

Article (refereed) - postprint

Jarvie, Helen P.; Sharpley, Andrew N.; Kresse, Timothy; Hays, Phillip D.; Williams, Richard J.; King, Stephen M.; Berry, Lawrence G. 2018. **Coupling high-frequency stream metabolism and nutrient monitoring to explore biogeochemical controls on downstream nitrate delivery**. *Environmental Science & Technology*, 52 (23). 13708-13717. <u>https://doi.org/10.1021/acs.est.8b03074</u>

© 2018 American Chemical Society

This version available http://nora.nerc.ac.uk/521792/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the Accepted Manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at https://pubs.acs.org/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Coupling high-frequency stream metabolism and nutrient monitoring to explore biogeochemical controls on downstream nitrate delivery
2	siegeoenen een een de motre de merery
4 5	Helen P. Jarvie ^{1*} , Andrew N. Sharpley ² , Timothy Kresse ³ , Phillip D. Hays ⁴ , Richard J. Williams ¹ , Stephen M. King ⁵ , Lawrence G. Berry ²
6	
7	¹ NERC Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK.
8 9	² Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville AR 72701, U.S.A.
10 11	³ U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, 401 Hardin Rd., Little Rock, AR 72211, U.S.A.
12 13	^₄ U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center/University of Arkansas, Dept. of Geosciences, 216 Gearhart Hall, Fayetteville, AR 72701, U.S.A.
14	⁵ STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, U.K.
15 16 17	*corresponding author (hpj@ceh.ac.uk)
18	Key words: Nitrate, retention, stream, assimilation, denitrification, eutrophication,
19	photosynthesis, respiration.
20	
21	
22	
23	

25 Abstract

26 Instream biogeochemical process measurements are often short term and localised. Here we use *in-situ* sensors to quantify the net effects of biogeochemical processes on seasonal patterns 27 28 in baseflow nitrate retention at the river-reach scale. Dual-station high-frequency in-situ 29 nitrate measurements, were coupled with high-frequency measurements of stream metabolism 30 and dissolved inorganic carbon, in a tributary of the Buffalo National River, Arkansas. Nitrate 31 assimilation was calculated from net primary production, and combined with mass-balance 32 measurements, to estimate net nitrification and denitrification. The combined net effects of 33 these instream processes (assimilation, denitrification and nitrification) removed >30-90% of 34 the baseflow nitrate load along a 6.5km reach. Assimilation of nitrate by photoautotrophs during spring and early summer was buffered by net nitrification. Net nitrification peaked 35 36 during the spring. After mid-summer, there was a pronounced switch from assimilatory nitrate 37 uptake to denitrification. There was clear synchronicity between the switch from nitrate assimilation to denitrification, a reduction in river baseflows, and a shift in stream metabolism 38 39 from autotrophy to heterotrophy. The results show how instream nitrate retention and downstream delivery is driven by seasonal shifts in metabolic pathways; and how continuous 40 41 *in-situ* stream sensor networks offer new opportunities for quantifying the role of stream biota 42 in the dynamics, fate, and transport of nitrogen in fluvial systems.

43

44

66

1. Introduction 46

47 Nutrients, including nitrogen (N), phosphorus (P), and carbon (C) from agriculture and domestic wastewater, are a major source of water-quality impairment¹. Excessive nutrient inputs to 48 49 rivers, streams, and lakes can accelerate growth of nuisance and harmful algae. Resulting increases in microbial activity and depletion of dissolved oxygen (DO) have profound negative 50 consequences for invertebrates and fish, potable water supply, and recreation^{2,3}. However, 51 52 biogeochemical processes in streams also play an important role in regulating downstream 53 nutrient transport, with stream biota retaining and removing nutrients from the water column, reducing downstream ecological impacts⁴⁻⁶. 54 55 Streams can provide a major sink for nitrate (NO_3) through uptake (assimilation) by primary 56 production and through denitrification^{7,8}. The effectiveness of these processes varies throughout the year and between streams, but conventional methods for estimating NO₃⁻ 57 uptake are based on relatively few, short-term experimental nutrient additions and isotope 58 measurements⁹⁻¹¹, making results difficult to extrapolate in space and time¹². Continuous high-59 frequency *in-situ* measurements offer new opportunities to explore NO₃⁻ source dynamics¹³⁻¹⁷, 60 61 and instream processes have been inferred from single-station diurnal concentration cycles^{12,18,19}, longitudinal profiling²⁰⁻²³, and nested sensor networks²⁴. 62 In this study, we used *in-situ* sensors to quantify the net effects of biogeochemical processes on 63 seasonal patterns in baseflow NO₃⁻ retention at the river-reach scale. The approach employed 64 here is novel because it combines dual-station high-frequency NO₃⁻ measurements, with high-65 frequency measurements of stream metabolism (analysis of diurnal DO curves to calculate

67	primary production and respiration), dissolved inorganic carbon (DIC), and excess partial
68	pressure of carbon dioxide ($EpCO_2$), to explore the capacity of instream biogeochemical
69	processes to retain and remove NO ₃ ⁻ . High-frequency <i>in-situ</i> monitoring of water chemistry and
70	stream flow was undertaken along an experimental reach of Big Creek, a tributary of the
71	Buffalo National Scenic River, Arkansas, U.S.A, and were used to calculate a NO ₃ ⁻ mass balance
72	along the reach. Net primary production was used to calculate NO_3^- assimilation by
73	photoautotrophs. Daily NO_3^- removal rates and rates of NO_3^- assimilation by photoautotrophs
74	were used to calculate net nitrification and denitrification. The biogeochemical controls on NO_{3}^{-1}
75	removal were then evaluated in relation to wider ecosystem drivers including streamflow, DO,
76	and stream ecological function, to explore how seasonal shifts in metabolic pathways influence
77	instream NO _{3⁻} retention and downstream NO _{3⁻} delivery.

78 **2. Materials and Methods:**

79 <u>2.1 Site description and water-quality monitoring</u>

Big Creek, a tributary of the Buffalo National Scenic River, Arkansas (Figure 1), is the subject of 80 detailed water-quality monitoring because of a permitted swine concentrated animal feeding 81 82 operation (CAFO) within the watershed, in operation since September 2013. The Big Creek watershed lies in the karst terrain of the Ozark Plateau of mid-continental USA (Figure 1). The 83 watershed area is 236 km², with 79% of the land area deciduous forest, 3% evergreen forest, 84 14% grassland/pasture, and 3% developed land (see Supporting Information, S1.1). Swine-85 manure slurry from the CAFO has been land applied to permitted fields since January 1, 2014, in 86 accordance with State regulations. 87

88	The focus of this study is an experimental reach of Big Creek, downstream of the CAFO, from an
89	upstream monitoring station at Mt Judea (USGS site 07055790; watershed area 106 km ²) to a
90	downstream monitoring station at Carver (USGS site 07055814; watershed area 233 km ²), 7.21
91	and 0.69 km from the confluence between Big Creek and the Buffalo River, respectively (Figure
92	1). One tributary (Left Fork) enters Big Creek between Mt Judea and Carver. The watershed is a
93	mantled karst terrain characterized by intimate connection between groundwater and surface
94	water; transport of surface-derived nutrients can be rapid ²⁵ (see S1.2).
95	USGS conducted high-frequency (15-minute) NO ₃ ⁻ monitoring using submersible ultraviolet
96	nitrate probes at Carver (06/03/2014 to 04/29/2017) and Mt Judea (11/01/2014 to
97	11/01/2015); there was therefore one year of overlapping data (11/01/2014 to 11/01/2015),
98	during which NO ₃ ⁻ monitoring was undertaken at both Mt Judea and Carver. A water-quality
99	sonde (YSI 6600) operating at Carver simultaneously collected 15-minute interval DO, pH,
100	specific conductance, and water temperature data. Further information about the high-
101	frequency water-quality monitoring is provided in S1.3.
102	Water-quality samples, collected on a weekly basis since 09/12/2013, with additional
103	opportunistic high-flow sampling, at Mt Judea, Left Fork and at a groundwater (spring)
104	monitoring site (Figure 1), provided NO ₃ ⁻ (by ion chromatography, Dionex ICS-1600); alkalinity
105	(by fixed-endpoint acidimetric titration to pH 4.5 ²⁶); and conductivity (VWR Symphony B10C)
106	data. Water quality data are available at https://bigcreekresearch.org/.

