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Abstract During geomagnetic substorms, around 1015 J of energy is extracted from the solar wind and
processed by the Earth’s magnetosphere. Prior to the onset of substorm expansion phases, this energy is
thought to be largely stored as an increase in the magnetic field in the magnetotail lobes. However, how,
when, and where this energy is stored and released within the magnetotail is unclear. Using data from the
Cluster spacecraft and substorm onsets from Substorm Onsets and Phases from Indices of the Electrojet
(SOPHIE), we examine the variation in the lobe magnetic energy density with respect to substorm onset
for 541 isolated onsets. Based on a cross-correlation analysis and a simple model, we deduce the following:
On average, the magnetic energy density increases approximately linearly in the hour preceding onset and
decreases at a similar rate after onset. The timing and magnitude of these changes varies with downtail
distance, with observations from the mid-tail (X ⪅ −9 RE) showing larger changes in the magnetic energy
density that occur ∼ 20 min after changes in the near-tail (X ⪆ −9 RE). The decrease in energy density in
the near-tail region is observed before the ground onset identified by SOPHIE, implying that the substorm
is driven from the magnetotail and propagates into the ionosphere. The implication of these results is that
energy in the near-tail region is released first during the substorm expansion phase, with energy conversion
propagating away from the Earth with time.

1. Introduction

Substorms are global reconfigurations of Earth’s magnetosphere that transfer ∼ 1015 J of energy stored in the
magnetotail into energizations of plasma, atmospheric heating, and brilliant auroral displays. Two phases of
a substorm were first outlined by Akasofu (1964): the existence of the expansion phase, which is defined by
auroral expansion in the night sky, and the recovery phase, which comes after the expansion phase and is
the return of the aurora to their quiescent state. Later, McPherron (1970) used magnetograms to demonstrate
the existence of a third phase of the substorm called the growth phase, during which energy is accumulated
within the magnetotail prior to the expansion phase. In this paper, the term substorm onset will be used to
refer to substorm expansion phase onset.

It has previously been shown that magnetic flux is added to the magnetosphere during the growth phase
of a substorm, and then this flux is removed from the magnetosphere again during the substorm expansion
phase (e.g., Baker et al., 1996; Hones, 1979, and references therein) in what is now known as the substorm
cycle. This can be interpreted (Freeman & Southwood, 1988; Lockwood & Cowley, 1992; Siscoe & Huang, 1985)
as a time-dependent revision of the Dungey cycle (Dungey, 1961) with unbalanced dayside and nightside
reconnection rates in which magnetic flux (and thus energy) is stored in the magnetosphere when the day-
side reconnection rate exceeds the nightside rate during the growth phase and is then released again when
the nightside reconnection exceeds the dayside rate in the expansion/recovery phase. This theory has been
confirmed experimentally in terms of magnetic flux, as authors have observed the polar cap area (and proxies
thereof ) varying with dayside reconnection rate and substorm onsets (e.g., Clausen et al., 2012; Coxon et al.,
2014a; DeJong et al., 2007; Hubert et al., 2006; Milan et al., 2007).

It has long been thought that the lobes are the location of the energy that is stored in the magnetosphere
prior to being dissipated by a substorm (e.g., Baker et al., 1997; McPherron et al., 1973), but there is some
debate about this. The temperature and pressure of the plasma sheet increases during the growth phase
(Forsyth et al., 2014), indicating that the energy added to the magnetosphere during the growth phase is
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contained within the lobes and within the plasma sheet. Baker et al. (1997) calculated that the amount of
energy in the plasma sheet was not large enough to provide the entire substorm’s energy budget, being
approximately 5 times too small, as opposed to the lobes, which contained approximately 10 times more
energy than needed. Snekvik et al. (2012) reported that sometimes the magnetic pressure in the lobe did not
change in the substorm growth phase, which they identified through magnetotail current sheet thinning. In
addition, Akasofu (2013, 2017) made theoretical arguments that the substorm energy is stored in the inner
magnetosphere rather than in the magnetotail lobes by estimating the energy content of the magnetotail
assuming a magnetic field of 30 nT and a certain magnetotail volume. Miyashita et al. (2015) argued that
Akasofu (2013) should instead have considered the energy added to the magnetotail prior to substorm onset
(which is the approach we adopt in this paper) and wrote that this, alongside a failure to properly account for
the length of the expansion phase and the net Poynting flux, rendered Akasofu (2013) fundamentally flawed.

