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Abstract: Seismic mapping of key Palaeozoic surfaces in the East Irish Sea – North Channel 
region has been incorporated into a review of hydrocarbon prospectivity. The major 
Carboniferous basinal and inversion elements are identified, allowing an assessment of the 
principal kitchens for hydrocarbon generation and possible migration paths. A major 
Carboniferous tilt-block is identified beneath the central part of the (Permian to Mesozoic) East 
Irish Sea Basin (EISB), bounded by carbonate platforms to south and north. The importance of 
the Bowland Shale Formation as the key source rock is reaffirmed, the Pennine Coal Measures 
having been eroded over wide areas as a result of Variscan inversion and erosion prior to 
Permian deposition. Peak generation from the Bowland source rock coincided with maximum 
burial of the system in late Jurassic/early Cretaceous time. A multiphase history of Variscan 
inversion has generated numerous structural traps whose potential remains essentially 
unexplored. Leakage of hydrocarbons from these into the overlying Triassic Ormskirk 
Sandstone reservoirs is likely to have occurred on a number of occasions, but currently 
unknown is how much resource remains in place below the Base-Permian unconformity. Poor 
permeability in the Pennsylvanian strata beneath the Triassic fields is a significant risk; the 
same may not be true in the less deeply buried marginal areas of the EISB, where additional 
potential plays are present in Mississippian carbonate platforms and latest Pennsylvanian 
clastic sedimentary rocks.  Outside the EISB, the North Channel, Solway and Peel basins also 
contain Devonian and/or Carboniferous rocks. There have however been no discoveries, 
largely a consequence of the absence of a high quality source rock and a regional seal 
comparable to the Mercia Mudstone Group and Permian evaporites of the Cumbrian Coast 
Group in the EISB.  

 

The productive oil and gas fields of the EISB evidence a working, Carboniferous-sourced petroleum 
system. Whilst a great deal may be known of the Triassic reservoir and seal (Meadows et al. 1997), little 
is known about Carboniferous and Permian petroleum systems at depth and in adjacent basins, that may 
offer significant additional potential. Following the Wood Review (2014), Palaeozoic plays, including 
that of the greater Irish Sea area were identified as priority for building regional digital datasets and 
stimulating exploration. In response, the 21st Century Exploration Roadmap: Palaeozoic Project running 
from 2014-2016 and openly released in 2017, undertook regional scale seismic and well interpretation, 
source and reservoir screening studies and basin modelling. This paper provides a re-interpretation of the 
structural history of the greater Irish Sea, and its influence on potential Carboniferous and Permian 
prospectivity including the marginal basins.  

The Carboniferous structure and stratigraphy of the UK sector of the East Irish Sea-North 
Channel region has been reviewed using all available well and seismic reflection data. The project 
interpreted about 40,000 km of 2D seismic data of many vintages from 1980-2000, with local infill from 
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3D data, to generate time and depth-converted surfaces for key Palaeozoic surfaces (Pharaoh et al. 
2016a). Priority was given to the interpretation of long regional speculative lines, with infill from licence- 
and prospect-scale surveys.  These surfaces were then used as the basis for an assessment of Palaeozoic 
hydrocarbon prospectivity (Pharaoh et al. 2016b), which forms the core of this paper. For brevity, the 
seismic interpretations are summarised using synoptic diagrams (‘cartoons’). The present economic focus 
of the hydrocarbon province is the Morecambe Bay gasfield and its satellites, located within the EISB, a 
basin complex of Permian to Mesozoic age comprising a number of mainly N-S oriented graben and 
intervening platforms (BGS 1994; Jackson et al. 1987, 1995, 1997). The principal structures of the EISB 
are strongly discordant to those in the pre-Permian substrate however, which bear the imprint of a long 
and complex evolution culminating in the Variscan Orogeny in latest Carboniferous time. For these 
Devonian and Carboniferous tectonic elements, a new terminology is presented here and the 
lithostratigraphical nomenclature of Waters et al. (2011) is used to integrate onshore and offshore 
successions, allowing more precise correlation than the scheme introduced by Jackson et al. (1997)..  

The Bowland Shale Formation is recognised as a prolific source of gas for the Permo-Triassic 
reservoirs (Armstrong et al. 1997), but potential Namurian and Westphalian reservoirs suffer from low 
porosity and permeability due to the combined effects of Variscan inversion, deep burial in a Permian-
Mesozoic rift, Cenozoic inversion, magmatism and thermal effects associated with the rifting of the North 
Atlantic (Meadows et al. 1997; Quirk & Kimbell 1997). Several areas on the margins of the EISB (Manx-
Furness Ridge, Cumbrian margin, Fylde margin, Cambrian margin) are underlain by the offshore 
extensions of onshore coalfields or Namurian strata. These areas are covered in some detail by seismic 
data, and the availability of onshore analogues allows a more realistic assessment in terms of potential for 
development of non-conventional resources, perhaps from coastal locations.  

 
Methodology and datasets 
 
The exploration datasets used in the regional interpretation are depicted in Fig. 1. The 2D seismic  
datasets include regional speculative data supplied by geophysical companies (CGG, IHS and 
WesternGeco); licence- and prospect-level datasets provided by the Common Data Access Initiative 
(CDA) offshore and United Kingdom Onshore Geophysical Library (UKOGL) nearshore and onshore; 
and data supplied directly by participating companies (Centrica plc).  The 3D dataset used was supplied 
by CDA, augmented by data from the 3D Terracube supplied by CGG. The well picks were supplied from 
the DECC well database at BGS Edinburgh, with further interpretation during the project. Wells used in 
the petrophysical analysis are highlighted with a circle.  
 
Pre-Carboniferous structural evolution 
 
The crust of the southern part of the region (North Wales, Anglesey and adjacent offshore areas (Fig. 2) 
was generated as volcanic and sedimentary complexes in magmatic arc-trench systems during late 
Proterozoic time. Many early tectonic lineaments (e.g. the Menai Strait Fault Zone; Gibbons 1987) are 
associated with the accretion and dispersal of various terranes along the margins of Gondwana in 
Neoproterozoic to Cambrian time. Many of the lineaments (Dinorwic, Berw) have a SW-NE trend, are 
relatively straight (implying steep upper crustal geometry) and have been serially reactivated in Acadian 
sinistral transpression, Devono-Carboniferous extension etc. The crust of the northern part of the area 
(Midland Valley, Scottish Highlands) was generated throughout Proterozoic time. A Neoproterozoic 
supracrustal metasedimentary sequence, the Dalradian Supergroup, was strongly deformed during the 
Grampian phase of the Caledonian Orogeny (Smith et al. 1999; Chew & Strachan 2014). Its southern 
limit is marked by the Highland Boundary Fault, which forms the northern boundary of the area of 
investigation.  

The crust in the central part of the region comprises early Palaeozoic sedimentary complexes 
belonging to several different terranes forming part of the Avalonian (Monian, Lakesman) and Laurentian 
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(Southern Uplands, Midland Valley) margins of the Iapetus Ocean, and accreted during the Caledonian 
Orogeny (Bluck 2002; Barnes et al. 2006; Chew & Strachan 2014). Numerous major tectonic lineaments 
have a typical SW-NE ‘Caledonide’ trend. These include the Carmel Head Thrust of northern Anglesey, 
and reactivations of the earlier Monian lineaments; the Causey Pike Thrust and Southern Borrowdale 
Lineament of the Lake District (Barnes et al. 2006); the numerous accretionary tracts of the Southern 
Uplands massif (Bluck 2002); and numerous faults with this trend within the Southern Highlands terrane 
(Chew & Strachan 2014).  

In this study, a NW-dipping zone of enhanced reflectivity in pre-Carboniferous ‘basement’, 
previously referred to as the Barrule Thrust (Chadwick et al. 2001), was mapped over a large area to NW 
of the Isle of Man. The analysis of the deep seismic reflection data presented by England & Soper (1997) 
suggests that this structure lies within the Avalonian footwall of the Iapetus Suture, rather than 
representing the suture itself. A further zone of NNW-dipping basement reflectivity underlies the 
southern part of the EISB (Jackson & Mulholland 1993; Pharaoh et al. 2016a’ 2016b), being particularly 
prominent beneath the Conwy Platform, just off the north coast of Wales (Fig. 2). The dip of this zone 
steepens as it approaches the coast, and it is inferred to correlate with the southernmost strands of the 
Menai Strait Lineament, i.e. the Menai and Dinorwic fault zones. Although the seismic coverage is 
relatively poor in this area, the available data suggest that this zone represents the deepest regional 
detachment, with all subsequent extensional faulting (of Carboniferous and Permian-Mesozoic age) 
penetrating no deeper into the crust. 

During the Acadian phase of the Caledonian Orogeny, most of the lineaments identified above 
were reactivated within a sinistrally transpressive regime, associated with the late orogenic collapse of the 
Caledonian mountains chain, stretching from the Appalachians through Ireland and Scotland to Greenland 
and Norway (Chew & Strachan 2014). The most obvious element of this regime is the Great Glen-Walls 
Boundary Fault system. Devonian strata are thickest in the north of the study area, in the Midland Valley 
and form the molasse to the Caledonian Orogen (Trewin & Thirlwall 2002). In the south (Anglesey), 
Devonian strata are more limited in development and related to local faulted basin margins (Hillier & 
Williams 2006).  In this tectonic regime, W-E extension is anticipated (Coward 1993). Basins related to 
such an orientation are tentatively identified within the Orcadian Basin (Leslie et al. 2015) but are less 
clearly identified in the study area, except perhaps, in the rift basins (North Channel, Stranraer, 
Carlingford Lough) within the Southern Uplands Massif, and the Peel Sandstone Graben of the Isle of 
Man (Maddox et al. 1997; Parnell 1997; Quirk & Kimbell 1997).  
 
Carboniferous structural and stratigraphic evolution 
 
An extensional- transtensional tectonic regime persisted into Carboniferous time (Leslie et al. 2016). 
Although a general W-E extensional regime has been invoked in Mississippian  time (Coward 1993), 
extension occurred on faults with a diversity of orientations, but with reactivation of earlier basement 
structures (of various trends) being a common feature, e.g. in the Northumberland Basin (De Paola et al. 
2005). This reflects partitioning of the tectonic regime (Leslie et al. 2015). East of the study area, in 
Lancashire, the Bowland Basin reflects deeper water deposition in a basin bounded by SW-NE trending 
faults (Pendle Monocline etc) representing reactivations of earlier basement structures (Kirby et al. 2000). 
The Solway Basin is the offshore continuation of the Northumberland Basin (Chadwick et al. 1995), and 
is controlled by major bounding faults on a SW-NE trend. The Peel Basin along strike to the SW, has a 
similar trend but opposite structural polarity and a very different basin setting in the Carboniferous (Fig. 
2). However the evolution of both basins appears to have been strongly influenced by the extensional 
reactivation of underlying structures in the Caledonide basement. The Midland Valley (and Firth of Clyde 
basins) also exhibit a SW-NE trend, which persists up to the Highland Boundary Fault.  

Carboniferous extensional basins 
The Carboniferous substrate of the EISB comprises a number of basin elements, comparable to that of the 
UK onshore. Fig. 2 presents a speculative reconstruction of the principal tectonic elements in 
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Mississippian time. It is based heavily on seismostratigraphic and structural interpretation, as only five 
offshore boreholes penetrate Visean strata in the whole of the province (112/25a-1 and 113/27-2 in the 
EISB; 111/25-1A and 111/29-1 in the Peel Basin; and 112/19-1 in the Solway Basin, Fig. 2).  In the 
centre of the EISB, a major basin, here referred to as the Eubonia Tilt-Block (Fig. 2),  is inferred to 
extend from the Quadrant 109 (Q109) Syncline in the SW (BGS 1994) to the Ogham Platform (Fig. 2). 
Extension farther east, beneath the Lagman and Tynwald (Permian-Mesozoic) basin of the EISB, towards 
the western edge of the Lake District, is also inferred. The presence of a major half-graben (tilt-block), 
controlled by a major syndepositional bounding fault on its NW margin, the Eubonia-Lagman Fault 
System (Fig. 2, 3a), is indicated by the seismic reflection data.  The structure was not identified as a tilt-
block by Jackson & Mulholland (1993; p800), but they did recognise the marked asymmetry of the 
northern limb of the Q109 Syncline/Basin and the presence of up to 7.5 km of Visean to late Westphalian 
(and possibly Stephanian) strata. Fig. 3a shows a seismic line extending SE with up to 7.5 km of Visean 
to late Westphalian (and possibly Stephanian) strata from the Isle of Man towards Anglesey (Fig. 2). It 
demonstrates the presence of over 2.5 s Two-Way Travel Time (TWTT) of Carboniferous strata east of 
the Eubonia Fault, in what is referred to as the Eubonia Tilt-block (Pharaoh et al. 2016b). Poor well 
control is provided by a few distant wells on the western edge of the EISB (Fig. 2) and the picks are not 
well constrained 

Towards the top of the tilt-block in the south, on the Holy Island Shelf, brighter reflectivity in the 
upper Visean interval, may represent the development of reefal carbonates. The southern end of the 
section crosses a northward-vergent inversion anticline-thrust couple, defining the northern limit of the 
Môn-Deemster Fold Belt. This is a 25 km wide belt of strong Variscan inversion, extending ENE from 
the north coast of Anglesey, from the Q109 Arch to the Deemster Platform (Fig. 2). The internal structure 
of this belt is imaged on numerous N-S profiles crossing the Godred Croven Basin, and Fig. 3b, an 
arbitrary line through 3D data in this area, is representative. A schematic profile is presented in Fig. 4b. A 
series of parallel WSW-ENE trending anticlinal folds has been mapped through the area. The internal 
structure of this inversion belt is complex, comprising a fan-like array of anticlines and synclines with 
associated thrusts, SSE-vergent in the south, and NNW-vergent in the north (Fig. 4b). Fig. 3b clearly 
shows discordant reflections in the Visean sequence, extending down into the Caledonian basement, 
interpreted here as fault-plane reflections. Below 3s TWTT, a further zone of intra-basement reflectivity 
is interpreted as a deeper Caledonian detachment surface, as recognised by Jackson & Mullholland (1993; 
p805). Well 110/07b- 6 was clearly a test of the structure with the greatest amplitude, at the northern end 
of the profile.  This slightly deviated well proved 450 m of (presumed) Namurian Bowland Shale 
Formation (unbottomed) beneath 550 m of Millstone Grit Group, Westphalian strata being absent beneath 
the Base-Permian unconformity (Fig. 3b). As noted above, northward-vergent structures have been 
identified on the northern edge of the Q109 Arch (Fig. 3a), and they have also been mapped beneath the 
northern part of the Deemster Platform. Several NNW-SSE to N-S trending graben of the EISB (Godred 
Croven, Gogarth and East Deemster basins) discordantly overlie this Carboniferous hinge-zone. The 
inversion belt is very similar in its structure and orientation to the Ribblesdale Fold Belt of the Lancashire 
onshore, representing the Variscan-inverted Bowland Basin (Corfield et al. 1996; Kirby et al. 2000). It 
seems logical to infer connection of the two, via the Fylde coast of Lancashire, as proposed by Corfield et 
al. (1996). If this inference is true, then the southern edge of the zone may represent a reactivated 
extensional fault, analogous to the Pendle Lineament of Lancashire; and the Visean carbonate platform 
(Holy Island and Conwy platforms) to the south, with a thin or absent Namurian cover, are the equivalent 
of the Central Lancashire High (Kirby et al. 2000).   

That part of the Eubonia Tilt-block lying east of the Keys Fault was subsequently almost 
obliterated by the combined effects of latest Variscan inversion and pre-Permian erosion. The original 
eastern limit of the tilt-block is uncertain. It likely continued beyond the Tynwald Basin, where the en-
echelon faults of the Lake District Boundary Fault System may have acted as transfer faults, offsetting 
extensional subsidence farther south into the Craven Basin. On the northern margin of the tilt-block, to 
NW of the Eubonia-Lagman Fault System, an extensive shallow marine carbonate platform developed in 
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Visean time. This is well represented by outcrop in the south of the Isle of Man (Chadwick et al. 2001), 
the northern edge of the Lake District and adjacent offshore (Ramsey-Whitehaven Ridge) (Fig. 2). 
Because of significant pre-Permian uplift and erosion, it is not possible to determine the subsidence 
regime in which Westphalian strata were deposited, but it was probably dominated by post-extensional 
thermal subsidence, as elsewhere in southern Britain, the depocentre lying near Manchester (Fraser et al. 
1990; Fraser & Gawthorpe et al. 1990).  

A few wells penetrate the Carboniferous sequence beneath the Peel Basin (Fig. 2) and 
demonstrate that an extensive carbonate platform (Manx Platform and Strangford Shelf) extends west to 
Ireland and north towards the North Channel. The present study revealed that the undifferentiated 
Carboniferous strata on BGS (1994) mapping are principally of Visean age, Namurian strata being largely 
eroded (Pharaoh et al. 2016a). The Permo-Triassic Peel Basin has the form of an asymmetrical graben 
controlled by a major bounding fault on the northern side (Fig. 4c), and extensional faults with smaller 
throws on the southern side, developed in the hangingwall of the Barrule Thrust (Chadwick et al. 2001). 
Lack of evidence for significant Carboniferous syndepositional throw, and the larger Permo-Triassic 
throws, suggests that there was probably not a significant basin here in Visean time, although the poor 
quality of the seismic data allows some uncertainty. Faulting at the top of the Appleby Group (Permian) 
has a predominantly NW-SE trend (Quirk et al. 1999), akin to that of the North Channel Basin.  

In contrast, the Solway Basin, underlying the Permian-Mesozoic Carlisle Basin along strike to 
NE of the Peel Basin, is asymmetrical with a principal controlling fault on the southern side (Ramsey-
Whitehaven Ridge) (Fig.  5a). The Carboniferous basin fill comprises fluviodeltaic Border and Yoredale 
Group strata with greater affinity to the Northumberland Trough sedimentary sequence than the carbonate 
platforms of the southern Irish Sea (Chadwick et al. 1995), together with a greater thickness of preserved 
Pennsylvanian strata.  

The present study found no convincing evidence for the presence of Carboniferous strata beneath 
Permo-Trias in the Portpatrick Basin, the southern part of the North Channel Basin complex: the only 
well to penetrate Permian in this basin (111/15-1) unfortunately terminated in early Palaeozoic rocks 
having passed through the marginal fault. The absence of Carboniferous strata may be a consequence of 
erosion following late Variscan inversion on the NNW-trend (see below). However, they are present 
within re-entrants at the northern edge of the Southern Upland Massif (Stranraer, Strangford Lough), and 
are certainly present to north of the Southern Upland Fault (Larne, Rathlin basins and SW Arran Trough). 
All of these basins are very poorly explored by deep boreholes and only very general conclusions can be 
made about their Mississippian evolution, largely by inference from nearby analogues onshore (Read et 
al. 2002).  

Early phase of Variscan inversion 
Through Pennsylvanian time, the impact of the Variscan Orogeny resulting from the collision of 
numerous Gondwana-derived terranes (Armorica, Central Massif, Bohemian Massif etc) with the 
southern margin of Laurussia (Ziegler 1990; Pharaoh et al. 2006) became increasingly evident in Britain. 
Large-scale northward thrust and nappe emplacement occurred in southern Britain, S Wales and S 
Ireland, but the region lay in the northern foreland of the Variscan Foldbelt (Besly 1988; Ziegler 1990; 
Pharaoh et al. 2010). In late Pennsylvanian (Westphalian C) time, an early phase of inversion was 
followed by deposition of strata of the Warwickshire Group, above a regional unconformity (Eastwood et 
al. 1937; Akhurst et al. 1997; Jones et al. 2011; Dean et al. 2011; Waters et al. 2011). The Whitehaven 
Sandstone Formation (equivalent to the Warwickshire Group and of latest Westphalian to ?Stephanian 
age) has divergent palaeocurrents to the south in Cumbria, and to the north at Canonbie, reflecting 
penecontemporaneous growth of the Solway inversion anticline (Jones et al. 2011). In the EISB, this 
study has identified SSW-ENE trending inversion structures parallel to the Eubonia-Lagman Fault 
System in the north (Fig. 6), as well as in the Môn-Deemster inversion belt described above. The study 
has shown that the early phase of Variscan inversion structures are cut discordantly by the NNW-SSE to 
N-S trending faults of the Permian-Mesozoic main graben structures of the EISB, such as the Godred 
Croven Fault and the western marginal fault of the East Deemster Basin. North of the Ramsey-
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Whitehaven Ridge, both the Solway and Peel basins suffered strong inversion on SSW-NNE 
‘Caledonoid’ trends, with uplift and erosion of most of the post-rift (Namurian to Westphalian) 
successions, prior to deposition of Warwickshire Group strata (Jackson et al. 1995; Newman 1999). 
Variscan reversal of the Maryport Fault is demonstrated by the preservation of a much more complete 
post-rift sequence on its footwall block (Ramsey-Whitehaven Ridge) than in the Solway Basin, its 
hangingwall block (Chadwick et al. 1993).    

