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ABSTRACT: Benzo[a]pyrene (B[a]P), polychlorinated bi-
phenyls (PCBs), and polybrominated diphenyl ethers
(PBDEs) are persistent contaminants and concern has arisen
over co-exposure of organisms when the chemicals exist in
mixtures. Herein, attenuated total reflection Fourier transform
infrared spectroscopy was used to identify biochemical
alterations induced in cells by single and binary mixtures of
these environmental chemicals. It was also investigated as a
method to identify if interactions are occurring in mixtures
and as a possible tool to predict mixture effects. Mallard
fibroblasts were treated with single and binary mixtures of
B[a]P, PCB126, PCB153, BDE47, and BDE209. Comparison
of observed spectra from cells treated with binary mixtures
with expected additive spectra, which were created from individual exposure spectra, indicated that in many areas of the
spectrum, less-than-additive binary mixture effects may occur. However, possible greater-than-additive alterations were
identified in the 1650−1750 cm−1 lipid region and may demonstrate a common mechanism of B[a]P and PCBs or PBDEs,
which can enhance toxicity in mixtures.

■ INTRODUCTION

There are many types of chemical contaminants that find their
way into environmental compartments during their usage cycle
or through accidental release. The past century has seen an
increasing awareness of the potential risk such chemicals pose
to the health of ecosystems and environmental organisms.
Some pollutants are extremely persistent and bioaccumulate up
food chains, giving rise to concern for top-level predators, such
as predatory bird species.1 Benzo[a]pyrene (B[a]P) is an
example of a pervasive polycyclic aromatic hydrocarbon
(PAH) contaminant that is abundantly found in the environ-
ment due to anthropogenic activity associated with partial
combustion. B[a]P exposure has been largely associated with
inhalation of cigarette smoke, car exhaust, and industrial air
pollution as well as via dietary intake.2,3 Exposure to B[a]P and
other PAHs is considered a risk to humans and wildlife due to
reported carcinogenic toxicity. B[a]P can bind to the aryl
hydrocarbon receptor (AhR) and mediate the expression of
cytochrome P450 enzymes, including CYP1A1, which
metabolizes the chemical into its DNA binding, mutagenic
form.4,5 Other highly persistent chemicals include polychlori-
nated biphenyls (PCBs) and polybrominated diphenyl ethers
(PBDEs), some congeners of which are also reported to
possess AhR-binding abilities like B[a]P.6,7 PCBs and PBDEs
have been used as additives in various consumer products, such

as paints, textiles, and electronics, to act as coolants and flame
retardants.8 They have been found to exert toxicity on a
number of biological systems, including the endocrine,
immune, and nervous systems.9,10 Although PCBs and many
PBDE congeners are now banned in the EU and other
locations, they are still currently found in environmental
matrices due to their persistent nature and are presently used
in some developing countries.11−13

The concern related to these contaminants is not only due
to their potential toxicities, but also due to the possibility that
they exist as part of mixtures. Chemicals are often considered
in isolation, but in reality, organisms in the environment are
simultaneously and sequentially exposed to a wide range of
contaminants, many of which have different toxic mechanisms.
It is commonly assumed that the toxicity of a mixture can be
predicted by adding the toxicities of the mixture components
together, in what is known as an additive model of mixture
effects.14,15 Although this leads to accurate mixture toxicity
predictions in most instances, interactions may occur at the
biological target sites or between chemicals, which can cause
unexpected mixture toxicity. Interactions can lead to two
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possible outcomes, a reduction in expected toxicity (antago-
nism) or a greater-than-expected toxicity (synergism).16 The
additive approach is used for the majority of regulatory
assessments regarding mixtures, meaning that environmental
organisms may be left vulnerable to the effects of interactive

mixture effects.17 It is not practically possible to test every
single mixture that may occur in the wider environment, and as
some chemicals are not being actively released, they may not
be incorporated into risk assessments. B[a]P along with PCBs
and PBDEs are extremely abundant contaminants and

Figure 1. PCA-LDA scores plots and corresponding LD1 loadings plots with the top six wavenumbers highlighted from mallard cells treated with
B[a]P, BDE47 and BDE209. Significance from control calculated using one-way ANOVA followed by Dunnett’s post-hoc test [P < 0.05 level (*)
or P < 0.01 level (**)]. Mallard cells treated with (A) 10−6 and 10−10 M B[a]P; (B) 10−8 M, 10−10 M, and 10−12 M BDE47; and (C) 10−8 M, 10−10

M, and 10−12 M PBDE209.
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therefore are highly likely to occur together in mixtures. They
also have at least one common toxicity pathway, which may
allow for interactions to arise. The possibility that synergy in
mixtures, especially those including legacy contaminants, may
go undetected is concerning. Therefore, we need to have
efficient techniques to test for interactions in mixtures that can
be used to guide risk assessments.
Most of cell properties standard determinations are made by

staining methodologies;18 confocal laser scanning microscopes
equipped with photobleaching protocols;19 flow cytometry;20

and classical methods of fresh and dry cell density
determinations.21−23 However, as a main disadvantage, most
of these methodologies suffer from being highly time-
consuming.24 For screening of genotoxicity and oestrogenicity
of endocrine disrupting chemicals, molecular biochemical
methodologies are gold standard,25 including E-SCREEN
assay,26 MVLN assay,25 and yeast estrogen screen (YES)
assay,27 among others.25,28−30 Endocrine disrupting chemicals
have also been measured by modern analytical instrumental
techniques, for example, by using gas chromatography coupled
with mass spectrometry (GC-MS),31−33 liquid chromatog-
raphy coupled with mass spectrometry (LC-MS),34 and
ultraperformance liquid chromatography coupled with mass
spectrometry (UPLC-MS).33,35 In addition, many other cell
properties have been investigated by atomic force micros-
copy,36 such as the influence of air drying and fixation on the
morphology and viscoelasticity of cells,37 probing of cell
mechanics,38 and cell elasticity.39

