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SCIENCE
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A 1:30,000 substratum map for an area off the north coast of Ireland is presented. The study area is bounded in the
south by the Causeway coastline and in the north by the following coordinates: top left corner (6843′36′′W,
55817′N) and top right corner (6827′W, 55817′N). This mapping has been made possible through the
availability of full seafloor coverage multibeam swath bathymetry and backscatter data (both gridded to 1 m),
together with ground-truthing data collected over the past 40 years. Bathymetry data were used to generate
terrain indices such as slope, rugosity, aspect, fine- and broad-scale Benthic Position Index, whilst the
backscatter data were interpreted visually, subjected to an unsupervised classification process using
QTC Multiview, and combined with the bathymetry-derived parameters into a clustermap in ArcGIS. The
resulting maps allowed us to divide the seabed into 10 distinct acoustic classes, which, linked to sediment
samples, diver surveys, underwater video-tows and remotely operated vehicle surveys, were converted into
a substratum map. This is the most accurate seafloor substratum map to date for the north coast of Ireland
and could form the basis for more in-depth geological, biological and hydrodynamic studies of this highly
dynamic coastline.
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1. Introduction

In 2007, a joint project was instigated by the UK Maritime and Coastguard Agency (MCA) and the Marine Institute
of Ireland (MI) to survey the seabed within the 3 nautical mile strip between Fanad Head (Co. Donegal, Ireland)
and Torr Head (Co. Antrim, Northern Ireland) using multibeam echo-sounder systems (MBES). This Joint Irish
Bathymetric Survey (JIBS) programme was completed in September 2008 and resulted in an unprecedented
high-resolution full seabed coverage bathymetric depth and backscatter intensity map of the north coast of
Ireland (Figure 1). Although these data have been used for archaeological purposes (Plets et al., 2011; Westley
et al., 2011), a lack of systematic ground-truthing information off the north coast of Ireland has meant that
these data had not been used for geological or biological purposes.

In 2010, the authors were commissioned by the Northern Ireland Environment Agency (NIEA) to derive a
habitat map for a proposed Marine Scientific Area of Conservation (SAC) off the Causeway Coast, based on
the data collected as part of the JIBS survey and the collation of diverse ground-truthing data acquired over the
past 40 years by the British Geological Survey (BGS), NIEA, the Agri-Food and Biosciences Institute (AFBI),
the University of Ulster (UU) and the National Museums Northern Ireland (NMNI). The proposed SAC is
bounded by Ramore Head (Portstewart Point) to the west and Bengore/Benbane Head (Dunseverick) to the
east with a northern limit just north of a submarine reef known as ‘the Ridges’ and the southern boundary
defined by the coastline. This paper presents the seafloor substrate map resulting from this research, with as bound-
ing coordinates: top left corner (6843′36′′W, 55817′N) and top right corner (6827′W, 55817′N) (Figure 2).
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Figure 1. Overview of (A) JIBS bathymetry data and (B) JIBS backscatter data off the north coast of Ireland.
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2. Methods

2.1. Ground-truthing data

Ground-truthing data were gathered from a number of sources and included sediment samples, diver observations,
towed underwater video surveys and remotely operated vehicle (ROV) surveys (Table 1). For each ground-truthing
station, survey metadata, location, sediment data and interpreted substratum category were saved as an Excel
spreadsheet before being converted into an ESRI shapefile for presentation and analysis in ArcGIS. Ground-
truth stations were categorized into one of six classes: (1) bedrock reef; (2) stony reef, defined as any site with
.10% cover of boulders or cobbles; (3) biogenic reef; (4) sand (ranging from very fine sand to very fine
pebbles: 0.063–4 mm grain size); (5) mixed sediment (heterogeneous mixtures of gravel, sand and mud and
often also shells and stones); and (6) coarse sediment (highly mobile cobbles and pebbles (shingle), together
with gravel and coarse sand) (Figure 3). The classes are based upon the guidelines of the Marine Nature Conserva-
tion Review habitat classification scheme (Connor et al., 2004) and the modified Folk triangle (Long, 2006).