107 <u>2.2 Stream-flow measurements and hydrograph separation</u>

108 Stream flow was measured using established USGS streamflow gauging methods²⁷ (see S1.4). A

109 two-component mixing model was used to partition the contributions to streamflow from

110 groundwater and surface runoff²⁸, using alkalinity as a conservative groundwater tracer (see

111 S1.5).

112 <u>2.3 Analysis of diurnal dissolved oxygen curves to calculate primary production and respiration</u>

113 The daily average gross primary production, daily average ecosystem respiration and reaeration

114 coefficient were calculated from the series of diurnal DO curves at Carver, using a piecewise

solution of the mass balance, DO model²⁹ simplified for the situation where the deficit does not

116 vary spatially (Eq. 1): the Delta method^{30,31}.

$$dD/dt + k_a D = ER_{av} - GPP_{av}(t)$$
(1)

where *D* is the DO deficit (mg-O₂ L⁻¹), *t* is the time (days), k_a is the reaeration coefficient, ER_{av} is the ecosystem respiration (mg-O₂ L⁻¹ d⁻¹), and GPP_{av} is the gross primary production (mg-O₂ L⁻¹ d⁻¹); these are standard measures of ecosystem respiration and gross primary production in river systems³².

122 Odum³³ suggested a classification system of flowing-water communities based on oxygen

metabolism by using the ratio of GPP_{av} to ER_{av} (GPP/ER). Respiration is associated with both

124 plant and microbial activity. Photosynthesis is only associated with plants. Autotroph-

dominated communities are represented by GPP/ER values > 1, whereas heterotroph-

dominated communities are represented by *GPP/ER* values < 1.

Page 7 of 40

127 2.5 Use of the THINCARB model for calculating dissolved inorganic carbon concentrations and

128 excess partial pressure of carbon dioxide

- 129 The THINCARB model (THermodynamic modelling of INorganic CARBon)³⁴ uses pH, Gran
- Alkalinity (Alk_{Gran}) and temperature measurements to calculate dissolved inorganic carbon (DIC)
- 131 concentrations and DIC speciation from the excess partial pressures of carbon dioxide (EpCO₂)

in freshwaters. THINCARB is open access and is described in detail in Jarvie et al (2017)³⁴; an

133 outline is provided in SI1.8. Prior to use, alkalinity measurements in units of mg-CaCO₃ L^{-1} were

134 first converted to Alk_{Gran} (in $\mu eq L^{-1}$), where 1 mg L⁻¹ CaCO₃ = 19.98 $\mu eq L^{-1 34}$.

135 THINCARB was applied to the high-frequency sonde data from Carver. Specific conductance

136 was used as a surrogate for alkalinity: using the regression relationship between Alk_{Gran} and

137 specific conductance (κ), measured across the Big Creek watershed, including the spring, and

138 Mt Judea, Left Fork and Carver stream sites: $Alk_{Gran} = 8.65 (\pm 0.28) \times \kappa - 6.44 (\pm 66), R^2 = 0.95,$

n=270, P<0.001 (numbers in parentheses represent twice the standard error). By applying this

140 regression equation to the hourly κ series, an hourly alkalinity record was derived, which was

141 then used alongside the hourly pH and water-temperature data, to calculate a high-frequency

142 DIC and EpCO₂ series.

<u>2.6 Mass-balance calculation of baseflow nitrate fluxes, instream losses and net nitrification</u> <u>and denitrification</u>

145 Daily mass-balance calculations were undertaken for eight quiescent, low-flow periods (each

typically of 1-2 weeks). USGS stream-velocity readings from Carver ranged from 0.457 and 1.22

147 m s⁻¹, and with a stream distance of 6.38 km, the travel times ranged from 3.87 h to 1.45 h.

148	Therefore, daily mass balances over a 24-h period were assumed sufficient to account for
149	transit of NO ₃ , given: (a) the relatively short travel times; (b) the high degree of stationarity in
150	flux transfers during quiescent baseflow conditions; and (c) that calculated daily mass balances
151	were averaged over a 1-2 week period.
152	The 15-minute NO ₃ ⁻ measurements at Mt Judea and Carver were converted to daily means, and

daily nitrate loads at each site were calculated using the corresponding gauged daily stream-

154 flow data. To account for flow accretion along the reach, the difference between the daily flow

downstream at Carver and the upstream site at Mt Judea was calculated. The increase in flows

156 was assumed to be input from Left Fork (Figure 1).

Daily NO_3^- input loading to the reach (L_T) was calculated as the sum of the daily NO_3^- loads from Mt Judea (L_{MJ}) and Left Fork (L_{LF}) :

159
$$L_T = L_{MI} + L_{LF}$$
 (2)

There was no high-resolution NO₃⁻ monitoring on Left Fork, so weekly NO₃⁻ measurements from
grab samples taken at Left Fork were combined with the measured daily flow accretion to
derive daily loads from Left Fork (S1.6.1). A sensitivity analysis evaluated the potential effects of
under- or over-estimating Left Fork NO₃⁻ concentrations by ±50% (Tables SI1 and SI2).
Within this karst watershed, some of the flow accretion will arise from direct groundwater

165 input into Big Creek. Discharge data were not available from the Left Fork tributary, and direct

- apportionment of contributions from Left Fork and groundwater was not possible. We
- therefore evaluated a second, alternative 'endmember' case scenario whereby all of flow
- accretion was attributed to direct groundwater contribution (S1.6.2).

169	The daily instream NO_3^- load removal (L_R) along the reach was calculated as the difference
170	between the daily input NO ₃ ⁻ loading (L_T), and the daily NO ₃ ⁻ load at Carver (L_C):

$$L_R = L_T - L_C \tag{3}$$

To allow direct comparison with rates of assimilatory NO_3^- uptake by photosynthesis, L_R (kg-N d⁻¹ 173 ¹) was then converted to a daily NO_3^- removal rate, U_T (mg-N L⁻¹ d⁻¹). U_T incorporates both 174 assimilatory NO_3^- uptake by photoautotrophs (U_A), heterotrophic NO_3^- removal through direct 175 uptake and denitrification (U_D), and NO_3^- enrichment due to remineralization via nitrification 176 (R)²⁰:

177
$$U_T = U_A + U_D - R$$
 (4)

 U_A was estimated from the GPP_{av} measurements^{12,35}. GPP_{av} data were converted into net 178 primary production (NPP), assuming that autotrophic respiration consumed 50% of the 179 $GPP_{av}^{36,37}$. NPP data were then converted from units of O₂ uptake (mg-O₂ L⁻¹ d⁻¹) to C uptake 180 181 (mg-C $L^{-1} d^{-1}$), with a photosynthetic quotient of 1.00, then converted to NO₃⁻ uptake (mg-N L^{-1} d⁻¹), using a molar ratio of C:N of 12³⁸. Subtracting U_T from U_A provides a measure of either net 182 nitrification (positive values) or net heterotrophic NO_3^- removal through direct uptake and 183 denitrification, hereafter referred to as 'net denitrification' (negative values). When the river 184 185 was influent, loss of NO_3^- to groundwater was accounted for, as described in S1.6.3.

