

Article (refereed) - postprint

Marrs, R.H.; Marsland, E.-L.; Lingard, R.; Appleby, P.G.; Piliposyan, G.T.; Rose, R.J.; O'Reilly, J.; Milligan, G.; Allen, K.A.; Alday, J.G.; Santana, V.; Lee, H.; Halsall, K.; Chiverrell, R.C. 2019. **Experimental evidence for sustained carbon sequestration in fire-managed, peat moorlands**. *Nature Geoscience*, 12 (2). 108-112. https://doi.org/10.1038/s41561-018-0266-6

© The Author(s), under exclusive licence to Springer Nature Limited 2019

This version available http://nora.nerc.ac.uk/521867/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the authors' final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

www.nature.com/

Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

- 1 Experimental evidence for sustained carbon sequestration in fire-managed, peat
- 2 moorlands
- 3 R. H. Marrs¹, E-L Marsland¹, R. Lingard^{1*}, P. G. Appleby², G. T. Piliposyan², R. J. Rose³, J.
- 4 O'Reilly⁴, G. Milligan¹, K. A. Allen¹, J.G. Alday¹, V. Santana¹, H. Lee¹, K. Halsall¹, R.C.
- 5 Chiverrell¹

10

11

12

13

14

15

16

17

18

19

20

21

22

23

- 6 ¹School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK;
- 7 Environmental Radioactivity Research Centre, Department of Mathematical Sciences,
- 8 University of Liverpool, Liverpool L69 7ZL UK; ³Centre for Ecology & Hydrology, Bailrigg,
- 9 Lancaster LA1 4AP UK; ⁴Ptyxis Ecology, Lambley, Northumberland CA8 7LL, UK.

Peat moorlands are important habitats and in the boreal region, where they store ca. 30% of the global soil C. Prescribed burning on peat is a very contentious management strategy widely-linked with loss of carbon. Here, we quantify the effects of prescribed burning for lightly-managed boreal moorlands and show the impacts on peat and C accumulation rates are not as bad as is widely thought. We used stratigraphical techniques within an unique replicated, ecological experiment with known burn frequencies to quantify peat and C accumulation rates (0 managed burns since ca. 1923, 1-burn, 3-burns, 6-burns). Accumulation rates were typical of moorlands elsewhere, and were only reduced significantly in the 6-burn treatment. However, impacts intensified gradually with burn frequency; each additional burn reduced the accumulation rates by 4.9 g m⁻² yr⁻¹ (peat) and 1.9 g C cm⁻² yr⁻¹ but not preventing accumulation. Species diversity and the abundance of peat-forming species also increased with burn frequency. Our data challenge widely-held perceptions that a move to zero burning is essential for peat

growth, and show that appropriate prescribed burning can both mitigate wildfire risk in a warmer world and produce relatively fast peat growth and sustained C sequestration. Peatlands are important habitats in many parts of the world covering ca. 3.8 x 10⁶ km², concentrated in the boreal region¹, storing about 30% of the global soil C², estimated at 500±100 Gt of C³. Peatlands occur where organic matter decomposition is prevented by low temperature and high rainfall⁴. As they are composed of dead plant material they are flammable⁵, and under suitable conditions, are susceptible to fire and particularly wildfire. Fire is a natural phenomenon in many boreal areas⁶ where large areas (0.03-0.24 x 10⁶ km² yr⁻¹) are burned annually⁷⁻⁹, releasing an estimated 106-209 Tg C yr⁻¹, which has important repercussions for the global C cycle³. In many peatlands the natural fire return interval varies considerably from 75-425¹⁰ to between 400 -1790 years¹¹, but, in some regions for example the Alaskan interior, there have been recent increases in wildfire of 2.4% per year between 1943-2012⁶. As prescribed fire is often used to suppress wildfire^{6,12-13}, so better understanding of the relative risks and impacts of prescribed fire and wildfire is of global interest. In many parts of the world, peatlands are left unmanaged, but large areas are also managed lightly through grazing and prescribed burning. In Norway, for example, prescribed fire has been shown to be a key part of heathland management for at least 6,000 years 14, which has produced a fire-adapted flora¹⁵. In the second half of the twentieth-century fire exclusion policies have been adopted in many places in western and Baltic Europe, and there have been calls to reinstate traditional burning practices to restore the functional role of fire in these areas¹⁶. In Canada, its use is advocated for both enhancing forest understorey diversity and forest productivity¹⁰. In the UK, use of prescribed burning is very contentious with heated debate on its use for moorland vegetation on peat¹⁷⁻¹⁹as it is

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

widely-linked to ecosystem degradation, loss of C and negative impacts on water quality¹⁸⁻²³. Much of the concern over prescribed burning on peat is a belief that this practice changes the vegetation type and prevents peat formation; e.g. in the UK a shift from plant communities dominated by cotton-grass *Eriophorum*/Sphagnum to one dominated by the shrub *Calluna vulgaris*. However, where prescribed burning is not used the build-up of shrubs and trees can provide a large, fire-prone fuel load which puts the peatland at greater risk from wildfire¹¹⁻¹³. Wildfires can be much more damaging than prescribed fires²²⁻²³. Moorland managers are therefore damned if s(he) burns and damned if s(he) does not. There is, therefore, an urgent need for quantitative evidence about the use of prescribed burning on peat growth rates. Here, we quantify peat and C accumulation rates within an experiment with a known managed burning history

Peat, a recent historic record

Peat is a vertically-growing structure, increasing in thickness with time and laying down a stratigraphy that preserves evidence of change in local and regional vegetation^{4,24}, fire frequency (charcoal)²⁴⁻²⁵, hydroclimate²⁶ and C accumulation²⁷. Usually, these sub-fossil records are interrogated over long-time scales (1,000 to 10,000 years). However, the generation of relatively accurate age-depth profiles in peat over the last 150 years²⁸ has been made possible by linking stratigraphical records of atmospheric pollutant deposition²⁸ (stable Pb, ²¹⁴Am, ¹³⁷Cs and Spherical Carbonaceous Particles) calibrated against absolute geochronologies derived from radiometric dating techniques (²¹⁰Pb). Here, we have applied this integrative approach to create age-depth profiles for peat sequences within the unique, long-term, manipulative, experiment at Moor House National Nature Reserve in the north of England. This experiment is set up on a *C. vulgaris*-dominated, ombrotrophic (rain-fed)

peatland. We tested one of the major assumptions underlying studies on the effect of prescribed burning on peat and C accumulation patterns: that burning or burning frequency prevents or reduces peat and C accumulation. Multiple, shallow peat profiles (n=32; <0.5m depth) were sampled in four different managed burn treatments (of 0, 1, 3 and 6 burns since ca. 1923²⁹), each replicated in four blocks (Supplementary Fig. S1). Two additional master peat profiles were collected to determine chronological markers and age-depth profiles using the atmospheric stable Pb down-core record (measured by X-ray Florescence, XRF). Within these master cores, independent age control was secured by ²¹⁰Pb, ¹³⁷Cs and ²⁴¹Am analysis using direct gamma assay producing ²¹⁰Pb chronologies corroborated in part by radionuclide fall-out (137Cs and 241Am) markers 30 for 1963 and 1986. Our age-depth models (Supplementary Fig. S3) have chronological uncertainties of ±1-5 yr (1980-2014) and ±5-13 yr (1900-1970)²⁸. Atmospheric stable Pb (Extended Data Fig. 2) profiles were then measured for the 32 cores by XRF. The two reliable atmospheric pollutant Pb markers at $^{\sim}$ 1876 and 1963 were discerned in all 32-peat profiles and used to calculate dry peat and C mass accumulation rates for each profile for the two periods within the age-depth profile (1876-1963 and 1963-2016). The measured peat accumulation rates are net ones, integrating the effects of damage to the peat and subsequent regrowth

