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The Mississippian Bowland Shale Formation is a target for unconventional 

hydrocarbon exploration in the UK1 and in equivalents across Europe, including the 

Geverik Member (Epen Formation2) and Upper Alum Shale Formation3. Despite this 

interest, the sedimentological and biogeochemical processes that operated in 

epicontinental seaways, such as the Mississippian Rheic-Tethys, are poorly 

understood. This is especially true for the organic-rich Bowland Shale, beyond a few 

regional (e.g., 4) and basin-specific studies (e.g., 5-9) and some modern analogues10. 

Extrapolation between UK basins is challenging, because basins were 

compartmentalised; an expression of the underlying ‘block, highs and basin’ rift 

structures11.  

Sedimentological, palynological and geochemical data are compared from three time-

equivalent sites in the Craven Basin (UK)12, a basin with ongoing unconventional 

hydrocarbon exploration13. The Bowland Shale at these sites is a highly 

heterogeneous ~120 m thick succession comprising carbonate-rich, siliceous, and 

siliciclastic, argillaceous mudstones. These facies developed in response to a 

combination of fourth-order sea level cyclicity14-16, fault activity at the basin margins17 

and linkage with the Pendle delta system18. Fe-speciation, redox-sensitive trace 

element, δ34Spy and n-alkane (including Pr, Ph) biomarker data are utilised as 

palaeoredox proxies19-22, and demonstrate redox conditions during deposition were 

also highly variable.  
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Sea level highstand facies, termed ‘marine bands’, were deposited under an influx of 

‘open marine’ waters that promoted carbonate export into deeper waters and restricted 

detrital sediments to the proximal shelf and slope. Thus (hemi-)pelagic deposition 

dominated over the supply of mud clasts during periods of high basin accommodation.  

Radiolarian tests are preserved within early cemented phosphate concretions in these 

facies. Elsewhere, radiolarian tests are absent but early diagenetic quartz cements 

are abundant, including infill of shelter porosity. This suggests that early diagenetic, 

biogenic (radiolarian) silica was an important source for early diagenetic authigenic 

silica and potentially clay mineral phases.  

High rates of primary production in the water column triggered development of 

persistently anoxic and highly sulphidic (euxinic) conditions in bottom waters. 

Persistently sulphidic conditions promoted preservation of organic matter (OM) and 

therefore ‘marine band’ packages typically exhibit relatively high total organic carbon 

(TOC) content, high hydrogen index (HI) and a dominance of amorphous OM, 

suggestive of a bulk Type II OM composition. These conditions also likely promoted 

relatively early diagenetic transition into the zone of methanogenesis, which promoted 

preservation of primary carbonate and precipitation of carbonate cements, such as 

spherulitic limestone textures. 

Falling sea level is linked to the initial deposition of lens-rich muds, followed by an 

interbedded succession of turbidites, debrites, hybrid event beds, and tempestites, 

indicating sediment transport in bedload, turbulent and hybrid flows. These facies 

typically exhibit relatively moderate to high TOC, but also significantly reduced HI and 

typically lacking primary (skeletal) carbonate, with potential implications for 

understanding the geotechnical properties (e.g., brittleness23) of these packages. 

These key differences (compared to ‘marine bands’) are attributed to an increased 

supply of ‘reactive’ Fe (FeHR) linked to mobilisation of shelfal FeHR and shuttling into 

the basin.  

Increased supply of FeHR promoted development of intermittently ferruginous 

conditions, due to the buffering of sulphide, in bottom waters and early diagenetic 

porewaters. Switching between ferruginous and euxinic conditions in porewaters, 

termed ‘redox oscillation’24,25, is recognised by a distinctive redox-sensitive trace 

element enrichment pattern and diagenetic mineral suite. Importantly, redox oscillation 



likely generated considerable acidity that promoted dissolution of primary carbonate. 

These conditions also promoted formation of organic sulfur and therefore a bulk ‘Type 

II-S’ OM composition. Continued progradation of the Pendle delta promoted ventilation 

of bottom waters, ultimately under fresh water conditions, and the preservation of 

dominantly Type III OM. 

Mud export from the Pendle delta system to the Craven Basin was fast, despite the 

intrabasinal complexity, likely an order of magnitude higher than contemporaneous 

successions deposited in the UK and North America. Taking 100 m of uncompacted 

pelagic/hemipelagic sediment (assuming 55% compaction) and assuming this was 

deposited over ~333 ka (i.e., spanning three ‘marine bands’16) yields an estimated 

30 cm/kyr mean sediment accumulation rate (mSAR26). This compares with 

1.4 cm/kyr for the contemporaneous Barnett Shale27, and 0.2-0.9 cm/kyr for North 

American Late Pennsylvanian Midcontinent Seaway cyclothems28,29. Mississippian 

epicontinental basins remotely linked to delta systems were capable of rapidly 

accumulating both sediment and OM under sulphidic conditions, and therefore were 

settings prone to early diagenetic redox oscillation processes. Thus the Bowland Shale 

Formation represents an end-member siliciclastic-type source rock, unlike organic-rich 

muds deposited in carbonate sedimentary systems typically characterised by relatively 

slow mSARs and relatively stable early diagenetic redoxclines. 
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