- 186 **3. Results and Discussion**
- 187 <u>3.1 Three-year time series of nitrate, dissolved inorganic carbon and stream metabolism</u>

The hourly NO_{3⁻} and DIC concentrations variations at Carver were driven by streamflow, but in 188 189 opposing directions (Figure 2a). The mean and median NO₃⁻ concentrations were 0.128 and 0.093 mg-N L⁻¹, respectively. Nitrate concentrations at Carver were lowest during baseflow 190 (mean 0.043 mg-N L⁻¹; lowest 10% of flows) and highest during storm runoff (mean 0.278 mg-N 191 192 L^{-1} ; highest 10% of flows), arising from nonpoint-source mobilisation and delivery of NO₃⁻ from watershed soils during rainfall events. 193 The mean and median DIC concentrations were 24.8 and 25.2 mg-C L⁻¹, respectively. DIC 194 195 concentrations were highest during baseflow (mean 31.7 mg-C L⁻¹), with DIC concentrations 196 diluted by storm runoff (mean 13.2 mg-C L⁻¹). Highest DIC and lowest NO₃⁻ concentrations

197 occurred during the extended low-flows between August and November 2015.

The mean and median molar C:N ratios were 356 and 305, respectively. The mean C:N ratio 198 199 during baseflow was 882, and 82 during stormflow. C:N ratios greater than ~6.6 are indicative of stoichiometric depletion of N relative to C³⁹. Absolute NO₃⁻ concentrations below ~0.1 mg-N 200 L^{-1} are deemed likely to be limiting to algae, with algal growth response to NO₃⁻ enrichment 201 occurring between 0.38 to 1.79 mg-N L⁻¹⁴⁰. Therefore, under average and baseflow conditions 202 at Carver, a clear potential exists for algal growth to be limited by low NO_3^- availability. 203 No longer-term trends in either NO₃⁻ or DIC were observed over the three years. These high-204 frequency monitoring results are consistent with results from near-weekly water quality 205 monitoring of Big Creek at Mt Judea, which showed no statistically significant increasing or 206 207 decreasing trends in dissolved or particulate forms of P and N concentrations since 2013⁴¹.

Earlier studies⁶ have shown that Ozark streams can be very effective at retaining available 208 209 nutrients, and buffering additional nutrient inputs. Therefore, the absence of any increasing 210 trend in nutrients in the water column may result from the rapid and efficient uptake of 211 nutrient inputs by stream biota. Consequently, high-resolution stream metabolism and nutrient 212 measurements were used here to detect whether increased photosynthesis or respiration rates 213 resulted from increased nutrient assimilation, even where no increases in water-column nutrient concentrations could be observed. 214 215 The time series in daily rates of GPP_{av} and ER_{av}, at Carver (Figure 2b), showed no definitive long-

216 term trends between 2014 and 2017. GPP_{av} declined rapidly in response to major storm runoff 217 events, but typically recovered within a couple of weeks. Highest GPP_{av} tended to occur during 218 quiescent baseflow or recessional streamflow conditions during the summer (May through August). Both GPP_{av} and ER_{av} declined during the autumn (September through December), 219 220 reflecting reductions in stream biological activity, and GPP_{av} tended to decline at a faster rate 221 than ER. This was particularly apparent during the extended low-flows between August and 222 December 2015, suggesting a decline in primary production relative to microbial activity and a 223 transition from net autotrophic to net heterotrophic stream communities. During winter baseflows (November through January), ER_{av} tended to exceed GPP_{av}. During the 3-yr 224 225 monitoring, no CAFO-related impacts on either stream nutrient concentrations or metabolism 226 are discernible at Carver.

227 <u>3.2 Temporal and spatial variability in NO₃⁻ concentrations, relative to other key environmental</u>
 228 <u>variables</u>

Mean daily NO₃⁻ concentrations varied between baseflow and storm events at Mt Judea and
Carver, during the one year of overlapping data (Figure 3). There was a clear differentiation
between a higher-flow period characterised by regular storm events from mid-December 2014
to mid-July 2015, and lower-flow conditions from August to November/December 2015 (Figures
3 and 4).

234 During the higher-flow period, a positive correlation existed between upstream (Mt Judea) and

downstream (Carver) NO₃, with a ratio approaching 1 (Figure 3). During this high-flow period,

236 NO₃⁻ concentrations at both upstream and downstream sites ranged between ~0.1 and ~0.4

²³⁷ mg-N L⁻¹. Time series data show close convergence between upstream and downstream NO₃⁻

238 concentrations during storm-event peak concentrations (Figure 4a,b).

239 Under lower-flow conditions, NO_3^{-1} concentrations were consistently higher upstream than 240 downstream (Figure 3). The increase in NO_{3⁻} concentrations at the upstream site during the summer and autumn 2015 corresponds with reductions in flow. This is typical of the longer-241 term hydrologically-driven cycles in NO_3^- concentrations observed at the upstream site, 242 reflecting a strong flow dependency, with highest concentrations under the lowest flows, and 243 dilution with increasing flow (Figure SI1). The strong increase in NO₃⁻ concentrations during July 244 to November 2015 therefore reflects hydrological controls, and is consistent with falling flows. 245 The high NO_{3⁻} concentrations in autumn 2015 subsequently declined with the onset of higher 246 247 flows (Fig SI1a,b).

248 The gap in NO₃⁻ concentrations between upstream and downstream sites widened with

decreasing flow, particularly during the protracted low-flows between mid-July and November