Vibrational spectroscopy techniques have proved to be
valuable exploratory tools for various, diverse experimental
purposes, including cancer research,40,41 environmental mon-
itoring,42,43 and quality assurance.43,44 These techniques offer a
number of advantages such as being cost-effective, non-
destructive to samples, and high throughput. Vibrational
spectroscopy can be used to create a biochemical profile of
samples by measuring the absorption of light and changes in
vibrational energy levels.45 Two main vibrational spectroscopy
techniques have been used significantly in biochemical-related
applications: Raman and infrared (IR) spectroscopy.46−49 The
first one, based on Raman scattering effect, has found many
applications, including hyperspectral imaging of single cells,50

detection of biological molecules and environmental contam-
inants,51 identification of spatial and cellular changes,52 and
detection of PCB and PBDE compounds.53,54 Attenuated total
reflection Fourier transform infrared (ATR-FTIR) spectrosco-
py is a specific type of vibrational spectroscopy where the
sample of choice is interrogated with polychromatic IR light,
which is reflected within an internal reflective element (IRE).55

Biochemical bonds absorb photons at specific characteristic
wavelengths depending on the frequency required for bonds to
vibrate and have a change in dipole moment. The output from
this is a spectrum showing the absorbance of infrared light at
each of the measured wavelengths, which characterizes the
molecular composition of the sample and can be used to infer
structural and functional information.55 Previously, ATR-FTIR
spectroscopy has been used for environmental monitoring42

and to study the effects of environmentally relevant chemicals
in cells and tissues.56,57 This has led to consideration of the
technique as a tool to analyze the biological effects of chemical
mixtures. Similarly, other types of IR spectroscopy have been
used as a powerful tool for many types of cell inves-
tigations.58,59 In this study, we aim to assess ATR-FTIR
spectra in this capacity by using it to characterize the cellular

effects of exposure to single contaminants as well as binary
mixtures of B[a]P with PCB or PBDE congeners in avian
fibroblast cells. We also aim to determine whether IR
spectroscopy can be used to identify when a binary mixture
of dissimilarly acting agents leads to nonadditive mixture
effects and whether the effects of mixtures can be predicted by
creating expected spectra from cells treated with the individual
component chemicals. In this manner, ATR-FTIR spectrosco-
py may represent a complementary tool to quickly and cheaply
analyze the effects of binary pairs of environmental pollutants,
either as a screening tool before further analysis or to reduce
the scale of mixture experiments by using single exposure data.

■ RESULTS AND DISCUSSION
Biochemical Alterations Induced by Contaminants.

To verify if ATR-FTIR spectroscopy can be used as a tool to
study mixtures, it was first established whether the technique
could identify biochemical alterations associated with dose and
treatment exposures. For visualization, spectra were processed
using PCA-LDA (10 PCs, 97% explained variance) to produce
one-dimensional (1D) scores plots that illustrate treatment-
induced separation from control along with corresponding
loading plots to show biochemical alterations responsible for
the separation. Tentative wavenumber alterations were
assigned using spectral interpretations from Movasaghi et
al.60 Loading plots along linear discriminant 1 (LD1) from
B[a]P-treated mallard fibroblasts (Figure 1A, see Supporting
Information (SI) Table S1) showed that the top six
wavenumber-associated alterations induced by B[a]P were
seen in molecular functional groups found in lipids (CO
stretching in esters, 1709 cm−1), amide I (CO stretching
weakly coupled to C−N stretching and N−H in-plane
bending, 1647 and 1612 cm−1), amide II (C−N stretching
and C−N−H bending weakly coupled to CO stretching,
1547 and 1504 cm−1), and glycogen (C−O stretching in
−CH2OH, 1026 cm−1) regions. As B[a]P is reported to be a
genotoxin and potential carcinogen, some DNA alterations
(PO2

− symmetric and asymmetric stretchings) were expected.
The loadings show that there are peaks in the DNA region (ca.
970−1250 cm−1), indicating that alterations are occurring
there; however, other alterations outweigh those in magnitude.
This indicates that alterations associated with different
mechanisms of toxicity, or possibly those downstream of
interactions with DNA, are affecting cells to a greater extent. It
has been shown that in its parent form, B[a]P can also cause
toxicity via nongenotoxic pathways.61

The sensitivities and specificities of the PCA-LDA model to
differentiate cells exposure to different concentration levels of
B[a]P are depicted in Table 1. Cells treated with B[a]P 10−6

M (highest concentration) have a sensitivity of 80%, indicating
that this group is very distinct from the others. Hockley et al.
reported concentrations as low as 10−7 M B[a]P to alter MCF-
7 and HepG2 cells.62 However, for control cells and cells
exposed to a small concentration of B[a]P (10−10 M), the
sensitivity values are low (60−69%), indicating similarities
between these two groups.
The toxicity of B[a]P is known to be dependent on a

number of factors, including cell type, as the expression of CYP
isoforms is necessary to metabolize it to a pro-carcinogenic,
DNA-binding form.62 Fewer DNA alterations than expected
may be seen in mallard cells due to differential expression of
CYP1A1 or differences in the AhR receptor, which needs to be
bound to instigate downstream responses leading to the
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expression of CYP enzymes.63 Although overall results were
not significant, Western blot analysis (see SI Table S7) does
appear to show a reduction in CYP1A1 expression in
comparison to data available from MCF-7 cells (not presented
here), which may explain this. As well as genotoxic
mechanisms, some metabolic intermediates of B[a]P have
redox cycling capabilities that can cause oxidative stress.64 This
may explain alterations seen in lipids and proteins due to
damage by ROS as well as subsequent instigation of protein
and carbohydrate remodeling pathways.62,65