89

90

91

92

93

94

95

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Impact of increasing burning frequency on peat and C accumulation

The measured results of mass and C accumulation rates (1963-2016) for the 0-burn treatment were 124.4 ± 8.04 g peat m⁻² yr⁻¹ and 48 ± 3.3 g C m⁻² yr⁻¹ respectively. The C accumulation rates are in the same order of magnitude as reported literature values; 24.1 g C m⁻² yr⁻¹ as a long-term average for northern peatlands, and between 18 and 206.2 g C m⁻² yr⁻¹ from a range of UK peatlands sites³¹⁻³⁶. Moreover, our values are very close to the

average predicted value of 56 g C m⁻² yr (range (20 –91) derived from the entire catchment in which the Moor House managed burn experiment is situated³⁷. Our measurements for 1963-2016 were lower than those from the earlier 1876-1963 period (142.1 \pm 16.1 g peat cm² yr⁻¹; 55.0 \pm 6.2 g C m⁻² yr⁻¹) but this difference was not statistically significant (peat, t=0.97, P=0.38; C, t=0.99, P=0.37, df=3).

Prescribed burning only caused significant reductions in peat and C accumulation rates (Fig. 1a; peat $F_{3,9} = 5.5,0$ P=0.026; C $F_{3,9} = 4.51$, P=0.034) at the extremes between the 0-burn and 6-burn treatments; (Tukey HSD, Mass = P<0.020; C = P<0.027). As we did not detect a significant difference in vertical peat growth between burning treatments (mean 0.158 \pm 0.005 cm yr⁻², n=32, range =0.116-0.202), the observed changes in peat mass must reflect a changing peat density. The different burning treatments reflect an increasing number of burns, which can be described by a linear relationship (P<0.01, Fig. 1b), essentially for each additional burn the accumulation rates were reduced by 4.9 g m⁻² yr⁻¹ for peat and 1.9 g m⁻² yr⁻¹ for C.

The burning treatments have also produced changes in biodiversity (Fig. 2). Overall diversity (Shannon-Weiner Index) increased in the 3-burn and 6-burn treatment but declined in the 1-burn one. *C. vulgaris* had greatest abundance in the 1- and 3-burn treatments and lowest in 6-burn treatment, although all increased in abundance through time. *Sphagnum* showed no significant change in 1-burn treatment but significantly increased in the 3- and 6-burn treatments, with the 6-burn one having a greater overall abundance. *Eriophorum vaginatum* showed no temporal trend but its abundance increased with increasing burning frequency.

These results debunk a number of widely-held beliefs in peatland conservation (Fig. 3). First, the belief that prescribed burning prevents peat and C accumulation was not

supported because even after six burns, peat and C were both accumulating; the accumulation rates were reduced, but not stopped. We should, however, not be complacent and further monitoring is needed to better understand longer-term impacts. Second, in broad terms it is usually believed that C. vulgaris-dominated communities will have little peat accumulation whereas those dominated by E. vaginatum and Sphagnum will be good peat accumulators 18. Here, the opposite was found; the vegetation in the 1-burn (and indeed the 0-burn reference plots) had the greatest accumulation rates yet were dominated by C. vulgaris and the plots burned most frequently with the lowest peat and C accumulation rates were dominated by E. vaginatum and had greatest Sphagnum abundance (Fig. 2)³⁸⁻³⁹. Taken together, these results do not support the simplistic ideas about peat accumulation and plant community type, and confirm that reasonable peat formation (0-burn treatment = 48 g C m⁻² yr⁻¹) can occur under a *C. vulgaris*-dominated community with lower rates under E. vaginatum and Sphagnum (6-burn treatment = 36 g C m⁻² yr⁻¹). It is possible that the presence of the peat-producers (Sphagnum and E. vaginatum) counter-balance the effects of more frequent, prescribed fires.

Management implications

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

At face value, these results imply that prescribed burning on moorlands should be limited in order to enhance C accumulation rates and support C storage as an ecosystem service ¹⁷⁻¹⁹. Alas, it is not quite so simple (Fig. 3). Peatland conservation and its associated ecosystem services cannot be separated from potential wildfire occurrence, common in upland parts of the UK and elsewhere in the boreal region ^{2-3,6-11}. Wildfire is expected to be a greater problem with the drier summers predicted as the climate changes ^{19,40-41}. *C. vulgaris*, the dominant and increasingly dominant species in the 0-burn treatment, is a species with traits that respond positively to fire; igniting easily especially where there is a large proportion of

dead material⁵, as is the case in old-growth stands, regenerating quickly after prescribed burning⁴² with seed germination enhanced by smoke⁴³. However, under wildfire the entire plant can be killed and surface peat damaged severely [direct damage and C loss]²², and loss of bryophyte regeneration potential⁴⁴. Thus, where *C. vulgaris* dominates over large areas, as here in the 0- and 1-burn treatments, the vegetation must be susceptible to spring and summer wildfires; previous wildfires have seen large areas damaged, loss of surface vegetation hence loss of biotic control⁴⁵, with subsequent erosion of peat by heavy rainfall [indirect damage, but up to 1m depth can be lost]46. In such a wildfire, C losses could swamp any improvement in C accumulation occurring through a reduction in prescribed burning, especially if the peat burns. To estimate potential damage we estimated the total C concentration in the surface vegetation (820 g C m⁻²) plus the amount in the surface 1 cm and 5 cm depth layers (240 and 1274 g cm⁻² respectively, Fig. 3). If these surface vegetation/peat layers were destroyed by wildfire we estimate it would take and 58 years to recover this lost C and attain the status quo. These estimates have large uncertainties (95% CL = 22-38 and 48-71 years for 1 cm and 5 cm peat loss respectively and an optimistic scenario of an immediate ecosystem recovery and a C accumulation rate of 36 g C m⁻² yr⁻² (6-burn value). Clearly, if accumulation rates were further reduced by wildfire, or if there was an extended lag-effect¹¹ then these estimates would increase. Managers must consider, therefore, both the impacts of prescribed burning relative to

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

wildfire risk in developing moorland conservation policies⁴⁷. We suggest that for this moorland under current climatic conditions (Fig. 3) the 3-burn treatment (equating to a burn every 20 years, with some areas left unburned) would be a pragmatic solution. This approach would minimize damage to peat and C accumulation rates, maintain a mixed-moorland community with maximum diversity, and a reduced fuel-load providing some

degree of resilience to wildfire. With different patches burned annually, a mosaic of stages ranging from post-burn through to old stages would be created across the landscape. These findings have implications for managed and unmanaged peatlands globally where prescribed burning is a widely-used management strategy^{9,10,16}. Indeed, for northern Europe it has been argued that the recent reduction in the use of prescribe burning needs to be reversed¹⁶. If global warming introduces a much shorter return cycle to wildfires, then prescribed fires could be one way of reducing the damage. The unique long-term ecological experiment at Moor House National Nature Reserve shows that C sequestration and biodiversity in the fire-managed NW European boreal peat moorlands is not as bad as previously thought. The threshold burn cycle to optimise C sequestration and promote greater biodiversity may need to be shortened in areas with faster vegetation growth rates^{12,47}, or lengthened in peatlands with slower growth, and particularly where arboreal communities are part of the ecosystem²³. However, our general stratigraphical approach offers a mechanism in modified form for identifying the optimal managed-burn frequencies for other locations should changing wildfire regime require a more active management strategy. The major conclusion is that prescribed burning on peatlands is not necessarily damaging. Where there is evidence of the traditions use of fire on peatlands, appropriate frequencies need to be derived, and even where there is no current management, prescribed burning could perhaps be considered for wildfire prevention in the future, especially with the projected global increase in frequency wildfire^{48,49}.