249

250	2015. During this time, minimal soil water contributed to streamflow, and almost all (>95%) of
251	streamflow was derived from ground water (Figure 4a,b). By the end of October 2015,
252	upstream NO ₃ ⁻ concentrations reached ~0.75 mg-N L ⁻¹ , whereas downstream NO ₃ ⁻
253	concentrations were ~0.05 mg-N L ⁻¹ . Between July and November 2015, downstream NO ₃ ⁻
254	concentrations exhibited a much lower range (~0.05 to ~0.15 mg-N L ⁻¹) as compared with
255	upstream (~0.1 to ~0.8 mg-N L ⁻¹) (Figure 3). This reduction in both magnitude and range of
256	downstream NO ₃ ⁻ concentrations under baseflow conditions could arise either from dilution of
257	NO_3^- , as a result of downstream accretion of water sources with much lower NO_3^-
258	concentrations, or by removal of NO_3^- through biogeochemical processes, necessitating a mass-
259	balance evaluation (see section 3.3).
260	The widening gap in NO_3^- concentrations between upstream and downstream sites after mid-
260 261	The widening gap in NO_3^- concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net
260 261 262	The widening gap in NO_3^- concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big
260 261 262 263	The widening gap in NO ₃ ⁻ concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big Creek was heterotrophic for ~90% of days. Daily streamwater EpCO ₂ doubled between mid-July
260 261 262 263 264	The widening gap in NO ₃ ⁻ concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big Creek was heterotrophic for ~90% of days. Daily streamwater EpCO ₂ doubled between mid-July and November 2015, from 4.5 to 9.1 times atmospheric pressure, independently confirming an
260 261 262 263 264 265	The widening gap in NO ₃ ⁻ concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big Creek was heterotrophic for ~90% of days. Daily streamwater EpCO ₂ doubled between mid-July and November 2015, from 4.5 to 9.1 times atmospheric pressure, independently confirming an increase in rates of respiration (CO ₂ release), relative to photosynthesis (CO ₂ uptake).
260 261 262 263 264 265 266	The widening gap in NO ₃ ⁻ concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big Creek was heterotrophic for ~90% of days. Daily streamwater EpCO ₂ doubled between mid-July and November 2015, from 4.5 to 9.1 times atmospheric pressure, independently confirming an increase in rates of respiration (CO ₂ release), relative to photosynthesis (CO ₂ uptake).
260 261 262 263 264 265 266 267	The widening gap in NO ₃ ⁻ concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big Creek was heterotrophic for ~90% of days. Daily streamwater EpCO ₂ doubled between mid-July and November 2015, from 4.5 to 9.1 times atmospheric pressure, independently confirming an increase in rates of respiration (CO ₂ release), relative to photosynthesis (CO ₂ uptake). During the higher-flow period from mid-January to mid-July, Big Creek was predominantly net autotrophic (<i>GPP/ER</i> >1 for 52% of days). Net heterotrophic conditions prevailed predominantly
260 261 262 263 264 265 266 267 268	The widening gap in NO ₃ ⁻ concentrations between upstream and downstream sites after mid- July 2015 corresponded with a decline in <i>GPP/ER</i> , which fell below 1, indicating a change to net heterotrophy (Figure 4c). During the low-flow period from mid-July to November 2015, Big Creek was heterotrophic for ~90% of days. Daily streamwater EpCO ₂ doubled between mid-July and November 2015, from 4.5 to 9.1 times atmospheric pressure, independently confirming an increase in rates of respiration (CO ₂ release), relative to photosynthesis (CO ₂ uptake). During the higher-flow period from mid-January to mid-July, Big Creek was predominantly net autotrophic (<i>GPP/ER</i> >1 for 52% of days). Net heterotrophic conditions prevailed predominantly during lower-flow intervals between storm events, with <i>GPP/ER</i> <1 typically during and

Molar C:N ratios at Carver also increased markedly after mid-July, from ~300 to >800 (Figure 270 271 4d). This stoichiometric depletion of N, along with persistence of low NO₃⁻ concentrations below 0.1 mg-N L⁻¹ (falling to <0.04 mg-N L⁻¹), suggests that algal growth may have been limited 272 by low N availability at Carver over the late summer and autumn of 2015. 273 274 3.3 Nitrate reach mass balance to quantify seasonal nitrate removal during baseflow conditions Mean daily NO_{3⁻} mass balances for the eight seasonal quiescent baseflow periods between 275 February and October 2015 are presented in Table 1. Mean daily NO₃⁻ input loadings to the 276 reach (L_T) increased from 17.3 kg-N d⁻¹ in February to 61.7 kg-N d⁻¹ in July, then declined rapidly 277 278 to 7.56 kg-N d⁻¹ in August, which also corresponded with an order of magnitude reduction in baseflow discharge. By October, L_T had fallen to only 2.98 kg-N d⁻¹. Instream NO₃⁻ removal (L_R) 279 followed a similar pattern to L_7 , with highest mean daily instream NO_{3⁻} removal during June (24) 280 kg-N d⁻¹), then decreasing during the late summer and autumn, and falling to 2.82 kg-N d⁻¹ in 281 October. However, the efficiency of instream NO_3^- removal (U_E , i.e., L_R expressed as a 282 percentage of L_T) increased markedly during the late summer and autumn, from 32% in July to 283 74-95% between August and October. 284 The fluvial mass balance therefore confirmed that the observed downstream reductions in NO₃-285

biogeochemical processes, rather than a dilution effect.

286

287

Although L_T and L_R were greatest during the winter to early summer period, U_F and the instream

concentrations under baseflow were a result of net instream removal of NO_3^{-} by

289 NO_3^{-1} removal rate (U_7) increased dramatically during the low flows of the late summer and

autumn; U_T increased from ≤ 0.09 mg-N L⁻¹ d⁻¹ (February through July), to > 0.2 mg-N L⁻¹ d⁻¹ in

291	August and September, and 0.66 mg-N $L^{-1} d^{-1}$ in October (Table 2). By autumn 2015, >75% of
292	the NO_3^- inputs were removed by biogeochemical processes (Table 1).
293	We also assessed the efficiency of NO_3^- removal under the alternative scenario, where the
294	increase in flow along the experimental reach was solely from direct groundwater input
295	(S1.6.2). This made relatively little difference to the U_{E} , which also increased markedly during
296	the late summer and autumn, from 46% in July to 72-94% between August and October (Table
297	SI3). The sensitivity analysis (Tables SI1 and SI3) showed that a 50% increase or decrease in
298	either Left Fork or groundwater NO ₃ ⁻ concentrations made little difference to these findings: a
299	consistent increase in efficiency of NO_3^- removal was observed after July, with August to
300	October U_E values consistently ~70-95%.
301	3.4 Biogeochemical controls on nitrate delivery: accounting for assimilatory nitrate uptake to
302	calculate net nitrification and net denitrification
303	From February to July, assimilatory NO ₃ ⁻ uptake by photosynthesising plants (U_A) consistently
304	exceeded U_T (Table 2) indicating, firstly, that assimilation of NO ₃ ⁻ by photoautotrophs was the
305	dominant process removing NO_3^- from the water column; and secondly that assimilation was
306	partially balanced by net nitrification NO _{3⁻} gains. In contrast, from August to October, U_T
307	exceeded U_A , indicating that heterotrophic NO ₃ ⁻ removal through direct uptake and
308	denitrification was removing NO_3^- along the reach in late summer and autumn.
309	Table 3 shows that net nitrification gains to the reach ranged from 0.135 mg-N L^{-1} d ⁻¹ in February
310	to 0.273 mg-N L ⁻¹ d ⁻¹ in April/May. However, after July, a pronounced switch from net nitrification
311	gains to net denitrification losses occurred. During late summer and autumn, denitrification

losses of NO₃⁻ increased from ~0.100 mg-N L⁻¹ d⁻¹ in August and September to 0.592 mg-N L⁻¹ d⁻¹ 312 313 in October. These estimates were based on using an average periphyton C:N molar ratio of 12 for U.S.A. streams^{35,38}. We also evaluated the effects of using an average periphyton molar C:N 314 ratio of 8.6, from research in northern European streams¹⁷. This increased U_A values by ~39%, 315 316 but did not alter our findings of a switch between net nitrification between February and July, to net denitrification from August to October. By changing the C:N stoichiometry from 12 to 8.6, 317 net nitrification ranged from +0.218 mg-N L⁻¹ d⁻¹ in February to +0.414 mg-N L⁻¹ d⁻¹ in April/May, 318 with net denitrification ranging from -0.033 mg-N L⁻¹ d⁻¹ in August to -0.562 mg-N L⁻¹ d⁻¹ in 319 October. 320

321 Net nitrification and denitrification rates were compared with mean daily *GPP/ER*, EpCO₂,

322 streamflow and percentage groundwater discharge (Table 3). The shift from net nitrification to

net denitrification corresponded directly with: (1) a change in stream metabolism from net

autotrophic (*GPP/ER* in July was 1.97) to net heterotrophic (*GPP/ER* fell below 1, to 0.78 in

August, 0.62 in September, and 0.57 in October); and (2) an increase in EpCO₂ and a reduction

in DO arising from the increases in microbial respiration relative to photosynthesis.

