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Abstract 

Tropical peatlands hold large amounts of carbon but the influence of litter inputs and 

variation in peat properties with depth on carbon storage are poorly understood. Here 

we present a stratigraphy of peatland carbon stocks and accumulation through the 

peat profile in a tropical ombrotrophic wetland and assess shifts in vegetation inputs 

and organic matter degradation using n-alkane distributions and Rock-Eval 6 

pyrolysis. Mixed forest (including canopy palms and tropical hardwood trees) 

contained the greatest total carbon stock in the soil (1884 Mg C ha-1), followed by 

Rhizophora mangle (mangrove, 1771 Mg C ha-1), Campnosperma panamensis 
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(hardwood, 1694 Mg C ha-1) and Cyperus (sawgrass) bog plain (1488 Mg C ha-1). The 

long-term apparent rate of carbon accumulation, determined by 14C dating of the 

carbon stored in different layers in the peat profile, decreased from the edge to the 

interior of the peatland, with the highest accumulation rate in at the Rhizophora site 

(102.2 g C m-2 y-1) and the lowest in the deeper peat layers at the Cyperus site (45.6 

g C m-2 y-1). High molecular weight n-alkanes dominated in surface peat in all four 

phasic communities, while deeper in the peat profile n-alkane profiles differed more 

among sites, suggesting contrasting litter inputs (e.g. shifts from terrestrial vegetation 

to aquatic inputs) or decomposition environments. Deeper peat was depleted in 

carbohydrates and had a relatively larger thermostable C pool. Taken together our 

findings show (i) that different forest types hold varying C stocks and have different 

peat accumulation rates, even over relatively small distances, and (ii) progressive 

depletion of carbohydrates and thermolabile compounds with depth, despite strong 

variation in litter inputs throughout the peat profile.  

Keywords: Carbon storage, decomposition, tropical peatland, Rock-Eval pyrolysis, n-

alkanes, FTIR.  
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1 Introduction 

Global peatlands account for approximately 3% of the Earth’s terrestrial area, of which 

10% are situated within the tropics (Chimner and Ewel, 2005). Tropical peatlands 

consist of partially decomposed organic matter, which has accumulated under 

waterlogged, anaerobic conditions, typically over millennia, when vegetation input 

exceeds decomposition (Andriesse, 1988; Minasny et al., 2016; Wösten et al., 2008; 

Sjögersten et al., 2014; Hoyos-Santillan et al., 2015). Globally, peatlands are 

estimated to store 105 Gt C, equivalent to ca 20% of the Earth’s peatland carbon store 

(Jaenicke et al., 2008; Page et al., 2011; Dargie et al., 2017). However, over the last 

century the sink strength of tropical peatlands has been under threat from logging, 

drainage and fires, particularly in areas of increasing population growth and 

development (Chimner and Ewel, 2005; Hooijer et al., 2010; Limpens et al., 2008; 

Wösten et al., 2008). Climate change also has an impact on the functioning of tropical 

peatlands, due to changes in precipitation, which lead to increased risk of drought 

(Chimner and Ewel, 2005; Page et al., 2011). These changes alter vegetation inputs 

and organic decomposition rates, and increase the risk of peatlands becoming carbon 

sources (Wösten et al., 2008).    

Many tropical peatlands demonstrate a lateral sequence of vegetation types or phasic 

communities (Anderson, 1964; Page et al., 1999; Phillips et al., 1997). For example, 

a paleoecological study by Phillips et al. (1997) revealed spatial variation in the 

dominant peat-forming vegetation from the edge to the interior of a large domed 

coastal swamp in Panama. Surface vegetation type is a major control on peat 

properties, as it determines the quantity and quality of litter, which contributes to the 

peatland organic matter (Laiho, 2006; Sjögersten et al., 2011; Ward et al., 2015). In 

tropical peatlands, litter containing high concentrations of carbohydrates, the rate of 
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decomposition is relatively fast, compared to lignin-rich litter (Hoyos-Santillan et al., 

2015). Therefore, vegetation type controls, in part, the rate of carbon accumulation in 

tropical peatlands, causing variations spatially and with depth (Limpens et al., 2008; 

Sjögersten et al., 2011). It is therefore important to determine how phasic communities 

differ with regard to initial transformation of the litter input as it become incorporated 

into the peat, and total carbon stocks through the peat profile.  

Litter decomposition alters the organic matter chemistry over time with different litter 

species and tissue types degrading at different rates (Wright et al., 2013; Hoyos-

Santillan et al., 2015; Vane et al., 2013). Furthermore, decomposition alters peat 

physical properties resulting in denser, less porous peats (Tuat et al., 2011; Tonks et 

al., 2017; Brain et al., 2017). Indeed, changes in bulk density are important in 

controlling carbon storage, which often varies throughout peatlands (Warren et al., 

2012; Tonks et al., 2017). However, despite the importance of litter inputs and 

subsequent decomposition for carbon storage in tropical peatlands (Sjögersten et al., 

2014), the long term fate of litter inputs remain poorly understood. A key knowledge 

gap hampering our understanding of peat accumulation in tropical wetlands is how 

carbon accumulation is affected by variation in litter inputs and decomposition due to 

differences in successional vegetation communities. 