188

189

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Online Content Methods, including statements of data availability are available at Nature.website.

191

190

192 References

- 193 1. Kaat, A., Joosten, H. *Fact book for UNFCCC policies on peat carbon emissions*, 26pp.
- 194 Wetlands International, Ede (2008).
- 195 2. Lavoie, M., Paré, D., Bergeron Y. Impact of global change and forest management on
- carbon sequestration in northern forested peatlands. *Environ. Rev.* **13**, 199–240 (2005).
- 197 3. Yu, Z. Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9,
- 198 4071–4085 (2012).
- 199 4. Rydin H., Jeglum J.K. *The Biology of Peatlands, 2nd edn.* OUP, Oxford (2013).
- 5. Santana, V.M., Marrs, R.H. Flammability properties of British heathland and moorland
- vegetation: models for predicting fire ignition and spread. J. Environ. Manage., 129, 88-
- 202 96 (2014).
- 203 6. Kasischke, E.S., French, Nancy H.F. Locating and estimating the areal extent of wildfires
- in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. *Rem. Sens.*
- 205 Environ., **51**, 263-275 (1995).
- 7. Calef M.P., Varvak A., McGuire A.D., Chapin III. F.S., Reinhold K. B. Recent Changes in
- 207 Annual Area Burned in Interior Alaska: The Impact of Fire Management. Earth
- 208 Interactions, 19.005 (2015).
- 8. Kasischke, E. S., E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. F. French, A. I. Sukhinin, J.
- 210 H. Hewson, Stocks B. J. Influences of boreal fire emissions on Northern Hemisphere
- atmospheric carbon and carbon monoxide, Global Biogeochem. Cycles, 19, GB1012
- 212 (2005).
- 9. Goldammer, J.G., ed. Vegetation fires and global change. Kessel Publishing House,
- 214 Remagen-Oberwinter, Germany (2013).
- 10. Faivre, N., Boudreault C., Renard, S., Fenton, N.J., Gauthier, S., Bergeron, Y. Prescribed
- burning of harvested boreal black spruce forests in eastern Canada: effect on
- understory vegetation. Can. J. For. Res., **46**, 876–884 (2016).
- 218 11. Kuhry, P. The Role of Fire in the Development of *Sphagnum*-Dominated Peatlands in
- 219 Western Boreal Canada. J. Ecol., **82**, 899-910 (1994).
- 12. Allen, K.A., Harris, M.P.K., Marrs, R.H. Matrix modelling of prescribed-burning in *Calluna*
- vulgaris-dominated moorland: short burning rotations minimise carbon loss at
- increased wildfire frequencies. J. Appld Ecol., 50, 614-624, (2013).
- 13. Alday, J.G., Santana, V.M., Lee, H. Allen, K., Marrs, R.H. Above-ground biomass
- accumulation patterns in moorlands after prescribed burning and low-intensity grazing.
- 225 *Persp. Pl. Ecol., Evol. Syst,* **17**, 388–396 (2015).
- 14. Kaland, P.E. in *Anthropogenic indicators in pollen diagrams* (ed, Behre, K.E.) 19-36.
- 227 Balkema, Rotterdam (1978).
- 15. Vandvik, V., Töpper, J. P., Cook, Z., Daws, M.I. Heegaard, E., Måren, I.E. Velle L.G.
- Management-driven evolution in a domesticated ecosystem. *Biol. Lett.* **10**, 20131082
- 230 (2014).

- 16. Goldammer, J.G., Bruce, M. The use of prescribed fire in the land management of
- western and Baltic Europe. *Intnl For. Fire News*, **30**, 2-13 (2004).
- 233 17. Douglas, D.J.T., Buchanan, G.M., Thompson, P., Amar, A., Fielding, D.A., Redpath S.M.,
- Wilson J D. Vegetation burning for game management in the UK uplands is increasing
- and overlaps spatially with soil carbon and protected areas. *Biol. Conserv.*, **191**, 243–250
- 236 (2015).
- 18. Bain, C.G., Bonn, A., Stoneman, R., Chapman, S., Coupar, A., Evans, M., Gearey, B.,
- Howat, M., Joosten, H., Keenleyside, C., Labadz, J., Lindsay, R., Littlewood, N., Lunt, P.,
- Miller, C.J., Moxey, A., Orr, H., Reed, M., Smith, P., Swales, V., Thompson, D.B.A.,
- Thompson, P.S., Van de Noort, R., Wilson, J.D., Worrall, F. *IUCN UK Commission of*
- 241 Inquiry on Peatlands. IUCN UK Peatland Programme, Edinburgh (2011).
- 19. Davies, G.M., Kettridge, N., Stoof, C.R., Gray, A., Ascoli D., Fernandes, P,M., Marrs, R.,
- Allen, K.A., Doerr, S.H., Clay, G.D., McMorrow, J. Vandvik V. The role of fire in U.K.
- peatland and moorland management; the need for informed, unbiased debate.
- 245 *Phil.Trans Roy.Soc. B*, **371**, 20160434 (2016).
- 20. Yallop, A.R., Clutterbuck, B. Land management as a factor controlling dissolved
- organic carbon release from upland peat soils. 1: Spatial variation in DOC
- 248 productivity. Sci. Tot. Environ., 407, 3803-3813 (2009).
- 249 21. Clymo, R. S., Turunen J., Tolonen, K. Carbon accumulation in peatland. Oikos, 81, 368-
- 250 388 (1998).
- 22. Maltby, E., Legg, C.J., Proctor, M.C.F. The ecology of severe moorland fire on the North
- 252 York Moors: effects of the 1976 fires, and subsequent surface and vegetation
- 253 development. J. Ecol., 78, 490–518 (1990).
- 23. Davies, G.M., Gray, A., Rein, G. Legg CJ. Peat consumption and carbon loss due to
- smouldering wildfire in a temperate peatland. For. Ecol. & Manage., 308, 169-177.
- 256 https://doi.org/10.1016/j.foreco.2013.07.051 (2015).
- 257 24. Clear, J.L., Seppa, H., Kuosmanen, N., Bradshaw, R.H.W. Holocene stand-scale
- vegetation dynamics and fire history of an old-growth spruce forest in southern Finland.
- 259 *Veg. Hist. Archeobot.*, **24**, 731–741 (2015).
- 25. Clear, J.L., Molinari, C., Bradshaw, R.H.W. Holocene fire in Fennoscandia and Denmark.
- 261 Int. J. Wildland Fire, **23**, 781–789 (2014).
- 26. Charman, D.J., Blundell, A., Chiverrell, R.C., Hendon, D., Langdon, P.G. Compilation of
- 263 non-annually resolved Holocene proxy climate records: stacked Holocene peatland
- palaeo-water table reconstructions from northern Britain. Quaternary Sci. Rev., 25,
- 265 336-350 (2006).
- 266 27. Charman, D.J., Beilman, D.W., Blaauw, M., Booth, R.K., Brewer, S., Chambers, F.M.,
- 267 Christen, J.A., Gallego-Sala, A., Harrison, S.P., Hughes, P.D.M., Jackson, S.T., Korhola, A.,
- Mauquoy, D., Mitchell, F.J.G., Prentice, I.C., van der Linden, M., De Vleeschouwer, F.,
- Yu, Z.C., Alm, J., Bauer, I.E., Corish, Y.M.C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E.,
- Le Roux, G., Loisel, J., Moschen, R., Nichols, J.E., Nieminen, T.M., MacDonald, G.M.,
- Phadtare, N.R., Rausch, N., Sillasoo, Ü, Swindles, G.T., Tuittila, E.-S., Ukonmaanaho, L.,

