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ABSTRACT 

Resistivity monitoring surveys are used to detect temporal changes in the subsurface using 

repeated measurements over the same site. The positions of the electrodes are typically 

measured at the start of the survey program and possibly at occasional later times. In areas 

with unstable ground, such as landslide prone slopes, the positions of the electrodes can be 

displaced by ground movements. If this occurs at times when the positions of the electrodes 

are not directly measured, they have to be estimated. This can be done by interpolation or, as 

in recent developments, from the resistivity data using new inverse methods. The 

smoothness-constrained least-squares optimisation method can be modified to include the 

electrode positions as additional unknown parameters. The Jacobian matrices with the 

sensitivity of the apparent resistivity measurements to changes in the electrode positions are 

then required by the optimisation method. In this paper, a fast adjoint-equation method is 

used to calculate the Jacobian matrices required by the least-squares method to reduce the 

calculation time. In areas with large near-surface resistivity contrasts, the inversion routine 

sometimes cannot accurately distinguish between electrodes displacements and subsurface 

resistivity variations. To overcome this problem, the model for the initial time-lapse data set 

(with accurately known electrode positions) is used as the starting model for the inversion of 

the later-time data set. This greatly improves the accuracy of the estimated electrode positions 

compared to the use of a homogeneous half-space starting model. In areas where the 

movement of the electrodes is expected to occur in a fixed direction, the method of 

transformations can be used to include this information as an additional constraint in the 

optimisation routine. 
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INTRODUCTION 

 The past two decades have seen a rapid expansion in the use of two-dimensional (2-D) 

resistivity surveys. They have been used for a wide range of applications ranging from 

archaeological, hydrological, geotechnical, environmental and mineral exploration problems 

(Auken et al. 2006; Loke et al. 2013). In recent years, there has been increasing interest in 

geoelectrical monitoring surveys to detect temporal changes in the subsurface (Chambers et 

al. 2014; Supper et al. 2014a). One such application is the monitoring of potentially unstable 

slopes (Chambers et al. 2011; Gunn et al. 2013; Supper et al. 2014b; Chambers et al. 2014; 

Uhlemann et al. 2015a). These monitoring measurements are frequently carried out over 

several months or even years. The positions of the electrodes are measured at the start of the 

campaign and usually also at regular intervals (e.g. Uhlemann et al. (2015a)). However, 

movements of the ground sometimes occur between periods of electrode position 

measurements. Consequently, the precise positions of the electrodes might not be accurately 

known for some data sets. 

 Therefore the inverse problem on unstable ground is not only to determine the 

subsurface resistivity, but also to determine the positions of the electrodes that have shifted 

from the last known locations. Wilkinson et al. (2010; 2015a; 2016) proposed using the 

changes in the apparent resistivity, for data acquired from a time-lapse survey, to estimate the 

changes in the electrode positions.  An innovative approach for 2-D resistivity surveys was 

presented by Kim (2014) where the least-squares optimisation method was modified to 

include both the subsurface resistivity and electrode positions as unknown variables to be 

determined. The perturbation method (McGillivray and Oldenburg 1990) was used to 

estimate the required Jacobian matrix of partial derivatives.  In this paper we present a 

computationally more efficient method to determine Jacobian matrix. We also propose a 



modification of the inversion algorithm that uses the inversion model from a previous time-

lapse data set as a constraint. 

 In the next section, we briefly describe the smoothness-constrained least-squares 

optimisation method and the modifications made to include the electrode positions as 

unknown parameters. This is followed by a description of a modification to the adjoint-

equation method (McGillivray and Oldenburg 1990) to calculate the required Jacobian 

matrices. Previous work by Kim (2014) showed that subsurface resistivity variations can be 

mistakenly modelled as changes in the electrode positions. We describe a modified inversion 

algorithm that uses the model from a previous time-lapse data set (with accurately known 

electrode positions) as a constraint to reduce this artefact. We then present examples of 

inversions of synthetic and field data sets from an active landslide using the modified 

inversion algorithm. 

 

 

THEORY 

 

The constrained least-squares optimisation method 

The smoothness-constrained least-squares optimisation method is frequently used for 

2-D and 3-D inversion of resistivity data (deGroot-Hedlin and Constable 1990; Sasaki 1989, 

1994; Loke, Acworth and Dahlin 2003). The optimisation equation that gives the relationship 

between the model parameters and the measured data (Farquharson and Oldenburg 1998) is : 
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 In equation (1), the Jacobian matrix J contains the partial derivatives of the (logarithm 

of the) apparent resistivity values with respect to the (logarithm of the) model resistivity 

values.  is the damping factor and g is the data misfit vector. ri-1 is the model parameters 



vector for the previous iteration, while ri is the change in the model parameters. W 

incorporates the roughness filters in the x- and z-directions. Rd and Rm are weighting matrices 

introduced so that different elements of the data misfit and model roughness vectors are given 

equal weights if the L1-norm inversion method is used (Farquharson and Oldenburg 1998; 

Loke et al. 2003).  In this equation, we also apply a reference background homogenous model 

r0 with all resistivity values equal to the average apparent resistivity. The associated damping 

factor  is usually set at a small but non-zero value (Oldenburg and Li Y. 1994; Li and 

Oldenburg 2000). It prevents the components of the ri vector having excessively large 

amplitudes if the data is very noisy. We use a value of 0.01 for . 

 The model parameters vector has the following form for a model with m cells. 
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 where rj represents the logarithm of the resistivity of the jth model cell. To include the 

positions of the electrodes as additional unknown parameters, the extended model parameters 

vector q for a survey line with e electrodes has the following form.  
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We note that the apparent resistivity values only depend on the relative positions of the 

electrodes. The first electrode at (x1, z1) is used as a reference point, and the shifts of the other 



electrodes with respect to it are determined. Similarly the extended Jacobian matrix G has the 

following form. 

   ZXJG           (4) 

X and Z represent the Jacobian matrices of partial derivatives of the logarithm of the apparent 

resistivity with respect to changes in the horizontal and vertical positions of the electrodes. 

The spatial roughness filter matrix W term is replaced by an extended matrix V that has the 

following form. 

   zx WWWV α         (5) 

 A difference matrix (deGroot-Hedlin and Constable 1990) is commonly used for the 

model resistivity spatial roughness filter W. This minimizes the change in the model 

resistivity in a model cell and adjacent cells (Loke and Dahlin 2010).  

