We require that each record spans the 1980-1988 240 

period to provide several years of overlap with the reanalyses and to maximize the number of 241 

cores used in the reconstruction (Supplementary Fig. S2).   We also exclude several records that 242 

do not exhibit fully annual resolution throughout the entire record, which come largely from the 243 

early site survey for the European Project for Ice Core Drilling in Dronning Maud Land (EPICA-244 

DML).  One newly published record is added to the data set: the B40 record28.  The maximum 245 

correlation at each grid point with the reanalysis-based P−E at each ice core site indicates the ice 246 

core coverage is very good, especially over West Antarctica and the Antarctic Peninsula 247 

(Supplementary Fig. S8).  Weaker correlations over the high plateau suggest we would benefit 248 

from additional observations from these locations.  However, accumulation rates are so low over 249 

the East Antarctic plateau that it is extremely challenging to create an annually resolved record. 250 

Unlike ref.11, we opt to include all records whether they span the full reconstruction interval 251 

(1801–2000) or not. Only 16 records span the entire interval, and coverage is not sufficient to 252 

fully capture the accumulation variability especially over the EAIS and AP (Supplementary Fig. 253 

S8). Under our premise, the minimum number of records used is 29 for any year (Supplementary 254 

Fig. S2). Based on the distribution of records that exist at the beginning (1801) and end (2000) of 255 

our reconstruction interval, we capture the common variability (Supplementary Fig. S8).  256 

To assess our ability to reconstruct the variability, we perform an additional reconstruction using 257 

the P−E values directly from the reanalysis in a “best-case” scenario.  For each year of the 258 

reconstruction, we use the reanalysis P−E records for the given ice-core combination and 259 
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attempt to reconstruct the entire reanalysis P−E field. In such a manner, we can assess the 260 

proportion of variability explained at each grid cell under each ice-core combination, providing 261 

insight into our ability to capture AIS-wide accumulation variability.  Supplementary Table S3 262 

contains the accumulation-weighted expected proportion of variance explained over the entire 263 

record and over the different sectors.  The results indicate that we are typically able to explain 264 

about 61% of the variance in AIS snow accumulation over the entire 200-year interval; however, 265 

that proportion dips only somewhat to 59% and 51% for 1801 and 2000, respectively.  Thus, we 266 

conclude that even with gaps in our ice-core network, we are consistently able to capture a large 267 

portion of the variability in AIS-wide snowfall.   268 

To ensure that we are not introducing spurious artifacts in our reconstructed trends, we also 269 

perform a cross-validation reconstruction using only the 16 complete records, and is termed the 270 

ComplCore reconstruction.  We find that the trends in the full and ComplCore reconstructions 271 

are similar, which is explained in more detail in the validation section below. 272 

Reanalysis P−E bias 273 

The atmospheric reanalysis P−E products exhibit biases in total magnitude across much of the 274 

AIS that vary substantially from one another15.  Using observations of annual surface mass 275 

balance from the ice core data presented above, radar-derived measurements over the Pine Island 276 

and Thwaites glacier catchments18, and an AIS-wide database29 of surface mass balance, we 277 

assess the magnitude bias in the three reanalyses used in our study (Supplementary Fig. S3).  278 

Although it limited our spatial coverage, we only used observations from ref.29 that fell within 279 

(and only within) the reanalysis period (1979/80–2016).  The surface mass balance values were 280 

then compared to the modeled P−E from the grid cell to which they belong for the 281 

contemporaneous years, ܾ݅ܽݏ	 = 	 	݈݁݀݋݉) −  If multiple observations 282  .݈݁݀݋݉	/	(݊݋݅ݐܽݒݎ݁ݏܾ݋	
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exist for a single grid cell, they are averaged together to create one bias correction per cell.  In 283 

such a manner, we found the relative error in the modeled P−E magnitudes that were then 284 

interpolated over the entire AIS using the statistical interpolation method of kriging (i.e., 285 

distance-based interpolation).   286 

Bias correction can potentially influence our results since change is calculated relative to the 287 

mean annual accumulation. Thus, if the bias correction is incorrect (or incomplete), the quality of 288 

the estimated sea-level impact is compromised. To assess whether to use the bias corrected 289 

reconstructions, we compare the validation statistics from the bias and non-bias-corrected 290 

reconstructions for RMERRA2, RERAI, and RCFSR. The final reconstructions are bias-corrected for 291 