- Väliranta, M., van Bellen, S., van Geel, B., Vitt, D.H., Zhao, Y., Climate-related changes in
- peatland carbon accumulation during the last millennium. *Biogeosciences*, **10**, 929–944
- 274 (2013).
- 28. Appleby, P.G., Oldfield, F. The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. *Catena*, **5**, 1-8 (1978).
- 277 29. Marrs, R.H., Rawes, M. Robinson, J.S., Poppitt, S.D. Long-term Studies of Vegetation
- 278 Change at Moor House NNR: Guide to Recording Methods and Database. Merlewood R
- 279 & D Paper 109. Institute of Terrestrial Ecology, Grange-over-Sands (1986).
- 30. Renberg I., Persson M.W., Emteryd O. Preindustrial atmospheric lead contamination
- detected in Swedish lake-sediments. *Nature*, **368**, 23–326 (1994).
- 282 31. Clymo, R.S. A model for peat growth, in *Production ecology of British Moors and*
- 283 Montane Grasslands (eds, Heal O.W., Perkins, D.F.) 185-223. Springer-Verlag, Berlin
- 284 (1978).
- 32. Farmer. J.G., MacKenzie, A.B., Sugden, C.L., Edgar, P.J. & Eades, L.J. A comparison of the
- historical lead pollution recorded in peat and freshwater lake sediments from central
- 287 Scotland. Water, Air, Soil Poll., 100, 253-270 (1997).
- 33. Turner, J. The anthropogenic factor in vegetational history. I. Tregaron and Whixall
- 289 mosses. New Phytol., **63**, 73-90 (1964).
- 290 34. Evans, M., Lindsay, J. Impact of gulley erosion on carbon sequestration in blanket
- 291 peatlands. Clim. Res., **45**, 31-41 (2010).
- 35. Billett, M.F., Charman, D.J., Clark, J.M., Evans, C.D., Ostle, N.J., Worrall, F., Burden, A.,
- Dinsmore, K.J., Jones, T., McNamara, N.P., Parry, L. Rowson, J.G., Rose, R. Carbon
- balance of UK peatlands: current state of knowledge and future research challenges.
- 295 *Clim. Res.*, **45**, 13-29 (2010).
- 36. Garnett, M.H., Ineson, P., Stevenson, A.C., Effects of burning and grazing on carbon
- sequestration in a Pennine blanket bog, UK. *Holocene*, **10**, 729-736 (2000).
- 37. Worrall. F., Burt, T.P., Rowson, J.G., Warburton, J., Adamson, J.K. The multi-annual
- carbon budget of a peat-covered catchment. Sci. Tot. Environ., 407, 4084–4094 (2009).
- 38. Lee, H., Alday, J.G., Rose, R.J., O'Reilly, J., Marrs, R.H. Long-term effects of rotational
- prescribed-burning and low-intensity sheep-grazing on blanket-bog plant communities.
- 302 *J. Appl. Ecol.*, **50**, 625-635 (2013).
- 39. Milligan, G., Rose, R.J., O'Reilly, J., Marrs R.H. Effects of rotational prescribed burning and
- sheep-grazing on moorland plant communities: results from a 60-year intervention
- 305 experiment. Land Degr. & Dev., 29, 1397–1412 (2018).
- 40. Albertson, K., Aylen, J., Cavan, G., McMorrow, J. Forecasting the outbreak of moorland
- wildfires in the English Peak District. J. Environ. Manage., 90, 2642-2651 (2009).
- 308 41. Albertson, K., Aylen, J., Cavan, G., McMorrow, J. Climate change and the future
- occurrence of moorland wildfires in the Peak District of the UK. Clim. Res., 45, 105-118
- 310 (2010).
- 42. Gimingham, C.H. *Ecology of Heathlands*. Chapman & Hall, London (1972).

- 43. Måren, I.E., Janovsky, Z., Spindelböck, J.P., Daws, M.I., Kaland, P.E., Vandvik, V. Prescribed
- burning of northern heathlands: *Calluna vulgaris* germination cues and seed-bank
- 314 dynamics. *Plant Ecol.*, **207**, 245–256 (2010).
- 315 44. Lee, H., Alday, J. G., Rosenburgh, A., Harris M., McAllister, H. & Marrs R. H. Change in
- propagule banks during prescribed burning: a tale of two contrasting moorlands. *Biol.*
- 317 *Conserv.*, **165**, 187-197 (2013).
- 318 45. Bormann, F.H., Likens, G.E. *Pattern and Processes in a Forested Ecosystem*. New York:
- 319 Springer Verlag (1979).

333

- 46. Anderson, P. Fire damage on blanket mires, in *Blanket Mire Degradation: Causes*,
- 321 Consequences and Challenges (eds Tallis, J.H., Meade, R., Hulme, P.D). 16–28. Macaulay
- Land Use Research Institute, Aberdeen (1997).
- 47. Santana, V.M., Alday, J.G., Lee, H., Allen, K.A., Marrs R.H. Modelling carbon emissions in
- 324 *Calluna vulgaris*-dominated ecosystems when prescribed burning and wildfires interact.
- 325 *PLOS ONE*, **11(11)**, e0167137 (2016).
- 48. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D, Bilir, T.E.,
- 327 Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova R.C, Girma B., Kissel, E.S., Levy, A.N.,
- MacCracken, S., Mastrandrea, P.R., White L.L., eds. IPCC, 2014: Climate Change 2014:
- 329 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.
- Contribution of Working Group II to the Fifth Assessment Report of the
- 331 Intergovernmental Panel on Climate Change. CUP, Cambridge.
- 49. Anon. Spreading like wildfire. *Nature Climate Change*, **7**, 755 (2017).

Acknowledgements 334 335 We thank the Nature Conservancy for having the foresight to initiate the Hard Hill Burning Experiment and the UK Environmental Change Network for its continuation. This work was 336 funded by the Heather Trust and NERC/DEFRA (FIREMAN BioDiversa project 337 338 (NE/G002096/1). S. Yee provided graphical support. 339 **Author Contributions** 340 341 RHM and RCC planned and carried out the field sampling with RR, E-LM, RL and KH. RCC led the geochemistry/stratigraphy with E-LM and RL; PA and GP were responsible for the 342 radiometric dating; the vegetation survey and analyses were planned and performed by JA, 343 KAA, HL, GM, RR, JO'R and VS. RHM and RCC produced the manuscript and all authors 344 contributed to the final version. 345 346 347 **Competing interests** The authors declare no competing interests. 348 349 **Additional information** 350 351 **Supplementary information** is available for this paper at Nature.website. 352 **Reprints and permissions information** is available at www.nature.com/reprints. Correspondence and requests for materials should be addressed to R.H.M or R.C.C. 353 Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in 354 published maps and institutional affiliations. 355 356 **SOCIAL MEDIA:** Twitter accounts @robmarrs1, @RCHIVERRELL.