Later phase of Variscan inversion 
In late Pennsylvanian  time, the final deformation phases of the Variscan Orogeny are associated with the 
closure of the Uralian Ocean basin and collision of the Kazakhstan and Siberian plates  (Zonenshain et al. 
1984; Puchkov 1997; Brown et al. 2002), resulting in W-E oriented compressional stress (Coward 1993; 
1995). In the study area, inversion occurred along NNW-SSE to N-S trending faults such as the Keys 
Fault, Gogarth Fault, the western marginal fault of the East Deemster Basin and the Formby Point Fault 
System. Evidence for this is provided by the Carboniferous subcrop pattern presented by BGS (1994). 
The Pre-Permian subcrop inset in the marginalia of this map clearly shows erosion of Westphalian strata 
in NNW- to N-S trending belts associated with the hangingwalls of the Keys Fault (Fig.  5b), Gogarth 
Fault (Fig.  4a) and Lake District marginal faults (Fig.  5c. By contrast, Westphalian strata are well 
preserved on the footwall of these structures. The seismic data indicate the presence of N-S trending 
anticlinal folds cored by Namurian strata, dissected by faulting on their overturned limbs. Similar subcrop 
patterns, with Namurian subcrops in the cores of Variscan inversion anticlines e.g.. the Murdoch 
Anticline,  are observed in Quadrants 43 and 44 in the southern North Sea (Corfield et al. 1996), and 
indeed, the two basins exhibit a similar degree of inversion. At present the faults are extensional 
structures of Permian and younger age; but these are here inferred to have initiated as thrusts on the 
overturned limb of the anticlines during Variscan inversion, as reported in the Ogham Inlier by Quirk & 
Kimbell (1997). Seismic mapping of the subcrop in the present study confirms this pattern and has 
identified a possible interference structure between the two trends in the Ribble Estuary Inlier (Fig. 6). 
Although it is conceivable that inversion on faults with both WSW-ESE and NNW-SSE trends could 
have occurred in one Variscan phase of inversion, comparable to the partitioned deformation system 
advocated for the Northumberland Basin by De Paola et al. (2005), the above evidence would appear to 
suggest two phases of nearly orthogonal Variscan inversion are more likely. Extensional reactivation of 
the NNW- to N-S trending late Variscan inversion structures in W-E extension during Permian to 
Mesozoic time, facilitated development of NNW-SSE to N-S trending graben of the EISB, strongly 
discordant to the strong SW-NE structural grain established by Caledonian compression, Mississippian 
extension and early Variscan inversion. Strong uplift and erosion during the Variscan inversion led to 
complete removal of the Pennine Coal Measures strata underlying the Lagman Basin. The ancestral Keys 
Fault played a key role in partitioning the former Eubonia Tilt-block into western and eastern segments, 
the latter being almost obliterated by post-Variscan events. Inversion on the same trend may have led to 
uplift and erosion of Carboniferous strata deposited within basins on the North Channel Basin complex. 
 
Post-Variscan structural evolution 
 
The Post-Variscan structural evolution of the EISB has been thoroughly described in numerous previous 
publications (BGS 1994; Jackson et al. 1987’ 1995’ 1997; Jackson & Mulholland 1993). As a result, only 
a generalised account, focussing on those elements where the Palaeozoic structure has a bearing, will be 
presented here. Following the Variscan basin inversion and regional uplift described above, there is clear 
evidence on seismic profiles for the erosion of Pennine Coal Measures strata from the crests of inversion 
anticlines, and tectonic dissection of the latter adjacent to the Keys, Lagman, Lake District Boundary and 
Formby Point faults prior to deposition of Permian strata. Jackson & Mulholland (1993; p793) and 
Jackson et al. (1997; Figure 2) recognised significant thickening of the Appleby Group (Lower Permian), 
possibly to as much as 1150 m (Jackson & Mulholland 1993), in a belt extending from the Berw Basin to 
the Formby Oilfield. For example, the well 110/11-1 proved 763 m of Collyhurst Sandstone Formation 
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(Appleby Group), while 110/7-2 12 km to the north proved only 40 m, and none is present in the vicinity 
of the Morecambe fields. The belt of thick Appleby Group strata directly overlies the Môn - Deemster 
Foldbelt, providing strong evidence for significant early Permian penecontemporaneous relief within, and 
deep erosion of, the tectonically weakened inversion belt. The area must have had a substantial 
topography in early Permian time. It is interesting to note that significant pre-Permian palaeotopography 
was described at Formby by Falcon & Kent (1960).  

A series of NNW-SSE to N-S trending rifts began to develop in response to W-E extension 
affecting the crust of the Pangaea Supercontinent that was established during the Variscan Orogeny 
(Whittaker 1985; Coward 1995; Chadwick & Evans 1995). In the Worcester and Knowle basins onshore, 
rifting was able to exploit the N-S (‘Malvernoid’) grain previously established by late Precambrian 
orogeny (Pharaoh 1987; Barclay et al. 1997) and subsequent Variscan inversion (Chadwick 1993). The 
rifts propagated with stepwise, en-echelon offsets through the province, from the Stafford and Cheshire 
basins and EISB through the Portpatrick and Larne basins and the North Channel to the western Scottish 
offshore basins (Ziegler 1990). The Solway and Peel basins subsided less than the EISB, and are 
elongated SW-NE, reflecting structural control by the extensionally-reactivated Caledonide basement 
structure within the Iapetus Convergence Zone. Nevertheless, it is notable that the majority of small to 
medium-sized intrabasinal normal faults (Chadwick et al. 2001) take up the new N-S trend, as in the 
Cheshire Basin (Chadwick 1997). By Triassic time, the EISB was a mature component of the Central 
European Basin System (Scheck-Wenderoth et al. 2007; Pharaoh et al. 2010), receiving up to 5km fill of 
Sherwood Sandstone Group clastic sedimentary rocks and Mercia Mudstone Group mudstones and 
evaporites (Jackson & Mulholland 1993). Small relict outliers of Lias (early Jurassic) strata in the Carlisle 
Basin (Warrington et al. 1997), Peel Basin (Chadwick et al. 2001) and EISB (Jackson & Mulholland 
1993) indicate that subsidence continued into Jurassic time. Evidence for mid- and late Jurassic 
subsidence has been removed subsequent to Cenozoic inversion, uplift and erosion. The magnitude of 
post-Triassic displacement is difficult to estimate due to this erosion, but it is likely that the Lagman and 
Keys faults, together with the Maryport, Portpatrick, Loch Ryan and St Patrick faults, suffered significant 
normal movement (Jackson & Mulholland 1993; Quirk et al. 1999). Apatite fission-track analysis 
indicates that for parts of the Ramsey-Whitehaven Ridge, maximum post-Variscan burial was achieved in 
early Cretaceous time (Green et al. 1997). This was associated with peak generation of hydrocarbons 
from Carboniferous source rocks throughout the region. Soon after this, a fall in relative sea level and 
erosion resulted in the Late Cimmerian Unconformity, found throughout the British Isles (Whittaker 
1985). The reduction in confining pressure may have been enough to allow early formed hydrocarbons, 
principally oil, to escape early reservoir structures in gentle roll-over anticlines associated with the 
shallow detachment tectonics in the centre of the Main Graben, towards roll-over traps at the marginal 
faults (Pharaoh et al. 2016b).  

Opening of the Atlantic Ocean east of Greenland by Paleocene times associated with putative 
Icelandic Plume activity (e.g. Brodie & White 1994; Nadin & Kuznir 1995) resulted in voluminous 
magmatism in the Inner Hebrides and in N Ireland just to the west of the study area. The Fleetwood Dyke 
Complex (Kirton & Donato 1985) was intruded en echelon across the main graben of the EISB.  
Magmatic and thermal processes on a lithospheric scale resulted in regional thermal doming of the crust 
below the EISB (White 1988) in Palaeogene or possibly, late Cretaceous, time (Cope 1994, 1997). Across 
the study area, the combination of enhanced regional and local heat flow led to a further phase of 
hydrocarbon generation (Cowan et al. 1997; Meadows et al. 1997). Superimposed on the regional, 
thermal uplift described above were the effects of later crustal shortening, associated with the developing 
Alpine Orogeny in southern Europe. Apatite fission-track data indicate a second Cenozoic phase of 
cooling at 25-20 Ma (Newman 1999), compatible with the region being affected by the Oligo-Miocene 
phase of inversion found in southern Britain and the southern North Sea (Van Hoorn 1987; Badley et al. 
1989; Chadwick 1993). Inversion of the Solway Basin led to development of a major anticlinal structure 
in the hangingwall block of the Maryport Fault (Chadwick et al. 1993) on the northern side of the 
Ramsey-Whitehaven Ridge. On the southern side of the ridge, the reversal of the Lagman Fault led to the 
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generation of small hangingwall anticlines (Chadwick et al. 2001). Flower structures and ‘pop-up’ 
structures are found along the Keys Fault and Formby Point Fault e.g. the Rhyl and Lennox fields (Haig 
et al. 1997), reflecting the ‘buttressing’ effect of the margins of the EISB (Pharaoh et al. 2016b). 
Throughout the EISB, seismic data indicate the presence of gentle Cenozoic inversion anticlines (Figs. 4a, 
b, c) superimposed on an earlier generation of Variscan inversion anticlines (Pharaoh et al. 2016a; b), the 
‘posthumous’ tectonic style recognised by Jackson & Mulholland (1993). Further tightening of the 
Variscan inversion anticlines during Cenozoic (Alpine) crustal compression resulted in the development 
of more open structures in the Permo-Triassic cover. This was likely an important process in the 
generation of the traps in the Hamilton fields (posthumous upon the Môn-Deemster inversion belt) and 
the Millom, Dalton and Calder fields (posthumous on the Keys-trend of latest Variscan inversion). 
 
Petroleum systems of the Carboniferous basins of the EISB 
 
In the EISB, a proven petroleum system is present, involving a Carboniferous source (Colter & Barr 
1975; Cowan 1991; Stuart 1993; Armstrong et al. 1997), reservoirs of the Ormskirk Sandstone, locally 
the uppermost formation of the Triassic Sherwood Sandstone Group, and halite seals (Fig. 7). A 
substantial number of exploration wells have been drilled, but few penetrate the Permian and the potential 
pre-Permian resource underlying the EISB fields is poorly known. The North and South Morecambe 
gasfields (Fig. 6), with a combined in place recoverable  of 5.2 tcf (Cowan 1996), were discovered in the 
1970s and lie in large regional anticlines associated with rollover and salt-facilitated low angle 
detachment faulting, of Triassic to Jurassic age (Knipe et al. 1993). Further modification of trap geometry 
occurred in Miocene time as a result of Alpine inversion.  An initial charge of hydrocarbons (probably 
mostly oil) in Jurassic time was originally thought to have been derived from Pennine Coal Measures 
source rocks, as in the southern North Sea (Bushell 1986). Subsequently the Bowland Shale Formation 
was confirmed as the source (Armstrong et al. 1997). This early charge was associated with the formation 
(at about 180 Ma) of a ‘platy-illite’ layer, interpreted as a palaeo-hydrocarbon-water contact (Bushell 
1986; Woodward & Curtis 1987; Knipe et al. 1993), which was lost during the early Cretaceous and the 
present (mostly) gas charge is believed to result from a further cycle of hydrocarbon generation (also 
from the Bowland Shale Formation?) associated with an elevated geothermal gradient during the early 
Cenozoic  (Cowan & Bradney 1997). Hydrocarbon  migration continues in the basin to the present day, as 
witnessed by the seepage of oil into Quaternary sands and peats at Formby, on the Lancashire coast.  

In the 1990s, the Hamilton, Douglas, and Lennox fields, with a mixture of oil and gas, were 
discovered parallel with the North Wales coast in the southern part of the EISB (Fig. 6). Most of the deep 
wells of these fields encountered Millstone Grit Group below the Variscan Unconformity, as at Formby. 
Using isotopes the sampled oils (from 110/15-6, Lennox and 110/13-10, Douglas Oilfield) were 
correlated with each other, and the Holywell bitumen and the Holywell Shales (correlative of the 
Bowland Shale Formation) of NE Wales thereby proving the Bowland Shale source (Armstrong et al. 
1997). These were isotopically lighter (more negative) than Westphalian cannel coals of Type I kerogen, 
for example those formerly mined and used to make oil at Leeswood in North Wales (Falcon & Kent, 
1960) . Waxy crude shows in the Millstone Grit Group in well 110/07b-6 (1510 m-1675 m; Released 
Geochemical Report) showed an isotopically similar source to shows in wells 110/07-2, 110/08-3 and 
Formby. The API of the Irish Sea oils range from 40-45 at Lennox and Douglas (Hardman et al. 1993) , 
to 37 at Formby (Armstrong et al. 1997), perhaps suggesting a less mature source in the onshore field. 
Many additional small fields have been discovered subsequently, mostly in the centre of the EISB and 
mostly containing gas, culminating with the Rhyl discovery in 2009. In the Irish Sea, no significant 
Carboniferous reservoirs or good shows have been reported but there is at least one discovery (113/27-2)  
in the Collyhurst Sandstone (Appleby Group).   

Stratigraphy of the petroleum system 
Carboniferous source rocks are shown in  Fig. 7, as covering the lower part of the Namurian and highest 
part of the Visean where shales are developed; Pennine Coal Measures may make a contribution where 
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preserved. The lithostratigraphical terminology used here is that introduced by Waters et al. (2011) to 
better integrate the offshore with the onshore geology than previous schemes (e.g. Jackson et al. 1999). 
The Carboniferous source rocks are separated from the Triassic Ormskirk Sandstone reservoir rocks by 
the Millstone Grit Group and, where present, Pennine Coal Measures and Warwickshire groups. Above 
the Variscan Unconformity the Permian Appleby and Cumbrian Coast groups, and the lower, tight part of 
the Triassic Sherwood Sandstone Group, also intervene. A Pendleian time slice  (Fig.  9) highlights the 
persistence of the relatively deep marine hemipelagic successions (Bowland Shale Formation) across the 
central part of the British Isles, including the Craven Basin, EISB and westward towards the Dublin Basin 
(Ramsbottom et al. 1969; Cope et al. 1992; Jackson & Mulholland 1993; Wakefield et al. 2016). The late 
Pendleian saw the first major influx of thick fluvial and deltaic sandstones into the Craven Basin, both 
from the north and from the south. The northern basin fill are characterised by a thick pro-deltaic ramp 
turbidites, overlain by a siltstone-dominated slope succession, in turn overlain by a fluvio-deltaic, delta-
top sandstone (Collinson 1988; Wakefield et al. 2016). The hemi-pelagic successions have gamma values 
which suggest potential as source rocks. The overlying successions of the Pennine Coal Measures and 
Millstone Grit groups have potential as a combined source-reservoir unit, with secondary sources from 
marine influxes and coaliferous sediments.  

Clastic intervals within the Carboniferous and Permian successions that are evaluated for 
reservoir potential include the Appleby Group, Warwickshire Group, Pennine Coal Measures Group, 
Millstone Grit Group and Bowland Shale Formation. The Carboniferous Limestone Supergroup has been 
assessed as a potential reservoir, although the effect of secondary, karstified and fracture porosity has not 
been analysed. The preservation and thickness of the possible reservoir units is variable, particularly the 
Carboniferous units beneath the Variscan Unconformity (Fig. 6). Interpretation of well logs and 
associated core analyses (biostratigraphy, poroperm etc) frequently provide alternative stratigraphic 
interpretations to those shown on the well composite log, and have been carried out in this study (Fig. 9a, 
b). Many authors have referred to the problems in identification that results from secondary reddening of 
the Carboniferous strata below the Variscan Unconformity (Trotter 1954; Falcon & Kent 1960; Jackson et 
al. 1995) in both the adjacent onshore and within the EISB. In the south of the basin, thick Appleby 
Group strata overlie the Variscan Unconformity and stratigraphic interpretation is straightforward. 
However, in the Morecambe fields area, the Appleby Group is absent and the Cumbrian Coast Group is 
interpreted to overlie the Variscan unconformity (Fig.  9b). This is important because it shows the 
probable topography of the Carboniferous surface, deformed and uplifted by the Variscan Orogeny, and 
the extent of erosion and eventual burial. The Cumbrian Coast Group comprises a varied sequence of thin 
sandstones, anhydrites, limestones, halites and mudstones, mostly red in colour. Underlying redbeds have 
therefore been interpreted either as a mudstone facies of the Appleby or as Warwickshire Group strata, on 
well composite logs. The favoured interpretation, combining all the seismic and well evidence, is that the 
red beds directly underlying the Cumbian Coast Group are secondarily reddened. They often include thin 
sandstones and high gamma shales and rarely contain coals, and are believed to be mostly of Namurian 
depositional age. 

Source rocks  
One of the key risks in the Palaeozoic of the greater Irish Sea province is the quality, extent and maturity 
of source rock intervals. Potential source rocks include coals of the Pennine Coal Measures (Westphalian) 
and upper Millstone Grit (Namurian) groups;  shales of the Bowland Shale Formation and Millstone Grit 
Group (Pendleian and Arnsbergian); and older Visean shales (unproven by sample data), for example in 
the lower part of the Yoredale Group. Compilation of the Rock-Eval source rock geochemical data from 
released legacy reports revealed a small data set (264 samples), limiting the analysis which could be 
undertaken (Vane et al. 2016). Where penetrated, the Pennine Lower Coal Measures Formation, 
Millstone Grit Group and Bowland Shale Formation are mainly gas-prone strata with poor-fair remaining 
generative potential, and are mature to the gas window at the sampled intervals in Quadrants 110 and 113 
(Vane et al. 2016). Some shales within the Millstone Grit Group have TOC values (Fig. 11f) and S1 
hydrocarbon values (Fig. 11a) greater than the Bowland Shale Formation.  Given the maturity levels, 



10 
 

source rock potential in these wells is likely to have been depleted by hydrocarbon generation, or the 
original quality of these source rocks was poor to fair. The Cumbrian Coast Group, Appleby Group and 
Carboniferous Limestone Supergroup sampled in two wells in Quadrant 111 are oil to gas window 
mature, but have low Total Organic Carbon (TOC) and low residual hydrocarbon generative potential. 
Data is generally lacking to characterise kerogen types using a Van Krevelen plot, however data from 
well 110/02b-10 (Fig.  11b) suggests a kerogen mix between Type II and III for the Millstone Grit Group 
and Pennine Coal Measures. A similar mixed system can also be expected for the Bowland Shale 
Formation but with a higher proportion of Type II kerogens. The high TOC and widespread extent of the 
Bowland Shale Formation favour it as the primary source rock, at least in the southern part of the Irish 
Sea. The other potential sources are ranked as secondary to this. 

Hydrocarbon maturation and generation 
Vitrinite reflectance data (Fig. 11d) shows that the Bowland Shale source rocks in wells are mature for oil 
and gas generation (Corcoran & Clayton 1999; Vane et al. 2016). EISB oils were considered to have been 
derived from the source in the range 0.75-0.85% Ro maturity, and the condensate from >1.0% Ro 
(Armstrong et al. 1997). Given the structural complexity for the area of interest, a singular burial trend 
and maturity profile cannot be defined. Cowan et al. (1999) gave examples of varying thermal and burial 
history at the basin margins changing over tens of kilometres. Three wells show a correlation of maturity 
increase with depth within the Tmax dataset: 110/07b-6, 110/02b-10 and to a lesser extent 113/27-1, 
indicating progressive oil window into gas window maturity with depth. Some of the Tmax  data  indicate a 
wide spread of temperatures at the same depth, perhaps reflecting reworked and caved material in 
addition to in situ measurements or possibly due to Tmax suppression caused by variable kerogen and free 
oil composition (Fig. 11c). Onshore Isle of Man boreholes (Shellag, Ballavarkish, Black Marble Quarry; 
Fig, 5) show a similar range of Tmax, albeit with few samples (Racey 1999).  
 
Basin modelling 
A lack of preserved post-Jurassic strata has resulted in a range of burial and thermal models  for  the 
EISB, for example Cenozoic uplift estimates ranging from <1 km to up to 3 km (Cowan et al. 1999; 
Quirk et al. 1999 and references therein). In this study, well 110/07b-6 was chosen for burial and thermal 
modelling as it had the most complete geochemical profile and thick Carboniferous section (Gent 2016; 
Fig. 12). The well is situated on a minor Variscan structural high, and is considered reasonably 
representative of the more marginal areas of the basin. The burial model was matched to the measured 
vitrinite reflectance (VR) profile and the calculated VR profile (from Tmax) (Fig.  12). Using published 
studies (Cowan et al. 1999; Quirk et al. 1999)  and seismo-tectonic interpretations from this study a 700 
m uplift event in the late Carboniferous, followed by a minor 150 m uplift during development of the Late 
Cimmerian Unconformity, and a final 1100 m uplift and increase in palaeo-heatflow in the Cenozoic were 
included. The modelling shows that burial of the Bowland Shale Formation source rock in the 
Carboniferous resulted in the early-mid mature oil window being reached, before uplift and subsequent 
deeper burial in the early Cenozoic, just reaching main gas generation in the base of the drilled strata (Fig. 
12). This is consistent with the oil shows documented  in the well geochemical report (Geochem 
Laboratories Ltd 1988). Carboniferous trap formation, migration and generation were all likely to have 
occurred during the Variscan Orogeny. However, subsequent uplift would have almost certainly breached 
the traps. Migration and trap formation was renewed in the Mesozoic and Cenozoic, with any modern day 
hydrocarbon accumulations required to have survived the potential structural breach as a result of 
Cenozoic inversion. 

Migration  
Migration of hydrocarbons into Triassic reservoirs and traps has clearly been successful as evidenced by 
the producing oil and gas fields of the EISB. Oil migration to the Triassic Hamilton fields may have 
occurred, vertically along faults, in Jurassic and Cretaceous times (Yaliz 1998; Haig et al. 1997; Yaliz & 
Taylor 2003). This study has highlighted how these fields overlie the Môn-Deemster inversion belt 
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described above (Fig. 6), the structures of which may have acted as first stage reservoirs, subsequently 
breached to allow migration into overlying Triassic traps, formed posthumously as late as Cenozoic time, 
on a template created by the Variscan inversion structures. In a similar way, the Millom, Dalton and 
Calder fields, lying close to the Keys Fault, and Lennox Field, close to the Formby Point Fault, are 
Cenozoic age traps formed posthumously on a template provided by the second phase of Variscan 
inversion structures. As the basin depocentre widened and new areas came into the oil window, additional 
hydrocarbons may have been generated and continued to migrate southward. The basin depocentre within 
the dismembered Eubonia Tilt-block entered the gas window and gas migrated into the Morecambe and 
other fields. This may have occurred both pre- and post-Late Cimmerian uplift/sea-level fall (Bushell 
1986). In a conceptual Carboniferous petroleum system model, migration is away from the steadily 
deepening and expanding hydrocarbon kitchen towards the margins of the basin, where these strata fail by 
thinning and overlap. In the north the boundary is strongly faulted (Lagman, Eubonia and Lake District 
boundary faults).  