 Wx and Wz are the associated roughness filters for the electrode position parameters. 

They ensure that the change in the positions for the electrodes along the survey line varies in 

a smooth manner. The damping factor term I in equation (1) attempts to minimise the 

change in the position of each electrode from its original position. However, this can result in 

a situation where an electrode is shifted upwards while the neighbouring electrode is shifted 

downwards resulting in a jagged profile. To avoid this, the Wx and Wz matrices are applied to 

changes in the electrode positions from their original positions. As an example, the Wx matrix 

is an (e-1) by (e-1) matrix with the following form.  
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When this is applied to the (xi - x0) vector, this minimises differences (in both the amplitude 

and direction) in the horizontal shifts between neighbouring electrodes. As an example, on a 

downhill slope, if an electrode moves down the slope (such as in the -x direction), normally 

we would expect the neighbouring electrode to move in the same direction (i.e. also in the -x 

direction).  and  are the relative weights given to the damping factor applied to the 

horizontal and vertical shifts in the electrode positions. 

 A final modification is required in the second term on the right hand side of equation 

(1). This term applies the roughness filter to the model resistivity values ri-1 obtained from 

the previous iteration. This ensures that the model resistivity has minimal roughness 

(Farquharson and Oldenburg 1998). In a survey, we assume that the initial horizontal and 

vertical positions of the electrodes (x0, z0) are accurately known and the shifts in the positions 

of the electrodes are less than the spacing between the electrodes. We thus attempt to 

minimise the shifts in the calculated electrode positions from the original known positions in 

the following equation. 
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The final modified smoothness-constrained least-squares equation is as follows. 
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The above formulation is slightly different from that used by Kim (2014) in that it includes 

the second term on the right-hand side that ensures the model resistivity and changes in the 

electrode positions vary in a smooth manner. 

 A homogeneous half-space is commonly used as the starting model (Loke and Barker 

1996) for the optimisation algorithm. The problem of shifts in electrode positions can 

frequently occur during a series of measurements in a time-lapse survey when, for example, 



monitoring an active landslide (Wilkinson et al. 2016). The initial positions of the electrodes 

are usually accurately measured and can be considered as fixed parameters in the inversion of 

the initial data set. Frequently temporal changes in the subsurface resistivities are usually 

much smaller than spatial variations (Loke, Dahlin and Rucker 2014). Thus, the resistivity 

model obtained from the inversion of the initial data set should provide a good starting model 

for the later time data sets. The initial data misfit would then be largely due to changes in the 

positions of the electrodes. This should help in differentiating changes in the apparent 

resistivity due to shifts in the electrode positions and those due to spatial variations in the 

subsurface resistivity. We therefore also test a modification of the inversion algorithm that 

uses the results of the initial survey as the starting model. 

 

A fast method to calculate the Jacobian matrix 

 The finite-element method is commonly used to calculate the apparent resistivity 

values for surveys over areas with topography (Loke 2000). The potentials are calculated by 

solving the following capacitance matrix equation (Sasaki 1989; Silvester and Ferrari 1990). 

  sCΦ           (9) 

 is a vector that contains the potentials at the nodes of the finite-element grid while s is the 

current source vector. C is the capacitance matrix that contains the positions of the nodes and 

the model conductivity values. The capacitance matrix is a positive definite symmetric sparse 

matrix (Silvester and Ferrari 1990). For 2-D models, a direct method such as the band 

Cholesky decomposition method is commonly used to solve this equation (Schwartz, 

Rutishauser and Stiefel 1973; Dey and Morrison 1979; Jennings and McKeown 1992).  If 2-

D finite-element linear quadrilateral elements (Figures 1a,1b) are used, it has 9 non-zero sub-

diagonals (Figure 1c). In the least-squares inversion method, it is necessary to calculate the 

change in the potentials due to a change in the resistivity of each model cell rj (or 



equivalently the conductivity j). A simple but relatively inefficient method is the 

perturbation method (McGillivray and Oldenburg 1990) using a one-sided finite-difference 

formula, such as 
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In practice, this method is not used as it requires a new solution of equation (9) for each 

model parameter. A more commonly used method is the adjoint-equation approach (Sasaki 

1989; McGillivray and Oldenburg 1990). Differentiating the capacitance matrix equation (9) 

with respect the model cell conductivity j leads to the following relationship. 
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This has the same form as equation (9), except the current source vector s is replaced by a 

vector s' formed by the multiplication of the 
j

C
 matrix and the potential vector  (due to 

the source s). All the information required to calculate 
j

Φ
 is available in the process of 

solving equation (9) to calculate the potentials.  The matrix 
j

C
 is very sparse with only 16 

non-zero terms for a 2-D linear quadrilateral element. The terms in the capacitance matrix C 

consist of the coupling coefficients between the nodes in each element in the finite-element 

mesh (Silvester and Ferrari 1990) and the conductivity of the element. The coupling 

coefficient between two nodes in an element (Figure 1a) has the following form. 

 jpqpq zxkc ),(          (12) 

 The function kpq(x,z) depends only on the coordinates of the four nodes at the corners 

of the quadrilateral element. The derivative of the coupling coefficient with respect to the 

element conductivity is thus given by 



 ),( zxk
c

pq
j

pq 





.         (13) 

As the kpq(x,z) terms are calculated in the process of constructing the capacitance matrix C in 

equation (9), it is not necessary to recalculate them for 
j

C
 matrix. 

 In the adjoint-equation method, for a survey line with e electrodes we first calculate 

the potential vectors (1, 2, ..., e) due to a single current electrode at each electrode 

position. Consider the simple case where the measurement was made using a current 

electrode at position 1 and a potential electrode at 2. We first calculate the matrix vector 

product 1



j
C

. If j  is the conductivity of a quadrilateral mesh element (such as in Figure 

1a), the 
j

C
 matrix has a total of 16 non-zero elements distributed along 4 rows 

corresponding to the 4 nodes of the quadrilateral. Multiplication of the 
j

C
 matrix with the 

1  vector gives a vector '
12s with four non-zero elements corresponding to the nodes at the 

corners of the element. The 
j

Φ
vector can then be calculated by adding the potentials at 

electrode 2 due to four "fictitious" current sources located at the corners of the mesh element. 