357

Figure captions:

Figure 1 | Effects of differing prescribed fire frequencies on peat and C accumulation rates with respect to: (a) burn treatment and (b) number of burns applied. Key for a. R = unburned since ca. 1923, N= burned in 1954, L = burned in 1954 and then every 20 years, S = burned in 1954 and then every 10 years; treatments denoted with similar small letters were not detected as significantly different (Tukey HSD, Peat = P<0.020; C = P<0.027); b. Linear regressions (±95% confidence limits are illustrated); equations (±SE) are presented in Supplementary Table S1.

Figure 2 | GLM modelled responses of differing prescribed fire frequencies on community diversity and abundance of major species. Abundance units are number of hits by pin quadrat^{38,39}. a-c represent the effects of prescribed burning through time; d represents treatment effects as temporal effects were not significant. Key: N= 1-burn in 1954 (green, the intercept), L = 3-burns, burned in 1954 and every 20 years (blue), S = 6-burns, burned in 1954 and every 10 years (red). Significance: ns = not significant, P>0.05; + = P<0.05, +++/---, P<0.000; direction of effects are shown by + and - symbols.

Figure 3 | Summarised impacts of the four fire return intervals on key ecosystem **properties** | a. Species composition, the arrows reflect relative increases and the figures are
the final mean frequencies of key species, b. Carbon in the above-ground biomass, c. Peat
and C net accumulation rates, and d. mass of C the surface 1 cm and 5 cm peat.

METHODS

Description of the Moor House Experiment and sampling protocol. Moor House National Nature Reserve (NNR) is located in the Northern Pennines of England, and covers 40 km² of upland blanket bog, the largest area of ombrotrophic, mire-covered moorland in England⁵⁰. The management pressure on this reserve is very low; there has been no burning outside this experiment for ca. 100 years and is approaching the lower end of the natural burn return cycle for unmanaged peatlands in upland England (ca. 115-250 years¹²⁻¹³). Sheepgrazing pressure on blanket bog is low; it was ca. 0.5 sheep ha⁻¹ when 15,400 sheep grazed the entire reserve pre-1970, and since then there has been a reduction to ca. 7,000 in 1970 and 3,500 after 2001. Moreover, the sheep grazing pressure is mainly concentrated on grassland areas outside the blanket bog⁵¹.

The Sheep-grazing and Burning Experiment was established at Hard Hill (British grid reference; NY 758 328; Latitude 54.689656, Longitude -2.376928) in 1954 to investigate the effects of low-density sheep grazing and long-term, prescribed burning on blanket bog vegetation. The experiment was set up with a randomized block, split-plot design with four blocks, each with two sheep-grazing treatments (background sheep grazing pressure versus no sheep grazing) applied randomly within block and the three prescribed burning subtreatments applied randomly within sheep-grazing treatments (Supplementary Fig. S1). Both the sheep grazing and burning treatments are fixed effects within the experimental design. All the plots were burnt in 1954/5 (here denoted 1954), and thereafter, three prescribed burning treatments were applied: short-rotation, every 10 years (S); long-rotation, every 20 years (L); and no subsequent burn since 1954 (N). Each of the four blocks has an associated reference plot (R) which has not been burnt since at least 1923³⁸; the plots are referred to by the number of burns implemented since 1954; R=0-burn, N=1-burn,

L=3-burns, and S=6-burns. The burning treatments applied were intended to test the impacts of the prescribed burning in many areas of upland Britain that is routinely applied for moorland management. Historically, this management practice was implemented to increase sheep utilization of the available grazing, but more recently it has been used mainly to increase red grouse (Lagopus lagopus scotica Latham) numbers for sporting purposes^{38,39,42}. The intention is to use fire to open up the canopy of the dominant shrub species (Calluna vulgaris (L.) Hull), then allowing it to regenerate from both seedlings and burned stems through a distinct post-fire succession 42,43,52a. This management is carried out on rotation across the landscape, providing a mosaic of burned patches¹⁷. In the uplands, prescribed burning must by law be done between October 1st and 15th April April April April April 53. At Moor House, burning is applied in late March or early April. However, as this site has very inclement weather⁵⁴ it often is not possible to burn on an exact schedule; thus burning is applied at the end of March or beginning of April in close as possible to the intended year^{29,38-39}. The fires would be described as flaming fires^{23,55} produced by "cool-burning"⁵⁶, and there is no evidence that smouldering peat fires have occurred²³. Here, cores were only sampled from the grazed treatments as this is the "business-as-usual" management regime for most upland blanket bog in the UK38-39.

Field methods. Following a pilot study in 2011 (not shown), two "Master" cores were sampled (July 2013) from the Reference plot of Block A (no burn since ca. 1923) for analysis of peat and C dry mass accumulation, air-fall Pb by XRF (Supplementary Fig. S2) and for radiometric dating (MH13/1, MH13/4, Supplementary Fig. S3). Comprehensive analysis of the peat and C dry mass accumulation rates was undertaken by sampling (June 2016) within each burning treatment with four cores from treatment R, eight cores from L and N and

twelve cores from S; thus comprising 8 cores per block (1xR, 2xL, 2xN, 3xS) and 32 cores in total (MH16/1-32). Throughout, a hemi-cylindrical peat sampler (0.5 m x 0.05 m diameter) was used to extract the peat cores, and they were stored in guttering, sealed in plastic sleeves, and stored under refrigeration until analysis.

Estimating down-core concentrations of air-fall PB. Major element and trace metal concentrations (ppm) including air-fall Pb were determined on a wet sediment basis at 5mm resolution for each core using an Olympus Delta Energy Dispersive (ED)-XRF) mounted on a Geotek MSCL-XZ core scanner. The XRF has a 4 W Rhodium X-ray tube (8-40 keV; 5-200 μA excitement), a thermo-electrically cooled large-area silicon drift detector with the 6 mm diameter detector window covered with a thin (6 µm) polypropylene film to avoid contamination of the internal measurement sensors. Measurements were conducted in 'Soil' mode, which applies three successive X-ray intensities (15, 40 and 40 (filtered) keV beam conditions). The analyser undergoes daily standardisation procedures and is tested routinely using certified reference materials⁵⁷. The measured uncertainties for Pb (μg g⁻¹) are around 1% at 100 ppm increasing to 25% at 5ppm, and so the variation through the peak airfall Pb from 1850-1940 are captured by the µXRF scanning. Repeat measurements of calibration materials, 16 dried hand-pressed powders, for Pb across concentrations ranging from 5 to 700 μg g⁻¹ produced average 2 sigma uncertainties of ±3 μg g⁻¹. For the objectives of this paper, the stable Pb measured by ED-μXRF the airfall pollutant concentrations are greater than 10 µg g⁻¹ throughout the period 1840 to 1960, therefore, our quantification is robust. For the deeper peats, Pb concentrations are closer to background and we struggled to detect plausible Pb data, with the exception of the spike association with Roman-age smelting dust from central Europe (0-400 AD).

