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Abstract

Numerical modeling plays an essential role in both identifying and assessing
sub-surface reservoirs that might be suitable for future carbon capture and
storage projects. Accuracy of flow simulations is tested by benchmarking
against historic observations from on-going CO2 injection sites. At the Sleip-
ner project located in the North Sea, a suite of time-lapse seismic reflection
surveys enables the three-dimensional distribution of CO2 at the top of the
reservoir to be determined as a function of time. Previous attempts have
used Darcy flow simulators to model CO2 migration throughout this layer,
given the volume of injection with time and the location of the injection
point. Due primarily to computational limitations preventing adequate ex-
ploration of model parameter space, these simulations usually fail to match
the observed distribution of CO2 as a function of space and time. To circum-
vent these limitations, we develop a vertically-integrated fluid flow simulator
that is based upon the theory of topographically controlled, porous gravity
currents. This computationally efficient scheme can be used to invert for
the spatial distribution of reservoir permeability required to minimize differ-
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ences between observed and calculated CO2 distributions. When a uniform
reservoir permeability is assumed, inverse modeling is unable to adequately
match migration of CO2 at the top of the reservoir. If, however, the width
and permeability of a mapped channel deposit are allowed to independently
vary, a satisfactory match between observed and calculated CO2 distribu-
tions is obtained. Finally, the ability of this algorithm to forecast the flow of
CO2 at the top of the reservoir is assessed. By dividing the complete set of
seismic reflection surveys into training and validation subsets, we find that
the spatial pattern of permeability required to match the training subset can
successfully predict CO2 migration for the validation subset. This ability
suggests that it might be feasible to forecast migration patterns into the fu-
ture with a degree of confidence. Nevertheless, our analysis highlights the
difficulty in estimating reservoir parameters away from the region swept by
CO2 without additional observational constraints.

Keywords: Geologic CO2 storage, Numerical fluid flow simulation, Porous
gravity current

1. Introduction1

Storage of carbon dioxide in sub-surface geologic reservoirs is generally2

considered to be a key component of greenhouse gas emission reduction3

strategies (IPCC, 2014) For safe and effective storage results, CO2 should4

be stored securely in isolation from the atmosphere for thousands of years5

(Bickle, 2009). The largest available reservoirs occur within sedimentary6

rocks and consist of either depleted hydrocarbon fields or pristine saline7

aquifers (Bachu, 2000). Here, we concentrate on the suitability of saline8

aquifers for safe storage. To determine the storage security of supercritical9

CO2 trapped at depth and to demonstrate conformance between observed10

and simulated CO2 migration, the flow of injected CO2 must be numerically11

modeled over appropriate time and length scales (Chadwick and Noy, 2015).12

Storage reservoirs generally have complex geometries and geologic hetero-13

geneities that directly affect parameters such as permeability, which in turn14

influence fluid migration. To understand the relationship between reservoir15

structure and fluid flow, it is important that observations from existing stor-16

age sites are exploited to test and improve both the accuracy and reliability17

of numerical simulations.18

19
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At the Sleipner carbon capture and storage project in the North Sea, seven20

post-injection seismic reflection surveys acquired over the CO2-filled reservoir21

provide insights into the migration of CO2 through complex porous media22

at field scale (Figure 1a; Arts et al., 2004; Bickle et al., 2007; Boait et al.,23

2012). At this site, ∼ 1 Mt yr−1 of CO2 is injected into a pristine sandstone24

reservoir at a depth of 1000 m (Chadwick and Noy, 2015). Interpretation and25

analysis of time-lapse seismic surveys shows that CO2 is distributed within26

nine discrete layers (Figure 1b). The CO2 ponds beneath a stacked series27

of 1 m thick, impermeable shale horizons that are vertically distributed at28

about 30 m intervals through the Utsira Formation (Zweigel et al., 2004).29

The shale horizon immediately below the uppermost CO2 accumulation is30

approximately 5 m thick and separates the uppermost section of the reservoir,31

known as the Sand Wedge, from the rest of the formation (Figure 1c).32

The stratigraphically highest Layer 9 is of particular interest since the33

distribution of CO2 within this layer is complex and there is no evidence of34

vertical leakage from this layer. Previously, modeling of CO2 flow through35

Layer 9 has focused primarily on matching seismically observed areal plan-36

forms as a function of time (Chadwick and Noy, 2010; Cavanagh, 2013).37

This restriction is a consequence of the limited vertical resolution since the38

thickness of a thin layer is difficult to seismically image. Recently, an inverse39

modeling technique has been developed for determining the thickness of thin40

CO2-filled layers by combining measurements of the amplitude of a reflec-41

tion with small changes in two-way travel time between time-lapse surveys42

(Cowton et al., 2016). These authors applied this inverse method to each43

of the time-lapse seismic reflection surveys in order to accurately map the44

thickness of CO2-saturated rock within Layer 9 as a function of time. The45

resultant volumetric estimates can be used to address the important goal of46

understanding CO2 flow dynamics within Layer 9.47

In this contribution, we develop a simple numerical reservoir simulator to48

model the flow of CO2 through an unconfined porous medium beneath a com-49

plex caprock topography. By using a vertically-integrated formulation of the50

governing equations, this simulator is computationally efficient. A significant51

benefit of this efficiency is that it enables the inverse problem to be addressed:52

namely, what spatial distribution of permeability can best account for the53

flow of CO2 within Layer 9? First, the optimal distribution of permeability54

is calculated using a training subset of seismic surveys. Secondly, our results55

are validated by exploiting a later sub-set of seismic surveys. In this way, a56

reliable forecasting strategy to predict the future flow of CO2 within Layer 957
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of the Sleipner reservoir is developed.58

