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Abstract 17 

Demand for groundwater in urban centres across Asia continues to rise with ever deeper 18 

wells being drilled to avoid shallow contamination.  The vulnerability of deep alluvial 19 

aquifers to contaminant migration is assessed in the ancient city of Varanasi, India,  using a 20 

novel combination of emerging organic contaminants (EOCs) and groundwater residence 21 

time tracers (CFC and SF6). Both shallow and intermediate depth private sources (<100 m) 22 

and deep (>100 m) municipal groundwater supplies were found to be contaminated with a 23 

range of EOCs including pharmaceuticals (e.g. sulfamethoxazole, 77% detection frequency, 24 

range <0.0001-0.034 g L-1), perfluoroalkyl substances (e.g. PFOS, range <0.0001-0.033g 25 

L-1) as well as a number of pesticides (e.g. phenoxyacetic acid, range <0.02-0.21 g L-1). The 26 

profile of EOCs found in groundwater mirror those found in surface waters, albeit at lower 27 

concentrations, and reflect common waste water sources with attenuation in the subsurface. 28 

Mean groundwater residence times were found to be comparable between some deep 29 

groundwater and shallow groundwater sources with residence times ranging from >70 to 30 30 

years. Local variations in aquifer geology influence the extent of modern recharge at depth. 31 

Both tracers provide compelling evidence of significant inputs of younger groundwater to 32 

depth > 100 m within the aquifer system.  33 

Keywords. Emerging contaminants, groundwater, drinking water, water quality, India  34 

 35 

 36 

 37 

 38 



 

3 

 

Introduction 39 

Groundwater is a major source of drinking water across the Gangetic basin (Gleeson et al., 40 

2015; MacDonald et al., 2016). It is estimated that Uttar Pradesh alone has over 4 million 41 

groundwater sources (Planning Commission, 2014).  Many urban centres, such as Varanasi, 42 

are heavily reliant on groundwater for drinking water supplies. Groundwater is abstracted 43 

from shallow (typically <100 m deep) tube wells for domestic or private use and also from 44 

deeper (>100 m) municipal or industrial boreholes. Shallow urban aquifer systems are highly 45 

susceptible to contamination and potentially present risks to human health from gross 46 

microbiological contamination (Hamner et al., 2006, Hoque et al., 2014), high salinity, and 47 

elevated concentrations of arsenic and fluoride (Chakraborti et al., 2011; Farooqi et al., 48 

2007). Together, these water quality problems constrain available groundwater resources in 49 

many parts of the Gangetic Basin (MacDonald et al., 2016; Mukherjee et al., 2011), and are a 50 

particular concern for rapidly expanding urban mega-cities in Asia (e.g. Hoque et al., 2014, 51 

Khan et al., 2016). Recent evidence from residence-time tracers and hydrochemistry in the 52 

Indo-Gangetic Basin, suggests that prolonged intensive pumping can alter natural flow 53 

regimes and lead to vertical migration of contaminants to depths > 150 m (Hoque et al., 2014, 54 

Lapworth et al., 2017).  55 

The release of partially treated or untreated waste water introduces a potentially vast array of 56 

organic contaminants such as pharmaceuticals, antimicrobials and pesticides to surface water 57 

and groundwater (Petrie et al., 2015). Concentrations of these contaminants in surface water 58 

are typically higher than in groundwater, though microgram levels of many compounds are 59 

still detected in groundwater (Stuart et al., 2012). The impact on aquatic ecosystems has 60 

started to be evaluated (Van Donk et al., 2016) but both the direct and indirect effects of 61 

multiple micro-organics on human health is poorly understood despite growing interest. Their 62 

occurrence in aquatic systems is also of interest due their use as tracers of waste water 63 
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sources and groundwater flow processes in the subsurface (Lapworth et al., 2012). They are 64 

particularly valuable as a tracer in south Asia where there is currently limited treatment of 65 

waste water and potentially high environmental loading from emerging organic contaminants 66 

(EOCs) (Kurunthachalam, 2012). 67 

Waste water treatment only removes some EOCs and, in many cases, EOCs can pass through 68 

the treatment process unaffected (Petrovic et al., 2003). In many parts of the world, waste 69 

water treatment is limited and there is significant direct input of waste water into surface 70 

waters and aquifers due to leakage from sewers and septic tanks (Sorensen et al., 2015). 71 

Indeed, large urban centres in Asia have been shown to be hot-spots for EOC contamination 72 

(Pal et al., 2010; Sharma et al., 2016). Due to the large volumes of waste generated and 73 

limited treatment prior to dispersal in the environment, densely populated cities in India, and 74 

elsewhere in Asia, are likely to have high EOC inputs into both surface waters and 75 

groundwater (Sharma et al., 2016; Yeung et al., 2009), with few studies in India (Bhanumathi 76 

et al., 2003; Selvaraj et al., 2014; Sharma et al., 2016).  77 

Modern groundwater residence time tracers (such as CFC and SF6) have been used in many 78 

settings to assess: the extent of modern contamination; groundwater flow processes; and the 79 

mean residence time of groundwater (Darling et al., 2012; Gooddy et al., 2006; Morris et al., 80 

2006), but have not yet been used in combination with EOC tracers to understand 81 

groundwater contaminant migration in India.  82 

The issues of contamination in the River Ganges and its tributaries have been widely reported 83 