The factors controlling the intensity of a substorm (by which we mean the magnitude of the magnetic bay
measured in the AL index or more recent analogues such as the SML index (Newell & Gjerloev, 2011) have been
the subject of much debate in the literature. Some authors have argued that the amount of energy stored
in the growth phase is always approximately the same value: Kallio et al. (2000) concluded that ∼ 5 × 1014

J was stored in the growth phase regardless of the intensity of the substorm and argued that any difference
in intensity must therefore come from the magnitude of southward interplanetary magnetic field (IMF) dur-
ing the expansion phase. Kallio et al. (2000) further argued that this was substantiated by previous results
showing that the integration of IMF BZ in the solar wind determined the time-integrated AL index (Holzer &
Slavin, 1979), but it is important to note that the result of Holzer and Slavin (1979) can also be explained by the
fact that on long enough timescales, the dayside and nightside reconnection rates are approximately equiv-
alent (e.g., Cowley & Lockwood, 1992; Coxon, Milan, et al., 2016) and the AL index can be considered a proxy
of nightside reconnection rate (e.g., Coxon et al., 2014b; Holzer et al., 1986). We argue that this latter inter-
pretation is more likely, as the former argument seems to rely on instantaneous transmission of information
between the magnetopause and the magnetotail, whereas previous studies suggest that a more reasonable
timescale for this is∼ 1 hr (e.g., Browett et al., 2017; Cowley & Lockwood, 1992). Additionally, previous authors
have found that the intensity of a substorm is larger when the amount of open magnetic flux in the polar cap
is larger at onset (Coxon et al., 2014a; Milan et al., 2009), as well as that the intensity of a substorm is weakly
correlated to the plasma sheet temperature at onset (Forsyth et al., 2014). These results imply that substorms
are more intense when more energy is stored within the magnetosphere at the point of onset, which seems
to contradict the result of Kallio et al. (2000).

A substorm dissipates energy through several mechanisms: increasing the energy of the ring current, Joule
heating of the ionosphere, particle precipitation causing aurora, in plasmoids ejected downtail, and heating
of the plasma sheet (e.g., Akasofu, 1981; Østgaard et al., 2002). The way in which the energy is partitioned
between these mechanisms has been the focus of much research, with estimates of the relative importance
of each varying hugely. Tanskanen et al. (2002) found that 30% of the energy input to the magnetosphere
by the solar wind ended up Joule heating the ionosphere. Østgaard et al. (2002) measured the contribu-
tions of ionospheric Joule heating EJ, auroral precipitation EA, and ring current energization ER and found
the sum of those three EO02, finding that the relative contributions of the three were EJ = 56%, EA = 29%,
and ER = 15%. The average energy dissipated by a substorm by these three mechanisms was found to be
EO02= 7.7 × 1015 J, which was higher than the 5 × 1014 J estimated by Baker et al. (1997). Weiss et al. (1992)
also estimated the amount of plasma sheet heating EPS ≈ 0.25EJ and the amount of energy released in plas-
moids downtail EP ≈ 0.1EJ but, in contrast to Østgaard et al. (2002), found that ring current energization
ER = 0.5EJ and EA = 0.2EJ, such that ring current energization was the second largest energy sink. Forsyth et
al. (2016) found that only 50% of substorms result in an increase in the electron content of the radiation belts,
which might suggest that the percentage contribution of radiation belt energization is variable from event
to event. Forsyth et al. (2014) showed that the increase in plasma sheet temperature before onset accounts
for 1.5–7% of substorm energy. Axford (1999) estimated that EP was 90% of the total energy budget of a sub-
storm, but Ieda et al. (1998) estimated EP ≈ 1015 J and Weiss et al. (1992), EP ≈ 1014 J. Compared to the
total substorm energy calculated by Østgaard et al. (2002) and assuming that the plasma sheet heating is
negligible, this accounts for ∼ 10% of Østgaard et al.’s (2002) substorm energy (Ieda et al., 1998) or ∼ 1%
of Østgaard et al.’s (2002) substorm energy (Weiss et al., 1992), both much smaller estimates. The amount of
magnetic flux added during the growth phase can be estimated by parameterizations based on solar wind
data (Milan et al., 2012), as can the amount of energy added during this time (Perreault & Akasofu, 1978).
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Table 1
A Tabulation of Previous Work on the Partitioning of the Substorm Energy Budget

Author EJ EA ER EPS EP Total energy dissipated

Weiss et al. (1992) 1015 J 0.2EJ 0.5 EJ 0.25 EJ 0.1 EJ

Baker et al. (1997) 1010 –1011 W 109 –1010 W 1011 –1012 W - EP 1011 –1012 W - ER 5 × 1014 J

Ieda et al. (1998) 1015 J

Axford (1999) 90%

Østgaard et al. (2002) 56% 29% 15% 7.7 × 1015 J

Tanskanen et al. (2002) 30%

Baker et al. (1997) found that the rate of energy lost to ring current injections and plasmoids was 1011 –1012

W, with ionospheric Joule heating 1010 –1011 W; auroral precipitation 109 –1010 W; and auroral luminosity and
kilometric radiation less than 109 W. A summary of the literature on substorm energy partitioning is presented
in Table 1.