Characteristics of potential reservoirs 
A reservoir evaluation of Permian and Carboniferous intervals, designed as a quick-look regional 
overview, was based on legacy core plug-measured porosity and permeability data and continuous 
petrophysical interpretations for 8 wells (Hannis 2016). Net-to-gross, porosity and basic permeability 
estimates were calculated for each formation, summarised in Table 1. In general, the results illustrate 
fairly low net to gross values of less than 10% (except in the Permian-aged Appleby Group where net-to-
gross was 79%), porosities (highest formation averages mostly around 10% but up to 19 % in the 
Appleby Group) and mainly poor average permeabilities (highest formation averages mostly less than 10 
mD). Further examination of the distribution of potentially higher permeabilities within the Millstone Grit 
sandstone intervals could be worthwhile (Table 1). The core plug measured porosity versus permeability 
data by formation is exhibited in Fig. 13. 

The aeolian-dominated Permian Appleby Group strata that include the Collyhurst Sandstone are a 
prospective reservoir interval. The group as proven in well data is commonly defined by a basal breccia, 
overlain by a thick clean sequence of aeolian sandstones, culminating in an upper sequence of breccias 
(Wakefield et al. 2016). Based on 6 wells in Quadrant 110 in the depth range 1300-2400 m, maximum 
measured core porosity is 21% with a highest formation average in all wells of 13%. Permeability is 
however poor, with a maximum measured permeability of 71.5 mD (vertical (kv)), and a highest 
formation average of 0.8 mD (horizontally,kh) and 7.90 mD (vertically). Petrophysical analysis has 
confirmed the group as being a sandstone-dominated interval with an average net-to-gross ratio of 79%. 
Petrophysical porosity and permeability calculations match with the core-measured values, with the 
highest average porosity calculated at 19% and highest average permeability estimates of 6.89 mD, with 
some estimates in the 50-100 mD range for several wells (Table 1 and Hannis 2016).   

The Warwickshire Group is the equivalent of the Ketch and Boulton formations of the southern 
North Sea in Quadrant 53 and Quadrants 43-44 (Waters et al. 2011). Onshore, the Warwickshire Group of 
North Wales and Cheshire Basin comprises predominantly red, brown, purple-grey mudstones and 
sandstones and locally green-grey siltstones and mudstones with thin coals. However, potential reservoir 
sandstones can be locally significant. The amount of sandstone relative to mudstone and siltstones within 
constituent formations of the Warwickshire Group varies considerably. In West Cumbria, the Whitehaven 
Sandstone Formation, at least 280 m thick (Akhurst et al. 1997; Dean et al. 2011) is mainly a red to deep 
purple or purplish brown, cross-bedded, micaceous, medium- to coarse grained sandstone (Wakefield et 
al. 2016). The Halesowen Formation was productive in the small mined Coalport Tar Tunnel ‘field’ in 
Shropshire during the 18th and early 19th century (Smith et al. 2005). In the East Midlands, the 
Warwickshire Group  group has been documented to have better reservoir characteristics than productive 
older late Carboniferous strata, but was spatially confined to the synclines (BGS 1984; Pharaoh et al. 
2011). Data from Quadrant 53 and the English Midlands shows that an average porosity of 16% is likely, 
with a permeability of several hundred mD, although the bulk of the data was from above 600 m depth. 
Therefore investigation of the Warwickshire Group as a reservoir interval offshore was considered, 
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though seismic mapping indicated a limited extent in the greater Irish Sea province (Fig. 6) and there are 
no well penetrations and therefore no reservoir data for the group. However, Bolsovian-Asturian 
(Westphalian C-D) age strata are recorded in well 33/22-1 along strike in the Kish Bank Basin (Jenner 
1981). 

In the EISB, the Pennine Coal Measures Group comprises interbedded grey mudstone, siltstone 
and pale grey sandstone, commonly with mudstones containing marine fossils in the lower part of the 
lower and upper part of the middle subdivisions, and more numerous and thicker coal seams in the 
intervening interval. The group shows an overall blocky to erratic log response, with thick high gamma 
mudstone and siltstone intervals and relatively thin (3-15 m) low gamma sandstones. The sandstones 
show considerable variation in wireline log character, including 'boxcar' motifs in thick, distributary 
channel sandstones (Wakefield et al. 2016). Onshore, sandstones are also frequently encountered (e.g. 
Cefn Rock and Hollin Rock of NE Wales coalfields, Worsley Delf Rock, Prestwich Rock and Newton 
Rock of Lancashire Coalfield) and are approximate equivalents to the productive sandstones in basinward 
East Midlands fields (e.g. Oak Rock, Crawshaw Sandstone, Wingfield Flags). Based on five wells in 
Quadrants 110 and 113,  in the depth range 1400-3050 m, maximum measured core porosity is 10% with 
a highest formation average in all wells of 6%. Permeability is generally poor with a maximum measured 
horizontal permeability of 9.43 mD (kh), and a highest formation average for kh of 1.07 mD. Petrophysical 
analysis of the Pennine Coal Measures Group provides a similar outlook, with an average net to gross of 
9%. Net intervals have reasonable porosities, with the highest average porosity at 11%. Permeability is 
generally poor with the highest average permeability estimated at 0.8 mD. However, permeability up to 
61 mD was estimated in one well (110/02b-9; Table 1, Hannis 2016). 

The Namurian-aged Millstone Grit Group comprises cyclic sequences of quartzo-feldspathic 
sandstone, grey mudstone, thin coal and prominent seatearths, resulting from deposition by repeated 
progradational deltas (Collinson 1988). Common marine bands are present and represent discrete flooding 
events (Waters & Condon 2012). Thick reservoir intervals are uncommon, with initial turbidite lobes 
passing into delta-top deposits with thin sandstones typically contained within sheetfloods, overbank 
deposits and stacked channels. Onshore, and potentially offshore, thicker sandbodies (up to 50m thick) 
occupy incised valleys (Waters & Condon 2012; Wakefield et al. 2016). Jackson et al. (1997; Figure 6) 
identified a Kinderscoutian sandstone unit up to 90 m thick in the Liverpool Bay region (111/20-1), 
which can be correlated with wells farther north (112/30-1 and 113/27-2) although considerably reduced 
in thickness. Onshore, Millstone Grit sandstones are encountered in NE Wales (e.g. Cefn-y-Fedw, 
Gwespyr Sandstone, Aqueduct Grit), Lancashire (e.g. Fletcherbank Grit, Pendle Grit and Warley Wise 
Grit), and in producing East Midland fields (e.g. the Rempstone Oilfield). The Namurian (Marsdenian) 
depocentre extends from the Staffordshire Gulf, probably to Preston and thins to SW under the Cheshire 
Basin (Collinson et al. 1977; Smith et al. 1995). This pattern continues into the offshore of the EISB with 
Namurian absent at the Rhuddlan well on the North Wales coast (Figs. 5, 9b). Based on samples from 
four  wells in Quadrants 110 and 113, at 1950-3550 m depth, maximum measured core porosity is 10 % 
with a highest formation average in all wells of 6% (Table 1). Permeability is poor, the maximum 
measured was 0.37 mD (kh), and the highest formation averages for kh and kv were 0.04 mD and 0.05 mD 
respectively. Petrophysical analysis provides a more promising outlook for the group, although the 
average net-to-gross is 10 %. Net intervals have a reasonable porosity, the highest average porosity is 11 
%. Permeability is poor with an average estimate of 0.2-2.1 mD, apart from one well 113/27-2, which 
shows an average of 367.7 mD (Table 1). Further analysis of these sandstones could therefore be 
beneficial (Hannis 2016).  

The Bowland Shale Formation is only examined in the wells 110/11-1 and 110/07b-6, however 
the formation broadly shows an upwards decrease in carbonate turbidites and an increase in siliciclastic 
sandstone turbidites (Wakefield et al. 2016). Potential thin reservoir sandstones may be present. Well 
110/07b-6 encounters a total of 16 m of these sandstones, giving a net-to-gross of 3%. (The other well 
examined, 113/27-2, contained no net intervals). No core samples were taken, but petrophysical 
interpretation revealed that the net intervals had porosities up to 23%, although the average porosity was 7 
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%. Permeability estimates appear poor with an average of 0.7 mD and maximum of 16.2 mD (Table 1, 
Hannis 2016).  

Carboniferous Limestone Supergroup sequences are interpreted to be widespread over the EISB 
and thus worthy of investigation as a reservoir. Petrophysical analysis of the limestones encountered in 
two wells (112/25a-1 and 111/25A-1) appear clean, but have too low matrix porosities (less than 5 %) to 
be considered as a reservoir (Table 1), but accumulations could be hosted in secondary porosity as a result 
of karstfication or fracturing. Onshore, the Hardstoft Oilfield in Derbyshire (Craig et al. 2013) produced 
from the top of the Carboniferous Limestone, but despite numerous shows, no further production was 
established from this reservoir in the East Midlands fields (Falcon & Kent 1960). Karstified limestones 
such as those known from Anglesey (Walkden & Davies 1983) and apron reefs like those which crop out 
at Castleton, Derbyshire might be present in the offshore. Seismic evidence for the possible presence of 
reefs towards the top of the ramp of the Eubonia Tilt-block in Quadrant 109 (Fig. 4a) was described 
above and indicated schematically in Fig. 4a. Waulsortian mud-mounds of pre-Asbian age may also be 
possible reservoirs. They are seen at outcrop in the south of the Isle of Man (Dickson et al. 1987) and in 
the Craven Basin. In the prolific Williston Basin of Canada, collapsed mud-mounds up to 100 m tall 
provide excellent porosity but were initially hard to identify on seismic data (Kupecz et al. 1996). 
 
Seal rocks 
The Cumbrian Coast Group, which includes the Manchester Marls (Fig. 7), provides the most extensive 
potential seal to Permian or Carboniferous rocks across the whole of the greater Irish Sea area. The unit 
consists of thick evaporites in the north and central East Irish Sea, thinning southward, passing laterally 
into dolomitic mudstones (Jackson & Mulholland 1993; Wakefield et al. 2016), and is encountered in 
wells in surrounding sub-basins. This seal has been proven to trap hydrocarbons in the well 113/27-2, and 
sealing potential is proven in 112/25a-1, with minor gas shows in the tight Appleby Group. In the 
producing EISB fields, any Cumbrian Coast Group seals were breached as the fluids migrated out of the 
Carboniferous and Permian into the Triassic Ormskirk Sandstone reservoir (Colter 1997). Carboniferous 
intraformational mudstone seals have proved adequate in all the onshore fields of the East Midlands 
(Pharaoh et al. 2011), Cousland in Scotland (Hallett et al. 1985), various fields in the Silver Pit and 
Cleaver Bank basins of the southern North Sea and numerous fields in the Netherlands and Germany 
(Pletsch et al. 2010), and could be expected to work in Carboniferous basins of the Irish Sea.  
 
Hydrocarbon prospectivity of the Carboniferous basins outside the EISB 
 
Whilst basins of the greater Irish Sea province outside the EISB have extensive seismic coverage of 
variable quality, there are few wells. Data is therefore lacking to constrain their hydrocarbon systems and 
is heavily dependent on onshore analogues.  
 
Solway Basin 
The Permian – Jurassic Solway Basin, linked NE to the Carlisle Basin and SW to the Peel Basin is 
underlain by a Carboniferous basin of the same trend, an extension of the Northumberland Trough 
(Chadwick et al. 1995; Fig.  2). Two well penetrations (112/15-1 and 112/19-1) prove a Visean – 
Namurian Yoredale Group distinguished from the Carboniferous Limestone Supergroup by the presence 
of fewer carbonates (Fig. 7). The Yoredale Group sandstones, limestones and siltstones represent a 
fluviodeltaic depositional environment (see Wakefield et al. 2016) which is a northward lateral equivalent 
of the basinal Bowland Shale Formation, i.e. the Bowland Shale facies is not proven and may not be 
present. The presence of delta-top lacustrine facies is a possibility, but has not been demonstrated. In the 
onshore Cumberland Coalfield, the coals are gassy (Colter 1997), but the Pennine Coal Measures Group 
have not been penetrated offshore in the Solway Basin. Potential Carboniferous reservoir intervals 
include a relatively small area of Warwickshire Group on both sides of the Maryport Fault (Figs.  5a, 6) 
and the Fell Sandstone Formation in the main part of the basin. 
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Peel Basin 
The Peel Basin is a Permian-Jurassic basin lying between the Isle of Man and Northern Ireland, underlain 
by a Carboniferous carbonate platform. Wells 111/25a-1 and 111/15-1 penetrated the Mississippian age 
Carboniferous Limestone Supergroup, in contrast to the time-equivalent Yoredale Group encountered in 
the along-strike, Solway Basin. The lack of a clastic, fluvio-deltaic system may enhance the likelihood of 
the Bowland Shale (source rock) equivalent being present in younger strata between 111/25a-1 and the 
Isle of Man coast, but there is no data to test this hypothesis. The seismic reflection data are generally of 
poor quality, but allow the presence of a small outlier of Namurian strata to NW of the Isle of Man. The 
Peel Basin may extend to the Carlingford Lough area near the Irish border, south of the Mourne 
Mountains (Fig. 2). BGS boreholes (in Quadrant 112, near the Irish coast) 73/65 and 73/67 are of 
probable Visean age and form a rim to the Lower Palaeozoic Longford-Down Massif. BGS borehole 
71/43 near the Isle of Man coast was dated as Namurian. The data available preclude evidence of a 
working Palaeozoic petroleum system in the Peel Basin, a conclusion previously reached by both 
Newman (1999) and Quirk et al. (1999).  
 
North Channel Basin  
The North Channel Basin is a NW-trending Permo-Triassic basin complex lying between the Southern 
Uplands and the Longford-Down Massif of N Ireland (Quinn 2008) and forms the main rift through the 
massif. Two tilt-blocks, the E-dipping Portpatrick and W-dipping Larne sub-basins, recognised by 
Maddox et al. (1997), are separated by the Southern Upland Fault (Fig. 2). Several smaller basins lie 
parallel in Scotland (Stranraer, Lochmaben) and Ireland (Strangford Lough). In the Portpatrick Sub-basin, 
the underlying strata are possibly Devonian, although the seismic is poorly resolved because the only well 
(111/15-1) passed through a fault adjacent to the Southern Uplands, and did not prove a Carboniferous 
section. Data is lacking for the presence of source, reservoir and seal in this area (Maddox et al. 1997). 
Permo-Triassic and underlying Devonian and Carboniferous strata are present onshore in the Larne and 
Lough Neagh basins of N Ireland. Onshore in the Midland Valley of Scotland and in N Ireland a range of 
potential Carboniferous source rocks (coals, carbonaceous mudstones) and sandstone reservoir intervals 
are documented, though there is considerable spatial variability (Browne et al. 1999; Read et al. 2002; 
Underhill et al. 2008; Reay 2004; 2012). Onshore in N Ireland, a Carboniferous prospect was drilled by 
Infrastrata plc in Woodburn Forest in 2016, without success (website). Seismic interpretation offshore 
(Pharaoh et al. 2016a) has included a Carboniferous succession in the Larne Basin buried to 5000 m and 
with faulting and folding observed offering potential for structural traps. However the interpretation is 
poorly constrained by data, precluding detailed assessment of petroleum system elements.  

Brief mention can be made of the Rathlin Trough, which lies outside the study area, and for 
which only limited seismic data, covering the offshore extension of the Machrihanish Coalfield, have 
been studied. The source rocks include coals and oil shales (Murlough Bay Formation) of early 
Carboniferous age which have excellent TOC and which are mostly in the oil window, with smaller areas 
in the gas window (Reay 2012).This sequence together with volcanic rocks invites comparison with the 
Lothian part of the Midland Valley of Scotland (Read et al. 2002). Drilling took place at Magilligan in the 
west of the basin and at Ballinlea in 2008. In the latter well, oil was produced from the Carrickmore 
Formation sandstones (Providence 2013) of the wide Visean subcrop (Smith 1985). 

Petroleum system knowns and risks 
 
The distribution of the principal Carboniferous source rock (Bowland Shale Formation) as inferred from 
the seismic interpretation is constrained by a few borehole penetrations in the EISB, but the absence of 
boreholes in the deepest part of the basin (Keys and Lagman basins) and onto the Manx-Furness Ridge 
means that the northern limit is poorly constrained. The nature of the transition to the Solway Firth and 
Northumberland basins, where boreholes prove time-equivalent Yoredale facies is therefore poorly 
known. The lack of any offshore well data requires analogy with the adjacent onshore Carboniferous 
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source rocks may also be present in the Clyde basins and adjacent North Channel Basin, but are unlikely 
to be present in the southern part of the latter, or beneath the Peel Basin. Attenuation of the Carboniferous 
sequence southwards towards the Welsh Massif (Fig. 4b, 9a) also increases the source risk in this 
direction. The paucity of data on the maturity of the source means that this parameter cannot be mapped 
in detail. Similarly, the reservoir porosity-permeability characteristics are poorly known over large parts 
of the region studied. The petrophysical analyses presented here suggest that the Carboniferous 
sandstones beneath the Morecambe fields have very poor porosity and permeability, confirming 
information provided by Centrica (pers. comm. 2015). This is no doubt a consequence of their deep 
burial, and processes such as platy-illite development and silica cementation which severely affect even 
the overlying Triassic formations (Colter 1989; Bushell 1986; Woodward & Curtis 1987; Cowan 1991; 
Stuart 1993). Extensive carbonate platforms surrounding the Isle of Man (Manx Platform) and off North 
Wales (Colwyn Platform) also have unknown poroperm characteristics. Until more is known about 
possible secondary porosity (following dedolomitisation) and fracture density, the reservoir properties of 
these areas are ranked as high risk.  

The Mercia Mudstone Group is a proven caprock to Sherwood reservoirs and is present 
throughout the EISB but is absent across the margins of the basin complex. The potential seal of the 
Permian Cumbrian Coast Group sequence thins and fails in the same directions. In the EISB a relatively 
thick shale and evaporite (St Bees Evaporites, Cumbrian Coast Group) may be developed. The same is 
true in the Portpatrick and Larne basins, where several Triassic halites are present (Quirk et al. 1999; 
Quinn 2008). 

Analysis of seismic data, integrated with well, core data etc, indicates that the marginal areas of 
the EISB hold the greatest potential for undiscovered hydrocarbon resources in the Carboniferous, 
although the geochemical, petrophysical and other essential data are scant. In general, the presence of an 
effective seal is considered to represent the biggest risk in the hydrocarbon system at the margins of the 
EISB. Yet-to-find prospects are anticipated to be relatively small in volume and with shallow column 
heights supported by Carboniferous intra-formational seals. The most prospective parts of the region, 
outside the Triassic play, are considered to be: 

 
• Thick Westphalian combined reservoir and source rock sequences preserved in the Eubonia Tilt-

block in Quadrant 109 (Fig. 4a), located outside the main Permian-Mesozoic graben system and 
less affected by Cenozoic inversion. The presence and quality of seals form a major risk as the 
Cumbrian Coast Group seal is thin or absent and Carboniferous intraformational seals are 
required but untested. Based on the limited dataset available in adjacent basins, reservoir quality 
is also a significant risk. 
 

• A belt of Variscan inversion structures (the Môn-Deemster Foldbelt; Fig. 4b) correlated with 
structures on the Formby Platform, and the onshore Ribbledale Foldbelt, from which 
hydrocarbons sourced by a thick Bowland Shale sequence have leaked into the overlying, 
Triassic-hosted Hamilton fields (block 110/13). The biggest risk here is whether reservoirs exist 
and remain unbreached at the pre-Permian level, and retain good poro-perm characteristics at 
depths of about 2500 m.  
 

• A more speculative play lies in the extensive carbonate platform in Quadrant 109 and 
surrounding the Isle of Man (Fig. 4a), in Asbian reefal facies with enhanced secondary porosity. 
Here, source rock presence and migration pathways, reservoir properties and seal quality are 
major risks. 
 

• The Ribble Estuary Inlier east of the Formby Point Fault (Figs.5c,6) may contain a working 
petroleum play. It lies adjacent to the deep Deemster Basin where there is a thick  sequence of 
Upper Carboniferous sedimentary rocks preserved, and between the Formby and Lennox fields. 
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Well 110/9-1, within the Deemster Basin was dry, but appears to have good porosity in the 
Ormskirk Sandstone though no shows. Fluorescence was recorded in the Appleby Group.  

 
• A potential play exists sourced from the Bowland Shale Formation in the deep Godred Croven 

Basin drilled by 110/11-1emigrated into the Carboniferous reservoir on the faulted highs of its 
flanks. The Ormskirk Sandstone is very shallow in these locations but the Carboniferous strata 
might be securely sealed by the Cumbrian Coast Group. 

 
Discussion 
 

The pre-Permian structural synthesis presented here is speculative in view of the limited number 
of offshore well penetrations of Carboniferous strata. For example, further tectonic partitions may exist 
within the inferred Eubonia Tilt-block. It is possible, for example, that the eastern part of the structure 
(underlying the Keys and Tynwald basins of the EISB) may represent a separate tilt-block with a hinge in 
the Lake District Boundary Fault System, and a master controlling fault in the west (ancestral Keys 
system). The presence of such a basin, referred to as the Lancaster Fells Basin, was inferred by Cowan et 
al. (1999). However, the available evidence suggests that the NNW structural trend did not play a 
significant role until latest Carboniferous time, so that an ancestral Keys Fault is regarded an unlikely 
Visean structural element. The nature of the link between the structures of Quadrant 109 and onshore 
Lancashire has been much speculated on in the past (e.g. Ramsbottom et al. 1978). Jackson & Mulholland 
(1993) recognised the Menai Strait-Pendle Line link, but preferred to link the Q109 Arch to the High 
Haume Anticline of the Furness Inlier, in the southern Lake District. This paper shows that the 
Ribblesdale Foldbelt does extend west of the Leyland Basin and Formby Point Fault (c.f. Jackson & 
Mulholland 1993; Figure 4 and p797) and links to the Q109 Arch, via the Môn-Deemster Foldbelt. More 
detailed seismic mapping of the Upper Carboniferous interval will be required to elucidate what is 
probably an intricately folded subcrop pattern here. We support the proposed continuity of the Bowland 
Basin southwestwards into the offshore area, as inferred by Corfield et al. (1996) and Cowan et al. 
(1999). From the perspective of hydrocarbon prospectivity, the presence of the prolific Bowland Shale 
Formation source rock interpreted across much of the EISB has been a key element in the hydrocarbon 
system of the overlying Permian to Mesozoic basins. Prospective reservoir intervals with moderate 
porosity are likely to exist in the Warwickshire Group and Pennine Coal Measures Group in the marginal 
parts of the EISB, although the permeability is likely to be poor. The EISB lay to west of the main 
Pennine deltaic and fluviatile fairway in the onshore (Fraser et al. 1990), and consequently shows a lower 
net/gross sand ratio.  