Radiometric dating the Master cores. Here, we calibrated Pb deposition and hence peat growth using radioisotopic markers. The Master cores were sub-sampled at 1 cm intervals and bulk densities calculated using standard water displacement techniques and measurement of the wet and dry masses after freeze drying. Sub-samples from each core were analysed for ²¹⁰Pb, ²²⁶Ra, ¹³⁷Cs and ²⁴¹Am by direct gamma assay in the Liverpool University Environmental Radioactivity Laboratory using a Canberra SAGe well-type coaxial low background intrinsic germanium detectors⁵⁸. ²¹⁰Pb was determined via its gamma emissions at 46.5 keV, and ²²⁶Ra by the 295 keV and 352 keV γ-rays emitted by its daughter radionuclide ²¹⁴Pb following 3 weeks storage in sealed containers to allow radioactive equilibration. ¹³⁷Cs and ²⁴¹Am concentrations were estimated by their emissions at 662 keV and 59.5 keV respectively. The absolute efficiencies of the detectors were determined using calibrated sources and sediment samples of known activity. Corrections were made for the effect of self-absorption of low energy γ -rays within the sample⁵⁹. The results were plotted alongside data for atmospheric fallout Pb and Zn concentrations measured by ED-XRF (Supplementary Fig. S3), with supported ²¹⁰Pb activity assumed to be equal to the measured ²²⁶Ra activity, and unsupported ²¹⁰Pb activity calculated by subtracting supported ²¹⁰Pb from the measured total ²¹⁰Pb activity.

Core MH13/1. Extrapolation of the total ²¹⁰Pb data (Supplementary Fig. S3c) indicates that 99% equilibrium with the supporting ²²⁶Ra (corresponding to around 150 years accumulation) occurred at a depth of between 14-15 cm. Because of the very low ²²⁶Ra concentrations (mean value 4 Bq kg⁻¹) it was not practicable to continue total ²¹⁰Pb measurements to a point where radioactive equilibrium was achieved fully. Although there were some irregularities in the unsupported ²¹⁰Pb record (Supplementary Fig. S3b)

concentrations declined more or less exponentially with depth, suggesting relatively uniform peat accumulation over the past 100 years or so. High ¹³⁷Cs concentrations (Supplementary Fig. S3b) in the form of a double peak were detected in samples between 1 and 4 cm. The proximity to the surface of the core suggests that this feature records fallout from the 1986 Chernobyl accident. Downward migration of Chernobyl ¹³⁷Cs appears to have masked any evidence of an earlier ¹³⁷Cs peak recording the 1960s fallout maximum from the atmospheric testing of nuclear weapons. Traces of ²⁴¹Am (Supplementary Fig. S3b), also a product of nuclear weapon test fallout⁶⁰ in the late 1950s and early 1960s, were however, detected in samples between 3-8 cm. The ²¹⁰Pb chronology calculated using the CRS model⁵⁶ places 1986 at around 3 cm and 1963 at around 6 cm, which shows a reasonable degree of consistency between these two independent dating methods. Calculations using the alternative CIC ²¹⁰Pb model gave results broadly similar to those determined from the CRS model, confirming the suggestion that net peat accumulation rates have not change significantly over the past century. Given the large uncertainties in both the ²¹⁰Pb and ¹³⁷Cs records the mean accumulation rate, 0.010 ± 0.002 g cm⁻² yr⁻¹ (0.10 cm yr⁻¹), was used to calculate the age-depth model (Supplementary Fig. S3).

Core MH13/4. The total ²¹⁰Pb record in this core was broadly similar to that in MH1, though a significantly greater 99% equilibrium depth (estimated to be around 22 cm) suggests a significantly greater peat accumulation rate at the site of this core. Although unsupported ²¹⁰Pb concentrations (Supplementary Fig. S3c) vary irregularly with depth, since the overall decline is again more or less exponential, it appears that there have been no major changes in the net peat accumulation rate (Supplementary Fig. S3d). High ¹³⁷Cs concentrations (Supplementary Fig. S3b) above 4 cm probably originate from 1986 Chernobyl fallout, whilst

traces of 241 Am present in samples above 9 cm most probably originate from fallout from the atmospheric testing of nuclear weapons. However, in neither case are there distinct features that can be linked clearly to specific dates. The 210 Pb chronology was calculated using the CRS model⁶¹, and although a lack of clarity in the 137 Cs/ 241 Am records prevented close validation of the 210 Pb calculations, since these place 1986 at around 5 cm and 1963 at around 9 cm the two methods are broadly consistent. Use of the CIC model yielded similar results to those given by the CRS model, supporting the suggestion that net peat accumulation rates have been relatively constant. The age-depth model (Supplementary Fig. S3d) was calculated using the mean value of 0.017 ± 0.003 g cm⁻² yr⁻¹ (0.17 cm yr⁻¹).

Calculating peat and C accumulation rates (Cores M16/1-32). Peat accumulation rates were derived using features or markers in the pronounced down-core atmospheric fall-out stable Pb profile measured by XRF. Pb is relatively immobile in ombrotrophic peat and has produced profile repeatable between all the cores⁶². Four good age markers were detected and assigned ages from the radiometric dating at 1876, 1963, 1986 and the peat surface (2016). As 1963 was the closest to the start of the Hard Hill experiment this marker was used to estimate recent peat and C accumulation rates. Peat growth rates (cm yr⁻¹) were calculated for each core across the two periods (1876-1963 and 1963-2016), essentially preand post-experiment. C accumulation was measured for the peat sequence using Near-Infra-Red Spectrophotometry (NIRS) cross-calibrated using a training set of direct mass loss-on-ignition (I-o-i) measurements. NIRS results have been shown to correlate strongly with the organic content of sediments⁶³⁻⁶⁵. NIRS reflectance was measured on each 1-cm depth samples from all cores using a BRUKER MPA FT-NIR spectrometer; lightly-ground peat was scanned at 4 nm intervals between 3598-12493 nm. L-o-i was measured on each 1-cm depth

section from four cores, one selected form each burning treatment; peat samples were ashed at 550°C for 3 h⁶³. Cross-calibration indicated a strong correlation (r²= 86%) between the first derivative of the entire NIR spectra and measured l-o-i (Supplementary Fig. S4). L-o-i and hence C concentration (as a normative 40% of the burnt mass loss) was predicted from the NIRS data. This NIRS-based approach provides robust, rapid and non-destructive estimates for l-o-I and C concentrations. The C accumulation rate (g C m² yr⁻¹⁾ was calculated using the measured or NIRS predicted l-o-I results for each core for the periods 1876-1963 and 1963-2016.

Statistical Methods. All analyses were performed in the R statistical environment⁶⁶; three hypotheses were tested with respect to peat accumulation. (1) The peat and C mass accumulation rates were similar in the pre-burn (1876-1963) and post-burn (1963-2016) periods; here pre- and post-burn rates from the 0-burn treatments were compared using a Student's t-test (function 't.test', untransformed data). (2) Prescribed burning implemented within the experiment changed peat and C mass accumulation rates. Here, effects of the prescribed burning treatments on accumulation rates since 1963 were tested using analysis of variance (functions 'aov' and 'TukeyHSD', loge transformation). (3) Peat and C mass accumulation rates are dependent on different prescribed burning frequencies. Here, the relationships between accumulation rates of peat depth and C since 1963 were assessed using simple linear regression ('Im' function, untransformed data). For hypotheses 2 and 3, QQ-plots were inspected to ensure normality; in the linear regression analysis transformations did not improve the analysis, so analyses based on raw data are presented.