The alternative scenario where flow accretion between Mt Judea and Carver was attributed to direct groundwater discharge to Big Creek also had no effect on the timing of the shift from net nitrification to denitrification (S1.6.2, Table SI4). Sensitivity analysis (Tables SI2 and SI4) also showed that, irrespective of a 50% increase or decrease in either Left Fork or groundwater NO₃⁻ concentrations, the same consistent switch between net nitrification and net denitrification was observed after July.

333	The consistency in this observed switch between instream NO_3^- production and instream NO_3^-
334	removal, and its synchronicity with measured changes in stream metabolism, provides
335	compelling evidence that the marked change in instream NO ₃ ⁻ processing and delivery after July
336	was linked to changes in stream metabolism from net autotrophy to net heterotrophy.
337	The karst streams of the Ozarks are characterised by a large hyporheic zone ^{42,43} , a hotspot of
338	nitrogen transformation ⁴⁴ . Water residence times and redox conditions provide a key control
339	on changes between NO_3^- removal and NO_3^- production with hyporheic zone sediments ⁴⁵⁻⁴⁸ . In
340	Big Creek, the winter to mid-summer period was characterised by higher baseflows (at least an
341	order of magnitude greater than late summer/autumn baseflows), and net autotrophy resulting
342	in higher instream DO concentrations. Rapid movement of well-oxygenated water throughout
343	the water column, and into the hyporheic zone, promotes aerobic metabolism of organic
344	matter and release of NO ₃ ⁻ through nitrification ^{46,49} . From winter to mid-summer, net
345	nitrification was observed in Big Creek, and nitrification in the hyporheic zone may have been
346	responsible for buffering the effects of photosynthetic assimilatory uptake of NO ₃
347	Under the more sluggish flow conditions during late summer and autumn, available oxygen is
348	depleted as a result of increased heterotrophic activity. The reduced movement of water and
349	oxygen through the hyporheic zone favors a shift in respiratory pathways with denitrification
350	(conversion of nitrate to N_2O and/or N_2 gas) ^{50,51} . Unlike assimilation of NO_3^- into plant biomass,
351	which retains N temporarily, denitrification results in a permanent loss of bioavailable N. The
352	low baseflows of late summer and autumn 2015, resulted in higher water residence times and a
353	greater proportion of flow moving through the hyporheic zone. This provides greater exposure
354	and water contact time with microbial biofilms where denitrification occurs ⁵¹ . The death and

355	breakdown of biomass during the late summer and autumn contribute to the availability of
356	organic matter for microbial decomposition, promoting higher rates of microbial respiration
357	relative to photosynthesis, losses of DO, and greater availability of organic carbon as a resource
358	for denitrifying bacteria ^{45,53} . Denitrification within the hyporheic zone may therefore be
359	responsible for losses of NO_3^- in Big Creek during the late summer and autumn. Although
360	denitrification can also occur on suspended sediments within the water column ^{54,55} , this is likely
361	to be a second order effect under baseflow conditions in a groundwater-fed stream, where
362	suspended solids concentrations are low (typically <5 mg L^{-1}).
363	Under baseflow conditions, instream assimilatory NO_3^- uptake by photosynthesising plants and
364	hyporheic-zone denitrification along the experimental reach removed between \sim 30 and \sim 90%
365	of the NO _{3⁻} input load. During the period of monitoring (spring 2014 to spring 2017) NO _{3⁻}
366	loading to the upstream section of Big Creek (at Mt Judea) was attenuated by instream
367	processing such that no CAFO-related impacts on either stream nutrient concentrations or
368	metabolism were discernible at the downstream location (Carver), and thus, to the Buffalo
369	River. Future monitoring will be needed to detect whether long-term changes in nutrients and
370	organic carbon inputs may occur, whether this stimulates higher rates of heterotrophic and/or
371	autotrophic activity, and any longer-term effects on the capacity of assimilation and
372	denitrification processes to remove and buffer any increase in nutrient loadings.
373	The novelty of this research is the combination of continuous, high-frequency in-situ stream
374	metabolism and nitrate measurements, to apportion the net effects of assimilation,
375	nitrification, and denitrification on changes in baseflow nitrate fluxes at the river-reach to
376	watershed scale. In this case, we found that, during winter to mid-summer periods, NO ₃ ⁻ uptake

377	in Big Creek was dominated by assimilation by photoautotrophs, which was partially
378	compensated by release of NO_3^{-} from nitrification. In late summer, the predominant metabolic
379	pathway switched to net heterotrophy and heterotrophic NO_3^- removal through direct uptake
380	and denitrification became the dominant process of nitrate removal. Removal of NO_{3}^{-} by
381	assimilation and denitrification provides an important "self-cleansing" ecosystem service,
382	resulting in a pronounced shift in C:N stoichiometry and decreasing NO_3^- concentrations to low
383	levels which would be expected to limit algal growth ⁵⁶ .
384	This approach provides a means scaling up, from micro-scale and meso-scale process
385	experiments and measurements, which are, by necessity, short term and localised, to explore
386	how river nitrate delivery responds to shifts in stream metabolism, from day-to-day and
387	seasonal to inter-annual variability. This research, and the methods presented here, are
388	applicable along the river continuum, from headwaters to large-scale fluvial systems (with large
389	spatial and temporal variability in nutrient fluxes), and offer a valuable way forward in
390	quantifying net process controls on the fate and transport of nitrogen in fluvial systems.
391	

392 Acknowledgements:

393 HPJ and RJW were supported by NERC National Capability projects NEC05966 and NEC04879.

394 Funding for the Big Creek Research and Extension monitoring was provided by the Arkansas

- 395 Governor's Office and State Legislature to the University of Arkansas System's Division of
- 396 Agriculture. Hydrological and chemical monitoring by the USGS were supported by a National
- 397 Park Service/USGS Water Quality Partnership Grant, administered by the USGS.

398	
399	Supporting Information (see accompanying PDF file)
400	• Number of pages: 16
401	• Number of Figures: 1
402	Number of Tables: 4
403	
404	List of Figures:
405	Figure 1. Map of the Big Creek watershed.
406	Figure 2. Time series from May 2014 and May 2017 at the downstream monitoring site (Carver),
407	showing: (a) nitrate (NO $_3$ -N), dissolved inorganic carbon (DIC) and stream flow; and (b) daily
408	average gross primary production (GPP), ecosystem respiration (ER) and stream flow.
409	Figure 3. Scatter plot showing the relations between mean daily NO $_3$ -N concentrations
410	upstream at Mt Judea and downstream at Carver
411	Figure 4. Time series from 1 November 2014 to 1 November 2015, showing: (a) NO_3^-
412	concentrations upstream at Mt Judea and downstream at Carver, and the lower-flow time
413	periods used for mass balance calculation and evaluation of biogeochemical processes; (b)
414	stream flow at Carver and the percentage groundwater contribution to streamflow; (c) daily
415	ratio of gross primary production: ecosystem respiration (GPP/ER) (horizontal dashed line
416	shows GPP/ER of 1, i.e. balance between heterotrophy and autotrophy), and excess partial

417	pressure of carbon dioxide ($EpCO_2$); (d) streamflow and the molar C:N ratio (dissolved organic
418	carbon/NO ₃ -N).