In a review of the deep reflection seismic data for the Irish Sea, principally BIRPS’ WINCH lines 
and some deep data from JEBCO, England & Soper (1997) state that from this limited dataset, there is no 
clear evidence for reactivation of earlier structures during either Carboniferous sedimentation or Variscan 
inversion. Using the shallow seismic reflection data, this study describesthe presence of fold-thrust 
structures in the pre-Carboniferous basement and, in the Môn-Deemster Foldbelt, demonstrates their role 
in controlling both Carboniferous extensional and inversion structures. The interpretation presented 
supports the view of England & Soper (op. cit.) that the faults controlling Permian and Mesozoic basin 
development are discordant to the Caledonian, Acadian and early Carboniferous structural grain (as 
exemplified by the Q109 structures), and are therefore juvenile structures developed in late Westphalian 
to early Stephanian time. Evidence presented here suggests that these were initiated as a result of a late 
phase of Variscan inversion, reflecting W-E Uralide compression, superimposed on an earlier phase 
produced by N-S compression. The timing of these two inversion phases is imprecisely defined in the 
Irish Sea due to the significant missing stratigraphic section. However, in  late Variscide intramontane 
basins in central France, N-S compression in Stephanian B time is followed by phases of compression on 
NW-SE (late Stephanian B) and W-E (mid-Stephanian C)  principal stress axes (Gélard et al. 1986), the 
‘Bourbonnaise Phase’ of Grolier (1971 Although interpreted in terms of systematic rotation of the 
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principal horizontal compressive stress axis Gélard et al. 1986; Blès et al. 1989; Ziegler 1990), Faure 
(1995) considered these deformations a consequence of  late Variscan orogenic collapse. In the UK 
region, other manifestations of the late W-E compressive phase may include the W-E oriented basaltic 
dykes, and a component of growth of N-S trending folds, within the Midland Valley of Scotland 
(Monaghan & Pringle 2004; Timmerman 2004), and W-E directed transport of fold nappes on the eastern 
margin of the Worcester Graben (Peace & Besly, 1997).  

The observed variation  in Variscan structural orientation in the Variscan Foreland of Britain  is 
currently explained in terms either of one resolved compressional vector (Corfield et al. 1996), or of 
strain-partitioning across a heterogeneous basement template (e.g. De Paola et al. 2005). In the Irish Sea, 
it is difficult to argue for a strong control by a N-S oriented basement grain, as identified, for example, 
within the Midlands Microcraton (Corfield et al. 1996), and the presence of two discrete late Variscan 
deformation phases is regarded as a more likely scenario. Another expression of the multiple inversion 
history, and very significant for the formation of Ormskirk traps in the cover, is the impact of posthumous 
folding. This process, first recognised and described by Suess (1904), is very clearly demonstrated in the 
Irish Sea, where a template of Variscan inversion anticlines in the Carboniferous sequence underlies 
structures with similar trend but lower amplitude in the Permo-Triassic cover.   
 
 
Conclusions 
 
The study has demonstrated that the basins of the Irish Sea preserve a Phanerozoic geological history as 
complex as that of the UK onshore. A strong SW-NE structural grain was imprinted on the crust during 
late Precambrian and Caledonian accretion and orogenic deformation. Dipping zones of strong reflectivity 
in seismic sections are interpreted as major thrusts and shear zones, some of which can be correlated with 
known examples onshore. Mississippian rifting on SW-NE trending faults resulted in depocentres which 
accumulated marine shale source rocks, preceding regional thermal subsidence. The Eubonia Tilt-block is 
a major Carboniferous syndepositional element beneath the northern part of the EISB, but was partially 
dismembered by the formation of the ancestral Keys Fault system. The Eubonia-Lagman fault system 
formed the syndepositional bounding fault to the tilt-block. The Bowland Shale Formation forms the 
main source rock interval, with inferred thickest development likely just to north of the Môn-Deemster 
Foldbelt, the offshore correlative of the Bowland Basin, and its inversion, the Ribblesdale Foldbelt. This 
source rock is buried to depths >7 km under the Lagman and Keys basins and is probably post-mature 
there at the present day. 

 The Millstone Grit Group and Bowland Shale Formation contain thin clean sandstones locally up 
to 90 m thick which could be considered potential reservoirs. Prospective areas at these stratigraphic 
levels may exist at depth adjacent to the Keys Basin, and west of the Keys Fault. The Millstone Grit 
Group also has the potential to act as a secondary source rock, as do the Pennine Coal Measures Group 
when buried deep enough to achieve maturity. However, the latter were stripped from a large area of the 
EISB following Variscan inversion. Pennsylvanian strata exhibit marked thinning to the south onto the 
Conwy Platform. Burial by Upper Carboniferous sediments likely resulted in early maturation of kerogen 
in source rocks within the deepest basins, but destruction of reservoir porosity and permeability in the 
depocentres. Warwickshire Group sedimentary rocks were not so deeply buried, and are likely to retain 
better reservoir characteristics.  

The Variscan Orogeny, in late Carboniferous time, caused uplift, folding and thrusting on both 
WSW-ENE (Môn-Deemster) and NNW-SSE to N-S (Keys-Gogarth) trends, probably in two phases, 
corresponding to well-documented main compressional phases of the Variscan-Uralian Orogen. The later 
inversion phase occurred on NNW-SSE to N-S trending zones of deformation which would subsequently 
become localised as the main synsedimentary bounding faults of the EISB in Permian to Mesozoic time. 
Corfield et al. (1996) provided a definition of inversion intensity. In the greater Irish Sea region, the 
intensity ranges from moderate (in the EISB, Solway and Clyde basins) to strong, with almost complete 
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removal of the post-rift fill (in the North Channel basins and Peel Basin).  The timing of these events is 
poorly constrained in the Irish Sea due to significant missing stratigraphic section, but by comparison 
with intramontane basins in France, is likely of intra-Stephanian age. The Variscan inversion structures 
have not yet been adequately tested as targets. They form both first-stage hydrocarbon reservoirs and the 
structural template for more gentle, ‘posthumous’ folds produced by Alpine inversion which form traps in 
the Triassic cover (e.g. the Hamilton fields). Deposition of Permian Appleby Group and Cumbrian Coast 
Group strata resulted in a potential  reservoir - seal combination overlying the Carboniferous source 
rocks. Permian to Mesozoic rifting is along NNW-SSE and N-S trends. These faults cut discordantly 
across the early Carboniferous structures and have allowed late Cretaceous to early Cenozoic vertical 
migration of Carboniferous-sourced hydrocarbons into Triassic reservoirs. There is a migration route to 
Triassic reservoirs in the centre of the EISB because the Warwickshire Group and Appleby Group strata 
have been removed from that area, and the thin Cumbrian Coast Group seal breached, where the 
producing hydrocarbon fields are located. The Clyde-North Channel basin complex, Solway and Peel 
basins also contain Devonian and/or Carboniferous rocks beneath Permo-Triassic strata, but have likely 
been buried less deeply than those in  the EISB. The North Channel basins may also have suffered 
significant Variscan inversion. Extensive 2D seismic datasets cover the latter areas but there are only four 
well penetrations. There have been no discoveries, interpreted to be largely a consequence of the absence 
of a regional seal comparable in quality to the Mercia Mudstone Group in the EISB. The prolific Bowland 
Shale source is also absent in these basins, being replaced by fluvio-deltaic sedimentation of the Yoredale 
Group. Very limited well penetrations do not presently allow a realistic assessment of the prospectivity of 
the Carboniferous strata underlying these poorly drilled basins. 
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Figure captions 

 

Fig. 1. Key data evaluated during the study (2D seismic, black; 3D seismic outline, grey; wells 
proving Carboniferous strata, black dot; wells used in the petrophysical study, black square).  

 

Fig. 2.  Key Mississippian structural elements of the greater Irish Sea province. Incorporates 
information from Maddox et al. (1997), Parnell (1997) and Shelton (1997). Location of Permo-
Triassic basinal features (for reference purposes) in red: BB, Berw Basin; CP, Conwy Platform; DP, 
Deemster Platform; EB, Eubonia Basin; ED, East Deemster Basin; GB, Gogarth Basin; GC, Godred 
Croven Basin; KB, Keys Basin;  LB, Lagman Basin; MF, Manx-Furness Ridge; NC, North Channel 
Basin; OP, Ogham Platform; PB, Peel Basin; Q109S, Quadrant 109 Syncline; SB, Solway Basin; TB, 
Tynwald Basin; WD, West Deemster Basin..The basin names used are those of the Permo-Triassic 
EISB and contemporary basins, following Jackson & Mulholland (1993) and BGS (1994), rather than 
those of the Carboniferous elements newly named in this paper.  Location of sections depicted in later 
figures: red line, seismic profiles (Fig. 3); green line, synoptic diagrams (Figs. 4, 5); black line, well 
transects (Fig. 9). 

 

Fig. 3.  Seismic reflection data. Locations are shown in Figs. 2 and 6. N.B. vertical scales in s TWTT.  

a. Migrated seismic reflection line NW-SE across Quadrant 109: JEBCO JS-MANX-138. Includes 
content supplied by IHS Global Limited. Copyright © IHS Global Limited (2016). All rights reserved.  
Note the considerable thickness of Carboniferous strata in the Eubonia Tilt-block, here exceeding 2.5 
s TWTT; brighter reflectivity towards top of tilt-block below Intra-Visean unconformity possibly 
reflecting reefal development; and in the south, a northward-vergent anticline-thrust inversion couple, 
defining the northern edge of the Môn-Deemster Basin. The presence of Warwickshire Group strata is 
inferred from seismostratigraphic principles and has not yet been confirmed by drilling.     

b. Arbitrary NNW-SSE line through the migrated 3D TerraCube® dataset, supplied courtesy of CGG 
GeoSpec. Note the presence of a series of inversion anticlines (Môn-Deemster Foldbelt) in the 
Carboniferous sequence, associated with thrusts (fault-plane reflections) which penetrate into the 
Caledonian basement. A less steeply dipping detachment is present at depth. The Bowland Shale 
Formation is inferred to occupy a rather transparent zone, sandwiched between more reflective 
Carboniferous Limestone Group (below) and Millstone Grit Group (above). The mildly deviated well 
110/07b-6 proved 450 m of Bowland Shale Formation before terminating in strata of Pendleian age 
(unbottomed). Westphalian strata have been almost completely eroded following strong inversion 
during the earliest Variscan phase. Inversion anticlines of this generation were reactivated 
‘posthumously’ by further compression during the Alpine Orogeny in Miocene time, producing more 
gentle anticlines in the Permo-Triassic cover, including the traps in the Ormskirk Sandstone 
Formation (Top SSG pick) hosting the Conwy, Douglas and other fields.   

 

Fig. 4.  Synoptic diagrams (‘cartoons’) to illustrate principal elements of the hydrocarbon system of 
the greater Irish Sea province. Locations are shown in Figs. 2 and 6. N.B. vertical scales in s TWTT. 
The basin names used are principally those of the Permo-Triassic EISB and contemporary basins, 
rather than those of the Carboniferous elements newly named here:   

a. Principal elements of the hydrocarbon system in the Eubonia Basin and Q109 Arch. Transect is 
parallel to Fig. 3a and father east, into the Eubonia Basin.  

b. Principal elements of the EISB from the Lagman Fault (north) to the Welsh margin (south). The 
northern part crosses from the Ogham Platform, to the Lagman and Keys basins, where Westphalian 
strata are almost completely removed, the West Deemster Basin and Deemster Platform.Note 
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thickening of the Bowland Shale Formation beneath Deemster Platform, associated with the offshore 
extension of the Bowland Basin. The southern part crosses the Môn-Deemster Foldbelt and is 
virtually colinear with Fig. 3b. 

c. Principal elements of the hydrocarbon system in the Peel Basin. Note that fault displacements 
appear to be largely of post-Permian age, indicating little if any syn-depositional thickening across the 
Visean carbonate platform. Post-Visean strata were only preserved on the Manx margin. 

 

Fig. 5.  Synoptic diagrams (‘cartoons’) to illustrate principal elements of the hydrocarbon system of 
the greater Irish Sea province. Locations are shown in Figs. 2 and 6. N.B. vertical scales in s TWTT. 
The basin names used are principally those of the Permo-Triassic EISB and contemporary basins, 
rather than those of the Carboniferous elements newly named here:   

a. Principal elements of the hydrocarbon system in the eastern part of the Solway Firth Basin. Note 
the preservation of late Westphalian Warwickshire Group (Whitehaven Sandstone Formation) in the 
Cumbrian Coalfield adjacent to the Maryport Fault, and the axis of Alpine inversion significantly 
offset from the Variscan one. The Visean strata here are Border Group and Yoredale facies, with 
uncertain source potential. 

b. Principal elements of the hydrocarbon system in the northern part of the EISB. The WSW-ENE 
transect crosses Variscan second phase inversion structures obliquely in the Ogham Inlier, western 
Keys Basin and the Cumbrian margin. 

c. Principal elements of the hydrocarbon system in the southern part of the EISB. The W-E transect is 
located parallel to the southern edge of the Môn-Deemster Foldbelt, crossing some of the Variscan 
first inversion phase structures obliquely. N-S trending inversion structures of the second Variscan 
phase at the margins of the East Deemster Basin and on the Formby Platform are crossed obliquely. 
Note the excision of Westphalian strata on these inversion systems. Modified from Yaliz (1997; 
Figure 4).  

 

Fig.6. Pre-Permian subcrop map showing key Variscan inversion structures (after Pharaoh et al. 
2016b). Variscan inversion structures in Ogham Platform after Quirk & Kimbell (1997). Abbreviated 
structure names: DP, Deemster Platform; EDB, East Deemster Western Boundary Fault; FPF, Formby 
Point Fault; OP, Ogham Platform; RE, Ribble Estuary Inlier. Location of sections depicted in other 
figures: red line, seismic profiles (Fig. 3); green line, synoptic diagrams (Figs. 4, 5); black line, well 
transects (Fig. 9).Hydrocarbon fields from OGA website:  
http://data.ogauthority.opendata.arcgis.com/datasets/ 

 

Fig.7. Petroleum system elements in a north-south transect across the central part of the region  

 

Fig.8. Pendleian palaeogeography showing the Bowland Shale source rock distribution and lateral 
varation with Millstone Grit facies (from Wakefield et al. 2016).  

 

Fig. 9. Well transects (from Wakefield et al. 2016). Locations are shown in Figs. 2 and 6.  a. N-S 
transect across the EISB from the Lagman Basin to Rhuddlan, onshore North Wales. Note the 
truncation of the Warwickshire Group north of Point of Ayr and condensation of the underlying 
Westphalian strata, southward onto the Cambrian margin. Also note the variation in the thickness of 
the Appleby Group.  b. W-E transect across the centre of the EISB from 109/5-1 in the Eubonia Basin 
to Roosecote, onshore north Cumbria. 

 

http://data.ogauthority.opendata.arcgis.com/datasets/
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Fig.10. Seismic structure map in depth (metres sub-sea level) for the Intra-Namurian pick, equated 
with the base of the Millstone Grit Group. Location of abbreviated Permo-Triassic basinal features 
(for reference purposes), refer to  key to Figure 2.  

 

Fig.11. A summary of the available geochemical data for Bowland Shale Formation lithologies in 
well 110/07b-6 and 110/02b-10. Data sourced from released legacy reports. Note that no Oxygen 
Index data are available for well 110/07b-6, so the data in the Pseudo-Van Krevelen Plot (Figure 11b) 
is from well 110/02b-10 (Millstone Grit and Pennine Coal Measures groups). 

 

Fig.12. Modelled burial history for 110/07b- 6 showing that the Bowland Shale source rock entered 
the main gas generation window in the late Cretaceous-early Cenozoic. The well terminates within the 
Bowland Shale Formation.  

 

Fig.13. Cross plot of core porosity and permeability for East Irish Sea Basin samples. For key to 
abbreviations see Table 1, except for PLC, Pennine Lower Coal Measures and PMCM, Pennine 
Middle Coal Measures. 

 

Table 1. Synthesis of petrophysical results by formation (from Hannis, 2016). NTG = Net reservoir 
thickness to gross formation thickness. Porosity and net-to-gross are expressed as a fraction. 
Minimum porosity in the log-derived porosity range is 0.05, the net reservoir porosity cut-off value. 
Permeability figures are in mD. Core porosity and permeability data are synthesised from legacy 
reports. 
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Fig. 4a, b, c 
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Fig. 5a, b, c  
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 10 

Abstract: Seismic mapping of key Palaeozoic surfaces in the East Irish Sea – North Channel 11 
region has been incorporated into a review of hydrocarbon prospectivity. The major 12 
Carboniferous basinal and inversion elements are identified, allowing an assessment of the 13 
principal kitchens for hydrocarbon generation and possible migration paths. A Carboniferous 14 
tilt-block is identified beneath the central part of the (Permian to Mesozoic) East Irish Sea Basin 15 
(EISB), bounded by carbonate platforms to south and north. The importance of the Bowland 16 
Shale Formation as the key source rock is reaffirmed, the Pennine Coal Measures having been 17 
extensively excised following Variscan inversion and pre-Permian erosion. Peak generation 18 
from the Bowland source coincided with maximum burial of the system in late Jurassic/early 19 
Cretaceous time. Multiphase Variscan inversion generated numerous structural traps whose 20 
potential remains underexplored. Leakage of hydrocarbons from these into the overlying Triassic 21 
Ormskirk Sandstone reservoirs is likely to have occurred on a number of occasions, but currently 22 
unknown is how much resource remains in place below the Base-Permian unconformity. Poor 23 
permeability in the Pennsylvanian strata beneath the Triassic fields is a significant risk; the same 24 
may not be true in the less deeply buried marginal areas of the EISB, where additional potential 25 
plays are present in Mississippian carbonate platforms and latest Pennsylvanian clastic 26 
sedimentary rocks.  Outside the EISB, the North Channel, Solway and Peel basins also contain 27 
Devonian and/or Carboniferous rocks. There have however been no discoveries, largely a 28 
consequence of the absence of a high quality source rock and a regional seal comparable to the 29 
Mercia Mudstone Group and Permian evaporites of the Cumbrian Coast Group in the EISB.  30 

 31 

The productive oil and gas fields of the EISB evidence a working, Carboniferous-sourced petroleum 32 

system. Whilst a great deal may be known of the Triassic reservoir and seal (Meadows et al. 1997), little is 33 

known about Carboniferous and Permian petroleum systems at depth and in adjacent basins, that may offer 34 

significant additional potential. The presence of a Palaeozoic hydrocarbon system in the East Midlands and 35 

southern North Sea is well documented however (Fraser et al. 1990; Fraser & Gawthorpe 2003; Besly 36 

1998). Following the Wood Review (2014), Palaeozoic plays, including that of the greater Irish Sea area 37 

were identified as priority for building regional digital datasets and stimulating exploration. In response, 38 

the 21st Century Exploration Roadmap: Palaeozoic Project running from 2014-2016 and openly released 39 

in 2017, undertook regional scale seismic and well interpretation, source and reservoir screening studies 40 

and basin modelling. This paper provides a re-interpretation of the structural history of the greater Irish 41 

Sea, and its influence on potential Carboniferous and Permian prospectivity including the marginal basins.  42 

The Carboniferous structure and stratigraphy of the UK sector of the East Irish Sea-North Channel 43 

region has been reviewed using all available well and seismic reflection data. The project interpreted about 44 

40,000 km of 2D seismic data of many vintages from 1980-2000, with local infill from 3D data, to generate 45 

time and depth-converted surfaces for key Palaeozoic horizons (Pharaoh et al. 2016a). Priority was given 46 
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to the interpretation of long regional speculative lines, with infill from licence- and prospect-scale surveys.  47 

These surfaces were then used as the basis for an assessment of Palaeozoic hydrocarbon prospectivity 48 

(Pharaoh et al. 2016b), which forms the core of this paper. For brevity, the seismic interpretations are 49 

summarised using synoptic diagrams (‘cartoons’). The present economic focus of the hydrocarbon province 50 

is the Morecambe Bay gasfield and its satellites, located within the EISB, a basin complex of Permian to 51 

Mesozoic age comprising a number of mainly N-S oriented graben and intervening platforms (BGS 1994; 52 

Jackson et al. 1987, 1995, 1997). Together with the Worcester Graben and Cheshire Basin of the UK 53 

onshore, it forms part of the major Permian rift system extending through the north European province of 54 

the Pangaea Supercontinent (Ziegler 1990; Coward 1995; Chadwick & Evans 1995; Scheck-Wenderoth et 55 

al. 2008). The principal structures of the EISB are strongly discordant to those in the pre-Permian substrate, 56 

which bear the imprint of a long and complex evolution culminating in the Variscan Orogeny in latest 57 

Carboniferous time. For these Devonian and Carboniferous tectonic elements, a new terminology is 58 

presented here and the lithostratigraphical nomenclature of Waters et al. (2011) is used to integrate onshore 59 

and offshore successions, allowing more precise correlation than the scheme introduced by Jackson et al. 60 

(1997).  61 

The Bowland Shale Formation is recognised as a prolific source of gas for the Permo-Triassic 62 

reservoirs (Armstrong et al. 1997), but potential Namurian and Westphalian reservoirs suffer from low 63 

porosity and permeability due to the combined effects of Variscan inversion, deep burial in a Permian-64 

Mesozoic rift, Cenozoic inversion, magmatism and thermal effects associated with the rifting of the North 65 