From the principle of reciprocity, the potential due to a current source at a mesh node (for 

example node 3 in Figure 1a) at electrode 2, is the same as the potential at the node due to a 

current source at electrode 2. Thus the 
j

Φ
vector for a measurement with electrodes 1 and 2 

is calculated from a weighted sum of the potential vector 2, with the weights given by the 

1

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j
C

 matrix vector product. The Jacobian matrix values for a general array with four 

electrodes can be easily calculated by using the net potentials of the current and potential 



dipoles. For example, if the array has the current electrodes at positions 1 and 4 and the 

potential electrodes at 2 and 3, we use the ( 1 - 4 ) and ( 2 - 3 ) vectors in the calculations. 

 Bing and Greenhalgh (1999) presented an alternative method of calculating the 

Jacobian matrix based on the use of Green's function. Instead of using the derivative of the 

capacitance matrix, the matrix terms are calculated from the potentials at the nodes of the 

element. However, the number of numerical operations needed to calculate the Jacobian 

matrix values is similar to the adjoint-equation approach. 

 Kim (2014) used the perturbation method to calculate the necessary partial derivatives 

due to changes in the electrode positions. For example, consider a change in the z-position of 

electrode number 2. This is approximated by   
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 For a survey line with e electrodes, and assuming the first electrode is kept fixed, it 

will be necessary to recalculate the potentials 2(e-1) times for 2-D problems. While this is 

possible for 2-D problems, it is inefficient and would not be practical for future extensions to 

3-D inversions (Loke, Wilkinson and Chambers 2016). Instead, we describe a modification of 

the adjoint-equation approach to calculate the X and Z Jacobian matrices in equation (4). As 

an example, the change in the potential values due to a shift in the z direction for the kth 

electrode can be obtained by differentiating the capacitance matrix equation (9) with respect 

to zk. This gives the following equation. 
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 The problem then becomes one of calculating the necessary non-zero terms in the 

kz
C

 matrix. Figure 2 shows part of the 2-D mesh used by the finite-element routine with 4 

nodes (i.e. 4 cells) between adjacent electrodes. A shift in the position of one electrode (such 



as electrode 3) will only affect the nodes that lie between that electrode and adjacent 

electrodes (i.e. electrodes 2 to 4). Thus the 
kz

C
 matrix will have a relatively small number of 

non-zero terms compared to the full C matrix (Figure 1c). The change in the coupling 

coefficients can be calculated analytically or numerically. For convenience, we calculate it 

numerically using a two-sided difference formula as follows. 
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 The use of a two-sided formula avoids any possible directional bias that might be 

present in a one-sided formula such as in (14). The time required to calculate the kpq(x,z) 

terms is negligible compared to resolving equation (9) as required by the perturbation 

method. After calculating the non-zero elements of the 
kz

C
 matrix, the change in the partial 

derivative vector 
kz

Φ
 values can be calculated in a similar way as for the 

j
Φ

 vectors by 

using the potentials at the nodes due to current sources at the current and potential dipoles. 

 If the 2-D finite-element mesh has nz nodes in the vertical direction, the number of 

mesh nodes affected by a shift at an electrode is 7nz if there are 3 nodes (4 cells) between 

adjacent electrodes. As the maximum number of non-zero values in each row of the 

capacitance matrix is 9 (Figure 1c), the number of multiply-add operations need to calculate 

the Jacobian value for an electrode shift (in the x or z direction) is then 70nz for one data point 

per electrode. The total number of operations needed to calculate both the X and Z matrices 

for a survey with d data points and e electrodes is then 140nzd(e-1). As an example, to 

illustrate the relative computational requirements of the adjoint-equation and perturbation 

methods, we use a dipole-dipole survey described by Seaton and Burbey (2000) that has 469 

data points using a line with 50 electrodes. A typical finite-element mesh used for the 



inversion of the survey line has 237 nodes in the x-direction (nx) and 34 nodes in the z-

direction (nz). The adjoint-equation method requires about is 1.1x108 numerical operations to 

calculate the X and Z Jacobian matrices. The band method that is used to solve the 

capacitance matrix equation (Dey and Morrison 1979) requires about   4n1nn0.5n zzzx   

multiply-add operations for the factorisation step and  2nnne4 zzx  )1(  operations for the 

solution step (Schwartz et al. 1973; Jennings and McKeown 1992; Golub van Loan 1996) to 

calculate the required potentials for the x or z shifts of the electrodes. For this survey line, the 

perturbation method would require about 6.2x109 numerical operations which is about 56 

times greater than the adjoint-equation method. 

 We note that for 2-D models with a point (3-D) current source, a Fourier transform of 

the associated partial differential equation is usually carried out (Dey and Morrison 1979; 

Queralt, Pous and Marcuello 1991; Xu, Duan and Zhang 2000). Calculation of the potentials 

involve solving the capacitance matrix equation a number (usually 4 to 12) times for different 

wave-number values. However, the relative efficiencies of the perturbation and adjoint-

equation methods are still the same as the same numerical operations are carried out for each 

wave-number value. 

 

RESULTS 

 

Effect of shifts in the electrode positions 

 In this section, we examine the effect of shifts in the x and z directions of electrodes in 

a 2-D survey. To simplify the comparisons, we use a homogenous half-space of 100 m as 

the background medium. Accordingly, the measured apparent resistivity values should also 

be 100 m in the unperturbed setup. The finite-element routine used (Queralt et al. 1991) 

gives an average error of about 1% in the calculated apparent resistivity values. Figure 3 



shows the apparent resistivity pseudosections for the dipole-dipole array (with a=1 m and 

n=1 to 10) obtained after shifting the electrode at the 10 m mark by 0.1 m in a survey line 

with 21 electrodes 1 m apart. The apparent resistivities are calculated using the geometric 

factors based on the assumption the electrodes are uniformly spaced (i.e. there was no shift). 

A horizontal shift (Figure 3a) has a larger effect compared to an upwards or downwards 

vertical shift (Figures 3b and 3c). The horizontal shift results in apparent resistivity values of 

81 to 127 m for the dipole-dipole array. In comparison, the upwards vertical shift gives a 

range of 95 to 110 m and the downwards shift gives a range of 90 to 105 m. In general, 

the effect of a horizontal shift is about 3 times larger than a vertical shift of the same 

magnitude (Table 1). We also examine the effect of  10% changes in the resistivity of a 1 m2 

block of the subsurface directly below the electrode at the 10 m mark (Figures 3d and 3e).  