To estimate the time taken to recover the C lost after wildfire, we calculated the total amount of C in both the surface vegetation and surface peat at two depths (0-1 cm and 0-5

cm) and divided by the C accumulation rate measured for the 6-burn treatment. We used a randomization approach (n=10,000) selecting data from each of the three variables (mean and SD) using the 'rnorm' function and calculating the mean and 95% confidence limits ('quantile' function). The mean values (\pm SD) were: vegetation C = 820 \pm 127 g C m⁻²; Peat_{0-1cm} C = 240 \pm 22 g C m⁻²; Peat_{0-5cm} C= 1274 \pm 82 g C m⁻²and C accumulation rate =36 \pm 2.6 g C m⁻² yr⁻² (6-burn value).

In addition, in order to provide ancillary information about the effects of prescribed burning on the moorland community, data on species frequency of occurrence, derived from pin-quadrats) were abstracted from the vegetation monitoring program for this experiment (1972-2013)²⁹. Here, modelled responses, derived from a GLM analysis for Shannon-Weiner diversity index and the frequency of occurrence of the major components of the vegetation (*C. vulgaris, Eriophorum vaginatum* (L.); both Poisson error distribution, and combined *Sphagnum* (L.) spp. Binomial error distribution). Only the modelled responses of the ungrazed treatments are presented for the N, L and S treatments; comparable data for R were not collected.

Data availability. The data that support the findings of this study are available in (1) DataCat: the University of Liverpool Research Data Catalogue with the identifier

[http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/531] for peat and C accumulation rates⁶⁶, and
(2) the NERC Environmental Information Data Centre with the identifier

https://doi.org/10.5285/0b931b16-796e-4ce4-8c64-d112f09293f7 for species change⁶⁷.

References only in Methods:

- 50. Rawes, M., Heal, O.W. in *Production ecology of British Moors and Montane Grasslands* (eds, Heal O.W., Perkins, D.F.) 224-243. Springer-Verlag, Berlin (1978).
- 51. Rawes, M. & Welch, D. Upland productivity of vegetation and sheep at Moor House National Nature Reserves, Westmorland, England. *Oikos Suppl.*, **11**, 1-69 (1969).
- 52. DEFRA. *The heather and grass burning code*. Defra Publications, London. (2007).
- 53. Heal, O.W., Smith, R.A.H., in *Production ecology of British Moors and Montane Grasslands* (eds, Heal O.W., Perkins, D.F.) 3–16..Springer-Verlag, Berlin (1978).
- 54. Zaccone, C., Rein, G, D'Orazio, V., Hadden, R.M. Belcher, C.M., Miano, T.M. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. *Geochim. Cosmochim. Acta*, **137**, 134-146 (2014).
- 55. Harris, M.P.K., Allen, K., McAllister, H., Eyre, G., Le Duc, M., Marrs, R.H. Factors affecting moorland plant communities and component species in relation to prescribed burning. *J. Appld Ecol.*, **48**, 1411-1421 (2011).
- 56. Boyle, J., Chiverrell, R., Schillereff, D. Approaches to water content correction and calibration for μXRF core scanning: comparing x-ray scattering with simple regression of elemental concentrations, in *Micro-XRF studies of sediment cores: A non-destructive tool for the environmental sciences. Developments in Paleoenvironmental Research* (eds Rothwell, G., Croudace, I.). pp. 373-390. Springer, Dordrecht (2015).
- 57. Appleby, P.G., Nolan, P.J., Gifford, D.W., Godfrey, M.J., Oldfield, F., Anderson N.J., Battarbee, R.W. ²¹⁰Pb dating by low background gamma counting. *Hydrobiologia*, 141, 21-27 (1986).
- 58. Appleby, P.G., Richardson, N., Nolan, P.J. Self-absorption corrections for well-type germaniun detectors. *Nucl. Inst. Methods B*, **71**, 228-233 (1992).
- 59. Appleby, P.G., Richardson, N., Nolan, P.J. ²⁴¹Am dating of lake sediments. *Hydrobiologia*, **214**, 35-42 (1991).
- 60. Appleby, P.G., Oldfield F. The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. *Catena*, **5**, 1-8 (1978).
- 61. Vile, M.A., Wieder, R.K., Novák, M. Mobility of Pb in *Sphagnum-derived* peat. *Biogeochem.,* **45**, 35–52 (1999).
- 62. Martin, P.D., Malley, D.F., Manning, G, Fuller, L. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. *Can. J. Soil Sci.*, **82**, 413–422 (2002).
- 63. Pearson, E.J., Juggins, S., Tyler, J. Ultrahigh resolution total organic carbon analysis using Fourier transform near Infrared reflectance spectroscopy (FT-NIRS). *Geochem., Geophys., Geosyst.*, **15**, 292–301 (2014).
- 64. Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, J.C.J., Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss, *European J. Soil Sci.*, **66**, 320–328 (2015).
- 65. R Core Team. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria (2015). at https://www.R-project.org/.
- 66. Marrs, R., Chiverrell, R. Experimental evidence for sustained carbon sequestration in fire-managed peat moorlands. DataCat: the University of Liverpool Research Data Catalogue. http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/531 (2018).
- 67. Rose, R.J., Marrs, R.H., O'Reilly, J., Furness, M. Long-term vegetation monitoring data (1961-2013) from moorland burning plots established at Hard Hill, Moor House in 1954. NERC

Environmental Information Data Centre. https://doi.org/10.5285/0b931b16-796e-4ce4-8c64-d112f09293f7 (2018).

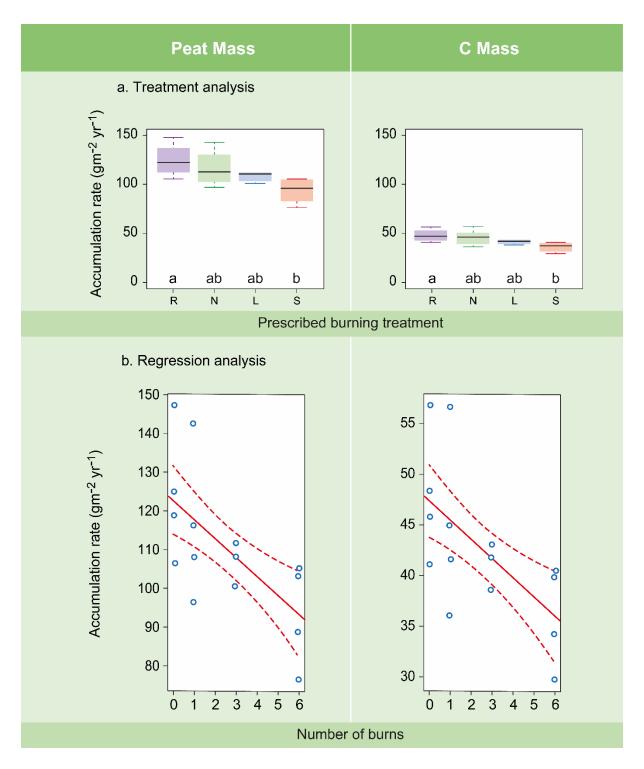


Fig. 1.