RMERRA2 and RERAI and non-bias-corrected for RCFSR because those reconstruction scenarios 292 

outperformed the other. Mitigation values by the year 2000 are very similar between the final 293 

reconstructions (RMERRA2: 10.6 mm, RERAI: 11.0 mm, RCFSR: 9.7 mm), suggesting that the 294 

reconstructed trends are similar even though the actual magnitudes are different.  We determine 295 

that RMERRA2 is the most robust since it exhibits the least bias in magnitude (Supplementary Fig. 296 

S3) and as a result, sea-level mitigation from the bias- and non-bias-corrected RMERRA2 are 10.6 297 

mm and 10.8 mm, respectively, and are essentially identical.   298 

Reconstruction Error Analysis 299 

We generate gridded annual uncertainty for the reconstructed accumulation rates by accounting 300 

for both measurement error (i.e., small scale variability or noise in the ice core records) and the 301 

uncertainty introduced by the spatial sampling of cores.  While modeled P–E is often biased over 302 

the AIS, it can reproduce the interannual variability with some skill17.  At the same time, trends 303 

in reanalysis products are sometimes untrustworthy as shifts in the observing system can 304 

generate spurious jumps through time15.  Therefore, we assess the noise (or uncertainty) in each 305 
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ice-core record by calculating the root mean square error (RMSE) between the detrended record 306 

and the reanalysis time series at the grid cell corresponding to the location of the ice core.  We 307 

assign the final uncertainty for each record, as the minimum of the standard deviation of the 308 

reanalysis time series and RMSE.  These values comprise the observational uncertainty in units 309 

of normalized accumulation and are propagated through on a cell-by-cell and year-by-year basis. 310 

Accounting for the uncertainty introduced from limited spatial sampling is extremely important.  311 

A reconstruction based on two ice-core records will have a much larger uncertainty than one 312 

based on 10s of records and that uncertainty will vary in space.  To determine the uncertainty due 313 

to the sampling geometry of the cores, we perform the reconstruction a second time replacing the 314 

ice core time series with the reanalysis time series from each of the ice core sites.  Essentially, 315 

we assess our ability to recreate the reanalysis P−E records over the entire AIS by using only a 316 

subset of reanalysis time series that correspond to the locations of the ice core records. This 317 

uncertainty will vary with time as the number of cores used in the reconstruction varies in time.  318 

Specifically, we determine the spatiotemporal RMSE of this reanalysis-based reconstruction by 319 

comparing it with the actual reanalysis data. These values comprise the sampling errors in units 320 

of normalized accumulation. The final uncertainty product is the square root of the sum of 321 

squares of the two sources of uncertainty (observation and sampling errors).   322 

Spatial Integration 323 

To determine mass change on a cell-by-cell basis, we scale the grid cell SA (mm w.e. yr-1) by the 324 

area of the grounded ice within the grid cell.  The basins are defined by ref.30 and the sectors are 325 

defined as follows: the EAIS basins are 2-17 (10.1×106 km2), WAIS are 1 and 18-23 (1.8×106 326 

km2), the AP are 24-27 (0.2×106 km2).  The entire AIS (12.2×106 km2) and surrounding islands 327 

(0.2×106 km2) are defined by the MODIS mosaic of Antarctica grounded ice and islands vector 328 
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data sets31, and their combination represents the total area of grounded ice in the Antarctic 329 