(Raju et al., 2009; Raju et al., 2014; Sharma et al., 2016).  Past efforts to improve its water 84 

quality have had limited success (Ahmed, 1994; Mishra, 2005; Reuters, 2017). The Ganges 85 

and its tributaries remain highly contaminated. In Varanasi, surface water microbiological 86 

contamination is high (Mishra et al., 2009) and only ~30% (100 ML d-1 of the estimated 300 87 
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ML d-1 of sewerage generated) is currently treated (Hamner et al., 2006). Groundwater 88 

resources represent an essential source of potentially ‘better’ quality drinking water. It is 89 

necessary to understand the vulnerability of shallow and deeper groundwater to 90 

contamination in order to inform future use and management of water resources in these 91 

regions. This contamination-water supply challenge is by no means unique to Varanasi and is 92 

relevant across the Indo-Gangetic Basin. 93 

In this paper a novel multi-tracer approach is presented to assess deep groundwater 94 

vulnerability in an urban setting in India. This study, the first of its kind in India, employs a 95 

broad screening approach for EOCs and residence time gases as tracers in shallow and deep 96 

and groundwater beneath Varanasi and the neighbouring city of Ramnagar. The objectives 97 

are to: i) characterise the occurrence of emerging organic contaminants in groundwater; ii) 98 

explore the depth relationship between EOCs, residence-time tracers; and iii) assess the 99 

vulnerability of deep groundwater to contaminant migration. 100 

Methods 101 

Study site and drinking water sources  102 

Varanasi, one of India’s oldest cities, is situated in the middle section of the Ganges Basin, 103 

Uttar Pradesh, India. With a population of 1.4 million (2011 Census) Varanasi is situated on 104 

the west bank of the River Ganges, Ramnagar is situated on the east bank (Figure 1). The 105 

Ganges basin is estimated to receive around 12,000 ML d-1 of waste water (Mohan et al., 106 

2011; Mondal et al., 2010), and the worst contamination is reported upstream of Varanasi 107 

(Sharma et al., 2016). Groundwater samples (n=26) were collected in Varanasi and Ramnagar 108 

as well as surface water samples from the River Ganges (n=3), see Figure 1.  Municipal 109 

drinking water for Varanasi is supplied locally from the River Ganges and local deep 110 

groundwater sources. Private self-supply is from groundwater. In total, it is estimated that 111 
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around 60% of municipal supply is from groundwater (Mohan et al., 2011). Municipal 112 

groundwater supplies occur via 125 deep boreholes situated on both sides of the River 113 

Ganges (Mondal et al., 2010). Municipal boreholes are up to 200 m deep and completed 114 

within thick, high-permeability horizons. These sources are cased down to between 90-110 m 115 

below ground level (mbgl), with most cased >100 mbgl and screened below this to the full 116 

depth of the well (Jal-Kal, 2016). Pumping is intense (typically between 20-30 L s-1) from 117 

these municipal sources (based on field observations). Private sources abstract from the 118 

shallow-intermediate (0-100 mbgl) aquifers using smaller motorised pumps as well as hand 119 

pumps in at two sites and are cased down to between 10-50 mbgl depending on borehole 120 

depth. The use of groundwater has increased significantly over the past 30 years, with a 121 

proliferation in private sources and significant numbers of new municipal sources to meet 122 

growing demand and meet the shortfall in municipal supply.  123 

Hydrogeology 124 

The Mid Ganges sedimentary aquifer system is characterised by highly permeable sand and 125 

gravel lenses interlayered with laterally discontinuous lower permeability silt, clay and 126 

‘kankar’ (carbonate) deposits (Bonsor et al., 2017).  Aquifer properties can vary over short 127 

distances and low permeability layers are rarely continuous over more than a few kilometres.  128 

Detailed information is available for the study area and two cross-sections showing the 129 

lithology (top 100 m) of the groundwater system below Varanasi and Ramnagar are shown in 130 

Figure 1c. Based on geophysical assessments by Kumar et al. (2014) and selected borehole 131 

logs available from the municipal water company (Jal-Kal, 2016), relatively-high 132 

permeability sands are more common in the deeper parts of the Pleistocene aquifer (100-200 133 

m). The deeper part of the aquifer system can be locally confined although piezometric head 134 

gradients are generally downwards within the aquifer system (Mohan et al., 2011). Overall 135 

the deeper aquifer system is more poorly characterised compared to the shallow aquifer 136 
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system. The thickness of the unconsolidated deposits is c. 100 mbgl in the vicinity of the 137 

Banaras University campus (Kumar et al., 2014), B on Figures 1a and 1c, but it is poorly 138 

constrained elsewhere.  The top 40 m is dominated by low-permeability mud and silt, with 139 

isolated shallow sand bodies (e.g. situated near the Ganges River). There is a greater 140 

thickness of low permeability deposits (mud and silt) on the Ramnagar side compared to the 141 

Varanasi side (Figure 1c). 142 

 143 

Figure 1. Study area and hydrogeology, a) location and elevation map showing groundwater 144 

and surface-water sampling sites, b) long-term groundwater level results (1994-2014) from 145 
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three representative sites for urban (Varanasi) and rural (Barwaon) land use and surface water 146 

(Tahipur) controlled sites (CGWB 2016), seasonal dips (grey lines) and running mean (bold 147 

lines) shown, c) schematic lithological cross section West-East (A-A’ and B-B’, see Figure 148 

1a), datum is Mean Sea Level, from Ramnagar to Varanasi. The sand aquifers extend deeper 149 

on both sides of the Ganges River (Jal-Kal, 2016; Kumar et al., 2014; Nandimandalam, 150 

2012). 151 

 152 

Three typical hydrographs which show long term groundwater trends are shown in Fig 1b; 153 

one from a the peri-urban village outside Varanasi (Barwaon), one close to the River Ganges 154 