ATR-FTIR spectroscopy was able to detect different
alteration profiles in cells exposed to PBDE congeners 47
and 209 (Figure 1B,C). The PCA-LDA model (10 PCs, 98%
explained variance) shows high sensitivity (97%) and
specificity (96%) for control cells, indicating that this group
is distinguished from the others (treated cells) (Table 1).
Within the treated cells groups, the sensitivities values are
considerably low (28−44%), showing that the effect of
concentration variation did not influence cell alterations. The
six largest alterations in BDE47-treated mallard cells (Figure
1B, see SI Table S2) largely reflected protein biomolecule
alterations including CO stretching in amide I (1643 cm−1),
amide II (1543 cm−1; 1497 cm−1), and methyl groups
(asymmetric C−H deformation, 1454 cm−1) as well as some
fatty acid lipid alterations (CO stretching in carboxylic acid,
1767 and 1713 cm−1). Score and loading plots from mallard
cells treated with BDE209 (Figure 1C, see SI Table S3) also
highlight extensive protein alterations. Exposure is also
associated with amide I (1612 cm−1), amide II (1497 cm−1),
and amide III (C−N stretching and N−H in-plane bending
with contributions of CH2 wagging vibrations, 1237 cm−1)
changes as well as lipid (1717 cm−1) and DNA (symmetric
PO2

− stretching, 1088 and 976 cm−1) alterations. Although the
toxicities of PBDE congeners such as 47 and 209 have been
comparatively well studied in whole tissues or organisms,66

there is less information on the underlying toxic cellular effects.
It has been shown that both these congeners, particularly
BDE47, have neurological and developmental toxicity, which is

thought to be caused by contaminant-induced oxidative stress.
Generation of ROS can occur even at low contaminant
concentrations and lead to sublethal effects such as damage to
protein secondary structure and lipids.67 BDE209 also induced
DNA alterations in the mallard cells (Figure 1C). For this
compound, the PCA-LDA model (10 PCs, 97% explained
variance) presented high sensitivity (80%) and specificity
(92%) for cells treated with 10−8 M BDE209 (Table 1),
showing that this group is very different from the others.
Control cells did not differentiate well from cells treated with
10−12 M and 10−10 M BDE209, where a sensitivity of 66% was
found. BDE209 is a much larger congener and has been
associated with carcinogenic effects. It has been found to cause
DNA damage via oxidative stress-related pathways, but it may
also be able to induce epigenetic changes as well.68,69

Similar to the toxicity of PBDEs, PCBs can cause
neurotoxicity, endocrine disruption, and potentially carcino-
genic changes depending on the congener involved. The
position of chlorine molecule substitutions in each congener
determines its ability to exert toxicity via AhR-mediated
pathways. Co-planar congeners such as PCB126 have a much
stronger affinity for the receptor than those that are planar
such as PCB153. One of each type of congener was
investigated to determine whether ATR-FTIR spectroscopy
could elucidate a different mechanism of toxicity between the
two. Figure 2A (see SI Table S4) shows that in mallard cells,
PCB153 treatment was associated with alterations in lipids
(1709 cm−1), amide I (1624 cm−1), and amide II (1535; 1497
cm−1), as well as in regions associated with collagen (CH3
asymmetric bending, 1458 cm−1; symmetric C−O stretching,
1030 cm−1) by using a PCA-LDA model with 10 PCs (98%
explained variance). The sensitivity values for this compound
in Table 1 are considerably low (20−60%), indicating not
much difference between the control cells and those treated
with three different levels of PCB153. Although solvent
features might be present in collagen-related areas (nonane
absorptions at 1500−1400 cm−1 due to CH3 bending),
alterations of the spectra were not seen in mallard fibroblasts
treated with PCB126. Previous study has shown that in
fibroblast cells, PCB153 can cause an increase in cellular levels
of type I collagen.70 This may represent an AhR-independent
pathway that PCB153 can mediate cellular effects through and
that is detectable using ATR-FTIR spectroscopy. PCB126-
treated mallard cells (Figure 2B, see SI Table S5) showed
alterations in lipids (1744; 1705 cm−1), amide I (1647; 1609
cm−1), amide II (1504 cm−1), and cytosine and guanine in
DNA (C−N stretching, 1369 cm−1) through a PCA-LDA
model using 10 PCs (95% explained variance). In this model,
sensitivities and specificities are relatively high for control cells
(sensitivity = 71%; specificity = 89%) and cells treated with
10−8 M PCB126 (sensitivity = 72%; specificity = 85%),
indicating that these two groups are quite distinct from the
others. The low sensitivities for 10−10 M (56%) and 10−12 M
(48%) PCB126 indicate that these groups are somewhere
similar. Initially, the range of alterations induced appears quite
similar, but there are crucial differences between the alterations
induced by the two congeners (PCB153 and PCB126), such as
collagen alterations in PCB153-treated fibroblasts, which when
supported by evidence from other studies could reveal key
toxicity mechanisms. In cells treated with PCB126, alterations
in the DNA region of the spectra were more pronounced than
in PCB153-treated cells. This may be mediated by binding to
the AhR and downstream gene transcription processes as