Spatial and depth variation in the physical properties and biogeochemistry of organic 

matter corresponding to shifts in phasic communities within the San San Pond Sak 

peatland in Panama have been reported by Cohen et al. (1989), Phillips et al. 

(1997), Sjögersten et al. (2011), Wright et al. (2011) and Cheesman et al. (2012). 

Therefore, we used the San San Pond Sak peatland to assess how carbon storage 

capacity and peat organic chemistry was linked to shifting vegetation inputs and 

decomposition through the peat profile. In this study, we present a stratigraphy of 
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peatland physical properties and an assessment of the degree of decomposition in 

four common distinct vegetation communities within the San San Pond Sak 

peatland. Specifically, we determined carbon stocks and accumulation rates through 

the peat profiles, to assess shifts in vegetation inputs and organic matter degradation 

we analysed peat profile n-alkane distributions while Rock-Eval 6 pyrolysis was used 

to develop high resolution depth profiles of the peat thermal stability, which is linked 

to its organic matter composition. Rock-Eval 6 pyrolysis has been used to investigate 

carbon dynamics within a range of systems e.g. mangrove (Marchand et al., 2008), 

marine sediments (Hare et al., 2014), freshwater and saltmarsh peats (Engelhart et 

al., 2013 Newell et al., 2016; Kemp et al., 2017), as well as trends in SOM dynamics 

through soil profiles (Sebag et al., 2006, Delarue et al., 2013; Biester et al., 2014; 

Sebag et al., 2016), providing a powerful tool for rapid assessment of shifts in peat 

organic geochemistry among vegetation types and depth. 

 

We used the data to test the following hypotheses: (1) long-term rates of carbon 

accumulation (LORCA) vary spatially across the vegetation gradient; (2) surface peat 

is dominated by long chain n-alkanes while deeper peat contain more mid chain length 

n-alkanes reflecting decay of vegetation inputs; (3) increased peat degradation with 

depth will result in depletion of carbohydrates relative to aromatics overriding variation 

in litter inputs due to successional changes in the vegetation and hence litter inputs 

over time (Phillips et al., 1997); (4) the thermal stability of the peat is related to litter 

input and increases with depth as the peat become more degraded.  
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2 Methods  

2.1 Study Site and Sampling 

The San San Pond Sak peatland is located in the Bocas del Toro Province on the 

coast of western Panama (Wright et al., 2011). The area contains a mixture of 

freshwater and marine influenced wetlands and includes the Changuinola peat 

deposit, which is estimated to have formed up to 4000 years ago (Phillips et al., 1997). 

Seven distinct phasic communities have been identified across the peatland, in 

roughly concentric rings (Phillips et al., 1997). Starting from the periphery, these 

communities have been designated as (i) Rhizophora mangle mangrove swamp, (ii) 

mixed back mangrove swamp, (iii) Raphia taedigera palm forest swamp, (iv) mixed 

forest swamp (consisting of both palm and evergreen broadleaved hardwood trees), 

(v) Campnosperma panamensis forest swamp, (vi) sawgrass/stunted forest swamp 

and (vii) Myrica-Cyrilla bog-plain. In this study we focused on (i), (iv), (v) and (vi) of 

these phasic communities to traverse the full range of successional stages and also 

as these were the main communities identified along a transect from the coast to the 

centre of a secondary peat dome to the east of the main peat dome. The species 

composition of the phasic communities and soil properties are detailed in Phillips et 

al., (1997) and Sjogersten et al., (2011 and 2018). Briefly, the mangrove site is 

dominated by Rhizophora mangle; the mixed forest is the most diverse sites with 

regards to tree species with the most common being C. panamensis, Euterpe 

precatoria, Symphonia globulifera, R. taedigera, Chamaedorea pauciflora, 

Cassipourea elliptica; the Campnosperma panamensis forest swamp is 

monodominant (i.e. >80% of the trees are C. panamensis); the bog-plain was tree-

less and vegetated by Cyperus species. The mean annual precipitation of the area is 

3092 ± 181 mm, and the mean annual air temperature in the area is 25.9 ± 0.3 °C 
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(Hoyos-Santillan et al., 2015). There is no distinct seasonality in the region, the water 

table remains close to the surface of the peatland throughout the year (range is -40  to 

+40 cm during shorter periods of drought and high rainfall). At the central areas (phasic 

community IIV) of the peatland track tracks are flooded for a large part of the year. 

There are two distinct periods of lower rainfall in February-April and September-

October (Hoyos-Santillan et al., 2015; Wright et al., 2011).  1 

Study sites were established across a transect of a small dome to the east of the main 

deposit. The sites are shown in Figure 1 and were located within four of the main 

phasic communities as described by Phillips et al. (1997). 

At these sites, peat cores of 50 cm length were collected down to 630 cm for 

Rhizophora, 510 cm for mixed forest, 529 cm for Campnosperma and 530 cm for 

Cyperus using the same method to that described in Nikitina et al. (2014) and Vane et 

al. (2013). Upon collection cores were wrapped in cling film to avoid peat oxidation 

and stored in the dark at 4 °C to minimise photo and biodegradation. 