(12.4×106 km2).   330 

To generate the sector time series, we combine the mass time series over the entire area of each 331 

spatial region of interest.  The associated uncertainty time series accounts for the spatial 332 

correlation of grid cell time series (i.e., highly correlated, dependent records yield higher 333 

uncertainties than if all the records were entirely independent of one another): rather than taking 334 

the square of the sum of the square errors, we scale the uncertainties by the correlation (or 335 

dependence) of each pair of records.  In such a manner, we account for the fact that many of the 336 

cells within a spatial region of interest are based primarily on the same core records, reducing 337 

their independence and thus increasing their uncertainties. 338 

Trend Analysis 339 

To determine the trends in SA and their associated uncertainties, we use a Monte Carlo method 340 

to generate n = 10,000 simulations of the 1801–2000 sector-integrated time series of SA (Fig. 2) 341 

by adding random noise to the original time series that is normally distributed with a mean of 342 

zero and standard deviation equal to the propagated uncertainty.  We then calculate the trend of 343 

each realization with time zeroed at the middle of the time interval of interest, providing an 344 

intercept approximately equal to the mean of the time series over that interval.  Our final trends 345 

and intercepts (Fig. 2) and their respective errors are the mean and standard deviation of all the 346 

realizations.  The intercept (Gt yr-1) represents the mean annual relative SA over the period of 347 

interest, and if positive and significant, indicates that sector is mitigating sea-level rise over that 348 

time interval.  The slope (Gt yr-2) is an indicator of whether mitigation from a given sector is 349 

undergoing an acceleration.  These regression statistics represent a simple model of SA behavior, 350 

and when integrated, provide the modeled sea-level mitigation curves in Fig. 3. 351 



 

18 
 

Sea-level mitigation 352 

To evaluate the role of AIS SA on 20th century sea-level change, we assume that 19th century 353 

mass input via SA is representative of the long-term mean for an AIS in balance.  This choice is 354 

justified by the fact that out of the 28 records that extend beyond the 19th century, 23 records 355 

have 19th century mean annual accumulation rates equal to the mean over the entire record based 356 

on a two-sample two-tailed Student's t test with 95% confidence (300 ≤ df ≤ 2155).  Therefore, 357 

19th century accumulation is likely a tenable substitute for a longer-term (several century) mean 358 

in the absence of sufficient observations.  Cumulative mass change is determined by 359 

accumulating the relative annual SA (Fig. 2) with time, which is then converted to sea-level 360 

equivalence by dividing by 361 Gt. 361 

To determine the rates of sea-level mitigation and their uncertainties, we use a Monte Carlo 362 

method to generate n = 10,000 simulations of the 1801–2000 sector-integrated time series of SA 363 

(Fig. 2) by adding random noise to the original time series that is normally distributed with a 364 

mean of zero and standard deviation equal to the propagated uncertainty.  Next, we determine the 365 

cumulative mass change of each realization, where the uncertainty (shaded area in Fig. 3) is the 366 

standard deviation of the simulated cumulative mass time series.  Such a method allows us to 367 

capture the impact of uncertainty in the 19th century mean annual SA rather than relying solely 368 

on the regression statistics from 1901 onward presented in Fig. 2. 369 

SAM-congruent trends 370 

We estimate the SAM-congruent trends in SA by first assessing the P−E sensitivity to deviations 371 

in the SAM.  After calculating the reanalysis-based SAM index32, we perform cell-by-cell linear 372 

regression between the detrended P−E and SAM timeseries.  Unfortunately, the reanalyses begin 373 
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in 1979/80, so in order to get a longer-term perspective on the role of an evolving SAM, we use a 374 

proxy-based SAM index3 that extends back to 1957.  The P−E sensitivity to the SAM is next 375 

multiplied by the 1957–2000 SAM index trend (0.59 ± 0.20 dec-1), providing the SAM-376 

congruent trend in P−E (Fig. 1d).  To evaluate residuals, we remove the SAM-congruent trend 377 

signal from our reconstruction (Fig. 1e). The patterns and magnitudes are robust across all three 378 

reanalysis reconstructions (Supplementary Fig. S10) as well as the RemoveSAM cross-validation 379 

reconstructions. 380 

P−E sensitivity to air temperature 381 

We assess P−E sensitivity to the 2-meter air temperature through linear regression of their 382 

detrended timeseries on a cell-by-cell basis, providing the change in P−E for every degree 383 

change in temperature.  While these models show spurious trends and shifts in temperature15, we 384 

are purely exploiting the relationship between temperature and accumulation.  We find that the 385 

three models have similar sensitivities over the AIS (ERA-Interim: 192 Gt °C-1, MERRA-2: 233 386 