419 List of Tables:

- 420 Table 1: Seasonal patterns in mean daily NO_3^- input loadings (L_T) to Big Creek, mean daily
- 421 instream NO_3^- load removal (L_R) along the experimental reach, under low-flow conditions, and
- 422 mean daily NO_3^- load removal as a percentage of NO_3^- inputs (U_E).
- Table 2: Seasonal patterns in mean daily NO_3^{-1} removal rate (U_7) along the experimental reach of
- 424 Big Creek, under low-flow conditions, and mean daily assimilatory uptake of NO₃-N by

425 photoautotrophs (U_A).

- 426 Table 3: Seasonal patterns in mean daily NO₃⁻ concentration gains by net nitrification and losses
- 427 by net denitrification along the experimental reach of Big Creek, under low-flow conditions,
- 428 with mean daily values of the ratio between gross primary production and ecosystem
- 429 respiration (GPP/ER), excess partial pressure of carbon dioxide (EpCO₂), dissolved oxygen (DO),
- 430 stream flow and the percentage of groundwater contribution to stream flow.

References

1. Smith, V. H., Eutrophication of freshwater and coastal marine ecosystems - A global problem. Environmental Science and Pollution Research **2003**, 10, (2), 126-139.

2. Dodds, W. K.; Bouska, W. W.; Eitzmann, J. L.; Pilger, T. J.; Pitts, K. L.; Riley, A. J.; Schloesser, J. T.; Thornbrugh, D. J., Eutrophication of US Freshwaters: Analysis of Potential Economic Damages. Environmental Science & Technology **2009**, 43, (1), 12-19.

3. Dodds, W. K.; Smith, V. H., Nitrogen, phosphorus, and eutrophication in streams. Inland Waters **2016**, 6, (2), 155-164.

4. Peterson, B. J.; Wollheim, W. M.; Mulholland, P. J.; Webster, J. R.; Meyer, J. L.; Tank, J. L.; Marti, E.; Bowden, W. B.; Valett, H. M.; Hershey, A. E.; McDowell, W. H.; Dodds, W. K.; Hamilton, S. K.; Gregory, S.; Morrall, D. D., Control of nitrogen export from watersheds by headwater streams. Science **2001**, 292, (5514), 86-90.

5. Alexander, R. B.; Boyer, E. W.; Smith, R. A.; Schwarz, G. E.; Moore, R. B., The role of headwater streams in downstream water quality. Journal of the American Water Resources Association **2007**, 43, (1), 41-59.

6. Jarvie, H. P.; Sharpley, A. N.; Scott, J. T.; Haggard, B. E.; Bowes, M. J.; Massey, L. B., Within-River Phosphorus Retention: Accounting for a Missing Piece in the Watershed Phosphorus Puzzle. Environmental Science & Technology **2012**, 46, (24), 13284-13292.

7. Mulholland, P. J.; Helton, A. M.; Poole, G. C.; Hall, R. O.; Hamilton, S. K.; Peterson, B. J.; Tank, J. L.; Ashkenas, L. R.; Cooper, L. W.; Dahm, C. N.; Dodds, W. K.; Findlay, S. E. G.; Gregory, S. V.; Grimm, N. B.; Johnson, S. L.; McDowell, W. H.; Meyer, J. L.; Valett, H. M.; Webster, J. R.; Arango, C. P.; Beaulieu, J. J.; Bernot, M. J.; Burgin, A. J.; Crenshaw, C. L.; Johnson, L. T.; Niederlehner, B. R.; O'Brien, J. M.; Potter, J. D.; Sheibley, R. W.; Sobota, D. J.; Thomas, S. M., Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature **2008**, 452, (7184), 202-U46.

8. Mulholland, P. J.; Valett, H. M.; Webster, J. R.; Thomas, S. A.; Cooper, L. W.; Hamilton, S. K.; Peterson, B. J., Stream denitrification and total nitrate uptake rates measured using a field N-15 tracer addition approach. Limnology and Oceanography **2004**, 49, (3), 809-820.

9. Tank, J. L.; Marti, E.; Riis, T.; von Schiller, D.; Reisinger, A. J.; Dodds, W. K.; Whiles, M. R.; Ashkenas, L. R.; Bowden, W. B.; Collins, S. M.; Crenshaw, C. L.; Crowl, T. A.; Griffiths, N. A.; Grimm, N. B.; Hamilton, S. K.; Johnson, S. L.; McDowell, W. H.; Norman, B. M.; Rosi, E. J.; Simon, K. S.; Thomas, S. A.; Webster, J. R., Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs **2018**, 88, (1), 120-138.

10. Tank, J. L.; Meyer, J. L.; Sanzone, D. M.; Mulholland, P. J.; Webster, J. R.; Peterson, B. J.; Wollheim, W. M.; Leonard, N. E., Analysis of nitrogen cycling in a forest stream during autumn using a N-15-tracer addition. Limnology and Oceanography **2000**, 45, (5), 1013-1029.

11. Ensign, S. H.; Doyle, M. W., Nutrient spiraling in streams and river networks. Journal of Geophysical Research-Biogeosciences **2006**, 111, (G4). G04009, doi:10.1029/2005JG000114.

12. Rode, M.; Halbedel Angelstein, S.; Anis, M. R.; Borchardt, D.; Weitere, M., Continuous instream assimilatory nitrate uptake from high frequency sensor measurements. Environmental Science & Technology **2016**, 50, (11), 5685-5694.

13. Bowes, M. J.; Jarvie, H. P.; Halliday, S. J.; Skeffington, R. A.; Wade, A. J.; Loewenthal, M.; Gozzard, E.; Newman, J. R.; Palmer-Felgate, E. J., Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. Science of the Total Environment **2015**, 511, 608-620.

14. Halliday, S. J.; Skeffington, R. A.; Wade, A. J.; Bowes, M. J.; Gozzard, E.; Newman, J. R.; Loewenthal, M.; Palmer-Felgate, E. J.; Jarvie, H. P., High-frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the Water Framework Directive. Hydrological Processes **2015**, 29, (15), 3388-3407.

15. Halliday, S. J.; Skeffington, R. A.; Wade, A. J.; Bowes, M. J.; Read, D. S.; Jarvie, H. P.; Loewenthal, M., Riparian shading controls instream spring phytoplankton and benthic algal growth. Environmental Science-Processes & Impacts **2016**, 18, (6), 677-689.

16. Wade, A. J.; Palmer-Felgate, E. J.; Halliday, S. J.; Skeffington, R. A.; Loewenthal, M.; Jarvie, H. P.; Bowes, M. J.; Greenway, G. M.; Haswell, S. J.; Bell, I. M.; Joly, E.; Fallatah, A.; Neal, C.; Williams, R. J.; Gozzard, E.; Newman, J. R., Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences **2012**, 16, (11), 4323-4342.

17. Rode, M.; Wade, A. J.; Cohen, M. J.; Hensley, R. T.; Bowes, M. J.; Kirchner, J. W.; Arhonditsis, G. B.; Jordan, P.; Kronvang, B.; Halliday, S. J.; Skeffington, R. A.; Rozemeijer, J. C.; Aubert, A. H.; Rinke, K.; Jomaa, S., Sensors in the stream: The High-frequency wave of the present. Environmental Science & Technology **2016**, 50, (19), 10297-10307.

18. Cohen, M. J.; Kurz, M. J.; Heffernan, J. B.; Martin, J. B.; Douglass, R. L.; Foster, C. R.; Thomas, R. G., Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecological Monographs **2013**, 83, (2), 155-176.

19. Hensley, R. T.; Cohen, M. J., On the emergence of diel solute signals in flowing waters. Water Resources Research **2016**, 52, (2), 759-772.