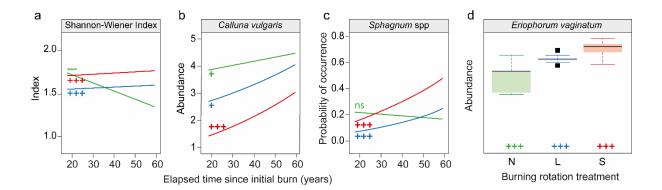


Fig. 2

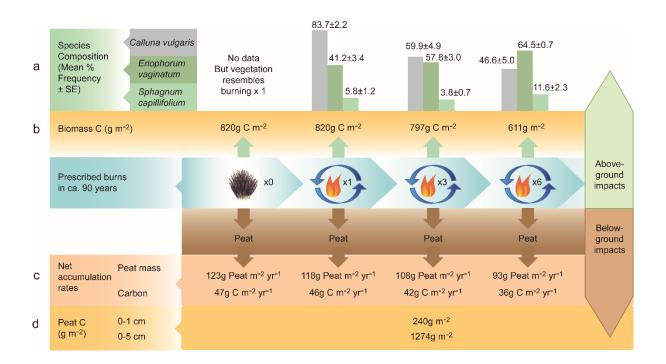


Fig. 3.

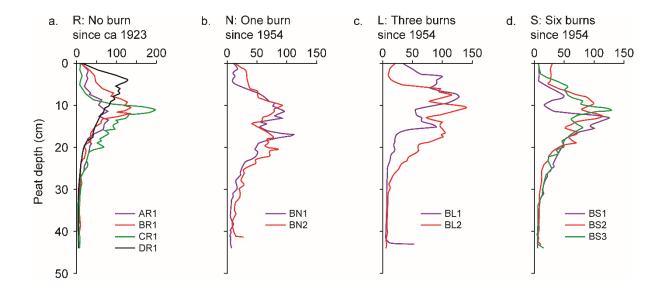
List of tables and figures:

Table S1: Supplementary Table 1: Linear equations relating the change in peat and C accumulation rates between 1963 and 2016 and the number of burns applied (see Fig. 1)

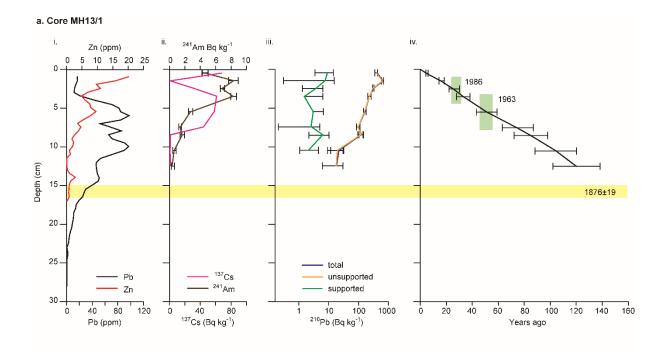
Figure S1: Supplementary Figure 1: Experimental layout of the Grazing and Burning Experiment at Hard Hill, Moor House NNR

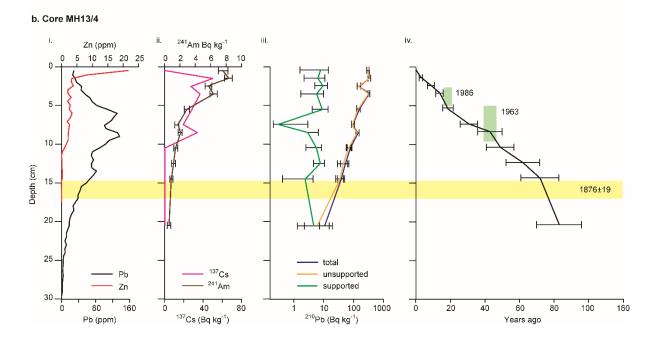

Figure S2: Examples of down-core Pb profiles for each of the four prescribed burning treatments at Moor House NNR

Figure S3: Metal pollutant concentrations (determined by ED-XRF) and the radiometric chronology of the Moor House Master peat cores

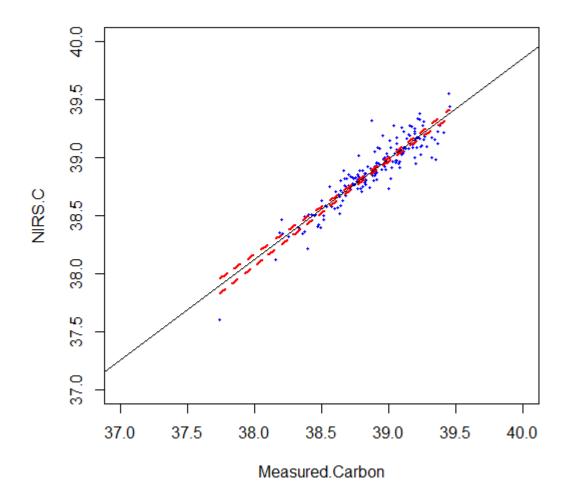

Figure S4: Supplementary Figure 4: Calibration curve relating estimated C concentrations (%) from NIRS and on-Ignition Loss-on-Ignition

Supplementary Table 1: Linear equations relating the change in peat and C accumulation rates between 1963 and 2016 and the number of burns applied (see Fig. 1). Standard errors are presented for the parameter estimates. Similar regressions fitted for pre-burning estimates between 1876 and 1963 indicated no significant treatment effect ($F_{1,14} < 1.82$, $r^2 \le 0.20$).


b ₀	b ₁	r ²	F _{1,14}	Р
122.816	-4.937	0.44	-10.72	0.006
±5.114	±1.508			
47.500	-1.919	0.41	F _{1,14} = 9.59	P= 0.008
±2.101	±0.014			
	122.816 ±5.114 47.500	122.816 -4.937 ±5.114 ±1.508 47.500 -1.919	122.816 -4.937 0.44 ±5.114 ±1.508 47.500 -1.919 0.41	122.816 -4.937 0.44 -10.72 ±5.114 ±1.508 47.500 -1.919 0.41 F _{1,14} = 9.59



Supplementary Figure 1: Experimental layout of the Grazing and Burning Experiment at Hard Hill, Moor House NNR. The four replicate blocks (A-D: $90 \times 30 \text{ m}$) are illustrated with the two sheep grazing treatments (white = light sheep grazing; yellow = no sheep grazing). The three prescribed burning $30 \times 30 \text{ m}$ treatments (S = 6-burns, L = 3 burns, N= 1 burn) are nested within sheep grazing treatments, and the reference plots (R =0-burn) are situated outside the area first burned in 1954/5. Grazing and burning treatments were allocated randomly.



Supplementary Figure 2: Examples of down-core Pb profiles for each of the four prescribed burning treatments at Moor House NNR: (a) all replicates of the unburned since 1923 treatment, and (b-d) all replicate samples taken from Block B for the other treatments (N = no burn since 1954, L = low frequency burn, burned in 1954 and then every 20 years, S= high frequency burn, burned in 1952 and then every 10 years).

Supplementary Figure 3: Metal pollutant concentrations (determined by ED-XRF) and the radiometric chronology of the Moor House Master peat cores: a. MH13/1 and b. MH13/4: (i) Pb and Zn concentrations; (ii) measured concentrations of ¹³⁷Cs and ²⁴¹Am; (iii) the total and supported and unsupported ²¹⁰Pb, and (iv) the ²¹⁰Pb ages, the mean net peat accumulation rate and the range of possible depths of the post-1986 and post-1963 accumulations suggested by the ¹³⁷Cs and ²⁴¹Am records.

Supplementary Figure 4: Calibration curve relating estimated C concentrations (%) from NIRS and on-Ignition Loss-on-Ignition. Regression equation: y=5.15778~(1.05504)+0.86742x~(0.02713); $r^2=0.86,$ $F_{1,170}=1022;$ P<0.001. Dotted lines represent the 95% confidence intervals.