Atlantic (Meadows et al. 1997; Quirk & Kimbell 1997). Several areas on the margins of the EISB (Manx-66 

Furness Ridge, Cumbrian margin, Fylde margin, Cambrian margin) are underlain by the offshore extensions 67 

of onshore coalfields or Namurian strata. These areas are covered in some detail by seismic data, and the 68 

availability of onshore analogues allows a more realistic assessment in terms of potential for development 69 

of non-conventional resources, perhaps from coastal locations.  70 

 71 

Methodology and datasets 72 

 73 

The exploration datasets used in the regional interpretation are depicted in Fig. 1. The 2D seismic  datasets 74 

include regional speculative data supplied by geophysical companies (CGG, IHS and WesternGeco); 75 

licence- and prospect-level datasets provided by the Common Data Access Initiative (CDA) offshore and 76 

United Kingdom Onshore Geophysical Library (UKOGL) nearshore and onshore; and data supplied 77 

directly by participating companies (Centrica plc).  The 3D dataset used was supplied by CDA, augmented 78 

by data from the 3D Terracube supplied by CGG. The well picks were supplied from the DECC well 79 

database at BGS Edinburgh, with further interpretation during the project.  80 

 81 

Pre-Carboniferous structural evolution 82 

 83 

The crust of the southern part of the region (North Wales, Anglesey and adjacent offshore areas (Fig. 2) 84 

was generated as volcanic and sedimentary complexes in magmatic arc-trench systems during late 85 

Proterozoic time. Many early tectonic lineaments (e.g. the Menai Strait Fault Zone; Gibbons 1987) are 86 

associated with the accretion and dispersal of various terranes along the margins of Gondwana in 87 

Neoproterozoic to Cambrian time. Many of the lineaments (Dinorwic, Berw) have a SW-NE trend, are 88 

relatively straight (implying steep upper crustal geometry) and have been serially reactivated in Acadian 89 

sinistral transpression, Devono-Carboniferous extension etc. The crust of the northern part of the area 90 

(Midland Valley, Scottish Highlands) was generated throughout Proterozoic time. A Neoproterozoic 91 

supracrustal metasedimentary sequence, the Dalradian Supergroup, was strongly deformed during the 92 

Grampian phase of the Caledonian Orogeny (Smith et al. 1999; Chew & Strachan 2014). Its southern limit 93 

is marked by the Highland Boundary Fault, which forms the northern boundary of the area of investigation.  94 

The crust in the central part of the region comprises early Palaeozoic sedimentary complexes 95 

belonging to several different terranes forming part of the Avalonian (Monian, Lakesman) and Laurentian 96 
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(Southern Uplands, Midland Valley) margins of the Iapetus Ocean, and accreted during the Caledonian 97 

Orogeny (Bluck 2002; Barnes et al. 2006; Chew & Strachan 2014). Numerous major tectonic lineaments 98 

have a typical SW-NE ‘Caledonide’ trend. These include the Carmel Head Thrust of northern Anglesey, 99 

and reactivations of the earlier Monian lineaments; the Ribblesdale Foldbelt (Kirby et al. 2000); the Causey 100 

Pike Thrust and Southern Borrowdale Lineament of the Lake District (Barnes et al. 2006); the numerous 101 

accretionary tracts of the Southern Uplands massif (Bluck 2002); and numerous faults with this trend within 102 

the Southern Highlands terrane (Chew & Strachan 2014).  103 

In this study, a NW-dipping zone of enhanced reflectivity in pre-Carboniferous ‘basement’, 104 

previously referred to as the Barrule Thrust (Chadwick et al. 2001), was mapped over a large area to NW 105 

of the Isle of Man. The analysis of the deep seismic reflection data presented by England & Soper (1997) 106 

suggests that this structure lies within the Avalonian footwall of the Iapetus Suture, rather than representing 107 

the suture itself. A further zone of NNW-dipping basement reflectivity underlies the southern part of the 108 

EISB (Jackson & Mulholland 1993; Pharaoh et al. 2016a; 2016b), being particularly prominent beneath the 109 

Conwy Platform, just off the north coast of Wales (Fig. 2). The dip of this zone steepens as it approaches 110 

the coast, and it is inferred to correlate with the southernmost strands of the Menai Strait Lineament, i.e. 111 

the Menai and Dinorwic fault zones. Although the seismic coverage is relatively poor in this area, the 112 

available data suggest that this zone represents the deepest regional detachment, with all subsequent 113 

extensional faulting (of Carboniferous and Permian-Mesozoic age) penetrating no deeper into the crust. 114 

During the Acadian Phase of the Caledonian Orogeny, most of the lineaments identified above 115 

were reactivated within a sinistrally transpressive regime, associated with the late orogenic collapse of the 116 

Caledonian mountains chain, stretching from the Appalachians through Ireland and Scotland to Greenland 117 

and Norway (Chew & Strachan 2014). The most obvious element of this regime is the Great Glen-Walls 118 

Boundary Fault system. Devonian strata are thickest in the north of the study area, in the Midland Valley 119 

and form the molasse to the Caledonian Orogen (Trewin & Thirlwall 2002). In the south (Anglesey), 120 

Devonian strata are more limited in development and related to local faulted basin margins (Hillier & 121 

Williams 2006).  In this tectonic regime, W-E extension is anticipated (Coward 1993). Basins related to 122 

such an orientation are tentatively identified within the Orcadian Basin (Leslie et al. 2015) but are less 123 

clearly identified in the study area, except perhaps, in the rift basins (North Channel, Stranraer, Carlingford 124 

Lough) within the Southern Uplands Massif, and the Peel Sandstone Graben of the Isle of Man (Maddox 125 

et al. 1997; Parnell 1997; Quirk & Kimbell 1997).  126 

 127 

Carboniferous structural and stratigraphic evolution 128 

 129 

An extensional- transtensional tectonic regime persisted into Carboniferous time (Leslie et al. 2016). 130 

Although a general W-E extensional regime has been invoked in Mississippian time (Coward 1993), 131 

extension occurred on faults with a diversity of orientations, but with reactivation of earlier basement 132 

structures (of various trends) being a common feature, e.g. in the Northumberland Basin (De Paola et al. 133 

2005). This reflects partitioning of the tectonic regime (Leslie et al. 2015). East of the study area, in 134 

Lancashire, the Bowland Basin reflects deeper water deposition in a basin bounded by SW-NE trending 135 

faults (Pendle Monocline etc) representing reactivations of earlier basement structures (Kirby et al. 2000). 136 

The Solway Basin is the offshore continuation of the Northumberland Basin (Chadwick et al. 1995), and is 137 

controlled by major bounding faults on a SW-NE trend. The Peel Basin along strike to the SW, has a similar 138 

trend but opposite structural polarity and a very different basin setting in the Carboniferous (Fig. 2). 139 

However the evolution of both basins appears to have been strongly influenced by the extensional 140 

reactivation of underlying structures in the Caledonide basement. The Midland Valley (and Firth of Clyde 141 

basins) also exhibit a SW-NE trend, which persists up to the Highland Boundary Fault.  142 

Carboniferous extensional basins 143 
The Carboniferous substrate of the EISB comprises a number of basin elements, comparable to that of the 144 

UK onshore. Fig. 2 presents a speculative reconstruction of the principal tectonic elements in Mississippian 145 

time. It is based heavily on seismostratigraphic and structural interpretation, as only five offshore boreholes 146 
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penetrate Visean strata in the whole of the province (112/25a-1 and 113/27-2 in the EISB; 111/25-1A and 147 

111/29-1 in the Peel Basin; and 112/19-1 in the Solway Basin, Fig. 2).  In the centre of the EISB, a major 148 

basin, here referred to as the Eubonia Tilt-Block (Fig. 2), is inferred to extend from the Quadrant 109 149 

(Q109) Syncline in the SW (BGS 1994) to the Ogham Platform (Fig. 2). Extension farther east, beneath the 150 

Lagman and Tynwald (Permian-Mesozoic) basins of the EISB, towards the western edge of the Lake 151 

District, is also inferred. The presence of a major half-graben (tilt-block), controlled by a major 152 

syndepositional bounding fault on its NW margin, the Eubonia-Lagman Fault System (Fig. 2, 3a), is 153 

indicated by the seismic reflection data.  The structure was not identified as a tilt-block by Jackson & 154 

Mulholland (1993; p800), but they did recognise the marked asymmetry of the northern limb of the Q109 155 

Syncline/Basin and the presence of up to 7.5 km of Visean to late Westphalian (and possibly Stephanian) 156 

strata. Fig. 3a shows a seismic line extending SE from the Isle of Man towards Anglesey (Fig. 2). It 157 

demonstrates the presence of over 2.5 s Two-Way Travel Time (TWTT) of Carboniferous strata east of the 158 

Eubonia Fault, in what is referred to as the Eubonia Tilt-block (Pharaoh et al. 2016b). Poor well control is 159 

provided by a few distant wells on the western edge of the EISB (Fig. 2) and the picks are not well 160 

constrained. 161 

Towards the top of the tilt-block in the south, on the Holy Island Shelf, brighter reflectivity in the 162 

upper Visean interval, may represent the development of reefal carbonates. The southern end of the section 163 

crosses a northward-vergent inversion anticline-thrust couple, defining the northern limit of the Môn-164 

Deemster Fold Belt. This is a 25-30 km wide belt of strong Variscan inversion, extending ENE from the 165 

north coast of Anglesey, from the Q109 Arch to the Deemster Platform (Fig. 2). The internal structure of 166 

this belt is imaged on numerous N-S profiles crossing the Godred Croven Basin, and Fig. 3b, an arbitrary 167 

line through 3D data in this area, is representative. A schematic profile is presented in Fig. 4b. A series of 168 

parallel WSW-ENE trending anticlinal folds has been mapped through the area. The internal structure of 169 

this inversion belt is complex, comprising a fan-like array of anticlines and synclines with associated 170 

thrusts, SSE-vergent in the south, and NNW-vergent in the north (Fig. 4b). Fig. 3b clearly shows discordant 171 

reflections in the Visean sequence, extending down into the Caledonian basement, interpreted here as fault-172 

plane reflections. Below 3s TWTT, a further zone of intra-basement reflectivity is interpreted as a deeper 173 

Caledonian detachment surface, as recognised by Jackson & Mullholland (1993; p805). Well 110/07b- 6 174 

was clearly a test of the structure with the greatest amplitude, at the northern end of the profile.  This slightly 175 

deviated well proved 450 m of (presumed) Namurian Bowland Shale Formation (Pendleian unbottomed) 176 

beneath 550 m of Millstone Grit Group, Westphalian strata being absent beneath the Base-Permian 177 

unconformity (Fig. 3b). As noted above, northward-vergent structures have been identified on the northern 178 

edge of the Q109 Arch (Fig. 3a), and they have also been mapped beneath the northern part of the Deemster 179 

Platform. Several NNW-SSE to N-S trending graben of the EISB (Godred Croven, Gogarth and East 180 

Deemster basins) discordantly overlie this Carboniferous hinge-zone. The inversion belt is very similar in 181 

its structure and orientation to the Ribblesdale Foldbelt of the Lancashire onshore, representing the 182 

Variscan-inverted Bowland Basin (Corfield et al. 1996; Kirby et al. 2000). It seems logical to infer 183 

connection of the two, via the Fylde coast of Lancashire, as proposed by Corfield et al. (1996). If this 184 

inference is true, then the southern edge of the zone may represent a reactivated extensional fault, analogous 185 

to the Pendle Lineament of Lancashire; and the Visean carbonate platform (Holy Island and Conwy 186 

platforms) to the south, with a thin or absent Namurian cover, are the equivalent of the Central Lancashire 187 

High (Kirby et al. 2000). Also by analogy with the Bowland Basin/Ribblesdale Fold belt onshore, the 188 

greatest thickness of Bowland Shale offshore was probably deposited within a rift basin ancestral to the 189 

presently observed Môn-Deemster inversion zone. Further seismic mapping is required to confirm this 190 

however.  191 

That part of the Eubonia Tilt-block lying east of the Keys Fault was subsequently almost obliterated 192 

by the combined effects of latest Variscan inversion and pre-Permian erosion. The original eastern limit of 193 

the tilt-block is uncertain. It likely continued beyond the Tynwald Basin, where the en-echelon faults of the 194 

Lake District Boundary Fault System may have acted as transfer faults, offsetting extensional subsidence 195 

farther south into the Craven Basin. On the northern margin of the tilt-block, to NW of the Eubonia-Lagman 196 
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Fault System, an extensive shallow marine carbonate platform developed in Visean time. This is well 197 

represented by outcrop in the south of the Isle of Man (Chadwick et al. 2001), the northern edge of the Lake 198 

District and adjacent offshore (Ramsey-Whitehaven Ridge) (Fig. 2). Because of significant pre-Permian 199 

uplift and erosion, it is not possible to determine the subsidence regime in which Westphalian strata were 200 

deposited, but it was probably dominated by post-extensional thermal subsidence, as elsewhere in southern 201 

Britain, the depocentre lying near Manchester (Fraser et al. 1990; Fraser & Gawthorpe et al. 1990).  202 

A few wells penetrate the Carboniferous sequence beneath the Peel Basin (Fig. 2) and demonstrate 203 

that an extensive carbonate platform (Manx Platform and Strangford Shelf) extends west to Ireland and 204 

north towards the North Channel. The present study revealed that the undifferentiated Carboniferous strata 205 

on BGS (1994) mapping are principally of Visean age, Namurian strata being largely eroded (Pharaoh et 206 

al. 2016a). The Permo-Triassic Peel Basin has the form of an asymmetrical graben controlled by a major 207 

bounding fault on the northern side (Fig. 4c), and extensional faults with smaller throws on the southern 208 

side, developed in the hangingwall of the Barrule Thrust (Chadwick et al. 2001). Lack of evidence for 209 

significant Carboniferous syndepositional throw, and the larger Permo-Triassic throws, suggests that there 210 

was probably not a significant basin here in Visean time, although the poor quality of the seismic data 211 

allows some uncertainty. Faulting at the top of the Appleby Group (Permian) has a predominantly NW-SE 212 

trend (Quirk et al. 1999), akin to that of the North Channel Basin.  213 

In contrast, the Solway Basin, underlying the Permian-Mesozoic Carlisle Basin along strike to NE 214 

of the Peel Basin, is asymmetrical with a principal controlling fault on the southern side (Ramsey-215 

Whitehaven Ridge) (Fig.  5a). The Carboniferous basin fill comprises fluviodeltaic Border and Yoredale 216 

Group strata with greater affinity to the Northumberland Trough sedimentary sequence than the carbonate 217 

platforms of the southern Irish Sea (Chadwick et al. 1995), together with a greater thickness of preserved 218 

Pennsylvanian strata.  219 

The present study found no convincing evidence for the presence of significant thicknesses of 220 

Carboniferous strata beneath Permo-Trias in the Portpatrick Basin, the southern part of the North Channel 221 

Basin complex: the only well to penetrate Permian in this basin (111/15-1) unfortunately terminated in early 222 

Palaeozoic rocks having passed through the marginal fault. The absence of Carboniferous strata may be a 223 

consequence of erosion following late Variscan inversion on the NNW-trend (see below). However, they 224 

are present within re-entrants at the northern edge of the Southern Upland Massif (Stranraer, Strangford 225 

Lough), and are certainly present to north of the Southern Upland Fault (Larne, Rathlin basins and SW 226 

Arran Trough). All of these basins are very poorly explored by deep boreholes and only very general 227 

conclusions can be made about their Mississippian evolution, largely by inference from nearby analogues 228 

onshore (Read et al. 2002).  229 

Early phase of Variscan inversion 230 
Through Pennsylvanian time, the impact of the Variscan Orogeny resulting from the collision of numerous 231 

Gondwana-derived terranes (Armorica, Central Massif, Bohemian Massif etc) with the southern margin of 232 

Laurussia (Ziegler 1990; Pharaoh et al. 2006) became increasingly evident in Britain. Large-scale 233 

northward thrust and nappe emplacement occurred in southern Britain, S Wales and S Ireland, but the region 234 

lay in the northern foreland of the Variscan Foldbelt (Besly 1988; Ziegler 1990; Pharaoh et al. 2010). In 235 

late Pennsylvanian (Westphalian C) time, an early phase of inversion was followed by deposition of strata 236 

of the Warwickshire Group, above a regional unconformity (Eastwood et al. 1937; Akhurst et al. 1997; 237 

Jones et al. 2011; Dean et al. 2011; Waters et al. 2011). The Whitehaven Sandstone Formation (equivalent 238 

to the Warwickshire Group and of latest Westphalian to ?Stephanian age) has divergent palaeocurrents to 239 

the south in Cumbria, and to the north at Canonbie, reflecting penecontemporaneous growth of the Solway 240 

inversion anticline (Jones et al. 2011). In the EISB, this study has identified SSW-ENE trending inversion 241 

structures parallel to the Eubonia-Lagman Fault System in the north (Fig. 6), as well as in the Môn-242 

Deemster inversion belt described above. The study has shown that the early phase of Variscan inversion 243 

structures are cut discordantly by the NNW-SSE to N-S trending faults of the Permian-Mesozoic main 244 

graben structures of the EISB, such as the Keys Fault,  Godred Croven Fault and western marginal fault of 245 

the East Deemster Basin. North of the Ramsey-Whitehaven Ridge, both the Solway and Peel basins suffered 246 
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strong inversion on SSW-NNE ‘Caledonoid’ trends, with uplift and erosion of most of the post-rift 247 

(Namurian to Westphalian) successions, prior to deposition of Warwickshire Group strata (Jackson et al. 248 

1995; Newman 1999). Variscan reversal of the Maryport Fault is demonstrated by the preservation of a 249 

much more complete post-rift sequence on its footwall block (Ramsey-Whitehaven Ridge) than in the 250 

Solway Basin, its hangingwall block (Chadwick et al. 1993).    251 

Later phase of Variscan inversion 252 
In late Pennsylvanian  time, the final deformation phases of the Variscan Orogeny are associated with the 253 

closure of the Uralian Ocean basin and collision of the Kazakhstan and Siberian plates  (Zonenshain et al. 254 

1984; Puchkov 1997; Brown et al. 2002), resulting in W-E oriented compressional stress (Coward 1993; 255 

1995). In the study area, inversion occurred along NNW-SSE to N-S trending faults such as the Keys Fault, 256 

Gogarth Fault, the western marginal fault of the East Deemster Basin and the Formby Point Fault System. 257 

Evidence for this is provided by the Carboniferous subcrop pattern presented by BGS (1994). The Pre-258 

Permian subcrop inset in the marginalia of this map clearly shows erosion of Westphalian strata in NNW- 259 

to N-S trending belts associated with the hangingwalls of the Keys Fault (Fig.  5b), Gogarth Fault (Fig.  4a) 260 

and Lake District marginal faults (Fig. 5c). By contrast, Westphalian strata are well preserved on the 261 

footwall of these structures. The seismic data indicate the presence of N-S trending anticlinal folds cored 262 

by Namurian strata, dissected by faulting on their overturned limbs. Similar subcrop patterns, with 263 

Namurian subcrops in the cores of Variscan inversion anticlines e.g. the Murdoch Anticline,  are observed 264 

in Quadrants 43 and 44 in the southern North Sea (Corfield et al. 1996), and indeed, the two basins exhibit 265 

a similar degree of inversion. At present the NNW-SSE to N-S trending faults are extensional structures of 266 

Permian and younger age; but these are here inferred to have initiated as thrusts or positive flower structures 267 

(‘ancestral faults’) on the overturned limb of the anticlines during Variscan inversion, as reported in the 268 

Ogham Inlier by Quirk & Kimbell (1997). A component of sinistral shear is likely from the observed 269 

relationship of the folds in the Ogham Inlier to the ancestral Keys Fault. Seismic mapping in the present 270 

study (Fig. 6) confirms the pre-Permian subcrop pattern presented by BGS (1994) and has identified a 271 

possible interference structure between the two trends in the Ribble Estuary Inlier. Although it is 272 

conceivable that inversion on faults with both WSW-ESE and NNW-SSE trends could have occurred in 273 

one Variscan phase of inversion, comparable to the partitioned deformation system advocated for the 274 

Northumberland Basin by De Paola et al. (2005), the above evidence would appear to suggest two, separate, 275 

nearly orthogonal phases of Variscan inversion are more likely. Extensional reactivation of the ancestral 276 

late Variscan structures in W-E extension during Permian to Mesozoic time, facilitated development of 277 

NNW-SSE to N-S trending graben of the EISB, strongly discordant to the strong SW-NE structural grain 278 

established by Caledonian compression, Mississippian extension and early Variscan inversion. Strong uplift 279 

and erosion during the Variscan inversion led to complete removal of the Pennine Coal Measures strata 280 

underlying the Lagman Basin. The ancestral Keys Fault played a key role in partitioning the former Eubonia 281 

Tilt-block into western and eastern segments, the latter being almost obliterated by post-Variscan events. 282 

Inversion on the same trend may have led to uplift and erosion of Carboniferous strata deposited within 283 

basins on the North Channel Basin complex. 284 

 285 

Post-Variscan structural evolution 286 

 287 

The post-Variscan structural evolution of the EISB has been thoroughly described in numerous previous 288 

publications (BGS 1994; Jackson et al. 1987; 1995; 1997; Jackson & Mulholland 1993). As a result, only 289 

a generalised account, focussing on those elements where the Palaeozoic structure has a bearing, will be 290 

presented here. Following the Variscan basin inversion and regional uplift described above, there is clear 291 

evidence on seismic profiles for the erosion of Pennine Coal Measures strata from the crests of inversion 292 

anticlines, and tectonic dissection of the latter adjacent to the Keys, Lagman, Lake District Boundary and 293 

Formby Point faults prior to deposition of Permian strata (BGS 1994). Jackson & Mulholland (1993; p793) 294 

and Jackson et al. (1997; Figure 2) recognised significant thickening of the Appleby Group (Lower 295 

Permian), possibly to as much as 1150 m (Jackson & Mulholland 1993), in a belt extending from the Berw 296 
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Basin to the Formby Oilfield. For example, the well 110/11-1 proved 763 m of Collyhurst Sandstone 297 