59

2. Previous Research60

Existing approaches for modeling CO2 migration at the Sleipner Field61

exploit industry-standard reservoir simulators such as GEM (Geomechanical62

Modeling; CMG, 2009), ECLIPSE (Exploration Consultants Limited Implicit63

Program for Simulation Engineering; Schlumberger, 2011), and TOUGH264

(Transport Of Unsaturated Groundwater and Heat; Pruess, 1991). These65

different methods solve Darcy’s law for flow through porous media on a three-66

dimensional grid. Such sophisticated Darcy flow simulators are capable of67

forecasting the flow of CO2 through complex geologic reservoirs but they are68

computationally expensive for two reasons. First, four-dimensional simula-69

tions have a large number of adjustable parameter values. Secondly, simula-70

tions must be carried out on length scales of kilometers and on time scales71

of tens to hundreds of years. As a result, coarse grid sizes are used to reduce72

computation time which means that significant boundary conditions, such as73

caprock topography, can be under-resolved (Oldenburg et al., 2016). High74

performance computing can be used to carry out simulations with a finer grid75

spacing on large domains by employing a massively parallel simulator such76

as PFLOTRAN (Lichtner et al., 2015). However, the use of such computing77

power is expensive and it is not always available or appropriate for regular78

use.79

80

Matching the complex spatial distribution of CO2 within Layer 9 and81

especially the rapid migration rate of CO2 along a prominent north-striking82

ridge has proved a particularly difficult challenge for typical reservoir simula-83

tors. For example, the TOUGH2 software package has been used to simulate84

CO2 flow in this layer with an isotropic permeability of 3 D (≈ 3×10−12 m2).85

The predicted planforms are approximately radial even though the topogra-86

phy of the caprock is complex (Chadwick and Noy, 2010). The match be-87

tween observed and calculated planforms can be improved by incorporating88

anisotropic permeability (i.e. 10 D and 3 D in north-south and east-west89

directions, respectively). Nevertheless, realistic migration rates along the90

north-striking topographic ridge are difficult to reproduce. Using a sim-91

pler ‘black oil’ simulator that ignores changes in composition, Cavanagh92

(2013) found that a better match between observed and calculated plan-93
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forms is found by injecting the observed amount of CO2 over the appropriate94

timescale, and then halting CO2 injection into Layer 9 and running the sim-95

ulation for a further ∼100 years. In this way, injection pressure is allowed to96

dissipate over tens of years and CO2 spreads as a result of buoyancy alone.97

This predicted long-term behavior suggests that flow within Layer 9 could98

be driven primarily by buoyancy and not by injection pressure. One pos-99

sible solution to this modeling issue is to include lower CO2-filled layers in100

the numerical simulation, which removes Layer 9 from the vicinity of the101

injection point (Lindeberg et al., 2001). However, computational limitations102

mean that grid sizes would have to be dramatically increased, which would103

decrease the resolution for flow within Layer 9.104

105

Zweigel et al. (2004) identified a possible high permeability channel within106

Layer 9. Subsequently, Williams and Chadwick (2017) used the ECLIPSE 100107

simulator with a channel permeability of 8 D, and a bulk reservoir permeabil-108

ity of 3 D. This simulation yields a better match between the observed and109

calculated planforms for most of Layer 9. However, it still does not match110

the observed rate of migration along the ridge.111

112

Computation time for modeling CO2 flow on physically appropriate length113

scales and time scales can be significantly reduced by employing a reser-114

voir simulator with reduced complexity (e.g. Bandilla et al., 2014; Nilsen115

et al., 2016). Less complex simulators exploit analytical analysis of vertically-116

equilibrated models and apply it to geologically realistic settings. Since these117

simulators use a vertically-integrated formulation, fluid flow can be solved on118

a two-dimensional grid which significantly increases computational efficiency.119

For example, Bandilla et al. (2014) report running times of several minutes on120

a single core for their vertically equilibrated model when simulating CO2 flow121

in Layer 9 using the International Energy Agency Greenhouse Gas Research122

and Development Programme (IEAGHG) benchmark (50 × 50 m grid; Singh123

et al., 2010). This value compares favorably with several hours on 100 cores124

for a typical TOUGH2 simulation with identical input parameters. Compara-125

tive studies show that these different simulators yield broadly similar results126

(Nilsen et al., 2011; Bandilla et al., 2014).127

128

Finally, Nilsen et al. (2017) exploit the adjoint method to invert for129

caprock topography, permeability, CO2 density, porosity and injection rates.130

This method yields an excellent match to estimated thickness measurements131
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of Layer 9 for calendar years 2001, 2004, 2006 and 2010 (Chadwick and Noy,132

2010; Furre and Eiken, 2014). Their analysis shows that a generalized in-133

verse model with many adjustable parameters can yield an accurate match134

to observations. However, the formulation used by Nilsen et al. (2017) yields135

a non-unique set of parameters that are not necessarily constrained by ad-136

ditional observational constraints. For example, changes in any combination137

of permeability, density or caprock topography can reduce CO2 flux through138

a grid cell. If all parameters are allowed to vary, the likelihood of matching139

observations increases at the expense of insight gained. Consequently, the140

results of Nilsen et al. (2017) are only a partially satisfactory explanation of141

the spreading planform of CO2 within Layer 9.142

143

In summary, the problem of matching observed spreading rates for Layer 9144

is not necessarily resolved by employing a new formulation of the governing145

equations. Nonetheless, the development of simulators with greatly reduced146

computational times opens up the possibility of investigating uncertainties147

in model space by facilitating an inverse modeling approach.148

149

3. Modeling Strategy150

The reservoir model described here simulates the flow of CO2 through sat-151

urated porous media as a buoyancy-driven gravity current. A key feature of152

these currents is that their lateral extent is about one hundred times greater153

than their thickness. This characteristic aspect ratio is observed for all nine154

CO2-filled layers at the Sleipner Field. Laboratory studies also demonstrate155

that flow of a density-driven invading fluid through porous media can be ac-156

curately described by a gravity current (Huppert and Woods, 1995; Golding157

et al., 2011). In its simplest form, the governing equation of a gravity cur-158

rent is vertically-integrated, which means that vertical changes in reservoir159

properties are incorporated as depth-averaged quantities.160

161

A significant consideration when modeling CO2 flow through porous me-162

dia is whether the reservoir is confined or unconfined. A reservoir is uncon-163

fined if the flow of ambient water can be neglected. This assumption is valid164

when the thickness of the reservoir unit is much greater than the thickness165

of the intruding fluid. Pegler et al. (2014) found that confinement can be166
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neglected provided that167

h� µc

µa

Ha, (1)

where h is the thickness of the CO2-saturated layer, Ha is the thickness of the168

reservoir unit, µc is the viscosity of supercritical CO2, and µa is the viscosity169