2.2 Sample processing 

2.2.1 Bulk density and carbon storage 

To determine the bulk density (BD), samples of 10 cm were taken every 50 cm down 

each peat column. These samples were then weighed, oven dried at 105 °C for 48 

hours, and then re-weighed for dry weight. BD was calculated by: mass of dry peat (g) 

/ volume (cm3) (Tonks et al., 2017). The carbon stock (Mg ha-1) was then calculated 

by multiplying the carbon per unit volume of soil (Cv) (BD multiplied by TOC) by the 

volume per layer (m3 ha -1) (depth per layer (m) multiplied by 1,000) (Agus et al., 2011).  
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2.2.2 14C dating and peat accumulation rates 

Samples for were taken from the basal peat and at a point of change in peat texture 

and/or colour part way up the core at: 354-356 and 314-316 cm for Rhizophora; 438-

440 and 234-236 cm for mixed forest, 507-509 (this date was not correct) and 234-

236 cm for Campnosperma and 502-506 and 234-236 cm for Cyperus, and analysed 

by Beta Analytic for radiocarbon dating. Peat accumulation rates were calculated as 

in Phillips et al. (1997), with the depth to the surface or next date, divided by the peat 

age (BP).  

2.2.3 Gas chromatography of saturated hydrocarbons 

Differing carbon chain lengths of leaf wax n-alkanes are produced from different 

plant types, and can be used to recognise past vegetation types (Nichols et al., 

2006). Short chain mainly odd numbered homologues, from C13-C25 maximising at 

C15 or C17, are mainly synthesized by aquatic algae and plankton; whereas long 

chain odd numbered homologues, C23-C35 maximising at C29, C31 or C33, are often 

synthesized from vascular plants (Newell et al., 2016). It has also been suggested 

that even numbered mid-chain n-alkanes (C21-C26) may indicate decomposition 

which can lead to chain shortening (Schellekens and Buurman, 2011).  

The following method is similar to that of Newell et al. (2016). Each core were sub-

sampled at four depths for n-alkane analysis. Selected freeze dried 1 g samples were 

spiked with tetracosane-D50, squalene, hexatriacontane-D74 at 50 ng/µl, the samples 

were allowed to equilibrate. The samples were mixed with clean sand, copper powder 

and extracted dichloromethane/methanol (9:1 v/v) at 75 °C and 1200 psi using an 

ASE. The extracts were reduced to a smaller volume using a TurboVap, and hexane 

added to replace dichloromethane/methanol. Samples were then dried and hexane 
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added again for column chromatography. Alumina (aluminium oxide) was used in a 

column and was eluted with three-column volumes of n-hexane to isolate the saturate 

fraction. The eluent was reduced to 1 ml and reconstituted with n-hexane. A Hewlett 

Packard 6890 series GC-FID, fitted with an Agilent DB-1 ms UI column was used to 

analyse the saturates. The oven temperature was raised from 60 °C (isothermal for 1 

min) to 320 °C (isothermal for 15 mins) at 10 °C min-1. 1 µl was injected at 280°C in 

splitless mode for 0.7 min and subsequently split 1:10. Helium was used as a carrier 

gas (1 ml min-1). The peak areas generated were integrated for the abundances of n-

alkanes.  

2.2.4 FTIR spectroscopy  

Fourier Transform Infrared Spectroscopy (FTIR) can distinguish the composition of 

chemical classes due to the vibrational characteristics of their structural chemical 

bonds, within the organic matter (Artz et al., 2006; Artz et al., 2008; Vane et al., 2003). 

In this study FTIR was used to track decomposition through the peat profile due to the 

reduction in carbohydrates with depth, compared to aromatic compounds (Artz et al., 

2006). Specifically, for the analysis five samples throughout the full depth of each core 

analysed but as the intensity of the relevant peak areas in the mineral layers were very 

low the paper only included data from the peat layers in each core. 

Diamond attenuated total reflectance (DATR) FTIR spectroscopy was used to perform 

spectral characterisation of the peat samples, with the method similar to that of Artz et 

al. (2008). Freeze dried, powered samples were placed directly onto a DATR/KRS-5 

crystal and pressed with a flat tip powder press to evenly distribute the sample. The 

spectra were acquired by averaging 128 scans at 4 m-1 resolution over the range 4000-

550 cm-1and corrected for background changes in water vapour and CO2. The data 
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was normalised by subtraction of the sample minimum then division by the sample 

average. The 1030/1506 cm-1 ratio was used to identify peat humification, as this 

compares the relative intensities of carbohydrates (C-O stretch in cellulose) to 

aromatic peaks (aromatic ring stretching). 

2.2.5 Rock-Eval6 pyrolysis 

Rock-Eval pyrolysis is a technique which has been used recently to track bulk 

changes in organic matter composition and degree of decomposition (Disnar et al., 

2003; Kemp et al., 2017; Newell et al., 2016). Sediments (2 cm2) were sub-sampled 

at 10 cm intervals, with samples also taken before and after obvious changes in 

texture and/or colour in the peat stratigraphy. Freeze dried, powdered samples, were 

analysed using a Rock-Eval(6) analyser, configured in standard mode (Kemp et al., 

2017; Newell et al., 2016). Pyrolysis was performed under an inert atmosphere of N2, 

with an initial isothermal stage where the samples were heated at 200 °C for 3 

minutes, before the oven temperature was raised to 650 °C at 25 °C min-1. The 

amount of hydrocarbons released during pyrolysis was detected using a flame 

ionisation detector (FID), with CO and CO2 measured using infrared detectors (IR). 