Table 1. Sensitivity and Specificity Based on PCA-LDA for
Comparing Different Concentration Levels of
Contaminants on Mallard Cells

contaminant concentration level (M) sensitivity (%) specificity (%)

B[a]P control 69 90
10−10 60 90
10−6 80 75

BDE47 control 97 96
10−12 44 85
10−10 28 78
10−8 40 85

BDE209 control 66 97
10−12 52 85
10−10 52 78
10−8 80 92

PCB153 control 57 79
10−12 20 85
10−10 60 84
10−8 44 81

PCB126 control 71 89
10−12 56 88
10−10 48 88
10−8 72 85
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PCB126 is a co-planar congener and therefore a more potent
AhR agonist. PCB153 has a much weaker affinity for AhR

binding and is hypothesized to exert toxicity via a number of
other receptors.71

Figure 2. PCA-LDA score plots and corresponding LD1 loading plots with the top six wavenumbers highlighted from mallard cells treated with
PCB126 and PCB153. Significance from control calculated using one-way ANOVA followed by Dunnett’s post-hoc test [P < 0.05 level (*) or P <
0.01 level (**)]. Mallard cells treated with (A) 10−8, 10−10, and 10−12 M PCB153 and (B) 10−8, 10−10, and 10−12 M PCB126.

Figure 3. (A) PCA-LDA score plot for cells treated with single components (B[a]P, BDE209, BDE47, PCB126, and PCB153); (B) PCA-LDA
score plot for cells treated with mixtures (B[a]P + BDE47, B[a]P + BDE209, B[a]P + PCB126, B[a]P + PCB153) in different concentration levels.
LD stands for linear discriminant function based on the canonical variables scores of PCA-LDA.
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Identification of Interactions in Binary Mixtures. To
investigate the interactions in real “observed” mixtures of B[a]
P with BDEs and PCBs contaminants in terms of IR spectra, a
PCA-LDA model was built comparing different mixtures
(Figure 3). Figure 3A shows the PCA-LDA scores for cells
exposed to the five different types of compounds (B[a]P,
BDE209, BDE47, PCB126, and PCB153), where some
clustering patterns are observed. Sensitivity and specificity
values for this model are depicted in Table 2. For BDE209,

BDE47, and PCB126, the sensitivities are high (89, 98, and
77%, respectively), indicating that cells exposed to these
compounds form very separated clusters, while for B[a]P and
PCB153, the sensitivities (42 and 68%, respectively) indicate a
mixing. Considering the binary mixtures (Figure 3B), only the
mixture of B[a]P with BDE47 seems to affect the cells
differently (sensitivity = 72%) (Table 2). The other mixtures
have superposed clustering (sensitivity = 37−56%), indicating
common cell modifications.
Spectral data from cells treated with individual chemical

components were added together (once background alter-
ations were removed) to produce an “expected” spectrum,
which could be compared to the “observed” spectrum derived
from cells treated with the actual binary mixture. The baseline-
subtracted spectra from each single exposure were used since
in theory baseline absorptions should be zero, although
contribution of some cellular components can be obscured.
This was performed to remove physical variations that can
contribute to the baseline signal, especially sample thickness,
optical path, and pressure on the ATR module. Therefore,
using the baseline-subtracted spectra, the expected spectra
should be ideally identical to the observed spectra.
To identify areas of the spectrum where the observed and

expected spectra diverged, the plots were color-coded so that
green areas represent where the observed spectrum is less than
expected and red areas represent where the observed spectral
result is greater than expected. Theoretically, when interactions
occur in a mixture, the expected and observed spectrum will be
significantly different and these areas need to be investigated as
if the observed spectrum is greater than expected, enhanced
toxicity may occur.72 Spectral differences related to shifting
and appearance of new bands are associated to changes in the

chemical structure of the samples associated with the presence
or absence of the contaminants. As there were a number of
predicted models tested, color-coding the spectra in this
manner facilitates broad identification of interactions for
consideration before more detailed analysis. This allows the
researcher to rapidly answer experimental questions such as in
which binary mixture is an interaction most likely to be
occurring, where enhanced chemical action is most likely to be
occurring, and which areas of the spectrum are most affected.
Figures 4−7 show plots of expected and observed spectra for
mallard cells treated with binary mixtures of B[a]P with
PBDEs or PCBs. The observed spectrum is derived from cells
treated with the actual binary mixture (denoted by a solid line)
and the expected spectra are based on an additive prediction
using cells treated with individual chemical components
(denoted by a dashed line).
The majority of the plots showed more green- or red-coded