 The rightwards horizontal shift reduces the distances between the shifted electrode 

and those on the right which increases the potential values (and consequently the calculated 

apparent resistivity using the geometric factors for equally spaced electrodes). Similarly, the 

increase in the distance from the electrodes to the left reduces the apparent resistivity on the 

left side of the dipole-dipole array pseudosection. The horizontal shift only affects array 

measurements that involve the shifted electrode.  

 A vertical shift also affects measurements that do not involve the shifted electrode if it 

lies between the electrodes in the array used (due to the change in the immediate topography). 

We also note that an upwards vertical shift tends to increase the apparent resistivity values 

directly below the electrode position with two low resistivity 'wings' on both sides (Figure 

3c). A downwards shift produces the opposite pattern (Figure 3c). An increase in the 

subsurface block resistivity generally increases the apparent resistivity (Figure 3d) measured 

directly above the block. This is similar to an upwards shift although the pattern depends on 

the array type used and the depth of the block. 



2-D synthetic model 

 Figure 4 shows the 2-D synthetic test model used. Figure 4a shows the model below a 

survey line with 31 electrodes with a uniform spacing of 1 m on a flat surface. It has a high 

resistivity prism (500 m with depth to top of 1.0 m) and a slightly deeper low resistivity 

prism (20 m with depth to top of 1.55 m) embedded in a 100 m uniform medium. Figure 

4b shows the perturbed model with four changes made. The electrode at the 5.0 m mark is 

shifted 0.3 m to the right while the electrodes at the 4.0 and 6.0 m marks are not moved. The 

electrode at the 17.0 m mark is shifted 0.4 m. upwards. In addition, a small resistivity change 

near the surface is introduced by adding a prism of 70 m (with depth of 1.0 m to the top) 

between the two prisms. Finally, the base of the 20 m low resistivity prism is extended 

downwards by 0.73 m. The measured data consists of dipole-dipole arrays with the 'a' dipole 

length ranging from 1 to 4 m, and the 'n' dipole separation factor ranging from 1 to 6. This 

gives a total of 415 data points. Voltage dependent Gaussian random noise (Zhou and Dahlin 

2003) with a mean amplitude of 2.5 m was added to the data before they were converted to 

apparent resistivity values. The measurements have resistance values ranging from 22 to 

10491 m. The added noise has a maximum amplitude of about 11% for the measurements 

with the lowest resistance values. The average noise level for the entire data set when 

converted to apparent resistivity is about 1.0%. 

 We first carry out an inversion of the initial and perturbed data sets assuming that the 

electrodes are equally spaced with no topography. The number of cells (m) used in the 

inversion model is 300. We use the 'discrepancy method' to select the appropriate damping 

factor (Farquharson and Oldenburg 2004) that gives a data misfit close to the known noise 

level. We also use the L1-norm (Farquharson and Oldenburg 1998; Loke et al. 2003) for both 

the data misfit and model roughness. The model for the initial data set is close to the true 

model (Figure 4a) with a data misfit of 1.0%.  However, the inversion of the perturbed data 



set failed to converge. We show the results after 6 iterations with a data misfit of 1.4% where 

the least-squares optimisation routine becomes trapped in a local minimum (Press et al. 

1992). Further iterations reduced the data misfit by less than 0.1% at the expense of extreme 

model resistivity values ranging from less than 10 m to more than 1000 m. There are 

near-surface artefacts at the positions of the two electrodes at the 5 and 17 m marks that were 

shifted from the original positions. The horizontal shift at the 5 m mark produces alternating 

low and high resistivity near-surface variations. The anomaly corresponding to the low 

resistivity prism located between the 7 and 9 m marks is also distorted. The effect of the 

upwards shift at the 17 m mark is relatively small compared to the horizontal shift. It 

produces a small low resistivity artefact near the surface and higher resistivity values near the 

base of the model (Figure 4b). Note that the high resistivity prism, which is located further 

away from the shifted electrodes, is relatively well resolved. 

 The inclusion of the electrode positions as variables introduces new damping factor 

terms in equation (5) that makes the determination of the optimal damping factors for the 

three sets of parameters (,  and ) a more complex problem. The relative damping factors  

and  (for x and z movements of the electrodes) are set to the same value in the following 

tests. We carry out tests using values ranging from 1 to 50 for  and . In the initial set of 

tests, we use a homogeneous half-space (the average apparent resistivity value) as the initial 

model for the optimisation routine, and vary both the subsurface resistivity and electrode 

positions to reduce the data misfit. The L1-norm method was also used for the Wx and Wz 

roughness filters. The resulting inverse models, including the surface topography from the 

calculated positions of the electrodes, are shown in Figure 5. The three subsurface prisms are 

relatively well resolved. In particular, the two low resistivity prisms do not show the 

distortions observed when the electrode positions were fixed (Figure 4b). The upwards spike 

in the elevation of the electrode at the 17 m mark is clearly shown. However, there are 



distortions in the surface profile over the high resistivity prism particularly when a small 

relative damping factor of 1 is used (Figure 5a). This is more clearly shown in the profile 

plots in Figure 6a where a vertical exaggeration of 10 is used for the elevation axis. The 

inversion algorithm is not able to fully distinguish between the effects of vertical shifts in the 

electrodes and an increase in the shallow subsurface resistivity. The anomaly patterns due to 

a vertical shift (Figure 3b) and a shallow high resistivity prism (Figure 3d) have similar 

patterns. The artefact in the vertical position of the surface profile is progressively reduced 

when the damping factor is increased. It is almost completely eliminated when a relative 

damping factor of 10 is used. However, the use of a higher damping factor also decreases the 

spike in the elevation at the electrode located at the 17 m mark (Figure 6a). Using a high 

damping factor of 50 essentially fixes the electrode positions (Figure 5f) giving a model 

similar to that with fixed electrodes (Figure 4b). 

 To numerically assess the accuracy of the inversion routine we calculate the 

difference in the positions of the electrodes calculated (xc,zc) from the inversion routine and 

the true (xt,zt) positions. The normalized error in the position of an electrode (s) is calculated 

using the following formula. 

      uzzxxs ctct /
5.022         (17) 

u is the unit electrode spacing which is 1 m in this example. We use the normalized error as it 

is a dimensionless quantity. We then calculate the root-mean-squared (RMS) deviation for all 

the electrodes. 
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Another criterion used is the RMS difference between the logarithms of the calculated (c) 

and true model (t) resistivity values using the following equation. 
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Note that Rr is also a dimensionless quantity.  