Gt °C-1, CFSR: 264 Gt °C-1) with MERRA-2 falling in the middle, which is potentially because 387 

ERA-Interim and CFSR P−E values are biased low and high, respectively. We next divide the 388 

residual trends in Fig. 1e by the P−E sensitivity to temperature to estimate the temperature trend 389 

required to explain reconstructed trends that are not attributable to the SAM.  We present the 390 

area-weighted mean associated temperature trends over each sector in Table 1.  To account for 391 

uncertainty in the trend in the SAM index, we perform the same exercise using the upper (SAM 392 

High) and lower (SAM Low) 1-sigma trend bounds.  393 
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Code availability 394 

The code for generating the reconstructions is available at the NASA Goddard Cryosphere data portal 395 

(https://neptune.gsfc.nasa.gov/csb/). 396 

Data availability 397 

The snow accumulation reconstructions generated and analyzed during this study are available at the 398 

NASA Goddard Cryosphere data portal (https://neptune.gsfc.nasa.gov/csb/).  The reanalysis data are 399 

available as follows: CFSR (https://rda.ucar.edu/pub/cfsr.html), ERA-Interim 400 

(https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim) , and 401 

MERRA-2 (https://disc.gsfc.nasa.gov/).  The ice core records are hosted at 402 

https://ramadda.data.bas.ac.uk/repository/entry/show?entryid=83f2ca40-04b5-4029-a04c-403 

c18b202dc2f8.    404 
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Table 1. Temperature trends required to account for residual trends in reconstructed SA based on RMERRA-2. The snow accumulation sensitivity to near-surface air temperature is 
provided.  Mean temperature trends are the area-weighted mean over each sector, and the lower and upper quartile bounds by area are in parentheses.  Temperature trends from four 
reconstructions over a similar time interval from ref.10 and reconstructed 20th century trends from ref.23 are shown. 

SA Sensitivity to 
Temperature (Gt 

°C-1) 

 Mean Temperature Trend (lower - upper quartile; °C dec-1) 1960 - 2005 Temperature Trends (°C dec-1)10 20th Century 
Temperature Trends23 

(°C dec-1)     SAM SAM Low SAM High   NB14 M10 S09 O11   

AIS 233.3  0.08 (-0.01 - 0.16) 0.04 (-0.06 - 0.13) 0.11 (0.01 - 0.19)  0.04 ± 0.03 - 0.10 ± 0.09 

EAIS 146.4  0.06 (-0.03 - 0.13) 0.02 (-0.07 - 0.11) 0.09 (0.01 - 0.16)  
0.04 ± 
0.12 

0.10 ± 
0.16 

0.11 ± 
0.12 

0.05 ± 
0.11  0.01 ± 0.12 - 0.04 ± 0.03 

WAIS 64.9  0.17 (0.09 - 0.23) 0.12 (0.02 - 0.20) 0.20 (0.11 - 0.32)  
0.19 ± 
0.15 

0.20 ± 
0.16 

0.16 ± 
0.10 

0.08 ± 
0.09  0.06 ± 0.06 - 0.13 ± 0.09 

AP 22.4   0.27 (0.07 - 0.35) 0.34 (0.16 - 0.44) 0.18 (-0.02 - 0.29)   0.29 ± 
0.19 

0.39 ± 
0.22 

0.11 ± 
0.07 

0.30 ± 
0.13   0.11 ± 0.06 - 0.29 ± 0.11 

Islands 11.6   0.15 (0.01 - 0.28) 0.20 (0.02 - 0.37) 0.10 (-0.05 - 0.22)  
AIS + 
Islands 245.0   0.08 (-0.01 - 0.16) 0.05 (-0.05 - 0.14) 0.11 (0.01 - 0.19)  

WAIS + AP 87.3   0.18 (0.09 - 0.23) 0.15 (0.03 - 0.22) 0.20 (0.09 - 0.32)               
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