20. Hensley, R. T.; Cohen, M. J.; Korhnak, L. V., Inferring nitrogen removal in large rivers from high-resolution longitudinal profiling. Limnology and Oceanography **2014**, 59, (4), 1152-1170.

21. Kunz, J. V.; Hensley, R.; Brase, L.; Borchardt, D.; Rode, M., High frequency measurements of reach scale nitrogen uptake in a fourth order river with contrasting hydromorphology and variable water chemistry (Weisse Elster, Germany). Water Resources Research **2017**, 53, (1), 328-343.

22. Kraus, T. E. C.; O'Donnell, K.; Downing, B. D.; Burau, J. R.; Bergarnaschi, B. A., Using paired in situ high frequency nitrate measurements to better understand controls on nitrate concentrations and estimate nitrification rates in a wastewater-impacted river. Water Resources Research **2017**, 53, (10), 8423-8442.

23. Jones, C.; Kim, S. W.; Schilling, K., Use of continuous monitoring to assess stream nitrate flux and transformation patterns. Environmental Monitoring and Assessment **2017**, 189: 35; DOI 10.1007/s10661-016-5749-6.

24. Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O., Aquatic nitrate retention at river network scales across flow conditions determined using nested in situ sensors. Water Resources Research **2017**, 53, (11), 9740-9756.

25. Jarvie, H. P.; Sharpley, A. N.; Brahana, V.; Simmons, T.; Price, A.; Neal, C.; Lawlor, A. J.; Sleep, D.; Thacker, S.; Haggard, B. E., Phosphorus retention and remobilization along hydrological pathways in karst terrain. Environmental Science & Technology **2014**, 48, (9), 4860-4868.

26. American Public Health Association (APHA), Alkalinity: Titration Method 2320 B. In: Standard methods for the examination of water and wastewater. 23rd Edition **1987.** ISBN: 978-0-87553-287-5.

27. Rantz, S.E., Measurement and computation of streamflow: Volume 1, Measurement of stage and discharge. In U.S. Geological Survey, Water Supply Paper 2175. **1982**.

28. Jarvie, H. P.; Neal, C.; Smart, R.; Owen, R.; Fraser, D.; Forbes, I.; Wade, A., Use of continuous water quality records for hydrograph separation and to assess short-term variability and extremes in acidity and dissolved carbon dioxide for the River Dee, Scotland. Science of the Total Environment **2001**, 265, (1-3), 85-98.

29. O'Connor, D. J.; Ditoro, D. M., Photosynthesis and oxygen balance in streams. Journal of the Sanitary Engineering Division. Proceedings of the American Society of Civil Engineers **1970**, 96, (2), 547-571

30. Williams, R. J.; White, C.; Harrow, M. L.; Neal, C., Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Science of the Total Environment **2000**, 251, 497-510.

31. Chapra, S. C.; Ditoro, D. M., Delta method for estimating primary production, respiration, and reaeration in streams. Journal of Environmental Engineering-ASCE **1991**, 117, (5), 640-655.

32. Bernhardt, E. S.; Heffernan, J. B.; Grimm, N. B.; Stanley, E. H.; Harvey, J. W.; Arroita, M.; Appling, A. P.; Cohen, M. J.; McDowell, W. H.; Hall, R. O.; Read, J. S.; Roberts, B. J.; Stets, E. G.; Yackulic, C. B., The metabolic regimes of flowing waters. Limnology and Oceanography 2018, 63, S99-S118.

33. Odum, H. T., Primary production in flowing waters. Limnology & Oceanography **1956**, 1, 102–117.

34. Jarvie, H. P.; King, S. M.; Neal, C., Inorganic carbon dominates total dissolved carbon concentrations and fluxes in British rivers: Application of the THINCARB model - Thermodynamic modelling of inorganic carbon in freshwaters. Science of the Total Environment **2017**, 575, 496-512.

35. King, S. A.; Heffernan, J. B.; Cohen, M. J., Nutrient flux, uptake, and autotrophic limitation in streams and rivers. Freshwater Science **2014**, 33, (1), 85-98.

36. Hall, R. O.; Tank, J. L., Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnology and Oceanography **2003**, 48, (3), 1120-1128.

37. Hall, R. O.; Beaulieu, J. J., Estimating autotrophic respiration in streams using daily metabolism data. Freshwater Science **2013**, 32, (2), 507-516.

38. Stelzer, R. S.; Lamberti, G. A., Effects of N : P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography **2001**, 46, (2), 356-367.

39. Redfield, A.C., The biological control of chemical factors in the environment. American Scientist **1958**, 46, (3), 205-221.

40. Evans-White, M. A.; Haggard, B. E.; Scott, J. T., A Review of stream nutrient criteria development in the United States. Journal of Environmental Quality **2013**, 42, (4), 1002-1014.

41. Sharpley, A. N.; Haggard, B. E.; Berry, L.; Brye, K.; Burke, J.; Daniels, M. B.; Gbur, E.; Glover, T.; Hays, P.; Kresse, T.; VanDevender, K. W., Nutrient concentrations in Big Creek correlate to regional watershed land use. Agricultural & Environmental Letters **2017**, 2:170027; doi:10.2134/ael2017.08.0027.

42. Miller, R. B.; Heeren, D. M.; Fox, G. A.; Halihan, T.; Storm, D. E.; Mittelstet, A. R., The hydraulic conductivity structure of gravel-dominated vadose zones within alluvial floodplains. Journal of Hydrology **2014**, 513, 229-240.

43. Miller, R. B.; Heeren, D. M.; Fox, G. A.; Halihan, T.; Storm, D. E., Heterogeneity influences on stream water-groundwater interactions in a gravel-dominated floodplain. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques **2016**, 61, (4), 741-750.

44. Triska, F. J.; Duff, J. H.; Avanzino, R. J., The role of water exchange between a stream and its hyporheic zone in nitrogen cycling at the terrestrial aquatic interface. Hydrobiologia **1993**, 251, (1-3), 167-184.

45. Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Baker, M. A., Labile dissolved organic carbon supply limits hyporheic denitrification. Journal of Geophysical Research-Biogeosciences **2011**, 116, G04036; doi:10.1029/2011JG001730.

46. Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Bokil, V. A.; Gonzalez-Pinzon, R., Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resources Research **2012**, 48, W11508; doi:10.1029/2012WR011894.

47. Harvey, J. W.; Bohlke, J. K.; Voytek, M. A.; Scott, D.; Tobias, C. R., Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance. Water Resources Research **2013**, 49, (10), 6298-6316.

48. Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G., Elemental properties, hydrology, and biology interact to shape concentration discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research **2017**, 52, (2), 1270-1287.

49. Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Baker, M. A., Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research-Biogeosciences **2011**, 116, G01025; doi:10.1029/2010JG001356.

50. Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M., Coupling multiscale observations to evaluate hyporheic nitrate removal at the reach scale. Freshwater Science **2015**, 34, (1), 172-186.

51. Palmer-Felgate, E. J.; Mortimer, R. J. G.; Krom, M. D.; Jarvie, H. P., Impact of pointsource pollution on phosphorus and nitrogen cycling in stream-bed sediments. Environmental Science & Technology **2010**, 44, (3), 908-914.

52. Aubert, A. H.; Breuer, L., New seasonal shift in in-stream diurnal nitrate cycles identified by mining high-frequency data. Plos One **2016**, 11, (4)); https://doi.org/10.1371/journal.pone.0153138.