 Changing the relative damping factor does not have a significant effect on the data 

misfit for values of 1 to 10 which remains at about 1.0% (Table 2). There is a slight increase 

in the data misfit with a damping factor () of 20 and a significant increase to 1.3% with a 

value of 50. Using a relative damping factor of 1 gave the largest RMS electrode positions 

misfit Sr. The large electrode positions misfit is due to the distortions in the surface profile 

caused by the subsurface resistivity variations (Figure 5a). Using a value of 20 for  gives the 

lowest value for the RMS positions misfits Sr but it has a slightly higher data misfit of 1.1% 

and significant distortions in the resistivity model near the 5 m mark (Figure 5e). The 

optimum value of  is probably between 3 and 10. The model resistivity misfit (Rr) shows a 

smaller variation for values of 1 to 10 for . To reduce the statistics to a single number (SA), 

we calculate the combined positions and resistivity misfits, SA = Sr + Rr. The relative damping 

factor that gives the lowest combined misfit is 10. 

 The problem of displacements in the electrode positions usually occurs in the context 

of a time-lapse survey. In the initial survey setup, the positions of the electrodes are typically 

accurately measured, and thus can be considered to be known for the initial data set. Thus, 

the initial inverse model is a good estimate of the true subsurface resistivity. This provides an 

additional constraint that can be used to reduce the ambiguity in the inversion of later time 

data sets where the electrode positions are treated as unknown variables. We modify the 

inversion algorithm where the model obtained from the inversion of the initial time lapse data 

set (Figure 4a) is used as the starting model for the inversion of a later time data set. If the 

same array configurations are used for both surveys, the initial data misfit is essentially the 

difference between the apparent resistivity values of the two data sets. Wilkinson et al. (2010; 



2015a; 2016) in fact used this difference to estimate the change in the electrode positions 

using the Jacobian matrix values of a homogenous half-space. Using the model from the 

initial data set as the initial model for the inversion of a later time data set effectively 

removes the effect of the common background resistivity structures. This method has the 

advantage that it can also be used when different array configurations are used for the two 

data sets (Wilkinson et al. 2015b). Figure 7 shows the resulting inversion models using this 

technique. The distortions in the surface profile over the high resistivity block are greatly 

reduced even when the smallest relative damping factor () of 1 is used (Figure 7a). This is 

more clearly shown in the profile plots in Figure 6b. Using a value of 1 for  gives the lowest 

overall position misfit (Sr).  The lowest resistivity model misfit (Rr) is obtained with values of 

3 and 6 for  (Table 2). Thus. the optimum value for  is probably between 1 and 6. 

 

 

Field data set from an active landslide 

 The field data comes from the active Hollin Hill landslide, located near Malton, U.K., 

where an automated geoelectrical monitoring system has been making measurements on 

alternating days since March 2008 (Wilkinson et al. 2010). The site is a slow to very slow 

moving multiple earth slide-earth flow on a south-facing hill with a mean slope of 14°. From 

the base to the top of the slope, the formations are the Lias Group Redcar Mudstone 

Formation (RMF), Staithes Sandstone and Cleveland Ironstone Formation (SSF), and Whitby 

Mudstone Formation (WMF), which dip gently by a few degrees to the north (Figure 8a). 

Slope failure occurs within the WMF in the upper parts of the slope (more details can be 

found in Gunn et al. (2013), Merritt el al. (2014) and Uhlemann et al. (2015b)). 

 Permanently installed electrodes were deployed along 5 parallel lines running from 

the base to the top of the slope each with 32 electrodes spaced at intervals of 4.75 m 



(measured along the ground surface) and with 9.5 m between the lines (Wilkinson et al. 

2016). We show results from the western-most line, on which 516 measurements were made 

using the dipole-dipole array with a=4.75 to 14.25 m and n=1 to 8. The data were measured 

in reciprocal pairs and had very low levels of noise with 98% of the data exhibiting reciprocal 

errors below 0.5% (Wilkinson et al. 2010). The data set measured on 6th March 2008 is used 

as the base data set. The positions of the electrodes had also been measured on this date 

(although direct measurements of the electrode positions were made much less frequently 

than the geoelectical measurements, see Uhlemann et al. (2015a)). Figure 8a shows the 

inverse model for this data set with the main geological formations marked. The L-curve 

method (Farquharson and Oldenburg 2004; Loke et al. 2014) is used to estimate the 

appropriate damping factor . The data set measured on 31st March 2009 is used as the test 

data set. The positions of the electrodes that had moved were also directly re-measured on 

this date, thereby providing a means to test the accuracy of the inversion procedure. 

 Figure 8b shows the apparent resistivity pseudosection and inverse model for the 2009 

data set using the positions of the electrodes from the 2008 survey (i.e. assuming no 

movement of the electrodes). The 2009 inverse model has a significantly higher data misfit of 

1.5% compared to 0.6% for the 2008 model (Figure 8a). A comparison of the measured 

electrode positions shows the largest movements occurred at electrodes number 9 (1.56 m 

shift), 10 (1.03 m), 11 (0.71 m) and 12 (0.53 m) down the slope. The apparent resistivity 

pseudosection and model both show significant distortions in the vicinity of these electrodes 

(Figure 8b). The RMS difference between the measured electrode positions from the 2008 

and 2009 surveys is 0.37 m (Table 3).  

Figure 9a shows the inverse model obtained when the electrodes are allowed to shift. 

A value of 3.0 is used for the relative damping factor  and the inverse model from the 2008 

survey (Figure 8a) is used as the starting model. The distortions in the model near electrode 9 



are removed and a lower misfit of 0.6% is obtained. It also has a significantly lower RMS 

difference of 0.19 m (Table 3) between the measured electrode positions for the 2009 survey 

and the estimated positions from the inversion procedure. Figure 10a shows the positions of 

the electrodes measured in the 2008 and 2009 surveys as well as the estimated positions. The 

shift in the electrode positions is small over most of the profile except at electrodes 9 to 12. 