The magnetospheric processes associated with substorm onset and their relative timings have been the sub-
ject of much controversy in the literature. It is generally accepted that the closure of magnetic flux occurs
at a near-Earth neutral line (NENL) at a distance >20RE downtail (Baker et al., 1996). However, the substorm
onset arc is normally located equatorward of the auroral boundary; thus, the first brightening of the aurora
is not necessarily associated with the closure of magnetic flux. Numerous studies have suggested that this
initial brightening is associated with a plasma instability in the near-tail region at <10RE (e.g., Lui, 1996; Lui
et al., 1992) causing a current disruption (CD; the CD model). The Time History of Events and Macroscale
Interactions during Substorms (THEMIS) spacecraft were launched to attempt to differentiate between the
NENL and CD models. Early evidence supported the NENL model (Angelopoulos et al., 2008), but Lui (2009)
subsequently reinterpreted Angelopoulos et al.’s (2008) findings as evidence for the CD model, after which
Angelopoulos et al. (2008) argued that Lui’s (2009) reinterpretation was flawed. Modeling has shown that
when magnetic flux in the dayside magnetopause is eroded, sunward convection occurs to replenish the flux
on the dayside but depletes the flux in the magnetotail, which leads to strong current sheet thinning and an
increase in the crosstail current, suggesting that the instability leading to substorm onset is in the near-Earth
tail (Hsieh & Otto, 2014, 2015), and this is substantiated by recent observations (Sun et al., 2017). Hsieh and
Otto (2014) noted that the difference between field lines from 10RE and 20RE , when mapped to the iono-
sphere, was small enough that they could not differentiate between the two competing paradigms. Recent
studies show that almost all substorm onset arcs show the signatures of a near-tail plasma instability (Kalmoni
et al., 2017; Nishimura et al., 2016), but whether this instability is triggered as a result of incoming plasma flows
from a small-scale reconnection site, or whether it is simply due to changing plasma conditions, remains an
open question.

In this paper, we utilize Cluster observations of Earth’s magnetic field made within the magnetotail lobes on
either side of substorm onsets determined by Substorm Onsets and Phases from Indices of the Electrojet
(SOPHIE; section 2). We conduct superposed epoch analyses of the magnetic energy density either side of 541
substorm expansion phase onsets (section 3), before subdividing the data by distance downtail (section 4).
We interpret the results using a simple model (section 5) and discuss the ramifications of our results in the
context of previous studies (section 6) before concluding (section 7).

2. Data

The Cluster constellation was launched into orbit by two Soyuz rockets in 2000, with data available from the
start of 2001 (Escoubet et al., 2001). The constellation, comprising four satellites, was originally launched into
an orbit with a perigee of 4RE and an apogee of 19.6RE in 2001 (Escoubet et al., 2001). This orbit has evolved
as the mission has progressed, with the apogee becoming larger and moving down from the plane of the
ecliptic such that the spacecraft has spent much more time in the southern lobe of the magnetotail than in
the northern lobe. We identify the lobe using Cluster data using a technique that identifies the lobe based
purely on thresholds in magnetometer data (Coxon, Jackman, et al., 2016). The technique outlined in Coxon,
Jackman, et al. (2016) works by identifying periods where the magnetic field is relatively strong and relatively
invariant when the spacecraft is at least 8 RE downtail on Earth’s nightside. In this paper, we employ magnetic
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field data taken when the Cluster 1 (C1) spacecraft was in the lobe between 2001 and 2013 inclusive. We use
magnetic field data because we are investigating the amount of energy stored in the lobes by the addition of
magnetic flux, and we only use C1 in order to avoid considering substorms more than once.

We identify substorm phases using the SOPHIE method (Forsyth et al., 2015). The SOPHIE method works by
taking the SuperMAG-derived geomagnetic indices SMU and SML (equivalents to AU and AL) and using the
time derivative of the SML index to create a list of the growth, expansion, and recovery phases of substorms
from 1996 to 2014. In this paper, SOPHIE data coincident with the Cluster data are utilized to identify isolated
substorm expansion phases (i.e., those expansion phases preceded by a growth phase instead of preceded by
a recovery phase). We adopt the criterion that C1 has to remain in the lobe for 3 hr either side of a substorm
onset for that onset to be considered in our analysis. We choose this length of time such that we can effectively
detrend the magnetic field measurements to remove any effect of the spacecraft motion: As C1 moves toward
Earth, the magnetic field strength increases, and as it moves away, the magnetic field strength decreases. This
is not a signature of substorm activity, and therefore, we outline a method for removing this effect in section 3.