of the ambient water.170

171

At the Sleipner Field, the uppermost unit of the Utsira Formation that172

includes Layer 9 is known as the Sand Wedge (Figure 2b). The top surface173

of this unit is bounded by the caprock of the Utsira Formation and its base174

is marked by a 5 m thick shale layer. This reservoir is estimated to be ∼175

20 m thick, increasing to 30 m where the CO2 layer is thickest (Williams176

and Chadwick, 2017). A viscosity ratio of µc/µa ' 0.1 implies that the177

CO2 layer behaves as an unconfined current wherever it is thinner than 2–178

3 m— a circumstance that probably holds during the early stages of flow179

and at the nose of the gravity current. We note that Equation (1) is an180

approximation that applies to a uniform, two-dimensional reservoir and does181

not include the effects of topographic gradients within the caprock. This182

caveat suggests that the unconfined approximation may be used for complex183

three-dimensional geometries with modest confinement. Here, we make the184

simplifying assumption that the current is unconfined at all times and explore185

the ability of such a simulator to explain the observed spreading patterns.186

187

We have chosen to neglect capillary forces that give rise to partially sat-188

urated currents. The results of centrifuge experiments carried out on core189

material from the Utsira Formation yield vertical CO2 saturation profiles190

which suggest that the capillary transition zone at the base of the CO2 layer191

is approximately 1 m thick (Chadwick et al., 2004). Other experimental and192

analytical results suggest that the rate of CO2 migration is not significantly193

impeded by capillary forces during the injection phase (Golding et al., 2011).194

Our simple model describes the flow of a single-phase gravity current with195

a sharp interface along a slope within an unconfined saline aquifer. Fluid flow196

in porous media is governed by Darcy’s law,197

φũ = u = −k
µ

(∇P + ρgẑ) , (2)

where φ is the porosity, ũ is the interstitial fluid velocity, u = (u, v, w) is the198
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Darcy velocity or volumetric fluid flux, k is the permeability, µ the viscosity of199

CO2, ∇P is the pressure gradient, ρ the density of the fluid, g is gravitational200

acceleration, and ẑ is a unit vector in the vertical direction (Figure 3). We201

treat the flow of CO2 as incompressible so that202

∇ · u = 0. (3)

For a long, thin gravity current flowing beneath an impermeable boundary203

with topography d(x, y), the vertical velocity is negligible and hence the204

pressure is hydrostatic,205

P =

{
PH − ρag[H − (d+ h)]− ρcg[(d+ h)− z], d < z < d+ h,
PH − ρag(H − z), d+ h < z < H,

(4)

where PH is the pressure at a reference horizon beneath the gravity current at206

depth z = H, ρc is the density of the injected buoyant fluid, ρa is the density207

of the ambient water, and h(x, y, t) is the thickness of CO2-saturated rock208

(i.e. the gravity current). In contrast to the models of Huppert and Woods209

(1995) and Vella and Huppert (2006) that are formulated in a slope-parallel210

reference frame, this model uses a horizontal reference for which it is simpler211

to compute complex reservoir geometries (e.g. Figure 2a).212

213

From Darcy’s law, the horizontal Darcy velocity, uH = (u, v), is given by214

uH = −k
µ
∇HP = −kg∆ρ

µ
∇H(d+ h), (5)

where ∇H is the horizontal gradient operator, ∆ρ = (ρa − ρc) is the density215

difference between the two fluids , and ub = kg∆ρ/µ is the buoyancy velocity.216

217

For vertically uniform permeability, flow within the current is uniform as218

a function of depth. Integrating the divergence of the Darcy velocity over219

the depth of the current in combination with Equation 5 yields220

φ
∂h

∂t
−∇H ·

{
k∆ρg

µ
h∇Hd

}
= ∇H ·

{
k∆ρg

µ
h∇Hh

}
. (6)

This formulation highlights that the change in thickness of the CO2 current221

with time is driven by advection of CO2 caused by topographic gradients222
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within the caprock and by diffusion of CO2 away from regions where the223

gravity current is thickest.224

225

The model described by Equation 6 is a simplified version of so-called ver-226

tical equilibrium models developed over the last decade (e.g. Golding et al.,227

2011; Guo et al., 2014; Andersen et al., 2015). Such models exploit the large228

aspect ratio of spreading currents of CO2 to reduce the complexity of flow229

simulations in three dimensions by assuming that flow predominantly occurs230

in the horizontal, or along-slope, direction. The large aspect ratio implies231

that pressure is, to leading order, hydrostatic which means that flow is driven232

by gradients in the depth of the current and by gravity acting along slope233

for topographically controlled, unconfined currents. Many of these models234

also treat partial saturation within the CO2 plume. Here, given both the235

advantageous geometry and the pore structure of the Utsira sandstone, we236

can confidently neglect these complicating features and focus on using this237

simplified approach to understand what principally controls CO2 flow at the238

Sleipner Field. In this sense, The model presented here is a useful test of the239

efficacy of vertical equilibrium models when matching field observations.240

241

We solve Equation (6) using a Crank-Nicholson finite difference scheme242

that is centered in time and space (Press et al., 2007). Subsequent time243

steps are solved efficiently by using tridiagonal elimination. A predictor-244

corrector scheme is used to evaluate non-linear diffusive buoyancy (Press245

et al., 2007). To improve the stability of this numerical solution in regions246

that are susceptible to numerical instability (e.g. sharp changes in topo-247

graphic gradient), the Il’in three-point differencing scheme is applied (Il’in,248

1969; Clauser and Kiesner, 1987). This scheme automatically determines249

the amount of ‘upwinding’ required to keep the model stable for high Peclet250

numbers. An alternating direction implicit (ADI) scheme is adapted to prop-251

agate the gravity current in three dimensions (Peaceman and Rachford, 1955;252

Press et al., 2007). This numerical scheme has been carefully benchmarked253

against analytical solutions for simplified gravity currents in both two- and254

three- dimensions presented by Huppert and Woods (1995) and Vella and255

Huppert (2006), respectively.256
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4. Application257