Figure 10b shows a more detailed plot of the section of the profile between electrodes 6 to 17 

that shows the changes in the positions more clearly. The difference in the position of 

electrode 9 (Figure 10b) between 2008 (blue circle) and 2009 (black circle) surveys is 

reduced from 1.56 to 0.52 m by the inversion method (green rectangle). A closer examination 

of Figure 10b shows the inversion method produced a slight shift in the calculated positions 

of electrodes 15 to 17 up the slope by about 0.2 m. This is probably an artefact (possibly due 

to temporal changes in the resistivity) as it is expected that the movement of the electrodes (if 

any) will be down the slope based on the known geology and topography (Wilkinson et al. 

2010; 2016). The inversion artefact does not have a significant effect of the results as it is 

only about 4% of the electrode spacing. However, the data set provides a test of a method to 

incorporate the expected direction of movement into the inversion method as a constraint to 

ensure changes in the electrode positions only occur down the slope. We use the method of 

transformations (Daniels 1978) to include the constraint. The variable for the horizontal 

position of an electrode, xk, is replaced by a new variable, k, using the following equation. 

2
kkuk xx            (20) 

xku is the upper limit for kth the electrode position. If this is set at the position of the 

electrode from the 2008 survey, the transformation ensures that the new position of the 

electrode from the optimisation routine will be less than the original position (i.e. 

downslope). The required Jacobian values used in the optimisation routine are replaced as 

follows. 
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Figure 9b shows the inverse model obtained with the additional constraint. The small 

up slope movements at electrodes 15 to 17 are eliminated (Figure 10b).  The resistivity model 

is very similar to that obtained with unconstrained movement of the electrodes in Figure 9a. 

This is probably because the upwards shift at a few electrode positions from the 

unconstrained inversion is very small. However, adding the constraint does significantly 

reduce the RMS difference between calculated and measured electrode positions from 0.19 to 

0.12 m (Table 3). This difference is only about 2.5% of the average distance between the 

electrodes. Finally, we show the model obtained when the measured positions of the 

electrodes from the 2009 survey are used for the inversion (Figure 9c). There are no 

significant differences between the three models shown in Figure 9. This shows that the 

technique used to estimate the positions of the electrodes from the resistivity data is 

sufficiently accurate. 

 

CONCLUSIONS 

 A fast technique to calculate the Jacobian matrix values for shifts in the electrode 

positions using the adjoint-equation method is presented. The use of the inverse model from 

the initial data set (with accurate electrode positions) as the starting model for the inversion 

of a later data set reduces the distortions in the surface topographic profile caused by 

subsurface resistivity variations, thereby giving more accurate calculated electrode positions. 

We also demonstrate the use of the method of transformations as a constraint in cases where 

it is known from geological and topographical information that the electrodes movement will 

be unidirectional. Tests with a field data set show that the average accuracy in the recovered 

electrode positions is better than 5%. The joint inversion of electrode displacement and 



resistivity has the dual benefits minimising distortions in resistivity images due to electrode 

displacements and providing quantitative information with which to track landslide 

movement or other forms of ground instability. 

 Research is being carried out to apply the same techniques to detect changes in the 

electrode positions in 3-D surveys (Loke et al. 2016). 

 

ACKNOWLEDGEMENTS 

 The contributions of P.B. Wilkinson, J.E. Chambers and P. I. Meldrum to this paper 

are published with permission of the Executive Director of the British Geological Survey 

(NERC). 



REFERENCES 

Auken, E., Pellerin, L., Christensen, N. B., Sørensen, K. I. 2006, A survey of current trends in 

near-surface electrical and electromagnetic methods. Geophysics 71, G249-G260 

Bing Z. and Greenhalgh S.A. 1999. Explicit expressions and numerical calculations for the 

Fre´chet and second derivatives in 2.5D Helmholtz equation inversion. Geophysical 

Prospecting 47, 443-468. 

deGroot-Hedlin C. and Constable S. 1990. Occam's inversion to generate smooth, two-

dimensional models from magnetotelluric data. Geophysics 55, 1613-1624. 

Chambers J.E., Wilkinson P.B., Kuras O., Ford J. R., Gunn D.A., Meldrum P. I., Pennington 

C.V.L., Weller A.L., Hobbs P.R.N., Ogilvy R.D. 2011. Three-dimensional 

geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, 

UK. Geomorphology 125, 472-484 

Chambers J.E., Gunn D.A., Wilkinson P.B., Meldrum P.I., Haslam E., Holyoake S., Kirkham 

M., Kuras O., Merritt A. and Wragg J. 2014. 4D electrical resistivity tomography 

monitoring of soil moisture dynamics in an operational railway embankment. Near 

Surface Geophysics 12, 61-72. 

Daniels R.W. 1978. An introduction to numerical methods and optimization techniques. 

Elsevier North-Holland. 

Dey A. and Morrison H.F. 1979. Resistivity modelling for arbitrary shaped two-dimensional 

structures. Geophysical Prospecting 27, 106-136. 

Farquharson C.G. and Oldenburg D.W. 1998. Nonlinear inversion using general measures of 

data misfit and model structure. Geophysical Journal International 134, 213-227. 

Farquharson C.G. and Oldenburg D.W. 2004. A comparison of automatic techniques for 

estimating the regularization parameter in non-linear inverse problems. Geophysical 

Journal International 156, 411-425. 



Golub G. and van Loan C.F. 1996. Matrix computations (Third Edition). The John Hopkins 

University Press. 

Gunn D.A., Chambers J.E., Hobbs P.R.N., Ford J.R., Wilkinson P.B., Jenkins G.O. and 

Merritt A. 2013. Rapid observations to guide the design of systems for long-term 

monitoring of a complex landslide in the Upper Lias clays of North Yorkshire, UK. 

Quarterly Journal of Engineering Geology and Hydrogeology 46, 323-336. 

Jennings A. and McKeown J.J. 1992. Matrix computation (Second edition). John Wiley and 

Sons Ltd.  

Kim J.H. 2014. Simultaneous Inversion of Resistivity Structure and Electrode Locations in 

ERT. 20th European Meeting of Environmental and Engineering Geophysics, Athens, 

Greece, 14-18 September 2014, We Olym 10. 

Li Y., and D. W. Oldenburg, 2000. 3-D inversion of induced polarization data. Geophysics 

65, 1931-1945. 