The residual carbon was then burnt in an oxidation oven, which increased from 300 

to 850 °C at 20 °C min-1, with the final temperature held for 5 minutes. Rock-Eval 

parameters were calculated by integration of the amounts of hydrocarbons (HC), CO 

and CO2 produced during the thermal cracking of the OM, between well defined 

temperature limits. In this study we assessed the geochemistry of the peat using the 

following selected parameters: 

- TOC (wt%) calculated from the sum of the carbon moieties (HC, CO and CO2) 
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- Tmax (°C) which corresponds to the temperature when the maximum amount of 

hydrocarbons were released during pyrolysis. 

- HI (mg HC g-1 TOC) which is the amount of bound hydrocarbons released 

relative to the TOC 

- OI (mg O2 g-1 TOC) which corresponds to the quantity of oxygen released as 

CO and CO2 relative to TOC.  

- The labile, intermediate and persistent C pools (Cl, Ci, and Cp, respectively) 

which correspond to the deconvolution of S2 pyrograms into six Gaussian 

signals (F1-F6) and representing HC compounds pyrolysed below 360 °C (F1-

F2), between 360-450 °C (F3) and above 450 °C (F4-F6) (Saenger et al. 2013). 

Cl, Ci, and Cp were calculated  for 5 depths at each site, respectively. 

2.3 Statistical Analysis 

Statistical analysis was performed using GenStat 17th edition statistical analysis 

software. Mixed linear models using residual maximum likelihood (REML) was used 

to test for differences in the measured variables with depth. Regression analysis was 

used to assess the relationship between TOC and HI and between BD and carbon 

storage. To investigate the relationship between vegetation type, depth and peat 

physical and chemical properties Principle Component Analysis was used. Specifically 

we plotted the principal component scores and the latent vectors to assess which 

samples have comparable eigenvalues and which variables contributed to 

grouping/separation among vegetation types and depths. 

3 Results 

3.1 Bulk density, carbon stock and peat accumulation rates 

The mean BD over all the sites was 0.07 ± 0.02 g cm-3, BD was comparable in surface 
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peats (at ca 50 cm) across the four sites, and then showed variable depth trends 

among sites to ca. 1.2 m depth. Below this point BD tended to increase gradually with 

depth (depth effect: F(1, 50)=28.93, P<0.001). As expected BD was a strong predictor 

of carbon storage (per layer, excluding mineral intervals at the base of the cores) 

(F(1,44)=165.69, P<0.001, r2=0.79; Figure 2 a, 3 and 4).  

TOC was high through the peat profiles at the mixed, Campnosperma and Cyperus 

sites while TOC was generally lower at the Rhizophora site (Figure 3). TOC was lower 

in the peat surface layers compared to deeper down in the peat profile at all four sites 

(depth effect: F(1, 224)=89.78, P<0.001). The base of the peat at each site had low TOC 

values due to mineral matter. For example, Rhizophora peat had shelly material at the 

base, which increased up to 413 cm as shown by the decrease in TOC from 15.5% to 

3.9%, while the other three cores had silty and sandy horizons at the base, indicated 

by low TOC values (Figure 3). 

Variations in peat depth, bulk density and TOC resulted in variable total carbon stocks 

for each phasic community (Figure 2 c). Mixed forest had the greatest total carbon 

stock (Mg C ha-1) of 1884, followed by Rhizophora, 1771, then Campnosperma, 1694 

and Cyperus, 1488. The average carbon stock for all sites was 1710 ± 83.4 Mg C ha-

1. The profile of carbon stock showed similar trends to that of BD, with higher carbon 

density in the lower parts of the peat profiles (depth effect: F(1, 50)= 18.82, P<0.01; 

Figure 2 b). 

Peat radiocarbon ages are listed in Table 1. The basal peat at the Cyperus site was 

the oldest while the Rhizophora basal peat was youngest, with an age of 2680 ± 30 

and 1530 ± 30 years BP, respectively. These dates were used to estimate peat 

accumulation rates, which ranged between 2.1 and 2.6 mm yr-1 in the upper part of 
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the peat profile and 1.2 and 2.9 mm yr-1 in deeper peat layers. The long-term apparent 

rate of carbon accumulation decreased from the edge to the interior of the peatland, 

in agreement with the peat accumulation rates. Overall, the values ranged from 45.6 

to 102.2 g C m-2 yr-1, with the highest rates found in at the Rhizophora site and the 

lowest in the deeper peat layers at the Cyperus site. In line with the peat accumulation 

rates, carbon accumulation rates varied among the upper and lower part of the peat 

profiles. 