Solutions of Equation (6) yield predicted distributions of CO2, h(x, y, t),258

that can be directly compared with the observed distribution obtained by259

analyzing seismic reflection surveys (Cowton et al., 2016). The geometry260

of the reservoir and its physical properties, for example the shape of the261

impermeable boundary along which CO2 fluid is spreading, d(x, y), and the262

permeability, k(x, y), and porosity, φ(x, y), must be determined. In addition,263

the volumetric flux of CO2 into Layer 9 at the top of the reservoir, V (t),264

together with the location of the injection point are required. Finally, the265

density and viscosity of supercritical CO2 must be estimated.266

4.1. Reservoir Geometry and Properties267

The reservoir geometry is constrained by picking the bright reflection268

that marks the top of the Utsira Formation on the 1994 baseline seismic269

reflection survey. This survey was binned into 12.5 × 12.5 m blocks before270

signal processing. The dominant frequency of the stacked seismic volume is271

30 Hz which means that the vertical and horizontal resolution is about 16272

m. This value limits the scale of topographic features that can be resolved.273

A reflection at the top of the Utsira Formation can also be easily picked on274

subsequent seismic surveys. Differences between two-way travel time maps275

of this reflection are as small as ±1 ms which suggests that estimates of276

reservoir topography are robust but affected by noise of order ±1 m (Cow-277

ton et al., 2016). To mitigate short wavelength noise, a median filter with278

50 m block sizes is applied to the picked surface on each time-lapse survey279

(Hall, 2007). Each filtered surface is then interpolated using a continuous280

curvature spline with a tension factor of 0.1 (Smith and Wessel, 1990). By281

smoothing picked surfaces in this way, spikes, sinks and other unphysically282

sharp gradients that could affect the stability of numerical flow simulations283

are removed. The top of the Utsira Formation is not affected by faulting in284

the vicinity of the injection site.285

286

The topographic surface of the caprock is picked in two-way travel time287

(twtt) and is converted into meters below sea-level using288

d =

(
trc
2

)
Vsed − c, (7)
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where d is the relative depth to the reservoir-caprock boundary in meters,289

trc is the two-way travel time down to this boundary, Vsed = 2150 m s−1
290

is the acoustic velocity of the Nordland Shale Formation (i.e. the overly-291

ing stratigraphic unit), and c = 115 m is a constant obtained from sonic292

log measurements that enables relative depth to be synchronized to true293

depth (Figure 2a). Chadwick et al. (2016) report that, although there is no294

systematic spatial variation in stacking velocities determined during seismic295

processing, the uncertainty in the value of Vsed is ±46 m s−1. Values of296

Vsed calculated using sonic log measurements from nearby wells fall within297

the range of 2133–2159 m s−1. Uncertainties in the regional velocity of the298

Nordland Shale Formation contribute to uncertainty in the magnitude of to-299

pographic gradients, whereas local variability of velocity affects the detailed300

pattern of topographic relief.301

302

Pre-existing gas-rich pockets within the Nordland Formation demonstrate303

that the assumption of a uniform velocity within the overburden does not304

hold across the survey region. These pockets have lower acoustic veloci-305

ties than those of the surrounding brine-saturated rock. Consequently, their306

presence systematically increases the calculated depth down to the reservoir-307

caprock boundary in these regions and disrupts the coherency of underlying308

reflections. In these circumstances, topographic measurements are interpo-309

lated and filled across any gaps in mapping (Smith and Wessel, 1990).310

311

Porosity and permeability of the Utsira Formation are estimated using312

core material from a well located ∼1 km from the injection point (Zweigel313

et al., 2004). This formation is composed of largely unconsolidated sand314

grains with a bimodal grain size distribution showing peaks at 3 µm and at315

0.2 mm. In core samples, its porosity is φ = 0.37 ± 0.03 which agrees with316

estimates from wireline logs. Measured permeabilities of the Utsira Forma-317

tion are k = 2–5 D (Lindeberg et al., 2001; Zweigel et al., 2004). Well tests318

from the nearby Grane and Oseberg areas suggest that permeability could319

have a bigger range of 1–8 D (Zweigel et al., 2004).320

321

The thickness of the Sand Wedge unit is shown in Figure 2b. A pro-322

nounced linear feature that runs approximately north-south has been previ-323

ously interpreted as a submarine channel deposit (Zweigel et al., 2004). Such324

channels are characteristic of the Utsira Formation (Gregersen, 1998). In325

this case, the mapped channel has a similar scale and sinuosity to low sin-326
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uosity submarine channels described elsewhere (Clark and Pickering, 1996).327

Sediments deposited within channels are often coarser grained as a result of328

faster flow velocities within the channel and are likely to have higher perme-329

abilities (Beard and Weyl, 1973). These high permeability channels can play330

an significant role in fluid migration.331

332

4.2. Fluid Properties and Injection Rates333

Layer 9 sits at the top of the reservoir where the hydrostatic pressure is334

8.2–8.9 MPa and temperature is 28.4–30.7 ◦ C (Alnes et al., 2011). These335

estimates are close to the critical point on the phase diagram which means336

that estimates of the density and viscosity of CO2 within Layer 9 are sensi-337

tive to small changes in temperature within the saline reservoir. Alnes et al.338

(2011) calculated that the average density of CO2 within the reservoir is339

675± 20 kg m−3 by modeling time-lapse micro-gravity measurements. This340

estimate agrees with that determined by modeling the temperature history341

of the CO2 plume for the entire reservoir with the PFLOTRAN software pack-342

age that solves for multi-phase reactive flow and transport within a porous343

medium (Lichtner et al., 2015; Williams and Chadwick, 2017). Here, we use344

a slightly higher value of 690±30 kg m−3 to account for cooling of CO2 away345

from the injection point. Finally, the dynamic viscosity of CO2 at pressures346

and temperatures that are characteristic of the top part of the reservoir is347

µc = 5± 1× 10−5 Pa s (Bickle et al., 2007; Williams and Chadwick, 2017).348

349

The existence of sub-vertical seismic chimneys described by Chadwick350

et al. (2004) and by Cowton et al. (2016) is consistent with vertical migration351

of CO2 through the reservoir rocks. One major chimney correlates closely352

with the first observed accumulation of CO2 in different layers. Therefore,353

it is reasonable to infer that the location of this chimney is likely to be the354