We also employ data from the OMNI data set, namely, the IMF vector and the solar wind flow speed, in order
to calculate the dayside reconnection rate𝜙D given by the equation of Milan et al. (2012). We modify the term
for 𝜙D given therein such that

ΦD = Leff (VX )VX BYZ

||||sin
9
2

(
𝜃

2

)|||| , (1)

where VX is the solar wind speed, BYZ is the transverse component of the IMF, 𝜃 is the clock angle (the angle
between the IMF vector projected into the GSM (geocentric solar magnetospheric) Y-Z plane and the Z axis),
RE is the radius of Earth, and Leff (VX ) is an effective length scale

Leff (VX ) = 3.8RE

(
VX

4 × 105m∕s

) 1
3

. (2)

3. Superposed Epoch Analysis of the Magnetic Energy Density in the Lobe

Between 2001 and 2013 we use SOPHIE to identify 541 substorm onsets that occurred while C1 was in the
magnetotail lobes. Figure 1a shows a superposed epoch analysis of the magnetic energy density UB through
a 6-hr window centered on substorm onset: The solid blue line is the mean of UB, and the shaded area is the
standard error on the mean. The energy density can be seen to decrease through the first 90 min of the epoch
and then to increase through the rest of the epoch.

We investigate the shape of Figure 1a in more detail by constructing a simple dipole model (Walker & Russell,
1995) such that

BX = 3xzMzR−5, (3)

BY = 3yzMzR−5, (4)

BZ = (3z2 − R2)MzR−5, (5)

where x, y, and z are the coordinates of C1; Mz is the dipole magnetic moment of Earth; and R is the radial
distance of C1 from Earth. We evaluate this vector for each of the data contributing to Figure 1a and then
perform the same analysis of these synthesized magnetic data as the analysis performed on the real magnetic
data, thus producing Figure 1c. Figure 1c shows that the magnetic energy density UD of this simple dipole
model follows the same general trend as Figure 1a, which indicates that this trend is due to the motion of C1
through the magnetotail, rather than substorm-related effects.

In order to isolate the substorm-related perturbation, we assume that it is negligible beyond 1 hr of onset
and subtract a second-order polynomial fit to the data excluding the 1 hr before and after the onset (the solid
orange line in Figure 1a) from the observations. The difference between the UB and our fit, which we denote
ΔUB, is shown in Figure 1b and thus shows only the change in energy density due to the substorm. The blue
and red lines in Figure 1a diverge by more than the standard error on the mean, giving confidence that the
increase and decrease on either side of substorm onset is due to a physical phenomenon.
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Figure 1. Superposed epoch analysis of the magnetic energy density, dipole energy density, and dayside reconnection
rate from 541 substorms. (a) The magnetic energy density in the magnetotail lobes UB (blue). The orange line is a fit to
the blue line (ignoring data within an hour of substorm onset). (b) The difference between the blue and orange lines
from panel a, denoted ΔUB. (c) The magnetic energy density of the calculated dipole field UD. (d) The reconnection rate
𝜙D, calculated from Milan et al. (2012) with the correction described in section 2. Panels a, c, and d show 3 hr either side
of substorm onset, whereas panel b shows 1 hr either side of substorm onset. The standard error on the mean is plotted
as a shaded blue area on either side of the blue line in panels a, c, and d.

In Figure 1b, ΔUB starts at ∼ 0.02 nJ/m3, and in fact Figure 1a shows that the superposed epoch analysis and
fit lines diverge after T = −75 min. This could indicate that our fit line from Figure 1a has not completely
removed the background energy density, or alternatively, it might indicate that although a substantial amount
of energy (∼ 0.03 nJ/m3) is added in the hour prior to expansion phase onset, some energy has been added
prior to that stage. ΔUB increases up to substorm onset, then plateaus between T = 0 min and T = 20 min
before decreasing back to pre-onset values. OnceΔUB begins to decrease, it takes 40 min to decrease to under
the value at the start of the interval, and inspection of Figure 1a shows that the fit line and the observed line
converge at T ≈ 75 min.

Figure 1d shows the superposed epoch analysis of dayside reconnection rate𝜙D as inferred from our modified
version of Milan et al. (2012; see section 2). 𝜙D stays fairly steady at the start of the epoch, starting to increase
at T ≈ −30 min until T ≈ −5 min. 𝜙D plateaus during −5 < T < 5 min and then decreases until around
T ≈ 15 min, at which point it levels out at the pre-onset value. Previous superposed epoch analyses of dayside
reconnection rate also show it decreasing after onset (e.g., Coxon et al., 2014a), which might be simply due
to the tendency for the IMF to turn northward on average after substorm onset. For a statistical explanation
of why this occurs, and why this does not necessarily have implications for the physics of substorm onset, the
reader is directed to the paper on the topic by Freeman and Morley (2009).