(Tahipur) and one on the western side of Varanasi (Varanasi). Tahipur shows relatively 155 

supressed seasonal signals compared to Varanasi and Barwaon. Varanasi and Tahipur show 156 

no long term trends (1994-2014), in contrast to the rural site (Barwaon) which shows a 157 

downward trend in groundwater levels (2000-2014) at an average rate of 0.7 m a-1. All show 158 

a seasonal recharge signal from the monsoon. The connectivity between the River Ganges 159 

and the adjacent aquifer system is poorly constrained, and a topic of future research. The 160 

shallow lithology in the vicinity of the Ganges channel is highly variable and the increased 161 

prevalence of sand and gravel lenses below the channel base may provide hydraulic 162 

connectivity between the River Ganges and the Varanasi groundwater system.  163 

Sampling 164 

All sampling was undertaken during a single campaign in March 2016. Samples from 165 

actively pumped sites across the study area were obtained (Fig 1a) and include 13 deep 166 

municipal sources with total borehole depths (>150 mbgl) which are typically cased to a 167 

depth of >100 m and 13 shallow-intermediate private sources with total depths between 20-168 

100 mbgl which have much shallower casing, typically between 10 and 50 m, depending on 169 

local lithology and total borehole depth. Specific electrical conductivity and pH were 170 

measured on site and stable readings obtained prior to sampling. Groundwater residence-time 171 
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samples were taken from a total of 25 sites. Three surface water samples for EOCs were 172 

taken, one upstream, one mid Varanasi and one downstream of Varanasi from the middle of 173 

the River Ganges.  174 

Specific electrical conductivity (SEC) and pH readings were taken in the field and allowed to 175 

stabilise before sampling for residence time tracers and EOCs were undertaken. All sites were 176 

operational and fully purged before sampling. Care was taken to ensure that a direct raw 177 

water sample was taken from the abstraction boreholes from each site, i.e. that it was not 178 

dosed with chlorine or had undergone temporary storage prior to sampling. In addition, any 179 

plastic tubing was removed prior to sampling for EOCs. Particular attention was paid when 180 

taking the EOC samples to minimise the possibility of contamination from the sampler, i.e. 181 

no creams, spays or other skin products were used by the sampler during the fieldwork. The 182 

sampler at no point made any contact with the inside of the bottle or cap during the sampling.  183 

For EOC samples, new 500 mL glass bottles were used which were cleaned and rinsed with 184 

ultra-pure water (ASTM type I reagent grade water, including a UV cracker). Prior to 185 

sampling, bottles were rinsed three times with the sample water and stored in the dark before 186 

extraction (White et al., 2017). Solid-phase extraction (SPE, pre-conditioned sorbent Oasis® 187 

HLB cartridges) of the unfiltered sample was undertaken within 2-6 hours of sampling. See 188 

supporting information for further details. Prior to CFC (CFC-11 and CFC-12) and SF6 189 

sampling for residence time estimation, an air-tight seal between the borehole outlet and the 190 

sample container was ensured. CFC and SF6 samples were collected unfiltered and without 191 

atmospheric contact in sealed air-tight containers by the displacement method outlined in 192 

Gooddy et al. (2006). Further details on the use of residence time tracers is provided in the 193 

supporting information.  194 

 195 
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Groundwater residence time tracers 196 

While any one of the residence time tracers described above can in principle be used to 197 

provide a mean residence time (MRT) of groundwater, when two or more are used in 198 

combination the potential exists to identify different modes of flow and/or mixing processes 199 

operating within the aquifer or at the borehole (Darling et al., 2012). The mean residence time 200 

of a groundwater sample can be obtained by reading across the year of recharge from input 201 

concentration curves for a particular flow model, once these have been adjusted for local 202 

recharge temperatures. In reality groundwaters are usually mixtures of waters with different 203 

ages, which either mix during flow in the aquifer, or more likely mix during pumping from 204 

boreholes with a wide screen interval. Lumped- parameter models (LPM) are typically used 205 

to explain variations observed in groundwater mixtures, these include the piston flow model 206 

(PFM), exponential mixing model (EMM), exponential flow model (EFM), as well as binary 207 

mixing models (BMM), i.e. the combined use of two different flow models (Zuber 1986, 208 

Maloszewski and Zuber 1996, Cook and Böhlke 2000). These mixing models derive from 209 

different conceptual models describing underlying groundwater flow processes.  Deciding 210 

which LPMs are appropriate to estimate MRTs can be resolved by plotting groundwater 211 

concentrations obtained for two tracers, and comparing these to various LPM input curves, 212 

often referred to as a ‘bow plot’ (Darling et al., 2012). CFC-12 vs SF6 results were used as 213 

they have  sufficiently different input functions to be able to distinguish between different 214 

LPMs..   215 

 216 

Analytical methods 217 

Broad screening for micro-organics was carried out using pre-concentrated SPE followed by 218 

target based liquid chromatography/mass spectrometry (LCMS) screening. A Time-of-Flight 219 
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(Q-TOF) LC/MS method was used to screen for 686 polar organic compounds in each 220 

sample. An isotopically labelled internal standard Carbutamide-d9 (CAS 1246820-50-7) was 221 

added to each of the pre-conditioned SPE cartridges to assess instrument performance. Target 222 

compounds have been analysed in a blank and at a concentration of 0.1µg/l, the response 223 

factor obtained is used to create a single point calibration curve. Estimate of concentration is 224 

based on quant ion response and response of the internal standard. Detection limits are 225 

compound specific but are typically between 0.001-0.1 µg/L for the vast majority of 226 

compounds. Target compound identification is made by retention time, accurate mass and by 227 