53. Dodds, W. K.; Marti, E.; Tank, J. L.; Pontius, J.; Hamilton, S. K.; Grimm, N. B.; Bowden, W. B.; McDowell, W. H.; Peterson, B. J.; Valett, H. M.; Webster, J. R.; Gregory, S., Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia **2004**, 140, (3), 458-467.

54. Liu, T.; Xia, X. H.; Liu, S. D.; Mou, X. L.; Qiu, Y. W., Acceleration of Denitrification in Turbid Rivers Due to Denitrification Occurring on Suspended Sediment in Oxic Waters. Environmental Science & Technology **2013**, 47, (9), 4053-4061.

55. Xia, X. H.; Jia, Z. M.; Liu, T.; Zhang, S. B.; Zhang, L. W., Coupled Nitrification-Denitrification Caused by Suspended Sediment (SPS) in Rivers: Importance of SPS Size and Composition. Environmental Science & Technology **2017**, 51, (1), 212-221

56. Jarvie, H.P.; Smith, D.R., Norton L.R.; Edwards, F.; Bowes, M.J.; King, S.M.; Scarlett P.; Davies, S.; Dils, R.; Bachiller-Jareno, N. Phosphorus and Nitrogen Limitation and Impairment of Headwater Streams Relative to Rivers in Great Britain: A National Perspective on Eutrophication. Science of the Total Environment **2018**, 621, 849-862.

Figure 1 Map of the Big Creek watershed and its location

Figure 2. Time series at the downstream monitoring site (Carver), from May 2014 and May 2017, showing: (a) nitrate (NO₃-N), dissolved

inorganic carbon (DIC) and stream flow; and (b) daily average gross primary production (GPP), ecosystem respiration (ER) and stream flow.

Figure 3. Scatter plot showing the relations between mean daily nitrate concentrations upstream at Mt Judea and downstream at

Carver

Figure 4. Time series from 1 November 2014 to 1 November 2015, showing: (a) NO_3^- concentrations upstream at Mt Judea and downstream at Carver, and the lower-flow time periods used for mass

balance calculation and evaluation of biogeochemical processes; (b) stream flow at Carver and the percentage groundwater contribution to streamflow; (c) daily ratio of gross primary production: ecosystem respiration (*GPP/ER*) (horizontal dashed line shows *GPP/ER* of 1, i.e. balance between heterotrophy and autotrophy), and excess partial pressure of carbon dioxide (EpCO₂); (d) streamflow and the molar C:N ratio (DIC, dissolved inorganic carbon/NO₃-N).

Season	Date range	NO ₃ ⁻ input loading to reach (<i>L_T</i>) (kg-N d ⁻¹)	Instream NO ₃ ⁻ removal along reach (<i>L_R</i>) (kg-N d ⁻¹)	Instream NO ₃ ⁻ removal (L_R) as % of NO ₃ ⁻ input loading (L_T) (U_E)
Winter	4-13 Feb 2015	17.3 (1.12)	7.68 (0.46)	44.7 (4.09)
Spring 1	5-12 Apr 2015	44.1 (6.35)	19.0 (2.82)	43.9 (9.53)
Spring 2	24 Apr - 5 May 2015	37.9 (15.3)	16.9 (3.85)	47.6 (8.93)
Early Summer	2-10 Jun 2015	49.2 (23.6)	24.1 (8.54)	51.2 (5.34)
Mid Summer	11-21 Jul 2015	61.7 (44.2)	14.6 (2.82)	32.1(14.1)
Late Summer	7-16 Aug 2015	7.56 (1.22)	5.57 (0.59)	74.2 (4.66)
Autumn 1	1-14 Sept 2015	5.81 (1.23)	4.49 (0.81)	77.8 (2.39)
Autumn 2	1-11 Oct 2015	2.98 (0.29)	2.82 (0.25)	94.8 (1.20)

Table 1: Seasonal patterns in mean daily NO_3^- input loadings (L_7) to Big Creek, mean daily instream NO_3^- load removal (L_R) along the experimental reach, under low-flow conditions, and mean daily NO_3^- load removal as a percentage of NO_3^- inputs (U_E). Standard deviations are shown in parentheses.

Season	Date range	Instream NO ₃ ⁻ removal rate (<i>U</i> ₇) (mg-N L ⁻¹ d ⁻¹)	Assimilatory NO ₃ ⁻ uptake (<i>U_A</i>) (mg-N L ⁻¹ d ⁻¹)
Winter	4-13 Feb 2015	0.077 (0.006)	0.212 (0.035)
Spring 1	5-12 Apr 2015	0.072 (0.017)	0.256 (0.050)
Spring 2	24 Apr - 5 May 2015	0.082 (0.018)	0.355 (0.067)
Early Summer	2-10 Jun 2015	0.090 (0.014)	0.269 (0.045)
Mid Summer	11-21 Jul 2015	0.066 (0.030)	0.259 (0.040)
Late Summer	7-16 Aug 2015	0.284 (0.026)	0.180 (0.016)
Autumn 1	1-14 Sept 2015	0.229 (0.019)	0.115 (0.038)
Autumn 2	1-11 Oct 2015	0.656 (0.029)	0.076 (0.028)

Table 2: Seasonal patterns in mean daily NO₃⁻removal rate (U_7) along the experimental reach of Big Creek, under low-flow conditions, and mean daily assimilatory uptake of NO₃⁻ by photoautotrophs (U_A). Standard deviations are shown in parentheses.

Season	Date range	Net nitrification (+) or denitrification (-) (mg-N L ⁻¹ d ⁻¹)	GPP/ER	EpCO ₂ (x atm. press.)	DO (mg-O ₂ L ⁻¹)	flow (m³ s⁻¹)	% groundwater
Winter	4-13 Feb 2015	0.135 (0.032)	1.14 (0.09)	2.80 (0.20)	11.9 (0.49)	1.15 (0.07)	66.5 (1.34)
Spring 1	5-12 Apr 2015	0.184 (0.039)	1.06 (0.13)	3.64 (0.20)	10.2 (0.33)	3.10 (0.37)	58.6 (2.38)
Spring 2	24 Apr - 5 May 2015	0.273 (0.058)	1.25 (0.16)	3.81 (0.59)	10.3 (0.50)	2.61 (1.16)	61.7 (5.79)
Early Summer	2-10 Jun 2015	0.179 (0.044)	1.34 (0.15)	4.71 (0.49)	9.39 (0.42)	3.30 (1.72)	58.0 (6.48)
Mid Summer	11-21 Jul 2015	0.193 (0.024)	1.97 (0.78)	7.15 (0.46)	8.98 (0.29)	2.54 (1.28)	82.8 (7.21)
Late Summer	7-16 Aug 2015	-0.104 (0.032)	0.78 (0.05)	10.6 (0.83)	6.95 (0.35)	0.23 (0.04)	98.8 (0.98)
Autumn 1	1-14 Sept 2015	-0.102 (0.027)	0.62 (0.10)	9.85 (1.65)	6.50 (0.54)	0.24 (0.06)	96.6 (1.42)
Autumn 2	1-11 Oct 2015	-0.592 (0.015)	0.57 (0.23)	8.17 (1.50)	7.85 (0.64)	0.04 (0.004)	97.8 (0.64)

Table 3: Seasonal patterns in mean daily NO_3^- concentration gains by net nitrification and losses by net denitrification along the experimental reach of Big Creek, under low-flow conditions, with mean daily values of the ratio between gross primary production and ecosystem respiration (*GPP/ER*), excess partial pressure of carbon dioxide (EpCO₂), dissolved oxygen (DO), stream flow and the percentage of groundwater contribution to stream flow. Standard deviations are shown in parentheses.