In summary, we detrend the magnetic field measurements to remove any effect of the spacecraft motion,
obtaining the change in energy density due to the substorm ΔUB. Although the ΔUB rises toward substorm
onset and then falls after substorm onset, consistent with the idea of energy being loaded into the magne-
totail and then unloaded again when a substorm begins, there is a ∼ 20-min-long plateau immediately after
substorm onset. This plateau is not colocated with a similar signature in ΦD, and we will discuss this feature
of the data in more detail in later sections.

4. Superposed Epoch Analyses at Different Downtail Distances

In order to further investigate the timing of the plateau just after substorm onset in Figure 1a, we investigate
the effect of downtail distance on the data. To do this, we subdivide the events in our database by the downtail
distance of C1 at the point of substorm onset. In order to remove variability due to the position in Y and focus
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Figure 2. Three panels plotted in the same format as Figure 1a, showing (a) the near-tail data, (b) the mid-tail data, and
(c) the far-tail data, with exact bins in X given in the text. The positional ranges refer to the location of C1 at the time of
substorm onset, and for all panels, 4 ≥ Y ≥ −4RE .

on effect with downtail distance, we discard events for which C1 was more than 4 RE away from Y = 0RE ,
which leaves us with a subset of 195 events. This criterion is intentionally strict, because we are focusing on
propagations in the X direction and therefore limiting the range in Y allows us to see these propagations more
clearly. If we do not adopt this criterion, the larger range of radial distances introduced by the extent of the
data in Y makes it harder to examine propagations in the X direction specifically.

We then further subdivide this subset into three bins of equal size, but of different downtail distance, such
that 65 events are contained within each bin. In order to achieve three bins containing 65 events each, the
spatial extents are −6.24 ≥ X >−9.20RE (hereafter referred to as near-tail), −9.20 ≥ X >−11.14RE (mid-tail),
and −11.14 ≥ X >−17.40RE (far-tail). We choose to subdivide the data by number of events in order to avoid
one of our bins being more prone to selection bias (as a result of the law of small numbers fallacy) than the
others.

Figure 2a shows the superposed epoch analysis of UB for the near-tail subset and the fit to that curve, with the
standard error on the mean shaded, in the same format as Figure 1a. Figures 2b and 2c are in the same format
as 2a but for the mid-tail and far-tail subsets, respectively. In each panel the observed UB deviates from the fit
line by more than the standard error, so we can be confident that the signal we observe is physical.

Figure 3a shows the difference in the two lines for each panel of Figure 2. Blue dots are for the near-tail
(Figure 2a), orange dots for the mid-tail (2b), and green dots for the far-tail (2c). The initial and final differences
in the energy density for each are given in Table 2, alongside the peak energy density and the time over which
the energy density plateaued at that peak.

Next, we performed a cross-correlation analysis. We shifted the mid-tail and far-tail data up to 1 hr in both
directions and then compared each lag to the near-tail data. Shifting the mid-tail data by−19 min and shifting
the far-tail data by −21 min maximized the correlation coefficients, which indicates that the plateau in the
energy density comes later as the observer’s downtail distance increases and thus implies that the energy
signature is first seen at near-Earth distances and then propagates down the magnetotail. The correlation
coefficient for the mid-tail was 0.90 and for the far-tail was 0.54, with p values beneath 10−9 in both cases.
Figure 3b reproduces the data of Figure 3a but with the time lags found from the cross-correlation analysis
applied to the mid-tail and far-tail data and then all three data sets translated by 15 min such that the plateaus
center on the time of substorm onset identified by the SOPHIE method. We also translate ΔUB by −0.025
nJ/m3 for the mid-tail and by −0.04 nJ/m3 for the far-tail data to give the best agreement by eye with the
near-tail data (which are not translated in ΔUB). This indicates that the signature in the energy density due to
the substorm gets larger as it propagates down the magnetotail. Overlaying the three data sets in this manner
gives a good agreement for the decrease in the energy density after onset.
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Figure 3. (a) The polynomial we fit in Figure 2 (orange line) subtracted from the superposed data (blue line) for each
panel of Figure 2, color coded and overlaid. (b) The data from Figure 3a, translated in T by 15 min and ΔUB by 0 nJ/m3

(near-tail), −4 min and −0.025 nJ/m3 (mid-tail), and −6 min and −0.04 nJ/m3 (far-tail).