Isotope distribution patterns (mass, ratio, spacing). The combined results contribute to an 228 

overall match score. 229 

A full procedural blank sample (using ultra-pure water) was processed in the field to quantify 230 

any procedural contamination. An internal AQC containing 9 target compounds is analysed 231 

with each sample batch, at a concentration of 0.01µg/l. Prior to analysing the results all 232 

compounds (n=7) that were detected in the blank were first screened for and removed from 233 

the results (see Supporting Information for details on procedural blank results). Analysis took 234 

place at the UK National Science Laboratories at Star Cross. For further details on the 235 

analytical method see supporting information.  236 

CFCs and SF6 were measured by gas chromatography with an electron capture detector after 237 

cryogenic pre-concentration based on the methods of (Busenberg and Plummer, 2000). 238 

Measurement precision was within and ±5% for the CFCs and 10% for SF6, with detection 239 

limits of 0.01 pmol/L (CFC-12), 0.05 pmol/L (CFC-11) and 0.1 fmol/L (SF6). A recharge 240 

temperature of 28° C was assumed for calculating the recharge year, based on field results 241 

(mean 28±1° C), and relative fractions of modern water. SF6 data were corrected for excess 242 

air at 3 cc/L. Analysis took place in the BGS Wallingford groundwater tracer laboratory, UK. 243 
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For details on the methods used in this study to characterise groundwater residence time and 244 

mixing processes please refer to the Supporting Information. 245 

Results  246 

Micro-organic Contaminants 247 

Forty micro-organic contaminants were detected across all samples including 21 pesticides 248 

and transformation products (TPs), 14 pharmaceuticals, 3 perfluoroalkyl substances (PFAS), 249 

one industrial compound and the artificial sweetener, sucralose (Table S1). The number and 250 

total concentrations of compounds in the Ganges were higher than those found in 251 

groundwater (Figures 2a and 2b). Samples from the Ganges had between 19-26 detected 252 

compounds, shallow groundwaters (<50 mbgl) between 4-10 compounds and deeper 253 

groundwater (>100 mbgl) between 1 and 12 compounds (see Figure 2a). Figure 2c shows the 254 

concentrations of the 9 most frequently detected EOC compounds in groundwater and the 3 255 

samples collected from the R. Ganges. This included frequent detection in groundwater of the 256 

following compounds (see Table S1): antimicrobials sulfamethoxazole (77% of samples), 257 

sulfanilamide (62%) and dapson (19%); the anticonvulsant carbamazepine (27%) and the 258 

artificial sweetener sucralose (15%).  259 

Figures 3 and 4 show the depth profile of some of the most frequently detected EOCs and 260 

most frequently detected pesticides respectively. Overall, greatest waste water contamination 261 

is found in surface waters and shallow groundwater samples; lower contaminant 262 

concentrations and frequency of detections are found at intermediate depths (>50 m) from 263 

private sources of abstraction. High concentrations and detection frequencies are then found 264 

deeper (>100 m) from some large municipal sources which have a long history (> 30 years in 265 

these cases) of intense pumping (Figure 3 and 4).  266 

 267 
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 268 

Figure 2. Micro-organic contamination in the River Ganges and groundwater in Varanasi and 269 

Ramnagar, India. a) number of micro-organic compounds (MO), b) sum of MO compounds 270 

(g/L) and c) stacked bar plot of frequently detected MOs including EOCs, d) stacked bar 271 

plot of detected perfluoroalkyl substances (PFAS). 272 

 273 
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 274 

Figure 3. Emerging organic contaminant depth profiles, a) number of micro-organic 275 

compounds detected, b) total concentration of MOs. Selected EOCs; c) Sulfamethoxazole, d) 276 

Sulfanilamide, e) Carbamazepine, f) Sucralose, g) PFAS ( PFOS+ PFNA + PFDA). Blue 277 

circles show results for R. Ganges. Sites from Varanasi shown with a circle, sites from 278 

Ramnagar shown with a square symbol. Upper screen is typically at 10-50 m for shallow- 279 

intermediate sites (<100 m deep), and is typically >100 m for deep sites. Sample depth is 280 

plotted as the mid-point in the screened section of the borehole. 281 

 282 

Figure 4. Selected pesticides depth profiles, a) Phenoxyacetic acid, b) Chlorpyrifos, c) 283 

Diuron, d) Atrazine. Blue circles show results from R. Ganges. Sites from Varanasi shown 284 

with a circle, sites from Ramnagar shown with a square symbol. WHO drinking water 285 

standards of 0.1 g L-1 for pesticides are shown as a vertical line. Upper screen is typically at 286 

10-50 m for shallow- intermediate sites (<100 m deep), and is typically >100 m for deep 287 

sites. Sample depth is plotted as the mid-point in the screened section of the borehole. 288 
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Groundwater residence time tracers 289 

Figure 5 shows variations in groundwater residence-time tracer concentrations and estimated 290 

MRT with depth for all samples. A cross-plot of CFC and SF6 is shown in Figure 6, in 291 

relation to a range of likely theoretical flow mixing model curves (BMM, EMM, EFM) for 292 

the two tracers. MRTs in Figure 5d were estimated using the most appropriate mixing model 293 

based on an assessment of results from Figure 6 (see Table S3 in supporting information). 294 

Overall, comparable MRTs are found in both shallow private groundwater supplies and 295 

deeper municipal supplies. 296 

 297 

 298 

Figure 5. Groundwater residence-time tracer depth profiles, a) CFC-12, b) CFC-11, c) SF6, 299 

d) and Mean Residence Time (MRT) groundwater age estimates calculated using SF6 results 300 

and suitable LPMs. For samples which plotted close to the BMM line, i.e. a mixture of tracer 301 