areas than white areas, which indicates that there is a match
between the expected and observed spectra. This appears to
suggest that interactions could be occurring when cells are
treated with most of the binary mixtures; however, the extent
of the difference between the expected and observed spectra is
likely to be an important factor. There are irregularities in the
red and green areas varying the contaminant and concentration
due to the nature of the contaminant used and the effect of the
concentration in possible chemical interactions, suggesting gain
in the expected toxicity in spectra containing more red regions
and reduction of the expected toxicity in spectra containing
more green regions. Still, spectral results can be more complex
to interpret as the range of alterations measured encompasses
many toxicological endpoints.73 For toxicological assessment,
cases where the observed is less than the expected are not as
much of a concern as the prediction has been conservative.
Overall, the spectra from cells treated with mixtures of B[a]P
and BDE47 (Figure 4) had the most green areas, potentially
signifying that these compounds may instigate less than
additive alterations when in a mixture. There were also some
regions indicating less than additive alterations in spectra from
cells treated with B[a]P and BDE209 (Figure 5), mostly when
exposed to 10−10 M B[a]P and 10−8 M BDE209 (Figure 5C).
However, some spectra were immediately notable as they had
large red-coded areas. When assessing toxicity, these areas
would warrant further investigation as they could represent
possible biomolecular endpoints, where greater than additive
mixture effects may be occurring. Failure to predict and
capture enhanced mixture toxicity could put the species under
consideration at risk. Mallard cells exposed to mixtures of B[a]
P and BDE209 (Figure 5) had large spectral areas, where
greater than expected alterations were occurring. In particular,
the plot of cells treated with 10−6 M B[a]P and 10−8 M
BDE209 (Figure 5A) was more than 90% red and the observed
alterations were more than double those expected in some
areas. A similar effect was also seen in cells exposed to 10−6 M
B[a]P and 10−8 M PCB153 (Figure 6A).
Depending on the binary mixture and concentration, the

biomolecules that were most affected varied, which can occur
as IR methods measure all biomolecules in a cell and thus all
toxicological endpoints. This makes the technique more suited
to broad assessment of trends between expected and observed
spectra. For example, in the ca. 900−1100 cm−1 region,
mixtures were most likely to generate less than additive
alterations or mixture effects where the expected and observed
spectra match well. Used in this manner, ATR-FTIR

Table 2. Sensitivity and Specificity Based on PCA-LDA for
Comparing Mallard Cells Exposed to Single Agents (B[a]P,
BDE209, BDE47, PCB126, PCB153) and Mixtures (B[a]P
+ BDE47, B[a]P + BDE209, B[a]P + PCB126, B[a]P +
PCB153) Combining Different Concentration Levels
(10−6−10−10 M B[a]P, 10−8−10−12 BDE209, 10−8−10−12
BDE47, 10−8−10−12 PCB126, 10−8−10−12 PCB153)

sensitivity (%) specificity (%)

single agent
B[a]P 42 95
BDE209 89 90
BDE47 98 99
PCB126 77 95
PCB153 68 90
Mixture
B[a]P + BDE47 72 76
B[a]P + BDE209 37 90
B[a]P + PCB126 65 87
B[a]P + PCB153 56 90
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spectroscopy can provide a simple and fast tool to identify
general areas of divergence between expected and observed
spectra, making it an ideal screening tool for mixture
interactions. It may be used to identify mixture effect trends
and direct further in-depth analysis.
Predicting Effects of Binary Mixture Using IR Spec-

troscopy. An essential part of the study of mixtures is
investigating if the effects of a chemical combination can be
accurately predicted so that detrimental mixture toxicity can be
circumvented. As the majority of mixtures exhibit additive
toxicity, regulatory assessments are commonly based on this
assumption, so in this study, a predictive pseudospectrum was
created based on the model of additivity. The expected and
observed spectra were compared to understand how accurate
the predictive model was as well as looking at how and why the
two spectral results might differ. The use of a predictive
peudospectra created from individual spectral data may be
useful in reducing the scope of mixture toxicity investigations
as it may not be practical to actually test all possible mixtures.
It was immediately visually evident that the majority of

observed spectral alterations induced by binary mixtures of
B[a]P and PBDE or PCB congeners did not match those
expected using component chemical data. This was also
confirmed by a goodness-of-fit analysis using a similarity
coefficient (Table 3). This coefficient shows that majority of
expected and observed spectra are lesser than 50% similar (γ <
0.5). The mixture less similar between expected and observed
spectra is for B[a]P 10−10 M plus PCB126 10−8 M (γ = 0.03).
Comparing the spectra for this mixture (Figure 7C), it is

possible to identify most green regions, indicating a decrease of
toxicity of the real spectrum in comparison to the theoretical
one. Only three mixtures had similarity above 50% (γ > 0.5),
implying that those mixtures induce spectral alterations, which
are closer to an additive mixture model. The highest similarity
between the expected and observed spectra is for B[a]P 10−6

M plus BDE209 10−8 M (γ = 0.84), in which the spectrum for
this mixture (Figure 5A) indicates a prevalence of red regions,
thus a gain of toxicity.
In many spectral areas, the observed alterations were greater

than expected, as seen in mallard cells treated with binary
mixtures of B[a]P and BDE209 (Figure 5), where observed
absorbances were actually much greater than the expected
absorbances in many spectral regions. Dissimilar to cells
treated with BDE47 containing binary mixtures, spectra from
fibroblasts treated with binary mixtures of B[a]P and BDE47
(Figure 4) revealed that across most regions of the spectrum,
the observed absorbances were smaller than expected. BDE209
and BDE47 have been reported as having many common
toxicities, but the main difference between the two types of
PBDE-containing mixtures is that BDE209 is much larger and
more brominated than the other congener.74 This physical
difference could alter how the molecule interacts with targets
and other chemicals and may explain differences in adherence
to the additive model that can be seen between the two
mixture types. Observed spectra from avian cells treated with
binary mixtures, containing the highest concentration of either
PBDE congener with B[a]P (Figures 4A,C and 5A,C), both
showed consistent enhancement of a peak at 1750 cm−1 above