Loke M.H. and Barker R.D. 1996. Rapid least-squares inversion of apparent resistivity 

pseudosections by a quasi-Newton method. Geophysical Prospecting 44, 131-152. 

Loke M.H. 2000. Topographic modelling in resistivity imaging inversion. 62nd EAGE 

Conference & Technical Exhibition, Extended Abstracts, D-2. 

Loke M.H., Acworth I. and Dahlin T. 2003. A comparison of smooth and blocky inversion 

methods in 2D electrical imaging surveys. Exploration Geophysics 34, 182-187. 

Loke M.H. and Dahlin T. 2010. Methods to reduce banding effects in 3-D resistivity 

inversion. Near Surface 2010, Zurich, Switzerland, Expanded Abstracts, A16. 

Loke M.H., Chambers J.E., Rucker D.F., Kuras O. and Wilkinson P.B. 2013. Recent 

developments in the direct-current geoelectrical imaging method. Journal of Applied 

Geophysics 95, 135-156. 



Loke M.H., Dahlin T. and Rucker D.F. 2014. Smoothness-constrained time-lapse inversion of 

data from 3-D resistivity surveys.  Near Surface Geophysics 12, 5-24.  

Loke M.H., Wilkinson P.B. and Chambers J.E. 2016. 3-D resistivity inversion with electrodes 

displacements. ASEG-PESA-AIG 25th Geophysical Conference and Exhibition, 

August 21–24, 2016, Adelaide, Australia, Extended Abstracts, 809-813. 

McGillivray P.R.  and Oldenburg D.W. 1990. Methods for calculating fréchet derivatives and 

sensitivities for the non-linear inverse problem : a comparative study. Geophysical 

Prospecting 38,499-524.  

Merritt A.J., Chambers J.E., Murphy W., Wilkinson P.B., West L.J., Gunn D.A., Meldrum 

P.I., Kirkham M. and Dixon N. 2014. 3D ground model development for an active 

landslide in Lias mudrocks using geophysical, remote sensing and geotechnical 

methods. Landslides 11, 537-550 

Oldenburg D.W and Li Y. 1994. Inversion of induced polarization data. Geophysics 59, 

1327-1341. 

Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. 1992. Numerical Recipes in 

C (Second Edition). Cambridge University Press. 

Queralt P., Pous J. and Marcuello A. 1991. 2-D resistivity modeling: An approach to arrays 

parallel to the strike direction. Geophysics 56, 941-950. 

Sasaki Y. 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole 

resistivity data. Geophysics 54, 254-262. 

Sasaki Y. 1994. 3-D resistivity inversion using the finite element method. Geophysics	59,	

1839–1848. 

Seaton W.J. and Burbey T.J. 2000. Aquifer characterization in the Blue Ridge physiographic 

province using resistivity profiling and borehole geophysics : Geologic analysis. 

Journal of Environmental & Engineering Geophysics 5(3), 45-58. 



Schwarz H.R., Rutishauser H. and Stiefel E., 1973. Numerical analysis of symmetric 

matrices. Prentice-Hall, Inc. 

Silvester P.P. and Ferrari R.L. 1990. Finite elements for electrical engineers (2nd. ed.). 

Cambridge University Press.  

Supper R., Ottowitz D., Jochum B., Römer A., Pfeiler S., Kauer S., Keuschnig M. and Ita A. 

2014a. Geoelectrical monitoring of frozen ground and permafrost in alpine areas: field 

studies and considerations towards an improved measuring technology. Near Surface 

Geophysics 12, 93-115. 

Supper R., Ottowitz D., Jochum B., Kim J.H., Römer A., Baron I., Pfeiler S., Lovisolo M., 

Gruber S. and Vecchiotti F. 2014b. Geoelectrical monitoring: An innovative method 

to supplement landslide surveillance and early warning. Near Surface Geophysics 12, 

133-150. 

Uhlemann S., Wilkinson P.B., Chambers J.E., Maurer H., Merritt A.J., Gunn D.A. and 

Meldrum P.I. 2015a. Interpolation of landslide movements to improve the accuracy of 

4D geoelectrical monitoring. Journal of Applied Geophysics 121, 93-105. 

Uhlemann S., Smith A., Chambers J.E., Dixon N., Dijkstra T., Haslam E., Meldrum P.I., 

Merritt A.J., Gunn D.A. and Mackay J. 2015b. Assessment of ground-based 

monitoring techniques applied to landslide investigations. Geomorphology 253, 438-

451. 

Wilkinson P.B., Chambers J.E., Meldrum P.I., Gunn D.A., Ogilvy R.D. and Kuras O. 2010. 

Predicting the movements of permanently installed electrodes on an active landslide 

using time-lapse geoelectrical resistivity data only. Geophysical Journal International 

183, 543-556. 

Wilkinson P.B., Uhlemann S., Chambers J.C., Meldrum P.I. and Loke M.H. 2015a. 

Development and testing of displacement inversion to track electrode movements on 



3D Electrical Resistivity Tomography monitoring grids. Geophysical Journal 

International 200, 1566-1581. 

Wilkinson P.B., Uhlemann S., Meldrum P.I., Chambers J.C., Carrière S., Oxby L.S. and Loke 

M.H. 2015b.  Adaptive time-lapse optimized survey design for electrical resistivity 

tomography monitoring. Geophysical Journal International 203, 755-766. 

Wilkinson P.B., Chambers J.E., Uhlemann S., Meldrum P.I., Smith A., Dixon N. and Loke 

M.H. 2016. Reconstruction of landslide movements by inversion of 4-D electrical 

resistivity tomography monitoring data. Geophysical Research Letters 43, 1166-1174. 

Xu S.Z., Duan B.C. and Zhang D.H. 2000. Selection of the wavenumbers k using an 

optimization method for the inverse Fourier transform in 2.5-D electrical modeling. 

Geophysical Prospecting 48, 789–796. 

Zhou B. and Dahlin T. 2003. Properties and effects of measurement errors on 2D resistivity 

imaging surveying. Near Surface Geophysics 1, 105-117. 



List of figure captions 

 

Figure 1. (a) Quadrilateral element used in the finite-element method. (b) Finite-element 

mesh with 6 nodes in the horizontal direction and 5 nodes in the vertical direction. The node 

numbers are shown. (c) Schematic diagram of the structure of the capacitance matrix 

equation showing the non-zero elements. D represent a diagonal element while X represents a 

non-zero off-diagonal element. The section of the 
kz

C
 matrix that has non-zero elements due 

to a shift of an electrode is marked in red. 