Table 1. Ground-truthing data available in the study area.

Year Survey Data type Data provider

1973, 1978, 1979 BGS historic samples Sediment samples BGS
1988 Dredge disposal monitoring Sediment samples AFBI
1998 National Marine Monitoring Programme Sediment samples AFBI
2005 Portstewart Bay Waste Water Treatment Works Outfall Survey Sediment samples NIEA
2009 Hibernia optic cable survey Sediment samples UU
2009 UU’s RV Celtic Explorer students cruise Sediment samples UU
1979, 1982–1985 Northern Ireland Sublittoral Survey Diver surveysa NMNI
2006–2010 Sublittoral Survey of Northern Ireland Diver surveysa NMNI
2006–2010 Seasearch Diver surveysa NMNI
2004, 2010 Archaeological investigations Diver surveys UU
2000–2004 Northern Ireland Nearshore Subtidal Habitat Mapping Project Underwater video AFBI
2009 UU’s RV Celtic Explorer students cruise Underwater video UU
2010 Skerries Marine SAC proposal ROV survey NIEA

aCentre for Environmental Data and Recording database.

Figure 2. JIBS multibeam bathymetry of the north coast of Ireland. Red box outlines the study area.
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2.2. Multibeam data

The unprocessed raw (∗.all files) data, containing the original depth soundings and backscatter values, and cleaned
(xyz) (∗.txt files) bathymetric data were supplied to the University of Ulster in 2009 by the MCA and MI for aca-
demic research. These cleaned data were subsequently imported into IVS Fledermaus DMagic software for gridd-
ing using a weighted moving average gridding algorithm (weight diameter 3) to a 1 m bin size and projected to
UTM zone 29N. Fledermaus DMagic was used to create a Digital Elevation Model (DEM) from the resulting
grid which was imported into IVS Fledermaus 7.0 for enhanced 3D visualisation and interpretation. In addition,
the gridded data were exported as an ASCII grid for further analysis and interpretation in ESRI ArcGIS.

2.2.1. Bathymetric derivatives

The cleaned bathymetric grid was subsequently used to derive a number of additional parameters. Firstly, within
IVS Fledermaus rugosity was derived as a measure of terrain complexity (Figure 4A). Within ArcGIS, hillshading,
bathymetric contour lines (20 m spacing), slope angle (in degrees, 0–908; Figure 4B) and aspect (defined as the
downslope direction in degrees, 0–3608; Figure 4C) were derived using the Spatial Analyst extension.

The Benthic Terrain Modeler extension for ArcGIS was used to calculate standardised fine- and broad-scale
Bathymetric Position Indices (BPI) (Wright et al., 2005). BPI is a second-order derivative of a surface and may
be defined as a measure of the elevation of locations with reference to the overall landscape (similar to the topo-
graphic position index used on land) (Verfaille, Doornenbal, Mitchell, White, & Van Lancker, 2007). When
created, standardised, and examined at fine and broad scales, BPI provides a useful parameter for terrain classifi-
cation (negative values indicate troughs and valleys; near zero values are typical for flat areas or areas with a con-
stant slope; positive values represent highs and ridges). In this study, broad-scale BPI was calculated with an inner
search radius of 10 m and an outer search radius of 100 m (scale factor of 100) (Figure 5A). The fine-scale BPI was
calculated with an inner search radius of 1 m and an outer search radius of 20 m (scale factor of 20) (Figure 5B).