Formation (Appleby Group), while 110/7-2 12 km to the north proved only 40 m, and none is present in 298 

the vicinity of the Morecambe fields. The belt of thick Appleby Group strata directly overlies the Môn - 299 

Deemster Foldbelt, providing strong evidence for significant early Permian penecontemporaneous relief 300 

within, and deep erosion of, the tectonically weakened inversion belt. The area must have had a substantial 301 

topography in early Permian time. It is interesting to note that significant pre-Permian palaeotopography 302 

was described at Formby by Falcon & Kent (1960).  303 

A series of NNW-SSE to N-S trending rifts began to develop in response to W-E extension 304 

affecting the crust of the Pangaea Supercontinent that was established during the Variscan Orogeny 305 

(Whittaker 1985; Coward 1995; Chadwick & Evans 1995). In the Worcester and Knowle basins onshore, 306 

rifting was able to exploit the N-S (‘Malvernoid’) grain previously established by late Precambrian orogeny 307 

(Pharaoh 1987; Barclay et al. 1997) and subsequent Variscan inversion (Chadwick 1993). The rifts 308 

propagated with stepwise, en-echelon offsets through the province, from the Stafford and Cheshire basins 309 

and EISB through the Portpatrick and Larne basins and the North Channel to the western Scottish offshore 310 

basins (Ziegler 1990). The Solway and Peel basins subsided less than the EISB, and are elongated SW-NE, 311 

reflecting structural control by the extensionally-reactivated Caledonide basement structure within the 312 

Iapetus Convergence Zone. Nevertheless, it is notable that the majority of small to medium-sized 313 

intrabasinal normal faults (Chadwick et al. 2001) take up the new N-S trend, as in the Cheshire Basin 314 

(Chadwick 1997). By Triassic time, the EISB was a mature component of the Central European Basin 315 

System (Scheck-Wenderoth et al. 2007; Pharaoh et al. 2010), receiving up to 5km fill of Sherwood 316 

Sandstone Group clastic sedimentary rocks and Mercia Mudstone Group mudstones and evaporites 317 

(Jackson & Mulholland 1993). Small relict outliers of Lias (early Jurassic) strata in the Carlisle Basin 318 

(Warrington et al. 1997), Peel Basin (Chadwick et al. 2001) and EISB (Jackson & Mulholland 1993) 319 

indicate that subsidence continued into Jurassic time. Evidence for mid- and late Jurassic subsidence has 320 

been removed subsequent to Cenozoic inversion, uplift and erosion. The magnitude of post-Triassic 321 

displacement is difficult to estimate due to this erosion, but it is likely that the Lagman and Keys faults, 322 

together with the Maryport, Portpatrick, Loch Ryan and St Patrick faults, suffered significant normal 323 

movement (Jackson & Mulholland 1993; Quirk et al. 1999). Apatite fission-track analysis indicates that for 324 

parts of the Ramsey-Whitehaven Ridge, maximum post-Variscan burial was achieved in early Cretaceous 325 

time (Green et al. 1997). This was associated with peak generation of hydrocarbons from Carboniferous 326 

source rocks throughout the region. Soon after this, a fall in relative sea level and erosion resulted in the 327 

Late Cimmerian Unconformity, found throughout the British Isles (Whittaker 1985). The reduction in 328 

confining pressure may have been enough to allow early formed hydrocarbons, principally oil, to escape 329 

early reservoir structures in gentle roll-over anticlines associated with the shallow detachment tectonics in 330 

the centre of the Main Graben, towards roll-over traps at the marginal faults (Pharaoh et al. 2016b).  331 

Opening of the Atlantic Ocean east of Greenland by Paleocene times associated with putative 332 

Icelandic Plume activity (e.g. Brodie & White 1994; Nadin & Kuznir 1995) resulted in voluminous 333 

magmatism in the Inner Hebrides and in N Ireland just to the west of the study area. The Fleetwood Dyke 334 

Complex (Kirton & Donato 1985) was intruded en echelon across the main graben of the EISB.  Magmatic 335 

and thermal processes on a lithospheric scale resulted in regional thermal doming of the crust below the 336 

EISB (White 1988) in Palaeogene or possibly, late Cretaceous, time (Cope 1994, 1997). Across the study 337 

area, the combination of enhanced regional and local heat flow led to a further phase of hydrocarbon 338 

generation (Cowan et al. 1997; Meadows et al. 1997). Superimposed on the regional, thermal uplift 339 

described above were the effects of later crustal shortening, associated with the developing Alpine Orogeny 340 

in southern Europe. Apatite fission-track data indicate a second Cenozoic phase of cooling at 25-20 Ma 341 

(Newman 1999), compatible with the region being affected by the Oligo-Miocene phase of inversion found 342 

in southern Britain and the southern North Sea (Van Hoorn 1987; Badley et al. 1989; Chadwick 1993). 343 

Inversion of the Solway Basin led to development of a major anticlinal structure in the hangingwall block 344 

of the Maryport Fault (Chadwick et al. 1993) on the northern side of the Ramsey-Whitehaven Ridge. On 345 

the southern side of the ridge, the reversal of the Lagman Fault led to the generation of small hangingwall 346 
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anticlines (Chadwick et al. 2001). Flower structures and ‘pop-up’ structures are found along the Keys Fault 347 

and Formby Point Fault e.g. the Rhyl and Lennox fields (Haig et al. 1997), reflecting the ‘buttressing’ effect 348 

of the margins of the EISB (Pharaoh et al. 2016b). Throughout the EISB, seismic data indicate the presence 349 

of gentle Cenozoic inversion anticlines (Figs. 4a, b, c) superimposed on an earlier generation of Variscan 350 

inversion anticlines (Pharaoh et al. 2016a; b), the ‘posthumous’ tectonic style recognised by Jackson & 351 

Mulholland (1993). Further tightening of the Variscan inversion anticlines during Cenozoic (Alpine) crustal 352 

compression resulted in the development of more open structures in the Permo-Triassic cover. This was 353 

likely an important process in the generation of the traps in the Hamilton fields (posthumous upon the Môn-354 

Deemster inversion belt) and the Millom, Dalton and Calder fields (posthumous on the Keys trend of latest 355 

Variscan inversion). The Cenozoic inversion history is thus complex, involving contractional reactivation 356 

of precursor normal faults, posthumous folding and regional arching and uplift of basin depocentres, upon 357 

which various thermal effects due to magmatic intrusion and possible underplating have been 358 

superimposed. A detailed treatment of these potential Cenozoic impacts upon the Palaeozoic hydrocarbon 359 

system is beyond the scope of this paper. 360 

 361 

Petroleum systems of the Carboniferous basins of the EISB 362 

 363 

In the EISB, a proven petroleum system is present, involving a Carboniferous source (Colter & Barr 1975; 364 

Cowan 1991; Stuart 1993; Armstrong et al. 1997), reservoirs of the Ormskirk Sandstone, locally the 365 

uppermost formation of the Triassic Sherwood Sandstone Group, and halite seals (Fig. 7). A substantial 366 

number of exploration wells have been drilled, but few penetrate the Permian and the potential pre-Permian 367 

resource underlying the EISB fields is poorly known. The North and South Morecambe gasfields (Fig. 6), 368 

with a combined in place recoverable  of 5.2 tcf (Cowan 1996), were discovered in the 1970s and lie in 369 

large regional anticlines associated with rollover and salt-facilitated low angle detachment faulting, of 370 

Triassic to Jurassic age (Knipe et al. 1993). Further modification of trap geometry occurred in Miocene 371 

time as a result of Alpine inversion.  An initial charge of hydrocarbons (probably mostly oil) in Jurassic 372 

time was originally thought to have been derived from Pennine Coal Measures source rocks, as in the 373 

southern North Sea (Bushell 1986). Subsequently the Bowland Shale Formation was confirmed as the 374 

source (Armstrong et al. 1997). This early charge was associated with the formation (at about 180 Ma) of 375 

a ‘platy-illite’ layer, interpreted as a palaeo-hydrocarbon-water contact (Bushell 1986; Woodward & Curtis 376 

1987; Knipe et al. 1993), which was lost during the early Cretaceous and the present (mostly) gas charge 377 

is believed to result from a further cycle of hydrocarbon generation (also from the Bowland Shale 378 

Formation?) associated with an elevated geothermal gradient during the early Cenozoic  (Cowan & Bradney 379 

1997). Hydrocarbon migration continues in the basin to the present day, as witnessed by the seepage of oil 380 

into Quaternary sands and peats at Formby, on the Lancashire coast.  381 

In the 1990s, the Hamilton, Douglas, and Lennox fields, with a mixture of oil and gas, were 382 

discovered parallel with the North Wales coast in the southern part of the EISB (Fig. 6). Most of the deep 383 

wells of these fields encountered Millstone Grit Group below the Variscan Unconformity, as at Formby. 384 

Using isotopes the sampled oils (from 110/15-6, Lennox and 110/13-10, Douglas Oilfield) were correlated 385 

with each other, and the Holywell bitumen and the Holywell Shales (correlative of the Bowland Shale 386 

Formation) of NE Wales thereby proving the Bowland Shale source (Armstrong et al. 1997). These were 387 

isotopically lighter (more negative) than Westphalian cannel coals of Type I kerogen, for example those 388 

formerly mined and used to make oil at Leeswood in North Wales (Falcon & Kent 1960). Waxy crude 389 

shows in the Millstone Grit Group in well 110/07b-6 (1510 m-1675 m; Released Geochemical Report) 390 

showed an isotopically similar source to shows in wells 110/07-2, 110/08-3 and Formby. The API of the 391 

Irish Sea oils range from 40-45 at Lennox and Douglas (Hardman et al. 1993), to 37 at Formby (Armstrong 392 

et al. 1997), perhaps suggesting a less mature source in the onshore field. Many additional small fields have 393 

been discovered subsequently, mostly in the centre of the EISB and mostly containing gas, culminating 394 

with the Rhyl discovery in 2009. In the Irish Sea, no significant Carboniferous reservoirs or good shows 395 
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have been reported but there is at least one discovery (113/27-2) in the Collyhurst Sandstone (Appleby 396 

Group).   397 

Stratigraphy of the petroleum system 398 
Carboniferous source rocks are shown in Fig. 7, as covering the lower part of the Namurian and highest 399 

part of the Visean where shales are developed; Pennine Coal Measures may make a contribution where 400 

preserved. The lithostratigraphical terminology used here is that introduced by Waters et al. (2011) to better 401 

integrate the offshore with the onshore geology than previous schemes (e.g. Jackson et al. 1999). The 402 

Carboniferous source rocks are separated from the Triassic Ormskirk Sandstone reservoir rocks by the 403 

Millstone Grit Group and, where present, Pennine Coal Measures and Warwickshire groups. Above the 404 

Variscan Unconformity the Permian Appleby and Cumbrian Coast groups, and the lower, tight part of the 405 

Triassic Sherwood Sandstone Group, also intervene. A Pendleian time slice (Fig. 9) highlights the 406 

persistence of the relatively deep marine hemipelagic successions (Bowland Shale Formation) across the 407 

central part of the British Isles, including the Craven Basin, EISB and westward towards the Dublin Basin 408 

(Ramsbottom et al. 1969; Cope et al. 1992; Jackson & Mulholland 1993; Wakefield et al. 2016). The late 409 

Pendleian saw the first major influx of thick fluvial and deltaic sandstones into the Craven Basin, both from 410 

the north and from the south. The northern basin fill are characterised by a thick pro-deltaic ramp turbidites, 411 

overlain by a siltstone-dominated slope succession, in turn overlain by a fluvio-deltaic, delta-top sandstone 412 

(Collinson 1988; Wakefield et al. 2016). The hemi-pelagic successions have gamma values which suggest 413 

potential as source rocks. The overlying successions of the Pennine Coal Measures and Millstone Grit 414 

groups have potential as a combined source-reservoir unit, with secondary sources from marine influxes 415 

and coaliferous sediments.  416 

Clastic intervals within the Carboniferous and Permian successions that are evaluated for reservoir 417 

potential include the Appleby Group, Warwickshire Group, Pennine Coal Measures Group, Millstone Grit 418 

Group and Bowland Shale Formation. The Carboniferous Limestone Supergroup has been assessed as a 419 

potential reservoir, although the effect of secondary, karstified and fracture porosity has not been analysed. 420 

The preservation and thickness of the possible reservoir units is variable, particularly the Carboniferous 421 

units beneath the Variscan Unconformity (Fig. 6). Interpretation of well logs and associated core analyses 422 

(biostratigraphy, poroperm etc) frequently provide alternative stratigraphic interpretations to those shown 423 

on the well composite log, and have been carried out in this study (Fig. 9a, b). Many authors have referred 424 

to the problems in identification that results from secondary reddening of the Carboniferous strata below 425 

the Variscan Unconformity (Trotter 1954; Falcon & Kent 1960; Jackson et al. 1995) in both the adjacent 426 

onshore and within the EISB. In the south of the basin, thick Appleby Group strata overlie the Variscan 427 

Unconformity and stratigraphic interpretation is straightforward. However, in the Morecambe fields area, 428 

the Appleby Group is absent and the Cumbrian Coast Group is interpreted to overlie the Variscan 429 

unconformity (Fig.  9b). This is important because it shows the probable topography of the Carboniferous 430 

surface, deformed and uplifted by the Variscan Orogeny, and the extent of erosion and eventual burial. The 431 

Cumbrian Coast Group comprises a varied sequence of thin sandstones, anhydrites, limestones, halites and 432 

mudstones, mostly red in colour. Underlying redbeds have therefore been interpreted either as a mudstone 433 

facies of the Appleby or as Warwickshire Group strata, on well composite logs. The favoured interpretation, 434 

combining all the seismic and well evidence, is that the red beds directly underlying the Cumbian Coast 435 

Group are secondarily reddened. They often include thin sandstones and high gamma shales and rarely 436 

contain coals, and are believed to be mostly of Namurian depositional age. 437 

Source rocks  438 
One of the key risks in the Palaeozoic of the greater Irish Sea province is the quality, extent and maturity 439 

of source rock intervals. Potential source rocks include coals of the Pennine Coal Measures (Westphalian) 440 

and upper Millstone Grit (Namurian) groups;  shales of the Bowland Shale Formation and Millstone Grit 441 

Group (Pendleian and Arnsbergian); and older Visean shales (unproven by sample data), for example in 442 

the lower part of the Yoredale Group. Compilation of the Rock-Eval source rock geochemical data from 443 

released legacy reports revealed a small data set (264 samples), limiting the analysis which could be 444 
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undertaken (Vane et al. 2016). Where penetrated, the Pennine Lower Coal Measures Formation, Millstone 445 

Grit Group and Bowland Shale Formation are mainly gas-prone strata with poor-fair remaining generative 446 

potential, and are mature to the gas window at the sampled intervals in Quadrants 110 and 113 (Vane et al. 447 

2016). Some shales within the Millstone Grit Group have TOC values (Fig. 11f) and S1 hydrocarbon values 448 

(Fig. 11a) greater than the Bowland Shale Formation.  Given the maturity levels, source rock potential in 449 

these wells is likely to have been depleted by hydrocarbon generation, or the original quality of these source 450 

rocks was poor to fair. The Cumbrian Coast Group, Appleby Group and Carboniferous Limestone 451 

Supergroup sampled in two wells in Quadrant 111 are oil to gas window mature, but have low Total Organic 452 

Carbon (TOC) and low residual hydrocarbon generative potential. Data is generally lacking to characterise 453 

kerogen types using a Van Krevelen plot, however data from well 110/02b-10 (Fig.  11b) suggests a kerogen 454 

mix between Type II and III for the Millstone Grit Group and Pennine Coal Measures. A similar mixed 455 

system can also be expected for the Bowland Shale Formation but with a higher proportion of Type II 456 

kerogens. The high TOC and widespread extent of the Bowland Shale Formation favour it as the primary 457 

source rock, at least in the southern part of the Irish Sea. The other potential sources are ranked as secondary 458 

to this. 459 

Hydrocarbon maturation and generation 460 
Vitrinite reflectance data (Fig. 11d) shows that the Bowland Shale source rocks in wells are mature for oil 461 

and gas generation (Corcoran & Clayton 1999; Vane et al. 2016). EISB oils were considered to have been 462 

derived from the source in the range 0.75-0.85% Ro maturity, and the condensate from >1.0% Ro 463 

(Armstrong et al. 1997). Given the structural complexity for the area of interest, a singular burial trend and 464 

maturity profile cannot be defined. Cowan et al. (1999) gave examples of varying thermal and burial history 465 

at the basin margins changing over tens of kilometres. Three wells show a correlation of maturity increase 466 

with depth within the Tmax dataset: 110/07b-6, 110/02b-10 and to a lesser extent 113/27-1, indicating 467 

progressive oil window into gas window maturity with depth. Some of the Tmax  data  indicate a wide spread 468 

of temperatures at the same depth, perhaps reflecting reworked and caved material in addition to in situ 469 

measurements or possibly due to Tmax suppression caused by variable kerogen and free oil composition 470 

(Fig. 11c). Onshore Isle of Man boreholes (Shellag, Ballavarkish, Black Marble Quarry; Fig, 5) show a 471 

similar range of Tmax, albeit with few samples (Racey 1999).  472 

 473 

Basin modelling 474 

A lack of preserved post-Jurassic strata has resulted in a range of burial and thermal models for the EISB, 475 

for example Cenozoic uplift estimates ranging from <1 km to up to 3 km (Cowan et al. 1999; Quirk et al. 476 

1999 and references therein). In this study, well 110/07b-6 was chosen for burial and thermal modelling as 477 

it had the most complete geochemical profile and thick Carboniferous section (Gent 2016; Fig. 12). The 478 

well is situated on a minor Variscan structural high, and is considered reasonably representative of the more 479 

marginal areas of the basin. The burial model was matched to the measured vitrinite reflectance (VR) profile 480 

and the calculated VR profile (from Tmax) (Fig.  12). Using published studies (Cowan et al. 1999; Quirk et 481 

al. 1999)  and seismo-tectonic interpretations from this study a 700 m uplift event in the late Carboniferous, 482 

followed by a minor 150 m uplift during development of the Late Cimmerian Unconformity, and a final 483 

1100 m uplift and increase in palaeo-heatflow in the Cenozoic were included. The modelling shows that 484 

burial of the Bowland Shale Formation source rock in the Carboniferous resulted in the early-mid mature 485 

oil window being reached, before uplift and subsequent deeper burial in the early Cenozoic, just reaching 486 

main gas generation in the base of the drilled strata (Fig. 12). This is consistent with the oil shows 487 

documented in the well geochemical report (Geochem Laboratories Ltd 1988). Carboniferous trap 488 

formation, migration and generation were all likely to have occurred during the Variscan Orogeny. 489 

However, subsequent uplift would have almost certainly breached the traps. Migration and trap formation 490 

was renewed in the Mesozoic and Cenozoic, with any modern day hydrocarbon accumulations required to 491 

have survived the potential structural breach as a result of Cenozoic inversion. 492 
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Migration  493 
Migration of hydrocarbons into Triassic reservoirs and traps has clearly been successful as evidenced by 494 

the producing oil and gas fields of the EISB. Oil migration to the Triassic Hamilton fields may have 495 

occurred, vertically along faults, in Jurassic and Cretaceous times (Yaliz 1998; Haig et al. 1997; Yaliz & 496 

Taylor 2003). This study has highlighted how these fields overlie the Môn-Deemster inversion belt 497 

described above (Fig. 6), the structures of which may have acted as first stage reservoirs, subsequently 498 

breached to allow migration into overlying Triassic traps, formed posthumously as late as Cenozoic time, 499 

on a template created by the Variscan inversion structures. In a similar way, the Millom, Dalton and Calder 500 

fields, lying close to the Keys Fault, and Lennox Field, close to the Formby Point Fault, are Cenozoic age 501 

traps formed posthumously on a template provided by the second phase of Variscan inversion structures. 502 

As the basin depocentre widened and new areas came into the oil window, additional hydrocarbons may 503 

have been generated and continued to migrate southward. The basin depocentre within the dismembered 504 

Eubonia Tilt-block entered the gas window and gas migrated into the Morecambe and other fields. This 505 

may have occurred both pre- and post-Late Cimmerian uplift/sea-level fall (Bushell 1986). In a conceptual 506 

Carboniferous petroleum system model, migration is away from the steadily deepening and expanding 507 

hydrocarbon kitchen towards the margins of the basin, where these strata fail by thinning and overlap. In 508 

the north the boundary is strongly faulted (Lagman, Eubonia and Lake District boundary faults).  509 

Characteristics of potential reservoirs 510 
A reservoir evaluation of Permian and Carboniferous intervals, designed as a quick-look regional overview, 511 

was based on legacy core plug-measured porosity and permeability data and continuous petrophysical 512 

interpretations for 8 wells (Hannis 2016). Net-to-gross, porosity and basic permeability estimates were 513 

calculated for each formation, summarised in Table 1. In general, the results illustrate fairly low net to gross 514 

values of less than 10% (except in the Permian-aged Appleby Group where net-to-gross was 79%), 515 

porosities (highest formation averages mostly around 10% but up to 19 % in the Appleby Group) and 516 

mainly poor average permeabilities (highest formation averages mostly less than 10 mD). Further 517 

examination of the distribution of potentially higher permeabilities within the Millstone Grit sandstone 518 

intervals could be worthwhile (Table 1). The core plug measured porosity versus permeability data by 519 

formation is exhibited in Fig. 13. 520 

The aeolian-dominated Permian Appleby Group strata that include the Collyhurst Sandstone are a 521 

prospective reservoir interval. The group as proven in well data is commonly defined by a basal breccia, 522 

overlain by a thick clean sequence of aeolian sandstones, culminating in an upper sequence of breccias 523 