‘dead’(i.e. groundwater recharged >70 years) and modern recharge, see Figure 6, MRTs were 302 

not calculated.  Sites from Varanasi shown with a circle, sites from Ramnagar shown with a 303 

square symbol. Upper screen is typically at 10-50 m for shallow- intermediate sites (<100 m 304 

deep), and is typically >100 m for deep sites. Sample depth is plotted as the mid-point in the 305 

screened section of the borehole. 306 

 307 
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 308 

Figure 6. Cross-plot of CFC-12 vs SF6 with LPM results shown for BMM, PFM, EFM and 309 

EMM. Residence time (EMM, EFM), year of recharge (PFM) or % modern recharge (BMM) 310 

are shown on the LPM input curves. Sites from Varanasi shown with a circle, sites from 311 

Ramnagar shown with a square symbol. Points which fall close to the BMM (i.e. a mixture of 312 

tracer ‘dead’ and modern recharge) are highlighted in the blue area. 313 

Discussion 314 

Occurrence of micro-organics in urban groundwater  315 

Emerging organic contaminants 316 

The most frequently detected EOCs (sulfamethoxazole, sulfanilamide, carbamazepine and 317 

sucralose) are common markers of waste water inputs to surface water (Buerge et al., 2009; 318 

Pal et al., 2010; Richardson, 2009) and groundwater (Lapworth et al., 2012; Stuart et al., 319 

2012; Stuart et al., 2014; White et al., 2016), and have been used to understand rapid flow 320 
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and recharge pathways in the subsurface (Ascott et al., 2016; Sorensen et al., 2015; White et 321 

al., 2016).  322 

Maximum concentrations for most pharmaceuticals and other EOCs were higher for surface 323 

waters compared to groundwaters; the exception is sulfanilamide which was only detected in 324 

groundwater.  Concentrations of all pharmaceuticals and other EOCs were below 0.1 g L-1 325 

except sulfanilamide which was detected above 0.1 gL-1 on three occasions in shallow 326 

groundwater (Figure 3). Sulfamethoxazole is detected in much higher concentrations in the 327 

River Ganges compared to groundwaters, (see Figure 2c and Figure 3). Sulfamethoxazole and 328 

carbamazepine are two of the most frequently detected EOCs in groundwater (Focazio et al., 329 

2008; Lapworth et al., 2012) and they have been recently detected in waste water effluent in 330 

India (Anumol et al., 2016). Sulfamethoxazole has been shown to have adverse effects on the 331 

natural bacterial flora in groundwater and can supress biologically mediated processes such 332 

as denitrification (Haack et al., 2012; Underwood et al., 2011). Pathogens resistant to 333 

commonly used antibiotics including sulfamethoxazole have been recently isolated from both 334 

the River Ganges (Soni et al., 2013) as well as shallow groundwater in Varanasi (Bhanumathi 335 

et al., 2003).  Antibiotic resistance is a growing challenge globally (Kummerer, 2009) and a 336 

significant potential challenge in India (Mutiyar and Mittal, 2014). 337 

Sulfanilamide is widely used as an antibacterial ingredient in creams and powders; it is also a 338 

transformation product of sulfamethoxazole (Jiang et al., 2014). Although its occurrence in 339 

groundwater has not been frequently reported in the literature, its persistence has been noted 340 

in contamination plumes from landfill sites with domestic waste (Baun et al., 2000; Holm et 341 

al., 1995). In this study, the absence of detectable sulphanilamide in surface waters and the 342 

presence of sulfamethoxazole suggest that the former could be the transformation product of 343 

sulfamethoxazole.  Alternatively sulfanilamide may be rapidly removed in surface waters 344 

through a combination of microbial processing and natural UV breakdown (Kim and Tanaka, 345 
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2009). Recent laboratory-based studies have shown that microbial communities exposed to 346 

sulfanilamide degrade this compound much more rapidly than un-exposed cultures and that 347 

there is a strong temperature effect with enhanced degradation at 25 °C compared to 5 °C 348 

(Liao et al., 2016).  349 

The ubiquitous detection of sub-microgram concentrations of sulfamethoxazole and 350 

sulfanilamide in groundwater, and the detection of sucralose at some sites, point to a 351 

sustained waste water input to surface waters at Varanasi and groundwater systems below 352 

Varanasi and Ramnagar – since all are common waste water tracers (Buerge et al., 2009; 353 

Dickenson et al., 2011; Richardson, 2009). The majority of urban households in India are not 354 

connected to the sewerage system (2011 Census). An estimated 650 metric tonnes of solid 355 

waste and 400 ML d-1 of liquid waste is generated in Varanasi each day (Mondal et al., 2010). 356 

Several studies report elevated concentrations of NO3 (up to 100 mg L-1) in the shallow 357 

aquifer from waste water sources (Chaurasia et al., 2013; Raju et al., 2011). Nitrate 358 

concentrations vary substantially and low permeability horizons likely facilitate hot-spots of 359 

denitrification (Lawrence et al., 2000). The relatively recent use of sucralose in India (i.e. 360 

post 2000) and its persistence in groundwater (Robertson et al., 2016) together with the other 361 

EOC detections (Figures 2 and 3) strongly suggest that there is a significant component of 362 

modern (i.e. <20 a-1) recharge to depth within the aquifer system. 363 

Three polyfluoroalkyl substances (PFAS), including perfluorooctane sulfonate (PFOS n=6), 364 

perfluorononanoic acid (PFNA n=6) and perfluorodecanoic acid (PFDA n=1), were detected 365 

in groundwater (range <0.001-0.033 g L-1) and the River Ganges (range 0.003-0.025 g L-366 