 

3.2 n-alkane distributions 

At all four phasic communities, surface peat was dominated by high molecular weight 

n-alkanes. Specifically Rhizophora surface peat was rich in C25, C27
 and C29 n-alkanes 

(Figure 4 a). This was consistent with surface material at the mixed forest, which 

contained high concentrations of C27 and C29, with only low amounts of all other n-

alkanes (Figure 4 b). The Campnosperma surface peat gave a bimodal n-alkane 

distribution, with maxima at C11, as well as high values of n-alkanes C24 and C25 

(Figure 4 c). Also the Cyperus site had maxima of C25 and C27 in the surface peat 

(Figure 4 d).  

In the deeper peat layers which were analysed for n-alkane,  n-alkane profiles differed 

more among sites (Figure 4 a-d). At the Rhizophora site, in the sampling depth just 

below 1 m the n-alkane distribution range from C10-C26, with maxima at C11, C16 and 

C25. However, in the deepest analysed peat layer (316-318cm depth) C27 was present 

again. At the mixed forest site the n-alkane signature at 66-64 cm depth  ranged 

between  C10 and C28 with a maxima at C24. At 238-236 cm depth, there was bimodal 

distribution, with high concentrations of C15 and C29. For the Campnosperma site at 
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278-276 cm depth the n-alkane distribution was dominated by high amounts of C23, 

C25 and C27. At 466-464 cm depth there was greater concentration of slightly longer 

chain homologues, with maximal peaks at C24 and C26. The two deeper peat layers 

sampled at the Cyperus site was dominated by slightly shorter chain lengths than the 

surface layer: The peat at 34-36 cm depth was dominated by homologues of C23, C24 

and C25, as well as C19. Deeper down, between layer 172-174 cm and 320-322 cm 

there was a strong maximum of C19 and a secondary maximum at C24.  

The base of the cores at each sites was dominated by short chain n-alkanes with a 

dominance of even over odd numbered chain lengths. At the Rhizophora and mixed 

forest site the distribution ranged from C10-C25 with maxima at C16. At the 

Campnosperma site the base peat was dominated by short chain homologues C11, 

C18 and C25. The Cyperus site also showed n-alkane distributions dominated by lower 

homologues in the base of the core. 
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3.3 Functional organic chemistry (FTIR) 

The FTIR spectra for the four sites showed similar distributions of organic functional 

groups (Figure 5). Broad peaks between 3339 and 3349 cm-1 were assigned to 

stretching of O-H groups in cellulose, xylans and lignin. The two small sharp peaks at 

around 2918 and 2850 cm-1 represent the asymmetric and symmetric stretching of C-

H in -CH2-, attributed to fats, waxes, lipids and lignin (Artz et al., 2008; Chefetz et al., 

1996; Vane et al., 2003). The shoulder at around 1700 cm-1 is shown in mixed forest, 

Camposperma and Cyperus peat, and represents the stretching of C=O of COOH 

functional groups (Vane et al., 2001; Vane  2003). Two peaks at 1593-1597 and 1505-

1507 cm-1 are associated with aromatic C=C stretching, found mainly in lignin and 

other aromatics (Artz et al., 2008; Gandois et al., 2012; Vane et al., 2003). The strong 

peak at around 1030 cm-1 is from the C-O stretch and O-H deformation of 

polysaccharidic structures such as cellulose, although it is also found in lignin (Artz et 

al., 2008; Gandois et al., 2012).  

For mixed forest, Campnosperma and Cyperus peat, the carbohydrate/aromatic 

(1030/1506 cm-1) ratio was highest in surface peat (depth effect: F(4, 12.4)=5.91, P<0.01; 

Figure 6). For Rhizophora peat, the carbohydrate/aromatic ratio was higher at 1.2 m 

than at the surface. In the deepest layer sampled at this site at ca. 3.15 m the ration 

was lower than that of the two more superficial layer. The carbohydrate/aromatic ratio 

ranged between 1.8 and 4.8 in the surface peat but below ca. 1.5 m ratios showed a 

smaller range apart from at the Rhizophora site, which had a lower ratio at depth than 

the other sites. 
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3.4 Bulk Geochemistry (Rock-Eval) 

3.4.1 Tmax, HI and OI profiles 

The Tmax varied significantly with depth (depth effect: F(1, 225)=11.21, P<0.001). In the 

surface peat Tmax was ca. 350 °C at the three forested sites (Figure 3 a-c). At the 

Rhizophora site Tmax declined to ca 300 °C between 0.5 and 2.0 m. Then Tmax became 

more variable between 2 and 4 m depth, ranging between 306-352 °C, and below 4 m 

Tmax reached 400 °C as the peat became shelly.  Tmax remained high and stable at the 

mixed and Campnosperma sites down to 1 m after which Tmax declined and became 

more variable. Below ca. 3 m, Tmax at the mixed forest site declined to just over 300 °C 

and remained low to the base of the core, while at the Campnosperma site the deepest 

layers of the peat profile had Tmax of ca. 400 °C.  The surface peat at the Cyperus site 

had much lower Tmax (262 °C ) than the other sites and the Tmax remained lower (<300 

°C)  than at the other sites to ca. 1 m depth (Figure 3 d). Below 1 m Tmax values became 

more comparable to those of intermediate depths from the Campnosperma site. 