5. A Simple Model of Observed Magnetic Energy Density During Substorms

In order to investigate the plateaus in ΔUB observed in Figures 1b and 3, we now construct a simple model
of the behavior of the energy density in the magnetotail lobes during a substorm. The algorithm used to
construct this model is shown in Figure 4. In the model, we assume that the change in energy density due to
a substorm is a linear increase in energy density in the hour up to onset followed by a linear decrease for the
following hour:

ΔUB = m

(
1 − |T|

60

)
(6)

Table 2
Table to Illustrate the Ranges of Energy Density and Lengths of Plateau in Figure 3a

ΔUB (nJ/m3) Plateau (min)

Downtail region Start Peak End Start End

Near-tail 0.020 0.050 −0.02 −30 0

Mid-tail 0.020a 0.075 −0.02 −10 10

Far-tail 0.000 0.090 0.04 −5 20

Note. This energy density occurs at approximately T = 20 min.
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Figure 4. A flowchart describing the construction of the model described in the text. Equation (6) describes the linear
increase and decrease, and the plotting described above refers to Figure 5.

where m is the maximum change in energy density in the model; this is plotted for m = 1 nJ/m3 in Figure 5
(red line).

Then, we assume that there is an observational uncertainty in the timing of a substorm with respect to the
SOPHIE onset, and we simulate 65 substorm events that are each shifted by a time difference dT randomly
sampled from a uniform distribution in the range −15 ≤ dT ≤ 15 min. The 65 simulated measurements with
the timing uncertainties are plotted in translucent gray in Figure 5.

We take the mean of the 65 simulations, which is shown as a black line in Figure 5. This black line assumes
that the only uncertainty on the measurements is in the timing and that the energy density measurements

COXON ET AL. 4748



Journal of Geophysical Research: Space Physics 10.1029/2017JA025147

Figure 5. The simple model described in the text, with m = 1 nJ/m3 and r = 1. The red line in each panel is the
substorm signature with no uncertainty in timing. (a) The 65 simulated substorms with some uncertainty in timing equal
to ±15 min (gray lines) and the mean thereof (black line). (b) The 65 simulated substorms with the same error in timing
as panel a but with an uncertainty applied to each value of energy density (gray dots) and the mean thereof (black dots).

are perfect. To eliminate this assumption, we add Gaussian noise to each measurement of energy density in
each of the 65 substorms and then take the mean, which is shown by the black dots in Figure 5. The noise has
zero mean and standard deviation equal to mr, where r is a constant to allow for different amplitudes of noise
relative to m.

In Figure 5, m = 1 nJ/m3 and r = 1. A plateau is seen centered at Tsim = 0 min with a width of ∼ 20 min,
which is a similar width to the plateaus seen in Figures 1b and 3. In Figure 6, we plot our simple model for
different values of m and r = 1 for each downtail bin. We also add a simple linear term to the model in each
plot, in order to closer match the shape of each superposed epoch analysis, as ΔUB is nonzero at T = −60
and 60 min. In Figure 6a, we plot our model with m = 0.06 nJ/m3 and overlay the near-tail data; in Figure 6b,
m = 0.09 nJ m−3 and mid-tail data are overlaid; and in Figure 6c, m = 0.10 nJ/m3 and far-tail data are overlaid.
For each of the model outputs, r = 1. Much of the variation in each of the panels is captured by the noise
level in our simple model, but some variations are not captured—for instance, in each panel, the scatter in
the superposed epoch analysis at T = −40 min is larger than the scatter in our model.

6. Discussion

Using the set of all 541 events, we find that the energy stored within the magnetotail increases from at least
60 min prior to expansion phase onset, reaching a plateau at T = 0 min, and not decreasing until T = 20
min. This indicates that the energy density in the magnetotail is increasing and decreasing consistent with
the picture of energy being stored and released in the magnetotail lobes, in support of Baker et al. (1985,
1997) and consistent with previous case studies (Caan et al., 1973) and superposed epoch analyses (Caan et al.,
1975, 1978) of the magnetic energy density. As magnetic flux is added to the magnetotail, it flares as the lobes
expand to accommodate the added flux. This increases the solar wind ram pressure on the magnetotail lobes,
which must in turn be balanced by the increase of lobe magnetic pressure, which itself must be balanced by
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Figure 6. The polynomial we fit in Figure 2 subtracted from the superposed data, plotted for the (a) near-tail,
(b) mid-tail, and (c) far-tail subsets. Each panel is shifted by the same time lag as in Figure 3b. In each panel, the simple
model described in the text is also plotted, with the m parameter set to (a) 0.06 nJ/m3, (b) 0.09 nJ/m3, and (c) 0.1 nJ/m3.
For each model, r = 1 and a linear term (plotted in gray) is added, as described in the text.
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increased plasma sheet pressure (e.g., Forsyth et al., 2014; Sun et al., 2017, and references therein). Previous
studies have found that, on average, the plasma sheet pressure increases prior to substorm onset (Forsyth
et al., 2014), but a survey of THEMIS data found that in almost 40% of substorms the plasma sheet pressure
decreased during the growth phase at downtail distances 7.5 ≲ R ≲ 12RE (Sun et al., 2017), although it should
be noted that this effect was more pronounced on the dawn and dusk flanks than in the central magnetotail.