1), see Figure 2d. Maximum concentrations for PFOS were below the USEPA health advisory 367 

level for drinking water of 0.070 g L-1 for individual analytes (EPA, 2017) but many PFAS 368 

compounds, including PFOA are not included in the broad screening method employed in 369 

this study. It is thus possible that combined PFOS and PFOA concentrations may approach 370 
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the guideline value (also 0.07 g L-1) for combined PFAS. The sustained increase in PFAS 371 

emissions over the last 20 years and presence of PFAS compounds is emerging a widespread 372 

concern (Wang et al., 2014). Recent studies in USA (Hu et al., 2016) and India (Sharma et 373 

al., 2016) show widespread occurrence of these compounds in surface and groundwater. 374 

PFAS occurrence and emissions recently reported for Varanasi by Sharma et al. (2016) 375 

showed much lower PFOS concentrations (<0.001 g L-1) compared to our study (0.003-376 

0.025 g L-1) for the River Ganges. However the trend of high PFOS emissions from 377 

Varanasi (by comparing upstream and downstream concentrations, Figure 2d) is consistent, 378 

with around an order of magnitude increase in PFOS from 0.003 g L-1 upstream of Varanasi 379 

to 0.025 g L-1 downstream. There are many potential sources of PFAS including sewage 380 

sludge (Milinovic et al., 2016), waste water (Houtz et al., 2016), discharge from fire 381 

protection foams (Guelfo and Higgins, 2013; Houtz et al., 2013; Hu et al., 2016) and landfill 382 

sites (Benskin et al., 2012).  383 

PFOS was detected in all surface waters in this study (n=3) but in only 10% of groundwaters. 384 

Highest concentrations were, however, detected in groundwater (0.033 g L-1 at site V03), a 385 

deep municipal source in Varanasi (Figure 1). This site was also the only sample with 386 

detectable PFNA and PFDA suggesting there is a local source of PFAS and a rapid pathway 387 

to depth within the groundwater abstracted from this borehole. While it is the closest sample 388 

to the Ganges (200 m), a comparison of the full EOC and pesticide detections with those 389 

from surface waters suggest that this may not be the source of PFAS although cannot be ruled 390 

out as this study was carried out in a single campaign and further temporal sampling in 391 

surface waters would be required to confirm this. A combination of factors including the 392 

negative charge of PFOS, competition for positively charged sorption sites from other 393 

contaminants, neutral pH in groundwater and low TDS, when taken together, indicates PFOS 394 



 

20 

 

has the potential to be mobile in groundwater beneath Varanasi and less readily sorbed to 395 

sediment surfaces (NGWA, 2017).  396 

Pesticides and their transformation products 397 

The three most frequently detected pesticide compounds and pesticide TPs were chlorpyrifos 398 

(67%), phenoxyacetic acid (TP, 62%), and diuron (32%). There were only 9 detections of 399 

pesticides or their TPs > 0.1 g L-1, of which the majority of these (60%) was detected in the 400 

River Ganges. Atrazine and atrazine TPs follow a similar pattern of higher concentrations (up 401 

to 50 time higher) and higher detection frequencies in the River Ganges, but with 402 

concentrations all below 0.03 g L-1, considerably lower than was found for acid herbicides. 403 

Chlorpyrifos and phenoxyacetic acid dominate herbicide detections in groundwaters. 404 

Detections of chlorpyrifos in groundwater sources were frequent but concentrations were low 405 

compared to other pesticides (median of 0.0024 g L-1 and range of 0.0006-0.004 g L-1) 406 

compared to surface water concentrations (0.033-0.39 g L-1), which is consistent with other 407 

pesticides in this study. This organophosphate is widely used in India as an insecticide for 408 

food production as well as indoor use including for mosquito, ant and termite control. 409 

Chlorpyrifos converts readily to chlorpyrifos-oxon (not screened for in this study) during 410 

chlorine treatment, which is the main disinfection method currently used in Varanasi and 411 

throughout India. Both compounds are of toxicological concern via dietary exposure (EPA, 412 

2016). Chlorpyrifos is currently under an assessment for registration review by the US EPA 413 

(EPA, 2016) and detections in raw drinking water sources in the USA are comparable with 414 

the concentrations found in this study (Bradley et al., 2017). It is more persistent in soil and 415 

water under anaerobic conditions, because aerobic aquatic metabolism is a key 416 

transformation pathway in the environment (Chishti et al., 2013). The sustained 417 

environmental input, and sub-oxic surface (Mishra et al., 2009) and groundwater conditions, 418 
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evidenced by high dissolved Fe concentrations  beneath the city (Raju et al., 2011), may 419 

explain the persistence of chlorpyrifos and other EOCs as well as the high frequency of 420 

detection but low concentrations in groundwater.  421 

Phenoxyacetic acid is a transformation product of a number of herbicides (McManus et al., 422 

2014) including 2-4 D, which was not detected in groundwater but was detected in all three 423 

surface water samples (0.1± 0.1 g L-1). Two phenoxypropionic acid herbicides were also 424 

detected but only in surface waters, including the TP of mecoprop-p (MCPP), 2-425 

phenoxypropionic acid and the herbicide 4-chlorophenoxyacetic acid. Both groups of acid 426 

herbicides degrade in soil and through UV and electrochemical oxidation (Boye et al., 2002; 427 

Muller and Buser, 1997; Willems et al., 1996), and both the parent compounds and TPs have 428 

been shown to leach from soils and are widely detected in groundwater throughout the world 429 