most significant injection point for Layer 9 (Figure 2c and Figure 4g,n). On355

Figure 4f, a small disconnected patch of CO2 exists south of the significant356

CO2-filled layer on the seismic survey for calendar year 2008. This outly-357

ing patch connects with the rest of the CO2-filled distribution on the 2010358

survey. Its existence suggests that there may be at least one other, albeit359

considerably smaller, injection point for Layer 9. For simplicity, we assume360

that its contribution is negligible and that most CO2 is injected through the361

largest central chimney (Cowton et al., 2016).362

363
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Finally, the flux of CO2 fluid into Layer 9 is estimated from the detailed364

volume calculations of Cowton et al. (2016). Re-evaluation of their calcula-365

tions suggest that the volumetric injection rate is given by366

q =
dV (t)

dt
= nC (t− t0)n−1 , (8)

where C = 9500±5700 m3 yr−n, t0 = 1998.1±0.5 and n = 2.1±0.2. The un-367

certainty of this injection rate is estimated from CO2 thickness measurements368

which includes the uncertainty of the acoustic velocity of CO2-saturated sand-369

stone (Cowton et al., 2016).370

5. Results of Inverse Modeling371

By adopting a vertically-integrated formulation, the flow model presented372

here is considerably more efficient than conventional Darcy flow simulators.373

Each of our simulations takes less than ∼10 minutes to run on a single core.374

This short calculation time means that the best-fitting value of permeability375

that minimizes the difference between the observed and calculated CO2 dis-376

tributions can be determined by inverse modeling. At each stage, a starting377

model is computed using permeability values measured from nearby bore-378

holes. The influence of uniform and spatially variable permeabilities is inves-379

tigated by grid search.380

381

Simulated CO2 flow throughout Layer 9 for a uniform permeability of382

k = 2 D is compared with the observed CO2 distribution (Figure 4a-g, o-u;383

Cowton et al., 2016). In this simulation, it is clear that the northerly exten-384

sion of the plume along the topographic ridge at the top of the reservoir does385

not move rapidly enough to reach the northern topographic dome. Instead,386

the sluggish spreading rate causes CO2 to accumulate adjacent to the injec-387

tion point where it reaches a thickness of 12 m by 2010 which is considerably388

greater than observed.389

390

The principal result of constant permeability simulations is that using391

different combinations of input parameters does not yield adequate matches392

between observed and calculated CO2 distributions. For example, uncertain-393

ties in the detailed shape of caprock topography could potentially account394

for significant discrepancies (Chadwick et al., 2016). However, to signifi-395

cantly improve the match between observed and calculated planforms at the396
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northern end of survey, the topographic gradient would need to be increased397

by as much as 50 m. This value is substantially greater than permitted398

by uncertainties in the acoustic velocity of the Nordland Shale Formation.399

Alternatively, the physical properties of supercritical CO2 may vary within400

Layer 9 since the estimated pressure and temperature are close to the critical401

point. Changes in these properties directly affect the value of the buoyancy402

velocity, ub. Here, we note that quoted uncertainties in ∆ρ and µ for k = 2 D403

yields ub = 1.4+0.5
−0.3 × 10−4 m s−1. This range is equivalent to changes in per-404

meability of k = 2+0.7
−0.5 D.405

406

5.1. Uniform Permeability407

The mismatch between observed and simulated CO2 distributions is sub-408

stantial, which suggest that the assumption of a uniform permeability of409

k = 2 D is incorrect notwithstanding uncertainties in the fluid properties410

injected CO2 fluid within Layer 9. Here, we first explore simulations where411

different but constant values of k are assumed. A parameter sweep is per-412

formed to find the optimal permeability for Layer 9. For each value of k, the413

calculated distribution of CO2 is compared with the observed distribution414

using a misfit function415

M =
1

Ns

Ns∑
j=1999

[
1

N

N∑
i=1

(
hcij − hoij
σij

)2
]1/2

, (9)

where hcij is the calculated thickness of the CO2 layer, hoij is the observed416

thickness, and σij is the standard deviation of the observed thickness (Fig-417

ure 5a; Cowton et al., 2016). Here, i refers to a particular thickness value out418

of a total of N values from each survey where the observed CO2-filled layer419

is > 0.5 m thick, and j refers to a given seismic reflection survey between420

calendar years 1999 and 2010 where Ns is the total number of surveys.421

Our estimates of standard deviation are deliberately conservative. Thus422

for hoij > 5 m, σ is determined from synthetic tests but for hoij < 5 m we apply423

a large uniform uncertainty of σ = 0.5 m. This uniform uncertainty account424

for errors in caprock topography that can cause discrepancies between ob-425

served and calculated CO2 thicknesses, particularly in regions where Layer 9426

is very thin. A threshold of 0.5 m is chosen based on the uncertainty in427

reliably resolving the thickness of a thin layer on a seismic reflection survey428
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with a given frequency content (Figure 5a).429

430

A parameter sweep of k shows that a broad global minimum of residual431

misfit between observed and calculated CO2 thicknesses occurs for k = 5–432

12 D (Figure 5b). Despite this success, the spatial distribution of CO2 and433

its observed rate of northward migration cannot be matched, even when434

k = 12 D (Figure 4h-n and o-u). At the southern end of the planform,435

there is also significant misfit between observed and calculated distributions.436

Therefore although high values of permeability can generally account for a437

rapid rate toward the north, the southward spread of CO2 requires a lower438

permeability to allow ponding of CO2 close to the injection point. These439

remaining discrepancies suggest that a more complex spatial pattern of per-440

meability is required.441

442

5.2. Spatially Variable Permeability443

Our justification for investigating the consequences of a more complex444

pattern of permeability is centered on the existence of a notable, 25–30 m445

thick, linear channel that curves and splays northward (Figure 2b). A series446

of small crevasse splays can be interpreted along the left-hand bank of this447

feature which suggests that it is a channelized submarine fan deposit. It is448

well known that these channel deposits can have high values of porosity and449

permeability which make them favorable hydrocarbon exploration targets.450

Eldrett et al. (2015) observe that in the Paleocene Sele Formation, North451

Sea, the permeability contrast between high-quality sands deposited within452

channels and the overbank and levee facies is typically several orders of mag-453

nitude.454

455

Here, we test the influence that this linear permeability feature has upon456

flow prediction by using a simple parametrization of spatially varying perme-457

ability (Figure 2b). The region under consideration is divided into two parts458

comprising the linear channel and the rest of the reservoir by using three in-459