 

Figure 2. Part of 2-D finite-element mesh used. Only the nodes that lie between electrodes 2 

and 4 are affected by a shift in the position of electrode 3.  

 

Figure 3. Effects of different changes in electrode position or subsurface resistivity. (a) to (c) 

show the effect of a shift of 0.1 m in different directions of the electrode at the 10 m mark on 

the measured apparent resistivity values for a homogeneous half-space of 100 m. (d) and 

(e) show the effect of a 10% increase or decrease in the resistivity of a 1 square meter block 

directly below the electrode at the 10 m mark. The dipole-dipole measurements have a=1 m 

and n=1 to 10. 

 

Figure 4. (a) The synthetic model for the initial time-lapse data set with equally spaced 

electrodes, together with the apparent resistivity pseudosection and inversion model. (b) The 

perturbed synthetic model with the electrode originally at the 5 m mark shifted horizontally 

by 0.3 m, and the electrode at the 17 m mark shifted upwards by 0.4 m. The thickness of the 

20 m prism below the 8 m mark is increased and a new 70 m prism is added below the 13 



m mark. The resulting inversion model using incorrect (i.e. fixed equally spaced) electrode 

positions is shown. 

 

Figure 5. The inverse models for the second time-lapse data set using different relative 

damping factors for the x and z coordinates of the electrodes. A homogeneous half-space is 

used as the starting resistivity model. The electrodes are equally spaced and on a flat surface 

in the starting model but are allowed to change in the optimisation routine. 

 

Figure 6. The surface elevation profiles from the coordinates of the electrodes obtained by the 

inversion of the data set using (a) a homogeneous half-space as the starting model, (b) using 

the model obtained from the inversion of the initial time-lapse data set as the starting model. 

A vertical exaggeration of 10 times is used in this plot. 

 

Figure 7. The inverse models for the second time-lapse data set using different relative 

damping factors for the x and z coordinates of the electrodes. The model obtained from the 

inversion of the first time-lapse data set is used as the starting resistivity model. 

 

Figure 8. (a) Inverse model for Hollin Hill survey data set measured on 6th March 2008. The 

inferred boundaries between the Whitby (WMF), Staithes and Cleveland (SSF) and Redcar 

(RMF) formations are marked by dotted black lines. (b) Inverse model for the 31st March 

2009 data using the 2008 electrode positions. 

 

Figure 9. Inverse models for Hollin Hill survey 2009 data set using (a) variable electrode 

positions, and (b) with an additional downwards movement constraint, and (c) directly 

measured electrode positions. 



Figure 10. (a) Plot of the electrode positions along the entire survey line. (b) Close up of 

section of the surface profile with the largest movement of electrodes. 
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Table 1. Effects of different changes on the apparent resistivity values measured with the 

dipole-dipole array over a half-space of 100 m. The minimum and maximum 

apparent resistivity values (and the range) are listed. 

 

Table 2. Results from the inversion of the synthetic data set using different electrode shift 

relative damping factors and starting models.  = Relative damping factor. g = data 

misfit (%). Sr = normalized RMS difference between true and calculated electrode 

positions.  Rr = RMS difference between logarithms of inversion model cell resistivity 

values and actual model. SA = Combined positions and resistivity misfits = Sr + Rr. 

 

Table 3. Results using different inversion methods for the Hollin Hill field data set. g = data 

misfit (%). Sr = normalized RMS difference between true and calculated electrode 

positions (the misfit in meters is shown in brackets). 
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inversion of the first time-lapse data set is used as the starting resistivity model.  
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Figure 9. Inverse models for Hollin Hill survey 2009 data set using (a) variable electrode 

positions, and (b) with an additional downwards movement constraint, and (c) directly 

measured electrode positions. 



 

Figure 10. (a) Plot of the electrode positions along the entire survey line. (b) Close up of 

section of the surface profile with the largest movement of electrodes. 



 Table 1. Effects of different changes on the apparent resistivity values measured with the 

dipole-dipole array over a half-space of 100 m. The minimum and maximum apparent 

resistivity values (and the range) are listed. 

Type of change Apparent resistivity values (m) 

Horizontal shift of 0.1 m to the right 81 to 127 (46) 

Vertical shift of 0.1 m upwards 95 to 110 (15) 

Vertical shift of 0.1 m downwards 90 to 105 (15) 

Increase in resistivity of block by 10% 98 to 106 (8) 

Decrease in resistivity of block by 10% 96 to 102 (6) 

 

 



Table 2. Results from the inversion of the synthetic data set using different electrode shift 

relative damping factors and starting models.  = Relative damping factor. g = data misfit 

(%). Sr = normalized RMS difference between true and calculated electrode positions.  Rr = 

RMS difference between logarithms of inversion model cell resistivity values and actual 

model. SA = Combined positions and resistivity misfits = Sr + Rr. 

Homogeneous half-space starting model 

 g  Sr Rr SA 

1 1.0 0.0350 0.0072 0.0422 

3 1.0 0.0174 0.0071 0.0244 

6 1.0 0.0172 0.0067 0.0239 

10 1.0 0.0150 0.0064 00214 

20 1.1 0.0139 0.0076 0.0215 

50 1.3 0.0148 0.0097 0.0245 

Initial time-lapse data set starting model 

 g Sr Rr SA 

1 1.0 0.0103 0.0066 0.0169 

3 1.0 0.0126 0.0065 0.0191 

6 1.0 0.0125 0.0065 0.0190 

10 1.0 0.0133 0.0070 0.0203 

20 1.2 0.0133 0.0078 0.0211 

50 1.3 0.0149 0.0090 0.0239 

 

 



Table 3. Results using different inversion methods for the Hollin Hill field data set. g = data 

misfit (%). Sr = normalized RMS difference between true and calculated electrode positions 

(the misfit in meters is shown in brackets).   

Inversion method g Sr 

Fixed electrodes from 2008 survey 1.5 0.078 (0.37) 

Electrodes allowed to shift 0.6 0.040 (0.19) 

Down slope constraint used 0.7 0.025 (0.12) 

Measured 2009 electrode positions 0.7  

 