(Gibson and Suflita, 1986; Gustafson, 1989). Degradation of 2-4-D occurs under both aerobic 430 

and anaerobic conditions in sewage sludge, while some studies have shown that MCPP is 431 

more persistent under anaerobic conditions (Zipper et al., 1999a; Zipper et al., 1999b). 432 

Geochemical controls  433 

A range of processes control EOC transport in the subsurface including sorption to organic 434 

matter and clay minerals, surface charge and ion exchange and microbial degradation or 435 

transformations. The fate of a contaminant is controlled by the physicochemical properties of 436 

the subsurface environment (hydrochemistry, degree of confinement, redox conditions, 437 

sediment chemistry, surface area etc) and the physicochemical properties of the 438 

contaminants, i.e. solubility in water and Kow. The high organic carbon content and 439 

argillaceous nature of the shallow aquifer system beneath Varanasi (Raju, 2012), which is 440 

thicker on the Ramnagar side, will be important in controlling recharge and the transport of 441 

micro-organic contaminants.  Biodegradation of EOCs is known to be highly variable in 442 
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groundwater (Greskowiak et al., 2017) and redox conditions have been shown  to play an 443 

important role in the attenuation of some emerging contaminants in groundwater (Burke et 444 

al., 2013; Massmann et al., 2006). For example while carbamazepine was found to be 445 

persistent under both oxic and anoxic conditions (Massmann et al., 2006), para-446 

toluenesufonamide, a sulphonamide, was removed under oxic conditions and persisted under 447 

anoxic conditions, while a range of mycin compounds were only removed under anoxic 448 

conditions (Burke et al., 2013). The sub-oxic nature of the aquifer system beneath Varanasi 449 

may therefore facilitate the persistence of sulphonamides and carbamazepine, which were 450 

frequently detected in this study (Figure 2), and promote the selective degradation of others. 451 

The pH for the aquifer system is c. 7± 0.4, and consistent with depth (Figure S1), and the 452 

negative charged oxide surfaces may facilitate the movement of negatively charged EOCs, 453 

such as diclofenac, which was frequently detected in this study.  454 

 455 

Groundwater residence times and recharge processes 456 

The downward hydraulic gradient from the shallow to the deeper aquifer system (Mohan et 457 

al. 2011), is likely to be controlled by deep pumping, and provides a context for interpreting 458 

the tracer results. There is some variation but generally consistent concentration depth 459 

profiles for all three residence time tracers within the top 0-160 m (see Figure 5). Based on 460 

SF6 concentrations and lumped parameter model (LPM) estimates, distributions of residence 461 

times found within the shallow private and deep municipal sources are consistent, and 462 

typically between 30-70 years (Figure 5d). Mean residence time estimates are indicative of 463 

rapid vertical flow and mixing of recently recharged groundwater with older deeper 464 

groundwater. The presence of deep abstraction boreholes in Varanasi is the likely driver for 465 

the rapid vertical flow of modern groundwater.  In five sites where SF6 was undetected, 466 
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throughout the depth profile (see Figure 5), suggests that the majority of groundwater at these 467 

sites may have been recharged >50 years ago. These likely reflect shallow parts of the aquifer 468 

system that are locally less well connected to shallow recharge sources and therefore have 469 

less ingress of modern recharge overall. This observation could also be explained by 470 

differences in pumping history at shallower sites, i.e. there has not been adequate pumping to 471 

pull down modern recharge at these sites. For the deep municipal abstraction sites, one site in 472 

Varanasi (V10) and two in Ramnagar (V14, V16) have no detectable SF6. At two of these 473 

sites, low concentrations of CFCs were detected, suggesting that there is a small component 474 

of modern recharge (equivalent to between 2-8% using the BMM). The low detection 475 

frequencies for micro-organics (sulfamethoxazole and sulfanilamide) at these sites supports 476 

this interpretation.  477 

Figure 6 shows a cross-plot of CFC-12 vs SF6 and mixing lines for the following flow 478 

models: piston flow model (PFM), exponential mixing model (EMM), exponential flow 479 

model (EFM) and binary mixing model (BMM). Only one sample showed potential evidence 480 

of contamination (i.e. concentrations in excess of modern fractions accounting for analytical 481 

error) for CFC-12. There is no evidence of geogenic contamination from SF6. A number of 482 

groundwaters that fall close to the BMM line, with between 1-15% modern recharge, are 483 

likely to represent within borehole short-circuit vertical leakage or bypass flow and mixing 484 

between modern shallow groundwater and SF6 ‘dead’ (i.e. >70 years) waters. For this group 485 

of sites the ingress of a small component of modern recharge within the borehole could be 486 

due to either defective casing and or borehole seals, which could also deteriorate with age. 487 

The other samples fall closer to the EFM, EMM or PFM and can be interpreted as evidence 488 

for hydraulic gradient controlled flow in the case and vertical drawdown and mixing either 489 

within the aquifer or within the borehole due to the large screened interval. There are eight 490 

samples, mostly from deep sites, which fall on the left of the BMM line and are indicative of 491 
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CFC-12 degradation - consistent with other studies in comparable sedimentary settings in the 492 

Indo-Gangetic Basin (Figure 6) (Horneman et al., 2008; Lapworth et al., 2015). Groundwater 493 

residence tracer profiles match the depth trends observed for the EOCs and other micro-494 

organic contaminants and strongly suggest a significant component of younger groundwater 495 

at depth, even at sites which are cased out below 100 m and are completed at depths of 200 496 

m.   497 

 498 

Deep groundwater vulnerability beneath urban centres 499 

Higher concentrations of EOCs were found in deeper municipal wells compared to 500 

intermediate depth private sources (Figure 3). This can be explained due to the combination 501 

of much higher pumping rates at the municipal sites, and the enhanced vertical migration of 502 

contaminants within the local aquifer system influenced by the borehole pumping. This 503 

suggests that the aquifer system is vulnerable to vertical contaminant migration within the 504 

aquifer and that aquifer anisotropy ratio (horizontal K /vertical K) is low. For the deep 505 

municipal abstraction sites (>100 m), more frequent detections and higher concentrations for 506 

all tracers were found at sites beneath Varanasi compared to Ramnagar even though the 507 

boreholes are deeper beneath Varanasi and the screen depths are consistent (see figure 3). 508 