dependent parameters: w, the width of the channel; k1, the permeability of460

the reservoir; and k2, the permeability of the channel (Figure 2c). Our goal461

is to minimize the misfit between the observed and calculated distributions462

of CO2 by varying these three parameters using a simple grid search.463

464
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Figure 6 shows how misfit varies as a function of w, k1 and k2. A shal-465

low global minimum occurs at w = 700 ± 125 m, k1 = 3.5 ± 1 D, and466

k2 = 20 ± 8 D. The shape of this misfit function makes calculating formal467

uncertainties challenging. Our quoted uncertainties are estimated from that468

misfit contour which shows a 1 % increase above the global minimum. These469

uncertainties clearly show that k1 is well constrained with a value that is sat-470

isfyingly close to that estimated independently from reservoir core material471

(Zweigel et al., 2004). There is little trade-off between k1 and the other two472

parameters. The values of k2 and w are less well constrained and exhibit the473

expected degree of negative trade-off (i.e. a narrower channel with a higher474

permeability yields as good a fit as a wider channel with lower permeability).475

476

The optimal permeability of this channel is regarded as physically plausi-477

ble when compared to experimental permeability measurements carried out478

on unconsolidated sand (Beard and Weyl, 1973). An empirical relationship479

between permeability and porosity based on measurements from the clean480

and well sorted Fontainebleau sandstone shows that k ' 3.03 × 10−4(φ)3.05,481

which suggests that rocks with a porosity of φ = 0.37 can have a permeability482

as great as ∼20 D (Bourbie and Zinszner, 1985). Similarly clear correlations483

between porosity and permeability are also observed for Paleocene North484

Sea hydrocarbon reservoirs, such as the Ormen Lange field, the Maureen485

formation, and the Forties Sandstone member. In each case, permeabilities486

of ∼20 D are reasonable for sandstones with φ = 0.37 (Grecula et al., 2015;487

Kilhams et al., 2015; Jones et al., 2015). These estimates are in line with488

a permeability calculated using the Carman-Kozeny relationship for clean489

sand with a mean grain size of 200 µm. Figure 7 confirms that, in order490

to accurately match the observed rate of migration along the length of the491

channel, a permeability of up to 30 D is required. We note that the predicted492

buoyancy velocity within this channel is too great to have been generated by493

reasonable variations in the density and viscosity of CO2.494

495

Figure 8h-n shows that the combination of lower permeability near the496

injection point and higher permeability within the channel provides the re-497

quired heterogeneity of reservoir properties to yield an improved match to498

both the southward and northward migration of fluid. The largest residual499

misfit occurs along the eastern side where migration of CO2 into part of the500

north-running ridge occurs much earlier than observed on the seismic re-501

flection surveys. One possible explanation is that a low permeability region502
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exists between two distinct and parallel channels, reducing the flux of CO2503

into the eastern channel. Alternatively, the topographic smoothing applied504

to mitigate the effects of noise may have reduced the spill-point depth in this505

area.506

507

The results of running flow simulations that include spatially variable508

permeability suggest that vertical equilibrium algorithms can be exploited509

in combination with seismically derived observations to build reservoir mod-510

els that predict good matches between observed and calculated CO2 distri-511

butions throughout Layer 9. Here, we have been able to match observed512

migration rates by considering buoyancy driven flow with reasonable val-513

ues of permeability without requiring significant changes to the observed514

caprock topography. Note, however, that the impact that reservoir confine-515

ment might have upon flow of CO2 cannot be assessed using this model alone.516

We conclude that an inverse modeling approach can shed useful light on the517

properties of Layer 9 and have a role to play alongside traditional reservoir518

characterization techniques to improve forecasts of CO2 flow at other poten-519

tial carbon capture and storage sites.520

521

6. Benchmarking, Testing, and Forecasting522

The computational efficiency of our algorithm relies on the assumption523

that the flow of CO2 may be treated as an unconfined, porous gravity current.524

It is important to test the results of using a vertically-integrated approach525

with more conventional three-dimensional flow simulators. Here, CO2 flow526

within Layer 9 was also simulated by running the ECLIPSE 100 black oil527

reservoir model with our optimal, spatially variable, permeability distribution528

(Figure 8o-u). Due to the necessarily greater computation time, grid cells529

for the ECLIPSE 100 simulation were chosen to be twice the size of those530

for the vertically-integrated model (i.e. 25 × 25 m). These grid cells were531

vertically spaced 1 m apart and the reservoir was assumed to be 24 m thick532

with an impermeable lower boundary. Other parameters such as caprock533

topography, reservoir properties, rate of injection, locus of injection point,534

and fluid properties are unchanged.535

The results of the ECLIPSE 100 simulation are nearly identical to those536

of our vertically-integrated model (compare Figure 8o-u and h-n). Inclusion537

of an impermeable lower boundary condition does not appear to make a538
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significant difference, which strongly supports our assumption of an uncon-539

fined reservoir. Minor differences can probably be attributed to the reduced540

resolution of caprock topography used in the ECLIPSE 100 simulation (Fig-541

ure 8v-ab). Note that this simulation took approximately one hundred times542

longer to run than the vertically-integrated model on a single core. This sub-543

stantial difference in computation time confirms that an inverse permeability544

model based upon conventional flow simulators is, at present, impractical. It545

is also worth noting that, within the constraints of the gravity current ap-546

proximation, improved horizontal is achieved with the vertically-integrated547

simulations.548

A reservoir simulator should have the ability to forecast future flow through549

a given reservoir model. To test the ability of our vertically averaged sim-550

ulator to predict CO2 flow at the Sleipner Field, we have divided the set551

of time-lapse seismic images from surveys for all seven calendar years into552

different training and validation sub-sets (Table 1). In each case, the train-553

ing sub-set of surveys are used to identify optimal reservoir parameters by554

minimizing the misfit between observed and calculated flow distributions555

(Equation 9). These results are then used to predict flow distributions for556

the validation sub-set. Confidence in the simulator depends upon its ability557

to independently predict flow distributions that have a small residual misfit558

compared with the baseline performance that is calculated using the entire559

set. We acknowledge that this machine-learning approach is less useful when560

the number of sets of observations is small. However, the significant expense561

of acquiring additional seismic reflection surveys suggests that testing even562

a limited ability to predict future behavior is a worthwhile endeavor.563

564

Our analysis indicates that a reasonable prediction of the distribution of565

CO2 up to 2008 can be made by using simulations up to and including 2004,566

provided that the rate of injection into Layer 9 is known (Table 1). However,567

our ability to predict the distribution of CO2 for 2010 by fitting the training568

set shows a marked deterioration. This deterioration may be caused by a569

notable reduction in observed migration velocity along the northern protu-570

berance, which suggests that permeability may decrease northward along the571

channel (Figure 7). This inference is in accordance with observations made by572

(Clark and Pickering, 1996), who suggested that deposition of sands within573

a channel can be variable along the length of a channel, particularly near574

channel bends, and cause permeability to spatially vary. An alternative pos-575

sibility is that uncertainties in the detailed topography of the northern dome576
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Table 1: Forecasting CO2 flow in Layer 9. Best-fitting parameters for flow model found by
grid search for training set. Misfit for each seismic reflection survey for each set of trained
parameters are shown in black. Misfits for test data shown in red.