(Wakefield et al. 2016). Based on 6 wells in Quadrant 110 in the depth range 1300-2400 m, maximum 524 

measured core porosity is 21% with a highest formation average in all wells of 13%. Permeability is 525 

however poor, with a maximum measured permeability of 71.5 mD (vertical, kv), and a highest formation 526 

average of 0.8 mD (horizontal, kh) and 7.90 mD (vertically). Petrophysical analysis has confirmed the group 527 

as being a sandstone-dominated interval with an average net-to-gross ratio of 79%. Petrophysical porosity 528 

and permeability calculations match with the core-measured values, with the highest average porosity 529 

calculated at 19% and highest average permeability estimates of 6.89 mD, with some estimates in the 50-530 

100 mD range for several wells (Table 1 and Hannis 2016).   531 

The Warwickshire Group is the equivalent of the Ketch and Boulton formations of the southern 532 

North Sea in Quadrant 53 and Quadrants 43-44 (Waters et al. 2011). Onshore, the Warwickshire Group of 533 

North Wales and Cheshire Basin comprises predominantly red, brown, purple-grey mudstones and 534 

sandstones and locally green-grey siltstones and mudstones with thin coals. However, potential reservoir 535 

sandstones can be locally significant. The amount of sandstone relative to mudstone and siltstones within 536 

constituent formations of the Warwickshire Group varies considerably. In West Cumbria, the Whitehaven 537 

Sandstone Formation, at least 280 m thick (Akhurst et al. 1997; Dean et al. 2011) is mainly a red to deep 538 

purple or purplish brown, cross-bedded, micaceous, medium- to coarse grained sandstone (Wakefield et al. 539 

2016). The Halesowen Formation was productive in the small mined Coalport Tar Tunnel ‘field’ in 540 

Shropshire during the 18th and early 19th century (Smith et al. 2005). In the East Midlands, the Warwickshire 541 

Group has been documented to have better reservoir characteristics than productive older late 542 
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Carboniferous strata, but was spatially confined to the synclines (BGS 1984; Pharaoh et al. 2011). Data 543 

from Quadrant 53 and the English Midlands shows that an average porosity of 16% is likely, with a 544 

permeability of several hundred mD, although the bulk of the data was from above 600 m depth. Therefore 545 

investigation of the Warwickshire Group as a reservoir interval offshore was considered, though seismic 546 

mapping indicated a limited extent in the greater Irish Sea province (Fig. 6) and there are no well 547 

penetrations and therefore no reservoir data for the group. However, Bolsovian-Asturian (Westphalian C-548 

D) age strata are recorded in well 33/22-1 along strike in the Kish Bank Basin (Jenner 1981). 549 

In the EISB, the Pennine Coal Measures Group comprises interbedded grey mudstone, siltstone 550 

and pale grey sandstone, commonly with mudstones containing marine fossils in the lower part of the lower 551 

and upper part of the middle subdivisions, and more numerous and thicker coal seams in the intervening 552 

interval. The group shows an overall blocky to erratic log response, with thick high gamma mudstone and 553 

siltstone intervals and relatively thin (3-15 m) low gamma sandstones. The sandstones show considerable 554 

variation in wireline log character, including 'boxcar' motifs in thick, distributary channel sandstones 555 

(Wakefield et al. 2016). Onshore, sandstones are also frequently encountered (e.g. Cefn Rock and Hollin 556 

Rock of NE Wales coalfields, Worsley Delf Rock, Prestwich Rock and Newton Rock of Lancashire 557 

Coalfield) and are approximate equivalents to the productive sandstones in basinward East Midlands fields 558 

(e.g. Oak Rock, Crawshaw Sandstone, Wingfield Flags). Based on five wells in Quadrants 110 and 113, in 559 

the depth range 1400-3050 m, maximum measured core porosity is 10% with a highest formation average 560 

in all wells of 6%. Permeability is generally poor with a maximum measured horizontal permeability (kh) 561 

of 9.43 mD, and a highest formation average for kh of 1.07 mD. Petrophysical analysis of the Pennine Coal 562 

Measures Group provides a similar outlook, with an average net to gross of 9%. Net intervals have 563 

reasonable porosities, with the highest average porosity at 11%. Permeability is generally poor with the 564 

highest average permeability estimated at 0.8 mD. However, permeability up to 61 mD was estimated in 565 

one well (110/02b-9; Table 1, Hannis 2016). 566 

The Namurian-aged Millstone Grit Group comprises cyclic sequences of quartzo-feldspathic 567 

sandstone, grey mudstone, thin coal and prominent seatearths, resulting from deposition by repeated 568 

progradational deltas (Collinson 1988). Common marine bands are present and represent discrete flooding 569 

events (Waters & Condon 2012). Thick reservoir intervals are uncommon, with initial turbidite lobes 570 

passing into delta-top deposits with thin sandstones typically contained within sheetfloods,overbank 571 

deposits and stacked channels. Onshore, and potentially offshore, thicker sandbodies (up to 50 m thick) 572 

occupy incised valleys (Waters & Condon 2012; Wakefield et al. 2016). Jackson et al. (1997; Figure 6) 573 

identified a Kinderscoutian sandstone unit up to 90 m thick in the Liverpool Bay region (111/20-1), which 574 

can be correlated with wells farther north (112/30-1 and 113/27-2) although considerably reduced in 575 

thickness. Onshore, Millstone Grit sandstones are encountered in NE Wales (e.g. Cefn-y-Fedw, Gwespyr 576 

Sandstone, Aqueduct Grit), Lancashire (e.g. Fletcherbank Grit, Pendle Grit and Warley Wise Grit), and in 577 

producing East Midland fields (e.g. the Rempstone Oilfield). The Namurian (Marsdenian) depocentre 578 

extends from the Staffordshire Gulf, probably to Preston and thins to SW under the Cheshire Basin 579 

(Collinson et al. 1977; Smith et al. 1995). This pattern continues into the offshore of the EISB with 580 

Namurian absent at the Rhuddlan well on the North Wales coast (Figs. 5, 9b). Based on samples from four 581 

wells in Quadrants 110 and 113, at 1950-3550 m depth, maximum measured core porosity is 10 % with a 582 

highest formation average in all wells of 6% (Table 1). Permeability is poor, the maximum measured was 583 

0.37 mD (kh), and the highest formation averages for kh and kv were 0.04 mD and 0.05 mD respectively. 584 

Petrophysical analysis provides a more promising outlook for the group, although the average net-to-gross 585 

is 10 %. Net intervals have a reasonable porosity, the highest average porosity is 11 %. Permeability is poor 586 

with an average estimate of 0.2-2.1 mD, apart from one well 113/27-2, which shows an average of 587 

367.7 mD (Table 1). Further analysis of these sandstones could therefore be beneficial (Hannis 2016).  588 

The Bowland Shale Formation is only examined in the wells 110/11-1 and 110/07b-6, however the 589 

formation broadly shows an upwards decrease in carbonate turbidites and an increase in siliciclastic 590 

sandstone turbidites (Wakefield et al. 2016). Potential thin reservoir sandstones may be present. Well 591 

110/07b-6 encounters a total of 16 m of these sandstones, giving a net-to-gross of 3%. (The other well 592 
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examined, 113/27-2, contained no net intervals). No core samples were taken, but petrophysical 593 

interpretation revealed that the net intervals had porosities up to 23%, although the average porosity was 7 594 

%. Permeability estimates appear poor with an average of 0.7 mD and maximum of 16.2 mD (Table 1, 595 

Hannis 2016).  596 

Carboniferous Limestone Supergroup sequences are interpreted to be widespread over the EISB 597 

and thus worthy of investigation as a reservoir. Petrophysical analysis of the limestones encountered in two 598 

wells (112/25a-1 and 111/25A-1) appear clean, but have too low matrix porosities (less than 5 %) to be 599 

considered as a reservoir (Table 1), but accumulations could be hosted in secondary porosity as a result of 600 

karstfication or fracturing. Onshore, the Hardstoft Oilfield in Derbyshire (Craig et al. 2013) produced from 601 

the top of the Carboniferous Limestone, but despite numerous shows, no further production was established 602 

from this reservoir in the East Midlands fields (Falcon & Kent 1960). Karstified limestones such as those 603 

known from Anglesey (Walkden & Davies 1983) and apron reefs like those which crop out at Castleton, 604 

Derbyshire might be present in the offshore. Seismic evidence for the possible presence of reefs towards 605 

the top of the ramp of the Eubonia Tilt-block in Quadrant 109 (Fig. 4a) was described above and indicated 606 

schematically in Fig. 4a. Waulsortian mud-mounds of pre-Asbian age may also be possible reservoirs. They 607 

are seen at outcrop in the south of the Isle of Man (Dickson et al. 1987) and in the Craven Basin. In the 608 

prolific Williston Basin of Canada, collapsed mud-mounds up to 100 m tall provide excellent porosity but 609 

were initially hard to identify on seismic data (Kupecz et al. 1996). 610 

 611 
Seal rocks 612 

The Cumbrian Coast Group, which includes the Manchester Marls (Fig. 7), provides the most extensive 613 

potential seal to Permian or Carboniferous rocks across the whole of the greater Irish Sea area. The unit 614 

consists of thick evaporites in the north and central East Irish Sea, thinning southward, passing laterally 615 

into dolomitic mudstones (Jackson & Mulholland 1993; Wakefield et al. 2016), and is encountered in wells 616 

in surrounding sub-basins. This seal has been proven to trap hydrocarbons in the well 113/27-2, and sealing 617 

potential is proven in 112/25a-1, with minor gas shows in the tight Appleby Group. In the producing EISB 618 

fields, any Cumbrian Coast Group seals were breached as the fluids migrated out of the Carboniferous and 619 

Permian into the Triassic Ormskirk Sandstone reservoir (Colter 1997). Carboniferous intraformational 620 

mudstone seals have proved adequate in all the onshore fields of the East Midlands (Pharaoh et al. 2011), 621 

Cousland in Scotland (Hallett et al. 1985), various fields in the Silver Pit and Cleaver Bank basins of the 622 

southern North Sea and numerous fields in the Netherlands and Germany (Pletsch et al. 2010), and could 623 

be expected to work in Carboniferous basins of the Irish Sea.  624 

 625 

Hydrocarbon prospectivity of the Carboniferous basins outside the EISB 626 

 627 

Whilst basins of the greater Irish Sea province outside the EISB have extensive seismic coverage of variable 628 

quality, there are few wells. Data is therefore lacking to constrain their hydrocarbon systems and is heavily 629 

dependent on onshore analogues.  630 

 631 

Solway Basin 632 

The Permian – Jurassic Solway Basin, linked NE to the Carlisle Basin and SW to the Peel Basin is underlain 633 

by a Carboniferous basin of the same trend, an extension of the Northumberland Trough (Chadwick et al. 634 

1995; Fig.  2). Two well penetrations (112/15-1 and 112/19-1) prove a Visean – Namurian Yoredale Group 635 

distinguished from the Carboniferous Limestone Supergroup by the presence of fewer carbonates (Fig. 7). 636 

The Yoredale Group sandstones, limestones and siltstones represent a fluviodeltaic depositional 637 

environment (see Wakefield et al. 2016) which is a northward lateral equivalent of the basinal Bowland 638 

Shale Formation, i.e. the Bowland Shale facies is not proven and may not be present. The presence of delta-639 

top lacustrine facies is a possibility, but has not been demonstrated. In the onshore Cumberland Coalfield, 640 

the coals are gassy (Colter 1997), but the Pennine Coal Measures Group have not been penetrated offshore 641 

in the Solway Basin. Potential Carboniferous reservoir intervals include a relatively small area of 642 
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Warwickshire Group on both sides of the Maryport Fault (Figs.  5a, 6) and the Fell Sandstone Formation 643 

in the main part of the basin. 644 

 645 

Peel Basin 646 

The Peel Basin is a Permian-Jurassic basin lying between the Isle of Man and Northern Ireland, underlain 647 

by a Carboniferous carbonate platform. Wells 111/25a-1 and 111/15-1 penetrated the Mississippian age 648 

Carboniferous Limestone Supergroup, in contrast to the time-equivalent Yoredale Group encountered in 649 

the along-strike, Solway Basin. The lack of a clastic, fluvio-deltaic system may enhance the likelihood of 650 

the Bowland Shale (source rock) equivalent being present in younger strata between 111/25a-1 and the Isle 651 

of Man coast, but there is no data to test this hypothesis. The seismic reflection data are generally of poor 652 

quality, but allow the presence of a small outlier of Namurian strata to NW of the Isle of Man. The Peel 653 

Basin may extend to the Carlingford Lough area near the Irish border, south of the Mourne Mountains (Fig. 654 

2). BGS boreholes (in Quadrant 112, near the Irish coast) 73/65 and 73/67 are of probable Visean age and 655 

form a rim to the Lower Palaeozoic Longford-Down Massif. BGS borehole 71/43 near the Isle of Man 656 

coast was dated as Namurian. The data available preclude evidence of a working Palaeozoic petroleum 657 

system in the Peel Basin, a conclusion previously reached by both Newman (1999) and Quirk et al. (1999).  658 

 659 

North Channel Basin  660 

The North Channel Basin is a NW-trending Permo-Triassic basin complex lying between the Southern 661 

Uplands and the Longford-Down Massif of N Ireland (Quinn 2008) and forms the main rift through the 662 

massif. Two tilt-blocks, the E-dipping Portpatrick and W-dipping Larne sub-basins, recognised by Maddox 663 

et al. (1997), are separated by the Southern Upland Fault (Fig. 2). Several smaller basins lie parallel in 664 

Scotland (Stranraer, Lochmaben) and Ireland (Strangford Lough). In the Portpatrick Sub-basin, the 665 

underlying strata are possibly Devonian, although the seismic is poorly resolved because the only well 666 

(111/15-1) passed through a fault adjacent to the Southern Uplands, and did not prove a Carboniferous 667 

section. Data is lacking for the presence of source, reservoir and seal in this area (Maddox et al. 1997). 668 

Permo-Triassic and underlying Devonian and Carboniferous strata are present onshore in the Larne and 669 

Lough Neagh basins of N Ireland. Onshore in the Midland Valley of Scotland and in N Ireland a range of 670 

potential Carboniferous source rocks (coals, carbonaceous mudstones) and sandstone reservoir intervals 671 

are documented, though there is considerable spatial variability (Browne et al. 1999; Read et al. 2002; 672 

Underhill et al. 2008; Reay 2004; 2012). Onshore in N Ireland, a Carboniferous prospect was drilled by 673 

Infrastrata plc in Woodburn Forest in 2016, without success (website). Seismic interpretation offshore 674 

(Pharaoh et al. 2016a) has included a Carboniferous succession in the Larne Basin buried to 5000 m and 675 

with faulting and folding observed offering potential for structural traps. However the interpretation is 676 

poorly constrained by data, precluding detailed assessment of petroleum system elements.  677 

Brief mention can be made of the Rathlin Trough, which lies outside the study area, and for which 678 

only limited seismic data, covering the offshore extension of the Machrihanish Coalfield, have been studied. 679 

The source rocks include coals and oil shales (Murlough Bay Formation) of early Carboniferous age which 680 

have excellent TOC and which are mostly in the oil window, with smaller areas in the gas window (Reay 681 

2012). This sequence together with volcanic rocks invites comparison with the Lothian part of the Midland 682 

Valley of Scotland (Read et al. 2002). Drilling took place at Magilligan in the west of the basin and at 683 

Ballinlea in 2008. In the latter well, oil was produced from the Carrickmore Formation sandstones 684 

(Providence 2013) of the wide Visean subcrop (Smith 1985). 685 

Petroleum system knowns and risks 686 
 687 

The distribution of the principal Carboniferous source rock (Bowland Shale Formation) as inferred from 688 

the seismic interpretation is constrained by a few borehole penetrations in the EISB, but the absence of 689 

boreholes in the deepest part of the basin (Keys and Lagman basins) and onto the Manx-Furness Ridge 690 

means that the northern limit is poorly constrained. The nature of the transition to the Solway Firth and 691 
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Northumberland basins, where boreholes prove time-equivalent Yoredale facies is therefore poorly known. 692 

The lack of any offshore well data requires analogy with the adjacent onshore Carboniferous. In the northern 693 

part of the EISB, the very deep burial of the source (now at >7 km depth despite Cenozoic inversion) and 694 

the strong thermal impact from the Fleetwood Dyke means it is probably overmature, compatible with high 695 

CO2 and Nitrogen levels observed in Rhyl and neighbouring fields (Cowan, 1996; Centrica, pers. comm. 696 

2015). Leakage of hydrocarbons in the Cenozoic following fault reactivation and degassing consequent 697 

upon regional uplift, are further risks throughout the region.  Source rocks may also be present in the Clyde 698 

basins and adjacent North Channel Basin, but are unlikely to be present in the southern part of the latter, or 699 

beneath the Peel Basin. Attenuation of the Carboniferous sequence southwards towards the Welsh Massif 700 

(Fig. 4b, 9a) also increases the source risk in this direction. The paucity of data on the maturity of the source 701 

means that this parameter cannot be mapped in detail. Similarly, the reservoir porosity-permeability 702 

characteristics are poorly known over large parts of the region studied. The petrophysical analyses 703 

presented here suggest that the Carboniferous sandstones beneath the Morecambe fields have very poor 704 

porosity and permeability, confirming information provided by Centrica (pers. comm. 2015). This is no 705 

doubt a consequence of their deep burial, and processes such as platy-illite development and silica 706 

cementation which severely affect even the overlying Triassic formations (Colter 1989; Bushell 1986; 707 

Woodward & Curtis 1987; Cowan 1991; Stuart 1993). The Carboniferous tight gas play may work if 708 

hydraulic fracturing can be applied, as is presently being attempted at Kirby Misperton (Cleveland Basin) 709 

and in the Ravenspurn Deep (southern North Sea). Extensive carbonate platforms surrounding the Isle of 710 

Man (Manx Platform) and off North Wales (Colwyn Platform) also have unknown poroperm 711 

characteristics. Until more is known about possible secondary porosity (following dedolomitisation) and 712 

fracture density, the reservoir properties of these areas are ranked as high risk.  713 

The Mercia Mudstone Group is a proven caprock to Sherwood reservoirs and is present throughout 714 

the EISB but is absent across the margins of the basin complex. The potential seal of the Permian Cumbrian 715 

Coast Group sequence thins and fails in the same directions. In the EISB a relatively thick shale and 716 

evaporite (St Bees Evaporites, Cumbrian Coast Group) may be developed. The same is true in the 717 

Portpatrick and Larne basins, where several Triassic halites are present (Quirk et al. 1999; Quinn 2008). 718 

Analysis of seismic data, integrated with well, core data etc, indicates that the marginal areas of the 719 

EISB hold the greatest potential for undiscovered hydrocarbon resources in the Carboniferous, although 720 

the geochemical, petrophysical and other essential data are scant. In general, the presence of an effective 721 

seal is considered to represent the biggest risk in the hydrocarbon system at the margins of the EISB. Yet-722 

to-find prospects are anticipated to be relatively small in volume and with shallow column heights 723 

supported by Carboniferous intra-formational seals. The most prospective parts of the region, outside the 724 

Triassic play, are considered to be: 725 

 726 

 Thick Westphalian combined reservoir and source rock sequences preserved in the Eubonia Tilt-727 

block in Quadrant 109 (Fig. 4a), located outside the main Permian-Mesozoic graben system and 728 

less affected by Cenozoic inversion. The presence and quality of seals form a major risk as the 729 

Cumbrian Coast Group seal is thin or absent and Carboniferous intraformational seals are required 730 

but untested. Based on the limited dataset available in adjacent basins, reservoir quality is also a 731 

significant risk. 732 

 733 

 A belt of Variscan inversion structures (the Môn-Deemster Foldbelt; Fig. 4b) correlated with 734 

structures on the Formby Platform, and the onshore Ribbledale Foldbelt, from which hydrocarbons 735 

sourced by a thick Bowland Shale sequence have leaked into the overlying, Triassic-hosted 736 

Hamilton fields (block 110/13). The biggest risk here is whether reservoirs exist and remain 737 

unbreached at the pre-Permian level, and retain good poro-perm characteristics at depths of about 738 

2500 m.  739 

 740 
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 A more speculative play lies in the extensive carbonate platform in Quadrant 109 and surrounding 741 

the Isle of Man (Fig. 4a), in Asbian reefal facies with enhanced secondary porosity. Here, source 742 

rock presence and migration pathways, reservoir properties and seal quality are major risks. 743 

 744 
 The Ribble Estuary Inlier east of the Formby Point Fault (Figs. 5c, 6) may contain a working 745 

petroleum play. It lies adjacent to the deep Deemster Basin where there is a thick sequence of Upper 746 

Carboniferous sedimentary rocks preserved, and between the Formby and Lennox fields. Well 747 

110/9-1, within the Deemster Basin was dry, but appears to have good porosity in the Ormskirk 748 

Sandstone though no shows. Fluorescence was recorded in the Appleby Group.  749 

 750 

 A potential play exists sourced from the Bowland Shale Formation in the deep Godred Croven 751 

Basin drilled by 110/11-1 migrated into the Carboniferous reservoir on the faulted highs of its 752 

flanks. The Ormskirk Sandstone is very shallow in these locations but the Carboniferous strata 753 

might be securely sealed by the Cumbrian Coast Group. 754 

 755 

Discussion 756 

 757 

The pre-Permian structural synthesis presented here is speculative in view of the limited number 758 

of offshore well penetrations of Carboniferous strata. For example, further tectonic partitions may exist 759 

within the inferred Eubonia Tilt-block. It is possible, for example, that the eastern part of the structure 760 

(underlying the Keys and Tynwald basins of the EISB) may represent a separate tilt-block with a hinge in 761 

the Lake District Boundary Fault System, and a master controlling fault in the west (ancestral Keys system). 762 

The presence of such a basin, referred to as the Lancaster Fells Basin, was inferred by Cowan et al. (1999). 763 

However, the available evidence suggests that the NNW structural trend did not play a significant role until 764 

latest Carboniferous time, so that an ancestral Keys Fault is regarded an unlikely Visean structural element. 765 

The nature of the link between the structures of Quadrant 109 and onshore Lancashire has been much 766 

speculated on in the past (e.g. Ramsbottom et al. 1978). Jackson & Mulholland (1993) recognised the Menai 767 

Strait-Pendle Line link, but preferred to link the Q109 Arch to the High Haume Anticline of the Furness 768 