Figure 4. Additive spectral models, showing preprocessed (first-order differentiation baseline-corrected and vector-normalized) expected and
observed spectra from mallard cells treated with a binary mixture of B[a]P and BDE47. Expected spectra are denoted by the dashed line, and
observed spectra are denoted by the solid line. The green areas represent where the observed spectrum is less than the expected spectrum, and red
areas represent where the observed spectral result is greater than the expected spectrum. (A) B[a]P 10−6 M and BDE47 10−8 M; (B) B[a]P 10−6 M
and BDE47 10−12 M; (C) B[a]P 10−10 M and BDE47 10−8 M; and (D) B[a]P 10−10 M and BDE47 10−12 M.
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that expected. This is the major region associated with CO
vibrations of lipids and may denote greater-than-additive lipid
damage, which occurs when mallard cells are co-exposed to
concentrations of 10−8 M PBDE congeners with B[a]P.
The observed spectral alterations in mallard fibroblasts

treated with B[a]P and PCB153 (Figure 6) were typically
greater than those expected over most regions of the spectrum.
This could be seen at all concentrations except B[a]P 10−10 M
and PCB153 10−8 M (Figure 6C) when there were also quite a
number of spectral areas where the observed absorbances were
smaller than expected. In those combinations that showed
largely greater-than-additive observed alterations, the peaks in
the ca. 1650−1750 cm−1 area were also notably enhanced. This
was also observed in cells treated with binary mixtures of B[a]
P with PBDE congeners. When treated with B[a]P and
PCB126 (Figure 7), avian cells showed reduced observed
alterations compared to binary mixtures, which included
PCB153. In these mixtures, the differences between the
observed and expected spectra were also smaller than those
seen in cells treated with PCB153, possibly implying that the
mixtures containing B[a]P and PCB126 exhibit a closer
approximation of additive toxicity. The general decrease in
observed spectral alterations may be due to the enhanced AhR-
binding affinity of co-planar PCB126 in comparison to the
planar PCB153 congener.75 There may be binding competition
of receptors between B[a]P and PCB126, which led to a
reduction in mixture toxicity. Further exploration by Western
blot analysis of CYP1A1, which is downstream of the receptor
(see SI Table S7), did show less expression of CYP1A1 in

mallard cells treated with binary mixtures containing PCB126
compared to those containing PCB153, but the result was not
found to be significant. This may indicate that the overall
mixture toxicity is occurring via AhR-independent mechanisms
or that incorporation of all toxic endpoints across the spectrum
may mask specific toxicities, which need further testing for
elucidation.
A number of chemical combinations were tested and the

results have varied across the spectrum with less-than-additive
or more-than-additive alterations being observed compared to
the result expected using predictive additive models. Only a
very small proportion of the spectrum for each combination
showed a good fit between the observed and expected results.
This may be caused by interactions in the mixtures, indicating
that an additive model is not appropriate or may be due to the
scale of toxic endpoints incorporated into an IR spectrum. The
AhR pathway, and induction of downstream expression of
phase I and II metabolism enzymes, is known to be a common
pathway involved in metabolism of the contaminants studied,
some of which are reported to have AhR-binding affinities.
Although less-than-expected results are not concerning from a
regulatory perspective as they represent less toxicity than
expected, these results also occurred in a large proportion of
spectral areas. Activation of the AhR pathway and metabolism
of B[a]P is essential for its toxicity; it may be that the presence
of other PCB or PBDE contaminants shifts the pathway
toward detoxification so that more B[a]P is fully detoxified
than converted to the pro-carcinogen form. This has been
observed in cells exposed to mixtures of B[a]P as well as other

Figure 5. Additive spectral models, showing preprocessed (first-order differentiation baseline-corrected and vector-normalized) expected and
observed spectra from Mallard cells treated with a binary mixture of B[a]P and BDE209. Expected spectra are denoted by the dashed line, and
observed spectra are denoted by the solid line. The green areas represent where the observed spectrum is less than the expected spectrum, and the
red areas represent where the observed spectral result is greater than the expected spectrum. (A) B[a]P 10−6 M and BDE209 10−8 M; (B) B[a]P
10−6 M and BDE209 10−12 M; (C) B[a]P 10−10 M and BDE209 10−8 M; and (D) B[a]P 10−10 M and BDE209 10−12 M.
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PAHs.76,77 If IR spectroscopy was used as a predictive tool as
described here, the mixtures that display greater than expected
alterations according to an additive model would be those that
represent the most risk to environmental organisms. The
combinations that lead to the most greater-than-expected
effects are seen in mallard cells treated with binary mixtures,
including B[a]P with BDE209 (Figure 5) or PCB153 (Figure
6), and deviations in the region around ca. 1650−1750 cm−1

are notable. As a greater-than-additive effect in this area of the
spectrum was induced by many of the combinations tested, it
may represent a common mechanism for environmental binary
mixtures of B[a]P with PBDEs or PCBs, which can lead to
enhancement of toxicity.
Evidence of potential greater than expected alterations to

some biomolecules represents a cause for further investigation,
particularly as these effects were observed in mallard fibroblast
cells, a species commonly found in the environment. The
results also suggest that the effects of binary mixtures
composed of B[a]P with PCBs or PBDEs are contaminant
and dose-dependent, where a combination effect was observed
involving a possible mechanism of B[a]P with PCBs or PBDEs,
enhancing the toxicity in mixtures. Nevertheless, as limitation,
the use of fixed cells in this paper may obscure subtler chemical
shifts that can provide relevant biochemical information due to
cross-linkage. In addition, the mechanism and toxicity results
are dependent on cell type; for this reason, multiple cell types
are needed for a more robust study. However, this paper lends
evidence for the rationale that all possible mixtures need to be
considered during regulatory decisions as interactions between
components or at biological target sites can lead to deviations
from the additive model. Specific toxicology testing of mixtures
on this scale would be daunting, but we have shown that a
panel of binary mixtures, composed of various chemicals at
different concentrations, can be studied in a high-throughput
manner using ATR-FTIR spectroscopy. Further testing is
needed to understand why so much of the observed spectral
alterations deviate away from the predictive additive model,
but IR spectroscopy is a unique approach that can study the