2.2.2. Backscatter

Until recently, multibeam data were predominantly used to create detailed bathymetric maps. However, some
of the emitted acoustic energy, known as backscatter, reflects back to the sonar system and is mainly

Figure 3. Overview of ground-truthing stations superimposed on bathymetry hillshade.
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Figure 4. Parameters derived from the bathymetric data: (A) rugosity, (B) slope angle and (C) aspect.
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controlled by the hardness, the roughness and the morphological properties on the seabed. These data are con-
ventionally presented as greyscale imagery showing the strength of the returning energy (backscatter), and
once processed and stitched together are presented as a continuous image of the seabed reflectivity, called
a mosaic. In the study area, multibeam data were acquired with two different systems (the Kongsberg
EM3002 and EM710), each with their own specific properties and geometries, and deployed from two differ-
ent vessels: RV Jetstream and RV Victor Hensen (Table 2). The processing and mosaicing of the raw data
(∗.all) were carried out for both datasets in IVS Fledermaus Geocoder, a software package designed to
perform as many corrections (geometrical and physical) as possible to maximise the information content
within the backscatter signal. The final mosaic was subsequently exported as ESRI ArcGIS ASCII files for
further analysis.

Figure 5. Parameters derived from the bathymetry using ArcGIS Benthic Terrain Modeler: (A) broad-scale BPI and
(B) fine-scale BPI.
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2.2.3. Automatic classification of the seafloor using QTC

Quester Tangent Corporation’s QTC Multiview software was used to build an unsupervised classification of
the backscatter data using a technique called ‘segmentation’, the process of subdividing an image into hom-
ogenous regions or categories that correspond to different features, thus reducing complex information into a

Figure 6. QTC classification map for (A) the EM3002 data acquired onboard RV Jetstream and (B) the EM710 data acquired
onboard RV Victor Hensen.

Table 2. Overview of different vessels, multibeam systems and acquisition settings used in the study area as part of the JIBS
project.

Vessel Multibeam system Sounding mode Centre frequency (kHz) Pulse length (ms) File format

RV Jetstream Kongsberg EM3002 1 (shallow) 293 149 .all
RV Victor Hensen Kongsberg EM710 0 (very shallow) 71–97–83 206 .all

1 (shallow) 71–83–77 500 .all
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simplified, arbitrary representation. This was done primarily as an interpretive aid to identify boundaries
between (or within) aggregations of similar units (in this case pixels). Owing to the fact that two different
multibeam systems were used to collect the data, the backscatter data from each were processed separately,
resulting in two classification maps (Figures 6 and 7). However, the same processing parameters were
chosen for both datasets. The raw data were depth-cleaned using a threshold of 300 m and a rectangle dimen-
sion of 257 × 17 pixels was chosen, giving an average footprint of 13.7 m across track against 12.6 m along
track; rectangles are the patches of the backscatter image from which features are generated (Quester Tangent
Corporation, 2005, p. 157). These (full) feature vectors (FFVs) describe the variation in the backscatter
imagery contained within each rectangular sample. The FFVs were reduced by Principal Components Analysis

Figure 7. Reclassification of the QTC classes based on the available ground-truthing data for (A) the EM3002 data acquired
onboard RV Jetstream and (B) the EM710 data acquired onboard RV Victor Hensen. SCS ¼ coarse sediment; SMx ¼ mixed
sediment; SSa ¼ sand.
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(PCA), in the manner described by Quester Tangent Corporation (2005, p. 157), to the three values most
responsible for the variance in the dataset. The data were then subjected to a simulated k-means algorithm,
which attempts to amalgamate the vectors into statistically logical groups (Preston, 2009), or classes. To
speed up the process, 10% of all FFV samples were subjected to the auto-clustering process, using five iter-
ations and running these in two batches (from three to 15 classes and from 16 to 30 classes). Finally, the data
were divided into an optimum amount of classes (13 classes for the EM3002 system and 17 classes for the
EM710 system) (Figure 6A, B). During processing, QTC was unable to compensate for the different frequen-
cies used across the three sectors of the EM710. Autoclustering improved significantly after the beam was
filtered between 5 and 508 despite the fact that this results in the loss of overlap between adjacent lines. In
the next step, an interpolated map of the QTC classes was created using QTC CLAMS. The interpolation par-
ameters were kept constant throughout each dataset and the final output grids were preserved at a 10 m cell
size. The interpolation parameters were tested iteratively, before accepting a 100 m search radius base and a
search size of 50 m. Finally, the classes were linked to the known ground-truthing data and reclassified in GIS
to divide the interpolated map into four final classes: (1) rock (including both bedrock and stony reef), (2)
mixed sediment (any sediment that has shelly material associated with it; SMx), (3) coarse sediment
(.20% gravel; SCS) and (4) sand (SSa) (Figure 7A, B).