There are three likely hypotheses to explain this: i) there are higher waste water inputs to the 509 

subsurface beneath Varanasi; ii) the deeper groundwater on the Varanasi side is less protected 510 

by low permeability horizons compared to the Ramnagar side; and iii) there is a longer 511 

history of deep pumping beneath Varanasi. The first hypothesis can be rejected based on a 512 

consistent EOC and residence time tracer results obtained in the shallow groundwater from 513 

both areas (Figure 3). There has been deep pumping on both sides for over 30 years so it is 514 

unlikely that the pumping history can explain this tracer evidence.  It is clear from the 515 
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lithology (Figure 1) that there are thicker clay layers on the Ramnagar side of the R. Ganges 516 

where the deep municipal sites are located and the deeper groundwater is likely to be more 517 

confined.   Additional evidence of high Fe (up to 7 mg L-1), lower concentrations of nitrate 518 

(Raju et al., 2011) and higher arsenic contamination (up to 80 mg L-1) (Nandimandalam, 519 

2012) beneath Ramnagar also indicates reducing conditions which are consistent with 520 

confined groundwater.  521 

Depth profiles of residence-time tracers, EOC and pesticides collectively provide compelling 522 

evidence that modern recharge at depth within the groundwater systems beneath both 523 

Varanasi and Ramnagar are controlled by local geological conditions. The fact that waste 524 

water and recharge tracers do not systematically decrease with depth suggests that there is a 525 

significant component of younger contaminated groundwater from the shallow aquifers 526 

where long-term intensive pumping has taken place. The comparable residence time tracer 527 

concentrations within deep municipal sites and intermediate sites beneath Varanasi (Figure 5) 528 

also suggest that there may be a pumping influence controlling ingress of modern recharge. 529 

The difference in depth profiles between specific organic contaminant groups, including the 530 

residence time tracers, can be partly explained by the fact that the former are controlled by 531 

local, sometimes different, sources and the residence time tracers are a more diffuse recharge 532 

input to the aquifer system. The use of multiple tracers supports the assertion of vertical 533 

migration of modern groundwater (0-30 years). In addition, similar SEC and dissolved 534 

organic matter fluorescence profiles found in this study (see Supporting Information), and 535 

high detections of arsenic and nitrate found at depth (within Pleistocene aquifers) in previous 536 

studies also support this hypothesis (Nandimandalam, 2012; Raju, 2012; Raju et al., 2011). 537 

Where only very low concentrations of residence time tracers and EOCs are detected at 538 

depth, either greater local confinement or a reduced contribution of modern groundwater via 539 

short-circuit vertical ingress due to inadequate borehole seals are possible explanations for 540 
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the tracer results (Jasechko et al., 2017). Modelling studies have shown that a hydraulic 541 

barrier from shallower pumping may potentially protect the deeper groundwater system 542 

(Burgess et al., 2010; Michael and Voss, 2008; Michael and Voss, 2009a, b). However the 543 

intensity of abstraction from depth in this setting appears to overcome this potentially 544 

protective mechanism. Indeed, modelling studies have recently demonstrated the rapid 545 

migration of contaminants >150 m beneath Dhaka, which also has a long legacy of pumping 546 

from deep municipal sources (Khan et al., 2016). 547 

Conclusions 548 

The results from this study demonstrate the diverse array of both regulated contaminants, 549 

such as pesticides, and EOCs such as antimicrobial compounds in groundwater and surface 550 

water in urban settings of India. The highest risks in terms of ecosystem health and human 551 

health from drinking water are associated with inadequate waste management and surface 552 

water pollution and shallow groundwater pollution. EOCs will continue to pose a potential 553 

risk to urban drinking water supplies given the need for conjunctive use and continued 554 

dependence on surface water in many urban centres in India, combined with the limited 555 

treatment options for removing many of these EOCs. Lower concentrations and numbers of 556 

EOCs and legacy contaminants (e.g. pesticides and PFAS) in some deep groundwater sources 557 

highlight the potential for attenuation and dilution within the aquifer system, particularly 558 

where thick confining low permeability horizons are present. However, the occurrence of 559 

modern recharge and contaminants within the deep aquifer system beneath urban centres 560 

shows that deep groundwater is potentially vulnerable to contaminant migration both within 561 

the aquifer system and also due to inadequate borehole construction. Further water quality 562 

monitoring at pumped sites and dedicated monitoring boreholes is required to assess the 563 

future security of deep (>100 m) drinking water sources beneath growing urban centres.   564 
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The widespread occurrence of antimicrobials even at low concentrations in the subsurface 565 

raises concerns about the development of antimicrobial resistance (AMR) in the environment 566 

(Sharma et al., 2017) and their impact on natural microbiological processes in the subsurface 567 

and microbiological diversity (Waldron et al., 2009). The widespread occurrence of 568 

antimicrobials in groundwater has potential implications for understanding how pollutants are 569 

transported in the subsurface. This study highlights the benefits of using multiple tracers to 570 

constrain recharge and groundwater flow processes and demonstrates the utility of EOCs as 571 

tracers in urban centres for assessing deep groundwater vulnerability.  572 
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