Figure 6. Additive spectral models, showing preprocessed (first-order differentiation baseline-corrected and vector-normalized) expected and
observed spectra from mallard cells treated with a binary mixture of B[a]P and PCB153. Expected spectra are denoted by the dashed line, and
observed spectra are denoted by the solid line. The green areas represent where the observed spectrum is less than the expected spectrum, and the
red areas represent where the observed spectral result is greater than the expected spectrum. (A) B[a]P 10−6 M and PCB153 10−8 M; (B) B[a]P
10−6 M and PCB153 10−12 M; (C) B[a]P 10−10 M and PCB153 10−8 M; and (D) B[a]P 10−10 M and PCB153 10−12 M.

Table 3. Similarity Coefficient (γ) Used as Goodness-of-Fit
Indicator between Expected and Observed Binary Mixture
Spectra for Mallard Cells

mixture similarity coefficient (γ)

B[a]P 10−10 M + BDE209 10−8 M 0.49
B[a]P 10−10 M + BDE209 10−12 M 0.32
B[a]P 10−10 M + BDE47 10−8 M 0.36
B[a]P 10−10 M + BDE47 10−12 M 0.24
B[a]P 10−10 M + PCB126 10−8 M 0.03
B[a]P 10−10 M + PCB126 10−12 M 0.47
B[a]P 10−10 M + PCB153 10−8 M 0.31
B[a]P 10−10 M + PCB153 10−12 M 0.63
B[a]P 10−6 M + BDE209 10−8 M 0.84
B[a]P 10−6 M + BDE209 10−12 M 0.59
B[a]P 10−6 M + BDE47 10−8 M 0.46
B[a]P 10−6 M + BDE47 10−12 M 0.19
B[a]P 10−6 M + PCB126 10−8 M 0.30
B[a]P 10−6 M + PCB126 10−12 M 0.04
B[a]P 10−6 M + PCB153 10−8 M 0.43
B[a]P 10−6 M + PCB153 10−12 M 0.12
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effects of binary mixtures at the biomolecular level. It may have
application as a tool to screen chemical mixture-induced
alterations for nonconformance to additivity and to direct
further toxicology testing. This would be particularly effective
when paired with color-coding of the spectra to indicate where
deviation from the additive model and possible interaction
occurs. However, although IR spectroscopy can act as a
complementary tool to investigate the effect of contaminants in
cells, it cannot be used as a single instrumental technique.
Other techniques should be employed to help solve the
complexity of the system under investigation, providing
additional information that can enrich the IR data.

■ MATERIALS AND METHODS

Test Agents. Stocks of PBDE congeners 47 and 209 were
purchased and dissolved in nonane at a concentration of 50
μg/mL, from LGC Standards (Teddington, UK). PCBs 153
and 126 were purchased as powders from Greyhound
Chromatography and Allied Chemicals (Birkenhead, UK)
and made up in nonane (anhydrous ≥99%, Sigma-Aldrich,
Dorset, UK). B[a]P was purchased in powder form Sigma and
dissolved in dimethyl sulfoxide (DMSO) (≥99%, Sigma-
Aldrich, Dorset, UK). Stock solutions of treatment chemicals
were made up to a concentration of 2 μM in DMSO and then
serially diluted in DMSO to the required experimental
concentrations. Vehicle controls consisted of the same amount
of DMSO as used in chemical treatments, spiked with equal
quantities of nonane.

Cell Culture. Mallard (Anas platyrhynchos) dermal
fibroblasts were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 2% chicken serum (Sigma-Aldrich), 1%
nonessential amino acids (Thermo Fisher Scientific, Notting-
hamshire, UK), and a penicillin and streptomycin mixture (100
U/mL and 100 μg/mL, respectively). Cells were cultured in a
humidified atmosphere with 5% CO2 in air at a temperature of
37°C. Subculture was performed twice weekly by disaggrega-
tion with trypsin (0.05%)/EDTA (0.02%) solution before
spinning at 1000×g for 5 min. The resultant cell pellet was
then resuspended in fresh complete DMEM and seeded into
T75 flasks for routine subculture or T25 for cell experiments
and Western blotting [method provided in SI]. Unless stated
otherwise, all cell culture consumables were purchased from
Lonza (Verviers, Belgium).