Substorm onset is generally assumed to initiate in some region of the magnetotail, whether at a near-Earth
neutral line (Baker et al., 1996) or in the region between stretched and dipolar field lines with some current
disruption (Lui, 1996). However, substorms are usually identified by their impact on the ionosphere through
the enhancement of the westward electrojet as measured by ground magnetic deflections (Akasofu, 1968;
Birkeland, 1908, 1913; Elvey, 1957), from auroral brightenings (Akasofu, 1964), or via the presence of ULF waves
(Jacobs et al., 1964). These methods all allow the detection of the presence of a magnetospheric substorm at
some unknown point after onset, whereupon information regarding the substorm has been communicated
from the magnetosphere to the ionosphere. As such, there is an inherent uncertainty in time of the substorm
in the magnetosphere compared to the time of onset in the ionosphere. This timing issue is then further
exacerbated by measurement/technical uncertainties of the onset from auroral cameras and ground mag-
netometers. For example, Forsyth et al. (2015) showed that the SOPHIE technique provides substorm onsets
that are predominantly within 20 min of auroral onsets. By taking this uncertainty into account, and assum-
ing that the magnetic energy density immediately decreases at onset at any given location, we can explain
the apparent plateaus in energy density seen close to substorm onset in our statistical averages that, at first
glance, appear to be a stagnation of energy storage in the magnetotail at the cusp between the growth phase
and the expansion phase.

Given that the plateau in the near-tail region occurs both before the zero epoch and before the plateaus at
all radial distances then, even with ground onset uncertainty, this strongly suggests that the signatures of the
substorm are first observed in the near-tail region before being observed in the ionosphere and elsewhere in
the magnetotail. The plateau in magnetic energy density is seen in the mid-tail region at a time encompassing
the onset time and, in the far-tail region, largely occurs following the ground onset. Our results strongly indi-
cate that effects of substorm onset are first measured in the near-tail region, before being felt further downtail.
Our results also highlight the particular difficulties in comparing space and ground-based measurements, as
previous results have considered the lobes to be relatively homogeneous, whereas our results clearly show
that information has to propagate away from the onset region, both down the magnetotail and toward the
ground.

Each of the plotted superposed epoch analyses of ΔUB shows a plateau that lasts ∼ 20 min. This
plateau is immediately after substorm onset in Figure 1b and is before/centered on/after onset for the
near-tail/mid-tail/far-tail data, respectively (Figure 3). Similar features have previously been seen in super-
posed epoch analyses of substorm onsets, which looked at the behavior of different physical quantities over
the course of a substorm. A∼ 20-min plateau was seen in a superposed epoch analysis of the average latitude
of the Birkeland current ovals (Coxon et al., 2014a). This was attributed to the dayside and nightside recon-
nection rates being approximately equivalent after substorm onset, such that no expansion or contraction of
the polar cap (for which the Birkeland current ovals are a proxy) occurred. We demonstrate in section 5 that
this observation can be more simply explained by considering the uncertainty in time of a substorm onset
identification. Assuming that the uncertainty on the substorm onset is ±15 min, simulating 65 events with
random lags within this range and then superposing them shows that this plateau can arise naturally simply
from the uncertainty on the onset identification. This elegantly provides an alternative explanation for both
our results and the results of Coxon et al. (2014a).

Previously, Caan et al. (1978) conducted a superposed epoch analysis of magnetic energy density in the mag-
netotail lobes using OGO-5 data and 240 substorm onsets (determined algorithmically). The uncertainty on
their measurements is approximately equal to their observed change in magnetic energy density, so although
their results are consistent with physical expectations, we cannot infer that they could not have come about
by chance. Caan et al. (1978) first examined the superposed epoch analysis of all 240 events, finding that the
energy density in the tail rose from 1 to 1.5 hr prior to expansion phase onset and showed that the energy
density decayed for approximately 1–2 hr afterward. In our analysis of all 541 substorms (Figure 1b), we see
ΔUB increasing from T = 75 min until expansion phase onset, which is consistent with the increase in energy
density seen from 1 to 1.5 hr prior to onset observed by Caan et al. (1978). However, in this superposition,
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Caan et al. (1978) saw the energy density increase to onset and then decrease immediately after onset, which
is not consistent with our observation of a 20-min-long plateau in the energy density.