The HI was highest between ca 0.5 to 1 m at all sites, while surface peat had slightly 

lower HI (depth effect: F(1, 225)=171.71, P<0.001; Figure 3 a-d). Below this peak HI then 

generally declined towards the base albeit at different rates among the sites. The peat 

OI was also highest at the surface and declined gradually with depth at all sites (depth 

effect: F(1, 225)=5.56, P<0.05; Figure 3 a-d). In the peat dominated intervals (see peat 

core log in Figure 4), increasing HI was positively correlated to TOC for mixed forest 

and Campnoperma peat, (F(1,43)=10.27, P=0.003, r2=0.19; F(1,50)=9.04, P=0.004, 

r2=0.15, respectively; Figure 7 a) but not for Rhizophora and Cyperus peat, 

(F(1,31)=1.55, P=0.222 r2=0.05; F(1,50)=1.23, P=0.272, r2=0.02, respectively; Figure 7 a). 

Overall, Rhizophora peat contained thermally labile organic matter, with most of the 
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values ranging between 294-313 °C, whereas the other peat types were comprised of 

organic matter with slightly higher thermally labilities, which ranged from 304-347 °C, 

and thermally stable compounds, which ranged from 359-412 °C (Figure 7b). For 

mixed forest and Campnosperma peat, there was no significant difference in the TOC 

between thermally labile (up to 360 °C) and thermally stable (360 °C and above) peat 

(F(1,43)=1.97, P=0.168; F(1,50)=1.87, P=0.177, respectively). However, for Cyperus 

peat, the TOC was significantly higher for thermally stable peat, than thermally labile 

(F(1,50)=8.43; P=0.005).  

Cl, corresponding to the least thermostable pool was highest in Rhizophora surface 

peat, and decreased with depth across all sites (depth effect: F(4,12)=5.09, P<0.05; 

Figure 8 a) with a minima of 15% at 525 cm for Cyperus peat. Ci, did not vary 

significantly with depth (depth effect: F(4,12)=1.42, P>0.2; Figure 8 b). Cp, the most 

thermostable pool, generally increased with depth in all peats (depth effect: 

F(4,12)=4.68, P<0.05; Figure 8 c). The most thermostable pool was at 525 cm for 

Cyperus peat. Ci was more variable but was generally higher at greater depths.  

 

3.4.2 Multivariate comparison of different sites 

The scores and loadings of principal components 1 (horizontal axis) and 2 (vertical 

axis) explained 40 and 15.5 % of the observed variation, (Fig. 9). Rhizophora 

samples and basal mineral layers were separated from intermediate peat layers at 

the Cyperus, Campnosperma and mixed forest sites (Fig 9 a) by (i) high BD and OI 

and low TOC and HI values and (ii) high concentrations of mid-chain length n-

alkanes (C17, 20, 22 and 24) to the right (Fig 9 b). Surface samples were grouped in 

the upper-left part of Figure 8 a, and were characterised by high concentrations of 
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long chain n-alkanes (Figure 8 b). The long chain n-alkanes (C28-C31) correlated to 

the carbohydrate/aromatic ratio while the TOC and HI values correlated positively to 

C23, C25 and C26. Tmax positively correlated to short chain n-alkanes (C13-14) 

(Figure 8b). 

 

 

 

4 Discussion 

4.1 Carbon stocks and long term carbon accumulation rates 

The average carbon stock for all sites was 1710 ± 83.4 Mg C ha-1, which is within the 

range of values reported for tropical peatlands elsewhere. Reported C stocks vary 

considerably among geographical areas, for example 2772 and 3130 Mg C ha-1 in 

undisturbed forested peatland sites in Indonesia (Page et al., 2006; Jaenicke et al., 

2008), 1002 and 975 Mg C ha-1 in secondary peat swamp forest in Indonesia and 

Malaysia (Saragi et al., 2016; Tonks et al., 2017), and 892 and 1391 Mg C ha-1 in 

pristine forested peatlands the Amazon basin (Draper et al., 2014). The variation in C 

stocks (Figure 2 c) reported for the different communities highlights potential for spatial 

variability even over relatively short distances in response to different organic matter 

input and decomposition environments (Figure 3, 4 and 6), however, these within 

system differences were much smaller magnitude than the range reported across 

different regions. The higher C stocks at the Rhizophora and mixed forest sites, i.e. 

the two sites closest to the edge of the peatland, suggests that the common 

assumption of greater C stocks in later successional stages (Clymo 1984; Phillips et 

al., 1997) is too simplistic to be valid across large tropical peatlands. It also highlights 
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that Rhizophora forest store as much carbon as an equivalent area of freshwater peat 

swamp forest.  

The greater bulk density and peat storage with depth at all sites corresponded with 

declining carbohydrate/aromatic ratios throughout the peat profile (Figure 2 and 6). 

This suggests a decrease in the proportion of coarse, hollow fibres in peat and a 

corresponding rise in smaller organic particle size with depth following decomposition, 

resulting in a closed peat structure with high carbon density (Huat et al., 2011). Peat 

accumulation rates were similar to those reported by Phillips et al. (1997). However, 

the rate for Cyperus peat reported by Phillips et al. (1997) was 5.6 mm yr-1, which is 

greater than the rates we report for this community indicting either variation in 14C 

dates or spatial variability in peat accumulation within phasic communities possibly 

associated with different accumulation rates in different parts of the peatland (Table 

1). 