Cell Experiments. After seeding into T25 flasks, cultures
were left for 24 h to allow cells to attach and enter into S-
phase. After 24 h, the cells were treated with either single
agents of B[a]P, BDE47, BDE209, PCB126, or PCB153 or
binary mixtures of 10−6 or 10−10 M B[a]P with a PCB or
PBDE congener at 10−8 or 10−12 M. Experiments for single
substances and binary mixtures were conducted in parallel.
These concentrations were arbitrarily selected aiming to
simulate low concentrations in the cellular system found in
real environmental conditions.62,78−82 For single agent treat-
ments, 25 μL of the appropriate treatment was added to each
flask as well as 25 μL of DMSO so the effects could be
compared to binary mixture exposures, which involved treating

Figure 7. Additive spectral models showing preprocessed (first-order differentiation baseline-corrected and vector-normalized) expected vs.
observed spectra from mallard cells treated with a binary mixture of B[a]P and PCB126. Expected spectra are denoted by the dashed line, and
observed spectra are denoted by the solid line. The green areas represent where the observed spectrum is less than the expected spectrum, and the
red areas represent where the observed spectral result is greater than the expected spectrum. (A) B[a]P 10−6 M and PCB126 10−8 M; (B) B[a]P
10−6 M and PCB126 10−12 M; (C) B[a]P 10−10 M and PCB126 10−8 M; and (D) B[a]P 10−10 M and PCB126 10−12 M.
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with 25 μL each of two chemicals. Vehicle controls were
treated with 50 μL of DMSO (with nonane). Total DMSO
concentrations did not exceed 1% v/v. The cells were exposed
to treatments for 24 h before they were disaggregated with
trypsin, washed three times with 70% ethanol to remove
residual media, and then fixed for 24 h in 70% ethanol. After
fixation, the cells were pipetted onto IR-reflective low-E glass
slides (Kevley Technologies, Chesterland, OH) and allowed to
dry in air before being placed in a desiccator for 24 h to
remove any remaining water. This procedure was repeated at
five different points in time to give five technical replicates (n =
5, 5 spectra each) recorded in sequence, in a time frame of
approximately 12.5 min (2.5 min per technical replicate). As a
result, 25 spectra were recorded for each concentration level.
ATR-FTIR Spectroscopy. Five spectra per slide were

acquired using a Bruker TENSOR 27 FTIR spectrometer with
Helios ATR attachment, which contained a diamond IRE with
a sampling area of 250 μm × 250 μm (Bruker Optics,
Coventry, UK). The spectra were acquired with an 8 cm−1

spectral resolution with 32 co-additions, giving rise to a 3.84
cm−1 spectral data spacing. A mirror velocity of 2.2 kHz was
used. Before each sample, a background measurement was
taken to account for atmospheric changes and the diamond
was cleaned with distilled water between samples.
Expected IR Spectra. Expected IR spectra for binary

mixtures were constructed based on an additive model
following Beer-Lambert’s law, in which the total observed
absorbance in each wavenumber k (Ak,total) is the result of the
sum of the absorbance for all chemical components in this
same wavenumber (Ak,1, Ak,2, ..., Ak,n)

83

= + + ··· +A A A Ak total k k k n, ,1 ,2 , (1)
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where s is the product of the optical path length (b) by the
molar absorptivity coefficient (ε); c is the concentration for
individual components; a is the resulting binary mixture
spectrum; s is the spectrum for individual components; and c is
the relative concentration between the components.
Thus, the expected mixture spectra were built adding the IR

spectra from cell exposed to single contaminants, where the
weight for each spectrum is the relative contaminant
concentration. The same experimental concentrations in the
real binary mixtures were used to generate the expected binary
mixture spectra.
Spectral Processing and Computational Analysis.

Computational analysis was performed within MATLAB
2013a (The MathsWorks, MA) environment using an in-
house developed toolbox called IRootLab (http://trevisanj.gi-
thub.io/irootlab/) and the Classification Toolbox for MAT-
LAB.84 Raw spectra were cut to the fingerprint region (900−
1800 cm−1). Spectra were first-order differentiation baseline-
corrected, vector-normalized, and mean-centered. Principal
component analysis (PCA) was combined with linear
discriminant analysis (LDA) to allow exploratory analysis of

treatment-induced spectral alterations. PCA reduces the
original spectral data set into a few number of principal
components (PCs) accounting for the majority of the
explained variance while reducing noise. Each PC is composed
of scores and loadings, representing the variance on sample
and variable (i.e., wavenumber) directions, respectively.85 PCA
also solves problems of ill-conditioned data (data with large
condition number) by reducing redundant information across
the spectra and solving collinearity problems. The PCA scores
are then used as input variables for LDA.86 LDA is a supervised
classification technique that is used to obtain interclass
separation through a Mahalanobis distance calculation. The
PCA-LDA classification scores (cf(ti)) are calculated in a non-
Bayesian form as follows86,87

PCA decomposition

= +X TP ET (6)

LDA

= − ̅ − ̅−cf Ct t t t t( ) ( ) ( )i i k i k
T

pooled
1

(7)

where X represents the spectral data set; T is the PCA scores;
P is the PCA loadings; E is the PCA residuals; ti is the scores
vector for a given sample i; tk̅ is the mean scores vector for
class k; Cpooled is the pooled covariance matrix; and T denotes
the matrix transpose operation.
PCA-LDA is one of the most used classification techniques

for spectral data due to its relative simplicity,86,88 being a
powerful technique for analyzing classes with similar variance
structures and data sets with small number of samples.86,87,89

Cross-validated PCA-LDA (leave-one-out cross-validation)
was performed. Significance was determined in GraphPad
Prism 4 (GraphPad Software Inc., CA) using one-way ANOVA
followed by Dunnett’s post-hoc test. Significance testing was
performed using sample means rather than all spectral data.
Goodness-of-fit between the model and observed result was
estimated by a similarity coefficient (γ) calculated in a classical
least-squares sense as follows

γ = ̂ ̂ ̂ −xs ss( )T T 1
(8)

where x is the “observed” spectra and s ̂ is the “expected”
spectra.
As a result, γ is a real number indicating the degree of

similarity between the observed and expected spectra. Its value
ranges from 0 (no similarity) to 1 (maximum similarity).
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