Inlier, in the southern Lake District. This paper shows that the Ribblesdale Foldbelt does extend west of the 769 

Leyland Basin and Formby Point Fault (c.f. Jackson & Mulholland 1993; Figure 4 and p797) and links to 770 

the Q109 Arch, via the Môn-Deemster Foldbelt. More detailed seismic mapping of the Upper Carboniferous 771 

interval will be required to elucidate what is probably an intricately folded subcrop pattern here. We support 772 

the proposed continuity of the Bowland Basin southwestwards into the offshore area, as inferred by Corfield 773 

et al. (1996) and Cowan et al. (1999). From the perspective of hydrocarbon prospectivity, the presence of 774 

the prolific Bowland Shale Formation source rock interpreted across much of the EISB has been a key 775 

element in the hydrocarbon system of the overlying Permian to Mesozoic basins. Prospective reservoir 776 

intervals with moderate porosity are likely to exist in the Warwickshire Group and Pennine Coal Measures 777 

Group in the marginal parts of the EISB, although the permeability is likely to be poor. The EISB lay to 778 

west (Fig. 8) of the main Pennine deltaic and fluviatile fairway in the onshore (Fraser et al. 1990), and 779 

consequently shows a lower net/gross sand ratio. Evidence from geophysical logs indicates that the EISB 780 

was less influenced by the repeated deltaic incursion so evident onshore, and a sharp transition between 781 

deltaic and basinal shale facies, of the type seen at Mam Tor and Edale, is neither observed nor to be 782 

expected there.  783 

In a review of the deep reflection seismic data for the Irish Sea, principally BIRPS’ WINCH lines 784 

and some deep data from JEBCO, England & Soper (1997) state that from this limited dataset, there is no 785 

clear evidence for reactivation of earlier structures during either Carboniferous sedimentation or Variscan 786 

inversion. Using the exploration seismic data, this study describes the presence of fold-thrust structures in 787 

the pre-Carboniferous basement and, in the Môn-Deemster Foldbelt, demonstrates their role in controlling 788 

both Carboniferous extensional and inversion structures. The interpretation presented supports the view of 789 

England & Soper (op. cit.) that the faults controlling Permian and Mesozoic basin development are 790 
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discordant to the Caledonian, Acadian and early Carboniferous structural grain (as exemplified by the Q109 791 

structures), and are therefore juvenile structures developed in late Westphalian to early Stephanian time. 792 

Evidence presented here suggests that these were initiated as a result of a late phase of Variscan inversion, 793 

reflecting W-E Uralide compression, superimposed on an earlier phase produced by N-S compression. The 794 

timing of these two inversion phases is imprecisely defined in the Irish Sea due to the significant missing 795 

stratigraphic section. However, in late Variscide intramontane basins in central France, N-S compression 796 

in Stephanian B time is followed by inferred phases of compression on NW-SE (late Stephanian B) and W-797 

E (mid-Stephanian C)  principal stress axes (Gélard et al. 1986), the ‘Bourbonnaise Phase’ of Grolier 798 

(1971). Although interpreted in terms of systematic rotation of the principal horizontal compressive stress 799 

axis (Gélard et al. 1986; Blès et al. 1989; Ziegler 1990), Faure (1995) considered these deformations a 800 

consequence of late Variscan orogenic collapse. In the UK region, other manifestations of the late W-E 801 

compressive phase may include the W-E oriented basaltic dykes, and a component of growth of N-S 802 

trending folds, within the Midland Valley of Scotland (Monaghan & Pringle 2004; Timmerman 2004); and 803 

W-E directed transport of fold nappes on the eastern margin of the Worcester Graben (Peace & Besly, 804 

1997).  805 

The observed variation  in Variscan structural orientation in the Variscan Foreland of Britain  is 806 

currently explained in terms either of one resolved compressional vector (Corfield et al. 1996), or of strain-807 

partitioning across a heterogeneous basement template (e.g. De Paola et al. 2005). In the Irish Sea, it is 808 

difficult to argue for a strong control by a N-S oriented basement grain, as identified, for example, within 809 

the Midlands Microcraton (Corfield et al. 1996), and the presence of two discrete late Variscan deformation 810 

phases is regarded as a more likely scenario. Another expression of the multiple inversion history, and very 811 

significant for the formation of Ormskirk traps in the cover, is the impact of posthumous folding. This 812 

process, first recognised and described by Suess (1904), is very clearly demonstrated in the Irish Sea, where 813 

a template of Variscan inversion anticlines in the Carboniferous sequence underlies structures with similar 814 

trend but lower amplitude in the Permo-Triassic cover.   815 

 816 

 817 

Conclusions 818 

 819 

The study has demonstrated that the basins of the Irish Sea preserve a Phanerozoic geological history as 820 

complex as that of the UK onshore. A strong SW-NE structural grain was imprinted on the crust during late 821 

Precambrian and Caledonian accretion and orogenic deformation. Dipping zones of strong reflectivity in 822 

seismic sections are interpreted as major thrusts and shear zones, some of which can be correlated with 823 

known examples onshore. Mississippian rifting on SW-NE trending faults resulted in depocentres which 824 

accumulated marine shale source rocks, preceding regional thermal subsidence. The Eubonia Tilt-block is 825 

a major Carboniferous syndepositional element beneath the northern part of the EISB, but was partially 826 

dismembered by the formation of the ancestral Keys Fault system. The Eubonia-Lagman fault system 827 

formed the syndepositional bounding fault to the tilt-block. The Bowland Shale Formation forms the main 828 

source rock interval, with inferred thickest development likely within the Môn-Deemster Foldbelt, the 829 

offshore correlative of the Bowland Basin, and its inversion, the Ribblesdale Foldbelt. This source rock is 830 

buried to depths >7 km under the Lagman and Keys basins and is probably post-mature there at the present 831 

day. 832 

 The Millstone Grit Group and Bowland Shale Formation contain thin clean sandstones locally up 833 

to 90 m thick which could be considered potential reservoirs. Prospective areas at these stratigraphic levels 834 

may exist at depth adjacent to the Keys Basin, and west of the Keys Fault. The Millstone Grit Group also 835 

has the potential to act as a secondary source rock, as do the Pennine Coal Measures Group when buried 836 

deep enough to achieve maturity. However, the latter were stripped from a large area of the EISB following 837 

Variscan inversion. Pennsylvanian strata exhibit marked thinning to the south onto the Conwy Platform. 838 

Burial by Upper Carboniferous sediments likely resulted in early maturation of kerogen in source rocks 839 

within the deepest basins, but destruction of reservoir porosity and permeability in the depocentres. 840 
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Warwickshire Group sedimentary rocks were not so deeply buried, and are likely to retain better reservoir 841 

characteristics.  842 

The Variscan Orogeny, in late Carboniferous time, caused uplift, folding and thrusting on both 843 

WSW-ENE (Môn-Deemster) and NNW-SSE to N-S (Keys-Gogarth) trends, probably in two phases, 844 

corresponding to well-documented main compressional phases of the Variscan-Uralian Orogen. The later 845 

inversion phase occurred on NNW-SSE to N-S trending zones of deformation which would subsequently 846 

become localised as the main synsedimentary bounding faults of the EISB in Permian to Mesozoic time. 847 

Corfield et al. (1996) provided a definition of inversion intensity. In the greater Irish Sea region, the 848 

intensity ranges from moderate (in the EISB, Solway and Clyde basins) to strong, with almost complete 849 

removal of the post-rift fill (in the North Channel basins and Peel Basin).  The timing of these events is 850 

poorly constrained in the Irish Sea due to significant missing stratigraphic section, but by comparison with 851 

intramontane basins in France, is likely of intra-Stephanian age. The Variscan inversion structures have not 852 

yet been adequately tested as targets. They form both first-stage hydrocarbon reservoirs and the structural 853 

template for more gentle, ‘posthumous’ folds produced by Alpine inversion which form traps in the Triassic 854 

cover (e.g. the Hamilton fields). Deposition of Permian Appleby Group and Cumbrian Coast Group strata 855 

resulted in a potential reservoir - seal combination overlying the Carboniferous source rocks. Permian to 856 

Mesozoic rifting is along NNW-SSE and N-S trends. These faults cut discordantly across the early 857 

Carboniferous structures and have allowed late Cretaceous to early Cenozoic vertical migration of 858 

Carboniferous-sourced hydrocarbons into Triassic reservoirs. There is a migration route to Triassic 859 

reservoirs in the centre of the EISB because the Warwickshire Group and Appleby Group strata have been 860 

removed from that area, and the thin Cumbrian Coast Group seal breached, where the producing 861 

hydrocarbon fields are located. The Clyde-North Channel basin complex, Solway and Peel basins also 862 

contain Devonian and/or Carboniferous rocks beneath Permo-Triassic strata, but have likely been buried 863 

less deeply than those in the EISB. The North Channel basins may also have suffered significant Variscan 864 

inversion. Extensive 2D seismic datasets cover the latter areas but there are only four well penetrations. 865 

There have been no discoveries, interpreted to be largely a consequence of the absence of a regional seal 866 

comparable in quality to the Mercia Mudstone Group in the EISB. The prolific Bowland Shale source is 867 

also absent in these basins, being replaced by fluvio-deltaic sedimentation of the Yoredale Group. Very 868 

limited well penetrations do not presently allow a realistic assessment of the prospectivity of the 869 

Carboniferous strata underlying these poorly drilled basins. 870 
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Figure captions 1326 

 1327 

Fig. 1. Key data evaluated during the study (2D seismic, black; 3D seismic outline, orange; wells 1328 
proving Carboniferous strata, black dot; wells used in the petrophysical study, black square).  1329 

 1330 

Fig. 2.  Key Mississippian structural elements of the greater Irish Sea province. Incorporates 1331 
information from Maddox et al. (1997), Parnell (1997) and Shelton (1997). Location of Permo-Triassic 1332 
basinal features, following Jackson & Mulholland (1993) and BGS (1994), for reference purposes, in 1333 
red: BB, Berw Basin; CP, Conwy Platform; DP, Deemster Platform; EB, Eubonia Basin; ED, East 1334 
Deemster Basin; GB, Gogarth Basin; GC, Godred Croven Basin; KB, Keys Basin;  LB, Lagman Basin; 1335 
MF, Manx-Furness Ridge; NC, North Channel Basin; OP, Ogham Platform; PB, Peel Basin; Q109S, 1336 
Quadrant 109 Syncline; SB, Solway Basin; TB, Tynwald Basin; WD, West Deemster Basin.  Location 1337 
of sections depicted in later figures: red line, seismic profiles (Fig. 3); green line, synoptic diagrams 1338 
(Figs. 4, 5); black line, well transects (Fig. 9). 1339 

 1340 

Fig. 3.  Seismic reflection data. Locations are shown in Figs. 2 and 6. N.B. vertical scales in s TWTT.  1341 

a. Migrated seismic reflection line NW-SE across Quadrant 109: JEBCO JS-MANX-138. Includes 1342 
content supplied by IHS Global Limited. Copyright © IHS Global Limited (2016). All rights reserved.  1343 
Note the considerable thickness of Carboniferous strata in the Eubonia Tilt-block, here exceeding 2.5 s 1344 
TWTT; brighter reflectivity towards top of tilt-block below Intra-Visean unconformity, possibly 1345 
reflecting reefal development; and in the south, a northward-vergent anticline-thrust inversion couple, 1346 
defining the northern edge of the Môn-Deemster Basin. The presence of Warwickshire Group strata is 1347 
inferred from seismostratigraphic principles and has not yet been confirmed by drilling.     1348 

b. Arbitrary NNW-SSE line through the migrated 3D TerraCube® dataset, supplied courtesy of CGG 1349 
GeoSpec. Note the presence of a series of inversion anticlines (Môn-Deemster Foldbelt) in the 1350 
Carboniferous sequence, associated with thrusts (fault-plane reflections) which penetrate into the 1351 
Caledonian basement. A less steeply dipping detachment is present at depth. The Bowland Shale 1352 
Formation is inferred to occupy a rather transparent zone, sandwiched between more reflective 1353 
Carboniferous Limestone Group (below) and Millstone Grit Group (above). The mildly deviated well 1354 
110/07b-6 proved 450 m of Bowland Shale Formation before terminating in strata of Pendleian age 1355 
(unbottomed). Westphalian strata have been almost completely eroded following strong inversion 1356 
during the earliest Variscan phase. Inversion anticlines of this generation were reactivated 1357 
‘posthumously’ by further compression during the Alpine Orogeny in Miocene time, producing more 1358 
gentle anticlines in the Permo-Triassic cover, including the traps in the Ormskirk Sandstone Formation 1359 
(Top SSG pick) hosting the Conwy, Douglas and other fields.   1360 

 1361 

Fig. 4.  Synoptic diagrams (‘cartoons’) to illustrate principal elements of the hydrocarbon system of the 1362 
greater Irish Sea province. Locations are shown in Figs. 2 and 6. N.B. vertical scales in s TWTT. The 1363 
basin names used are principally those of the Permo-Triassic EISB and contemporary basins (Jackson 1364 
& Mulholland, 1993; BGS, 1994), rather than those of the Carboniferous elements newly named here:   1365 

a. Principal elements of the hydrocarbon system in the Eubonia Basin and Q109 Arch. Transect is 1366 
parallel to Fig. 3a and father east, into the Eubonia Basin.  1367 

b. Principal elements of the EISB from the Lagman Fault (north) to the Welsh margin (south). The 1368 
northern part crosses from the Ogham Platform, to the Lagman and Keys basins, where Westphalian 1369 
strata are almost completely removed, the West Deemster Basin and Deemster Platform. Note 1370 
thickening of the Bowland Shale Formation beneath Deemster Platform, associated with the offshore 1371 
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extension of the Bowland Basin. The southern part crosses the Môn-Deemster Foldbelt and is virtually 1372 
colinear with Fig. 3b. 1373 

c. Principal elements of the hydrocarbon system in the Peel Basin. Note that fault displacements appear 1374 
to be largely of post-Permian age, indicating little if any syn-depositional thickening across the Visean 1375 
carbonate platform. Post-Visean strata were only preserved on the Manx margin. 1376 

 1377 

Fig. 5.  Synoptic diagrams (‘cartoons’) to illustrate principal elements of the hydrocarbon system of the 1378 
greater Irish Sea province. Locations are shown in Figs. 2 and 6. N.B. vertical scales in s TWTT. The 1379 
basin names used are principally those of the Permo-Triassic EISB and contemporary basins (Jackson 1380 
& Mulholland, 1993; BGS, 1994), rather than those of the Carboniferous elements newly named here:   1381 

a. Principal elements of the hydrocarbon system in the eastern part of the Solway Firth Basin. Note the 1382 
preservation of late Westphalian Warwickshire Group (Whitehaven Sandstone Formation) in the 1383 
Cumbrian Coalfield adjacent to the Maryport Fault, and the axis of Alpine inversion significantly offset 1384 
from the Variscan one. The Visean strata here are Border Group and Yoredale facies, with uncertain 1385 
source potential. 1386 

b. Principal elements of the hydrocarbon system in the northern part of the EISB. The WSW-ENE 1387 
transect crosses Variscan second phase inversion structures obliquely in the Ogham Inlier, western Keys 1388 
Basin and the Cumbrian margin. 1389 

c. Principal elements of the hydrocarbon system in the southern part of the EISB. The W-E transect is 1390 
located parallel to the southern edge of the Môn-Deemster Foldbelt, crossing some of the Variscan first 1391 
inversion phase structures obliquely. N-S trending inversion structures of the second Variscan phase at 1392 
the margins of the East Deemster Basin and on the Formby Platform are crossed obliquely. Note the 1393 
excision of Westphalian strata on these inversion systems. Modified from Yaliz (1997; Figure 4).  1394 

 1395 

Fig.6. Pre-Permian subcrop map showing key Variscan inversion structures (after Pharaoh et al. 2016b). 1396 
Variscan inversion structures in Ogham Platform after Quirk & Kimbell (1997). Abbreviated structure 1397 
names: DP, Deemster Platform; EDB, East Deemster Western Boundary Fault; FPF, Formby Point 1398 
Fault; OP, Ogham Platform; RE, Ribble Estuary Inlier. Location of sections depicted in other figures: 1399 
red line, seismic profiles (Fig. 3); green line, synoptic diagrams (Figs. 4, 5); black line, well transects 1400 
(Fig. 9). Hydrocarbon fields from OGA website:  1401 
http://data.ogauthority.opendata.arcgis.com/datasets/ 1402 

 1403 

Fig.7. Petroleum system elements in a north-south transect across the central part of the region  1404 

 1405 

Fig.8. Pendleian palaeogeography showing the Bowland Shale source rock distribution and lateral 1406 
variation with Millstone Grit facies (from Wakefield et al. 2016).  1407 

 1408 

Fig. 9. Well transects (from Wakefield et al. 2016). Locations are shown in Figs. 2 and 6.  a. N-S transect 1409 
across the EISB from the Lagman Basin to Rhuddlan, onshore North Wales. Note the truncation of the 1410 
Warwickshire Group north of Point of Ayr and condensation of the underlying Westphalian strata, 1411 
southward onto the Cambrian margin. Also note the variation in the thickness of the Appleby Group.  1412 
b. W-E transect across the centre of the EISB from 109/5-1 in the Eubonia Basin to Roosecote, onshore 1413 
north Cumbria. 1414 

 1415 

Fig.10. Seismic structure map in depth (metres sub-sea level) for the Intra-Namurian pick, equated with 1416 
the base of the Millstone Grit Group. For location of abbreviated Permo-Triassic basinal features (for 1417 
reference purposes), refer to key to Figure 2.  1418 

http://data.ogauthority.opendata.arcgis.com/datasets/
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 1419 

Fig.11. A summary of the available geochemical data for Bowland Shale Formation lithologies in well 1420 
110/07b-6 and 110/02b-10. Data sourced from released legacy reports. Note that no Oxygen Index data 1421 
are available for well 110/07b-6, so the data in the Pseudo-Van Krevelen Plot (Figure 11b) is from well 1422 
110/02b-10 (Millstone Grit and Pennine Coal Measures groups). 1423 

 1424 

Fig.12. Modelled burial history for 110/07b- 6 showing that the Bowland Shale source rock entered the 1425 
main gas generation window in the late Cretaceous-early Cenozoic. The well terminates within the 1426 
Bowland Shale Formation.  1427 

 1428 

Fig.13. Cross plot of core porosity and permeability for East Irish Sea Basin samples. For key to 1429 
abbreviations see Table 1, except for: PLC, Pennine Lower Coal Measures; PMCM, Pennine Middle 1430 
Coal Measures; WAWK, Warwickshire Group. 1431 

 1432 

Table 1. Synthesis of petrophysical results by formation (from Hannis, 2016). NTG = Net reservoir 1433 
thickness to gross formation thickness. Porosity and net-to-gross are expressed as a fraction. 1434 
Minimum porosity in the log-derived porosity range is 0.05, the net reservoir porosity cut-off value. 1435 
Permeability figures are in mD. Core porosity and permeability data are synthesised from legacy 1436 
reports. 1437 

 1438 



From: EIS_Summary_Petrophysics_final.xlsx in 21CXRM_IrishSea_PoropermPetrophysics_Hannis_CR16042_FINAL.docx

Cumbrian Coast 

Group
CCO 81 0.07 0.14 0.05-0.43

Appleby Group APY 936 0.79 0.19 0.05-0.40

Pennine Coal 

Measures 

Group

PCM 62 0.09 0.11 0.05-0.26

Millstone Grit 

Group
MG 293 0.10 0.11 0.05-0.31

Yoredale Group YORE 16 0.02 0.07 0.05-0.30

Bowland Shale 

Formation
BSG 16 0.03 0.07 0.05-0.23

Carboniferous 

Limestone 

Supergroup

CL 0 0.00 0.05 0.05-0.05

Log derived

NTG

Highest 

Average 

Porosity

Net 

thickness 

(m)

Code
Stratigraphic 

unit name

Porosity 

range

Table 1 Click here to download Table Table1.xlsx 

http://www.editorialmanager.com/gslspecpubs/download.aspx?id=17999&guid=37dcbd02-95a7-4be7-8615-f37c46e49cf0&scheme=1
http://www.editorialmanager.com/gslspecpubs/download.aspx?id=17999&guid=37dcbd02-95a7-4be7-8615-f37c46e49cf0&scheme=1




From: EIS_Summary_Petrophysics_final.xlsx in 21CXRM_IrishSea_PoropermPetrophysics_Hannis_CR16042_FINAL.docx

horizontal 

(kh)

vertical 

(kv)

0.17 0.02-1.39 1197 0.04 0.02-0.07 3.06

6.89 0.17-82.27 1191 0.13 0.05-0.21 0.80 7.90

0.79 0.02-61.45 795 0.06 0.01-0.10 1.07 0.01

367.74 0.17-10000 2971 0.06 0-0.10 0.04 0.05

783 0.01 0.00 0.00 0.00

0.75 0.15-16.19 551

246

Permeability 

estimate range

Core measured Log derived

Highest Average 

M
e
tr

e
s 

o
f 

lo
g

Highest 

Average 

Porosity

Porosity 

range

Highest 

Average 

Permeability 

estimate 





horizontal 

(kh)

vertical 

(kv)

0.01-15.20 6

0.00-1.72 0.17-71.5 154

Highest net to gross, highest porosity. 

Highest permeabilities values in the        50-

100 mD range for several wells.

0.00-9.43 0.01-0.13 55

Low NTG (although third highest of the 

units examined). Reasonable average 

porosity. Permeabilities appear low. 

(Highest values of 61.4 mD in 1 well, but 

with no core data over that interval). 

0.00-0.37 0.00-0.13 49

Highest permeability (although estimated 

with low confidence: seen in only 1 of 3 

wells (113/27-2), with a relatively poor core-

log data fit). Low NTG (although second 

highest of the units examined). 

0.00 0.00 9

0

0

Matrix porosities are less than 5% therefore 

the unit is not considered to have any 'net' 

using the cut offs applied.

Comments

S
a

m
p

le
s

Core measured 

Permeability estimate 
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