The long-term apparent rate of carbon accumulation decreased from the Rhizophora 

to the Cyperus phasic community, which is in agreement with the peat accumulation 

rates and supports our first hypothesis, which predicted that carbon accumulation rate 

would vary with the phasic communities. The greater carbon accumulation rate in the 

Rhizophora forest may be linked to Rhizophora tissue being chemically resistant to 

decomposition and/or possibly rapid burial of litter material by marine clays, as 

indicated by the high bulk density and low C content (Figure 2 and 3) in the sediments 

found at this site, protect the organic matter from rapid microbial decay at the peat 

surface (Schmidt et al., 2011). Similar variation exists among Amazonian peat swamp 

forest types, where mixed palm swamp, Mauritia flexuosa palm swamp and open 

peatland had apparent carbon accumulation rates of 74, 39 and 85 g C m-2 yr-1, 

respectively (Lähteenoja et al., 2009).  Variable within site rates (i.e. with depth), in 
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line with those reported in our study, between 1.3 to 94.3 g C m-2 yr-1 were reported in 

Kalimantan, Indonesia (Page et al., 2004), reflecting contrasting organic matter input 

and loss rates over time.  

 

4.2 Changes in peat chemistry with depth 

n-alkane distributions 

The abundance of long chain n-alkanes in surface peat clearly indicated terrestrial 

inputs, supporting our second hypothesis, which predicted that surface peat was 

poorly decomposed, with a high abundance of long chain n-alkanes (Figure 3). 

Specifically, there was a strong signature indicating terrestrial organic matter at all of 

our study sites, characterised by odd numbered long chain homologues (C25-C27)  

(Newell et al., 2016), for example from epicuticular waxes (Eglinton and Hamilton, 

1967,  Kristensen et al., 2008; Vane et al., 2014; Ranjan et al., 2015). The high relative 

abundance of odd numbered long chain n-alkanes in surface peats at our three forest 

sites is comparable to n-alkane distributions in surface samples from Rhizophora 

stands and mixed forest swamps in in the Florida Everglades, USA and Kalimantan, 

Indonesia, respectively, which were both dominated by a strong presence of C27, C29 

and C31 while the high abundance long change n-alkankes, especially C25 and C27, at 

the Cyrerus site matches will surface sedge and phramecties peats from temeprate 

wetland sites (Dehmer, 1995). 

The n-alkane distributions at depth partially supported our second hypothesis that 

enhanced decomposition with depth would correspond to greater concentrations of 

mid-chain length and even numbered n-alkanes in deeper peat layers (Schellekens 

and Buurman, 2011; Newell et al., 2016). Although this was the case in some 
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instances, e.g. greater abundance of both shortened mid-chain lengths and even 

numbered n-alkanes in deeper layers at the mixed forest, Camponsperma, and 

Cyperus sites, it was not a consistent trend of more mid-chain lengths with depth. 

Instead, the presence of long chain homologs at depth at both the Rhizophora and 

mixed forest sites suggests  preservation of plant inputs due to low decomposition 

rates in some layers (Ranjan et al., 2015) and/or transport of freshly fallen leaf material 

by soil fauna, e.g. crabs, to deeper soil profiles (Kristensen 2008).  

As expected, the basal peat at all sites had strong signatures of short chain n-alkanes, 

with an even over odd number chain length dominance, reflecting the marine base of 

the site (Phillips et al., 1997; Ranjan et al., 2015; Newell et al., 2016; Hoyos-Santiallan 

et al., 2016). However, the contribution of short chain n-alkanes throughout the peat 

profiles is intriguing, because it suggests strong bacterial/algae and plankton inputs to 

the peat (Ranjan et al., 2015; Witt et al., 2016) not only at the Rhizophora site by the 

coast, but also at the three sites further inland. We speculate that this reflects periods 

of very high water tables similar to the open marshy areas currently found at the central 

parts of the San San Pond Sak peat dome (Phillips et al., 1997; Wright et al., 2011).  

Peat functional organic chemistry 

The peat organic  functional groups (Figure 4) were broadly comparable to those 

reported for mixed secondary peat swamp forests in Malaysia, although the 

carbohydrate/aromatic ratios reported here were lower (<5) compared to the study in 

Malaysia (approx. 12; Tonks et al., 2017). Furthermore, strong variation among peat 

swamp forest communities with regard to carbohydrates, as well as long chain fatty 

acids, was shown previously at the Panama site (Wright et al., 2011; Hoyos-Santillan 

et al., 2016). In line with our third hypothesis, which predicted decreasing carbohydrate 
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proportions with depth due to preferential decomposition of carbohydrates, the 

carbohydrate/aromatic ratio consistently declined with depth at three of the four sites, 

while at the Rhizophora site this decline was only evident below ca. 1 m (Figure ) which 

may be linked to crabs transporting leaf material into their burrows as mentioned 

above. Increasing aromaticity and depletion of carbohydrates with depth, in the top 2 

m, was reported previously for Cyperus and Campnosperma phasic communities 

(Wright et al., 2011). In parallel, depletion of long chain fatty acids (>C20) around 0.5-

1.5 m depth was reported for the mixed forest site (Hoyos et al., 2016). Together these 

findings suggest that irrespective of the functional group organic chemistry of the litter 

inputs, progression of peat decomposition and preferential decay of carbohydrates 

result in comparable carbohydrate/aromatic ratios across contrasting phasic 

communities. This may, in part, drive the relatively comparable BD and carbon storage 

in the different peat layers, as well as the LORCA (Figure 2, Table 1) between sites, 

despite contrasting litter inputs (Figure 3). 