Training Set
Model Parameters Misfit

w, m k1, D k2, D 1999 2001 2002 2004 2006 2008 2010

1999-2010 700 3.5 20 2.88 2.21 2.31 2.60 2.86 3.35 3.33
1999-2008 650 3.5 30 2.89 2.15 2.27 2.66 2.93 3.23 3.66
1999-2006 700 3.5 20 2.88 2.21 2.31 2.60 2.86 3.35 3.33
1999-2004 650 4 28 2.88 2.17 2.28 2.62 2.95 3.26 3.63
1999-2002 650 3.5 50 2.88 2.13 2.24 2.80 3.10 3.43 4.26

give rise to discrepancies between observed and calculated distributions of577

CO2.578

579

Since supercritical CO2 fluid is being injected into the Utsira Formation580

as of 2017, it is worthwhile attempting to use our vertically-integrated simu-581

lator to forecast future distributions. Here, we explore two end-member sets582

of forecasts that are based upon having fitted CO2 distributions up to and583

including 2010. The first set assumes that no additional CO2 is injected into584

Layer 9 after 2010 (Figure 9a; c-h). With zero additional flux, the distribu-585

tion of CO2 shows little further change which suggests that fluid has already586

reached a state of buoyant equilibrium by previously migrating rapidly from587

the southern to the northern dome. The second set assumes that the in-588

jection rate continues to increase in accordance with Equation 8 after 2010589

(Figure 9b; i-n). In this case, the areal planform continues to increase almost590

linearly. Note that the volume of CO2 trapped beneath the southern dome591

does not significantly increase between 2010 and 2022 and the maximum592

thickness only increases by ∼ 3 m. The bulk of CO2 that enters Layer 9593

during this period is accounted for by an increase in the amount that is594

trapped beneath the northern dome. This northern dome has a significantly595

greater trapping capacity than the southern dome, which implies that CO2596

will continue to safely migrate into it for many years. However, as the layer597

of accumulated CO2 thickens, it is likely that reservoir confinement and the598

consequent flow of ambient fluid will begin to influence flow dynamics. At599
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that stage, our simplified reservoir simulator will not longer be capable of600

accurately describing the distribution of CO2.601

7. Discussion and Conclusions602

We describe and apply a simplified numerical reservoir simulator based603

on buoyancy-driven gravity currents to model CO2 flow through an uncon-604

fined porous reservoir. The vertically-integrated nature of the governing605

equations means that this model is computationally efficient compared to606

industry-standard, three-dimensional Darcy flow simulators. This reservoir607

simulator is used to investigate flow of CO2 together with the reservoir prop-608

erties required to reproduce the seismically-derived distribution of CO2 in609

three dimensions for Layer 9 of the Sleipner Field. Flow simulations per-610

formed using measured reservoir geometry and reservoir and fluid properties611

only partially match the observed CO2 distributions. Analysis of the base-612

line seismic reflection survey suggests the existence of a submarine channel613

deposit within the reservoir. A simple spatially varying reservoir model with614

a high permeability channel is found to reduce the misfit between observed615

and calculated CO2 distributions. Consideration of the confinement of the616

reservoir does not appear to be required the evolution of Layer 9. Using this617

best-fitting reservoir model, the future flow of CO2 within Layer 9 can be618

forecast by making simplified assumptions about the future flux of CO2 into619

Layer 9.620

621

An inverse modeling strategy is used to identify a reservoir permeability622

that permits a good match between the observed and calculated migration623

of CO2 through Layer 9 of the Utsira Formation reservoir. Our comparisons624

and tests validate the utility of using vertically equilibrated models as the625

basis of inverse tools with which to assess reservoir properties. However, it626

is clear that there are regions in which discrepancies between observed and627

calculated CO2 distributions remain. These discrepancies can be attributed628

to uncertainties in geologic parameters that are not permitted to vary in629

our inversion scheme, such as detailed caprock topography and intra-channel630

permeability. The high bias and low variance input permeability model used631

here is likely to underfit the observed CO2 distribution (Geman et al., 1992).632

Equally, a low bias and high variance approach that manipulates parameters633

such as permeability and caprock topography on the grid square level to yield634

a precise match with the observed CO2 distribution will overfit the data. The635
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choice of parameters that would permit this match is non-unique, a problem636

exacerbated by the limited number of time-lapse seismic surveys and by the637

uncertainty in the observed CO2 distribution.638

In order to build an improved forecasting strategy, a permeability model639

with intermediate complexity is required. For example, our simple channel640

model can be made more complex by the addition of a variable permeability641

within the channel. However, for unconfined flows, the observed pattern of642

migration is only sensitive to the area swept out by the CO2 plume. Estimat-643

ing parameters in this way, outside of the swept region, is difficult without644

evidence from additional sources. While a generalized model could be in-645

verted to find a more complex permeability structure this is, at present,646

unlikely to lead to significant improvements in the inferred reservoir model647

and its associated ability to forecast future CO2 flow.648

The success of this reservoir simulation, in conjunction with analysis649

by Bandilla et al. (2014) and Nilsen et al. (2017) amongst others, shows650

that vertically-integrated models are a computationally efficient alternative651

to conventional Darcy flow simulators when modeling the flow of CO2 on652

appropriate length and time scales. These efficient models can help to im-653

prove the match between reservoir simulations and geophysical observations.654

Whilst limited agreement has already been demonstrated at the Ketzin site655

in Germany and at the Snøhvit site in Norway, the use of low-computational656

cost reservoir simulations to test suites of reservoir models could enhance657

our understanding of the sub-surface reservoir characteristics of other fields658