2.2.4. Unsupervised classification using ArcGIS

To aid further classification of the MBES datasets, unsupervised image-based classification was also undertaken
within ArcGIS. The bathymetric-derived raster datasets were ‘stretched’ so pixel values fell on the 0–255 scale.
The stretched rasters of broad BPI, slope angle, rescaled aspect (on to linear scale), rugosity, bathymetry and
backscatter were subsequently combined into a composite raster (multi-band image), which was subjected to
PCA to limit data redundancy and issues of high correlation between datasets. The resulting PCA-derived
three-band raster image was analysed by the Isocluster (unsupervised classification) routine within ArcGIS to
create a signature file for five classes (20 iterations, minimum class size of 20, sample interval of 10). Finally,
maximum likelihood classification was used on the PCA multi-band image using the signature file to classify
the data (Figure 8). A pronounced linear artefact can be seen in the resulting clustermap which is due to the
differences in the input backscatter mosaics caused by the fact that data were acquired using two different
multibeam systems.

Figure 8. ArcGIS clustermap resulting from PCA and unsupervised classification of broad BPI, slope angle, aspect, rugosity,
bathymetry and backscatter.
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3. Resulting classes

A final substratum map was drawn in ArcGIS combining all data discussed above. The QTC classification was the
primary driver, while the other individual datasets as well as the clustermap were used to refine boundaries and
support the QTC classification. In total, 10 different classes were recognised (Main Map).

3.1. Bedrock reef

Bedrock reef was identified from the QTC classification but the final boundary was drawn using a visual interpret-
ation of the hillshade (derived from the bathymetric data), clustermap and ground-truthing data to distinguish this
class from stony reef.

3.2. Stony reef

Stony reef is defined as stable boulders and cobbles, with less than 10% of exposed bedrock. A relatively low spread
of ground-truthing points exists for this substratum (the highest concentration is around the Skerries) and a distinc-
tion between bedrock and stony reef was made visually using the textural patterns in the bathymetric data. In areas
where stony reef is next to sediment (particularly sand) the boundary is much clearer and defined clearly by QTC.

3.3. Scoured bedrock with veneer of mobile sediment

The largest area of this substratum is to the north of Benbane Head (Main Map). Although QTC classified this
entire platform as coarse sediment, the backscatter image clearly shows areas dominated by very high backscatter
and low backscatter E–W ‘streaks’ (representing softer smoother material). One of the ROV stations described the
seabed as sand over bedrock, whilst all other (three) ROV stations suggest a mixed coarse sediment cover. Other
areas/features classified as scoured seabed with a veneer of mobile sediment had no ground-truthing points, but
QTC classified these as rock whereas the bathymetry and backscatter data suggest some presence of sediments.

3.4. Coarse sediment

Coarse sediment areas were picked out partially by QTC, especially the larger zones. However, the final boundaries
were drawn manually, guided by QTC, but predominantly using the backscatter image as the coarser sediments cor-
respond to areas of higher backscatter (lighter coloured). Only a single ground-truthing point (grab sample) was
available and is described as fine-to-medium sand with coarser sand and shell fragments. However, as this sample
point is very close to the boundary with the mixed sediment, it might not be truly representative of this facies.

3.5. Coarse sediment with some shelly material

While QTC classified this facies as coarse sediment (which is also confirmed by three video-tows), the majority of
the sediment samples taken suggest gravelly sand with shelly material; hence this separate class of coarse sediment
but with some shell.