Caan et al. (1978) also subdivided their analyses by distance of the spacecraft downtail, taking events that were
within 25∘ of the Y = 0RE axis, and then subdivided into events in the range −10 ≥ X ≥ −17RE and events
in the range −17 ≥ X ≥ −20RE to represent the near-tail (34 events) and far-tail (32). This makes it difficult to
directly compare their results with ours, since C1 was located at X >−17.4RE for each of our substorm onsets.
In contrast to our results, Caan et al. (1978) observe larger magnetic energy densities in their near-tail bin
compared with their far-tail bin. We observe energy densities that are larger with distance downtail. Caan et
al. (1978) do not detrend the data by removing the magnetic energy density due to spacecraft position. Since
the magnetic field in the lobe is stronger closer to Earth, this means that the magnetic energy density will
generally be stronger closer to Earth, so this may explain why their results disagree with ours in this regard.
With respect to the lags we see between the three downtail distances, there is no obvious lag between Caan
et al.’s (1978) near-tail and far-tail observations. This could be because they do not plot data closer to Earth
than 10 RE , they have a lower number of events in their bins (approximately half of ours), they have a relatively
larger margin of error on their observations, or because of some combination of these effects.

Although we cannot measure the entire volume of the available energy in the magnetotail, using a simple
cylinder of radius 15RE and assuming an effective tail length of 50RE (the same assumption used by Baker
et al., 1997) gives a cylindrical volume of 9.14 × 1024 m3. We emphasize that this is a crude estimate, as it
does not take into account the flaring of the magnetotail, which flares until ∼ 100RE (e.g., Slavin et al., 1985).
Adding or removing magnetic flux from the magnetotail increases or decreases the flaring (Shukhtina et al.,
2004), and we note that this effect is not considered in our calculations. Taking our decrease in substorm
energy density, based on the results in Table 2, as at least 5 × 10−11 J/m3, this gives a substorm energy of
4.57 × 1014, which is approximately equal to the estimate given by Baker et al. (1997; 5 × 1014 J) but lower
than that given by Østgaard et al. (2002; 7.7 × 1015 J). It is known that SOPHIE is able to detect expansion
phase onsets for substorms with smaller signatures in ground magnetometer readings than in other onset
lists (Forsyth et al., 2015), and this result indicates that the substorm analyzed by Baker et al. (1997) is closer
in size to the substorms contributing to this analysis than the substorm of Østgaard et al. (2002), with respect
to the amount of energy dissipated. Furthermore, this contradicts hypotheses claiming that the magnetotail
is not an important source of energy for substorms (Akasofu, 2013, 2017) and supports criticism of those
hypotheses (Miyashita et al., 2015), but it does not necessarily preclude the inner magnetosphere or plasma
sheet (e.g., Forsyth et al., 2014) playing a key role.

7. Conclusions

We use magnetic field measurements from Cluster 1 to diagnose the energy density increase and decrease
leading up to and following substorm onset during 541 isolated substorms. We fit a second-order polynomial
to the observed magnetic energy density and removed it to isolate the substorm signature. The energy den-
sity increases until reaching a plateau for ∼ 20 min, which can be explained by modeling the uncertainty in
substorm onset, and then decreases by at least 5 × 10−11 J/m3 after substorm onset. Assuming that a simple
cylinder accurately represents the volume of the magnetotail lobes, this gives an average dissipated energy
of ∼ 5 × 1014 J, which is consistent with the case study of Baker et al. (1997).

We subdivided the data spatially and generated three bins in which C1 was at increasing distances down the
magnetotail at substorm onset. Plotting the superposed epoch analyses of these three subsets of the data
and performing a cross-correlation analysis has allowed us to see that the mid-tail and far-tail bins lagged
behind the near-tail bin by 19 and 21 min, respectively, indicating that the substorm signature of magnetic
energy density starts near Earth and propagates down the magnetotail. The change in magnetic energy den-
sity also increases with distance downtail. This provides evidence for a phenomenological model of substorms
in which some triggering mechanism occurs at a distance X < 9RE and then propagates both down the
magnetotail and toward the ionosphere, and thus supports the CD model of substorms.
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Erratum

Errors introduced during typesetting have been corrected in this version. In particular, instances of “SML”
have been italicized. In the fifth paragraph of the Introduction, “«SPI-I20»” has been corrected as EO02. In the
sixth paragraph of the Introduction, “«SPI-I63»” has been corrected to <10RE. The present version may be
considered the authoritative version of record.
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