where CO2 injection has been carried out (Grude et al., 2014; Lüth et al.,659

2015). A large body of literature that has already documented analytical660

solutions for gravity currents in different situations means that the simulator661

described here can be adapted quickly and easily to model CO2 flow within662

other storage geologic reservoirs.663
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Figure 1: (a) Cross-line (i.e. vertical slice) from 2010 seismic reflection survey. Red/blue =
positive/negative amplitude reflections. (b) Geologic interpretation. Numbered black lay-
ers = mappable reflections from CO2-filled sandstone horizons; orange layer = Sand Wedge
unit; yellow layer = Utsira Formation; green layer = Hordaland Formation (solid/dashed
line = mappable/extrapolated top of this formation); sub-vertical lines = minor normal
faults. (c) Schematic cross-section showing configuration of CO2-filled horizons within
saline reservoir (note vertical exaggeration). Dotted pattern = Utsira Formation; num-
bered black layers = nine CO2-filled sandstone horizons separated by thin mudstones; solid
circle = locus of injection well; dashed vertical arrows = putative flow of CO2 between
sandstone layers. Inset map shows general location of carbon capture and storage project
at Sleipner Field.
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Figure 2: (a) Topography of upper surface of Utsira Formation (meters below sea level).
X–X′ indicates location of seismic profile shown in Figure 1a-b. (b) Thickness of Sand
Wedge unit. Solid black box = extent of modeled domain described in text. (c) Sketch
of idealized model used for flow simulations. Solid circle = locus of CO2 input; red line
= outline of CO2-filled Layer 9 for year 2010; pair of dashed lines = locus of putative
sedimentary channel where w is width of channel in x direction, k2 is permeability of
channel, and k1 is background permeability.
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Figure 3: Sketch showing a three-dimensional geometry of gravity current along the sloping
interface. Thick line with hatching = caprock interface; thin line = base of gravity current;
symbols described in text.
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Figure 4: (a)-(g) Temporal sequence showing measured distributions of CO2 thickness
for years 1999–2010 determined from analysis of seismic reflection datasets (Cowton et al.,
2016). Cross-hatched polygons = regions where reflections are incoherent due to pockets
of natural gas within sedimentary overburden; solid circle in panel (g) indicates locus
of inferred CO2 input for 2010. (h)-(n) Temporal sequence showing predicted distribu-
tions of CO2 thickness using k = 12 D. Solid circle as before. (o)-(u) Gray polygons =
temporal sequence of measured distributions from panels (a)-(g); polygons outlined in
red/green/blue = temporal sequence of predicted distributions for k = 2, 5 and 12 D,
respectively.
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Figure 5: (a) Uncertainty of observed thickness measurement, σo, obtained using method
of Cowton et al. (2016), as function of observed CO2 thickness, ho. Black line = values of
σo gauged from synthetic modeling of CO2 thickness (Cowton et al., 2016). Red dashed
line = relationship between uncertainty and thickness used here for minimizing misfit
function which ensures that uncertainty values for ho < 5 are not unrealistically small but
set as σo = 0.5. (b) Misfit as function of permeability for simulations that assume uniform
permeability. Vertical arrow = position of global minimum at 12 D (see Figure 4o-u for
end-members).

Figure 6: Orthogonal slices through w-k1-k2 misfit function for channel permeability
model. (a) w-k1 slice at k2 = 20 D. Red cross= locus of global minimum. (b) w-k2
slice at k1 = 3.5 D. (c) k2-k1 slice at w = 700 m.
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Figure 7: (a) Migration distance of CO2 along channel as function of calendar year for
different values of permeability. In each case, distance from estimated entry point is chosen
using northernmost grid square where CO2 thickness is greater than 0.5 m. Crosses =
observed migration distances along channel for each calendar year. Green/red/blue lines
= simulated migration distances as function of calendar year for k2=20 D, 30 D and 40 D,
respectively (in each case, k1=3.5 D and w=700 m). (b) Misfit between observed and
simulated migration rates for all calendar years as function of permeability. Vertical arrow
= locus of global minimum at k2 = 30 D.
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Figure 8: (a)-(g) Temporal sequence showing measured distributions of CO2 thickness
for years 1999–2010 determined from analysis of seismic reflection datasets (Cowton et al.,
2016). Cross-hatched polygons = regions where reflections are incoherent due to pockets
of natural gas within sedimentary overburden. (h)-(n) Temporal sequence showing distri-
butions calculated by inverting for optimal channel permeability model where k1 = 3.5 D,
k2 = 20 D and w = 700 m (u1 = 6.5×10−4 ms−1, u2 = 3.7×10−3 ms−1). (o)-(u) Tempo-
ral sequence showing distributions calculated using ECLIPSE 100 black oil reservoir model
for identical permeability model with half the grid resolution. (v)-(ab) Gray polygons =
temporal sequence showing measured distributions from panels (a)-(g); polygons outlined
in red/blue = temporal sequence of predicted distributions for vertically-integrated and
ECLIPSE models, respectively. 29



Figure 9: Forecasting calculations. (a) Volume of CO2 injected into Layer 9 as function
of calendar year. Solid circles = measured volumes (Cowton et al., 2016); dashed line =
calendar limit of available seismic reflection surveys; red dotted line = constant volume of
injection into Layer 9 at future times; blue dotted line = increasing volume of injection
into Layer 9 in accordance with pre-2010 rate of injection. (b) Planform area of Layer 9
as function of calendar year. Solid circles = observed areas of Layer 9 measured using
available seismic reflection surveys; dashed line as before; red circles = predicted areas
assuming constant volume of injection; blue circles = predicted areas increasing volume
of injection in accordance with pre-2010 values. (c)-(h) Temporal sequence showing pre-
dicted distributions of CO2 thickness for years 2012–2022 where post-2010 injected volume
remains constant. Forecasts were calculated using 700 m-wide channel with permeabil-
ity of 20 D embedded in background permeability of 3.5 D. (i)-(n) Temporal sequence
showing predicted distributions where injected volume grows in accordance with pre-2010
estimated. Color scale as for Figure 8.
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