3.6. Mixed sediment

A mixture of sand and small amounts of gravel (,20%) and shelly material corresponds to areas with a distinct
higher backscatter than the surrounding seabed. Just to the south of the Skerries, QTC was not able to differentiate
the mixed sediment facies from the adjacent bedrock and stony reef region but did pick out a clear boundary
between this facies and the surrounding softer seabed sediments (darker areas on the backscatter image). A reclas-
sification was therefore performed, based on the ground-truthing information and backscatter image, but guided by
the QTC boundary. In other areas where mixed sediment was identified by QTC, the boundaries as defined by QTC
were re-drawn manually based on the backscatter image.
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3.7. Mobile sand over mixed sediment

On the backscatter image, this area is characterised by darker streaks (interpreted as sand) on top of a lighter
coloured (i.e. higher backscatter) seafloor, interpreted as mixed sediment.

3.8. Fine and medium sand

This is the most extensively occurring substratum in the study area. The sandy sediment, and its boundary with
different types of substratum, was identified well by QTC, which even distinguished smaller patches of sand on
the basaltic rock platforms. From the backscatter image, the sandy sediment is represented by the darkest
colours (low backscatter) and often shows a sharp clear boundary where it occurs next to coarser sediments.
Fifty-nine ground-truthing stations within the sand polygons confirm the interpretation of this substratum. In
general, the inshore sand facies appears to be mobile fine sand, as shown by ground-truthing, while the offshore
sand appears to be mobile medium-fine-grained sand with occasional shell fragments.

3.9. Coarse sand

The bank to the north-west of the Skerries is interpreted as comprising coarse sand. The QTC results of the data
acquired with the Kongsberg EM710 indicate a sandy substratum, as do the presence of large sediment waves and a
single dive survey sample. However, on the backscatter image, this sand bank appears lighter than the sandy areas
in the vicinity (i.e. higher backscatter). This, together with a video-tow indicating coarse sediment over the sand
bank has led to the interpretation that the bank is possibly made up of coarser sand.

3.10. Possibly sand

This area is located to the north and east of the large plateau to the north of Benbane Head. It appears on the back-
scatter image as relatively dark (i.e. low backscatter) and is classified as sand by the QTC process. However, there are
only two ROV ground-truthing stations on the edge of this facies, no distinct bedforms are developed within it and the
backscatter tone is lighter than the sandy area interpreted to the northwest – this could either mean that the sand is
slightly coarser than the adjacent seafloor or that this represents a thinner sand layer over a harder substratum.

4. Discussion and conclusion

The Main Map is the first substratum map for the north coast of Northern Ireland based on the integration of high-
resolution, full seabed coverage swath bathymetry and backscatter data, and 40 years of ground-truthing data. It
shows a dominance of sandy (fine to medium) sediments with most of the exposed bedrock and stony reef
closest to shore. In some areas, broken shells make up an important part of the sediment composition.

However, as evidenced from the ground-truthing maps, ground-truthing stations are mainly concentrated
around the Skerries Islands and some of the identified facies have very few ground-truthing stations associated
with them (Table 3).

Furthermore, the north coast of Ireland is very exposed and under constant influence of the waves and swell of
the North Atlantic. The tidal streams generally flow west to east, resulting in an eastward movement of offshore
sediment. Closer to shore, eddies form in the bays and rip currents occur near rocks at the end of the bays (Carter,
1991). Tidal banks and sand waves observed on the bathymetry data suggest a complicated flow pattern and active
sediment transport. This, combined with the fact that the ground-truthing records date back several years to several
decades, and the occurrence of very mobile substrate in places, make it very likely that the seabed has changed in
the time period between the sampling surveys and the acquisition of the multibeam data.

A further issue regarding the reliance on extant ground-truthing datasets is that of scale: over many facies the
ground-truthing datasets available could not capture the sediment type or variability at a resolution appropriate to
the minimum mappable unit (1 m2) from the multibeam data.

Nevertheless, although the accuracy and confidence level for some of the acoustic facies may be low, the
Main Map is the most accurate to date and can be used for biological, geological and hydrodynamic studies
as well as a base map for planning more systematic ground-truthing surveys in areas where such data are
clearly missing.
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