Bulk peat Rock-Eval 

The low Tmax and high HI index in the surface peat relative to the peat layer immediate 

below (Figure 3) is consistent with fresh litter inputs rich in carbohydrates, proteins 

and lipids (Disnar et al., 2003; Hetényi et al., 2006). The strong differences in Tmax in 

the surface peat among the vegetation communities supported the first part of our 

fourth hypothesis, suggesting that litter inputs strongly affects the thermostability of 

the peat. The low Tmax values found at the Cyperus site are most likely due to low lignin 

and higher carbohydrate content of grasses (Figure 6; Kemp et al., 2017; Vane et al., 

2001; Nimz et al., 1981). The larger Cl pool at the Rhizophora site, despite higher Tmax 

compared to the Cyperus site, might be linked to low molecular weight organic 



23 
 

compounds, for example because sugars are not included in the S2 signal (which is 

used for calculating the C pools) but are captured by the S1 signal (Carrie et al., 2012). 

The increasing Tmax and HI below the peat surface suggest rapid depletion of the most 

thermally labile compounds, leaving thermally stable compounds behind. Indeed, high 

HI values (> 300 mg HC g-1 TOC), in line with the HI values found in the top 0.5 to 2 

m of peat in our study (although this varied among sites), are typically observed in 

plant tissues such as leaves and other material rich in polysaccharides with a high 

degree of hydrogenation and minimal transformation (Marchand et al., 2008). The 

decline in OI and HI with depth indicate SOM maturation and persistence of woody 

materials, which are richer in lignin, and have a high resistance to anaerobic decay 

(Disnar et al., 2003, Hetenyi et al., 2005, Saenger et al., 2013). At greater depth HI 

values continue to decrease, reflecting degraded plant material and increased 

humification of SOM, including greater aromaticity and dehydrogenation (Figure 3; 

Hetenyi et al., 2006, Carrie et al., 2012, Sebag et al., 2016). Increasing humification 

with depth is also supported by the depletion of carbohydrates down core, as 

demonstrated by the FTIR spectra and ratios (Figure 6), and the gradual decline in Cl 

and concurrent increase in Cp (Figure 8) 

The relatively low Tmax between ca. 0.5 and 2 m at the Rhizophora site is probably due 

to incorporation of a diverse mix of plant biopolymers and the addition of other organic 

matter inputs (e.g. bacteria), or a greater proportion of decayed remains as suggested 

by the higher abundance of short chain n-alkanes at intermediate depths at the 

Rhizophora site (Figure 4 a). In contrast, the high Tmax values in the deeper shelly 

parts of the peat profile may be due to in-wash and incorporation of thermally stable 

re-worked marine organic matter. The highly variable Tmax and changes in the relative 

sizes of the three carbon pools in the deeper parts of the three more interior sites, 
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particularly at the Campnosperma and Cyperus sites, indicates regular shifts in the 

thermostability of the organic matter due to shifts in the dominant vegetation inputs or 

changes in the decomposition environment, most likely related to water table 

fluctuations, which is a strong driver of decomposition in tropical peatlands 

(Couwenberg et al., 2010;  Hoyos-Santillan et al., 2015). Taken together the low Tmax 

in the surface peat supports our fourth hypothesis of greater Tmax with depth. However, 

the strong shifts in Tmax and thermostability throughout the peat profiles suggest that 

Tmax reflects dynamic changes in the input and decomposition environment. 

The increase in Ci and Cp pools with depth, broadly consistent in the Rhizophora, 

mixed forest and Cyperus sites, suggests that thermostability of stored carbon 

increases with depth. The decline in Cl between surface and subsurface samples 

indicates that there is relatively rapid initial degradation, but also that the process 

continues in the longer term as declines are generally consistent to depths of 5 m 

(Figure 8). The exception to this trend is the Campnosperma site, where there was a 

large increase in Cl at approximately 276 cm, matching changes in n-alkane 

distributions and Tmax values with depth, supporting the notion of changes in organic 

matter input over time. 

 

 

Conclusions 

Carbon stocks were large but variable among the phasic communities, with the 

largest C stocks in mixed forest and the highest long-term apparent carbon 

accumulation rate at the Rhizophora site demonstrating that these sites are 

important C stores. Although the long-chain n-alkane signature in the surface peat 

indicate that this layer is mainly composed of poorly degraded terrestrial organic, the 
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variable carbohydrate to aromatics ratio suggest that the functional chemistry of the 

litter inputs differ considerably among sites, i.e. higher relative abundance of 

aromatic functional groups in the Rhizophora litter compared to the Cyperus site. 

Alternatively, more rapid loss of carbohydrates during the initial phases of 

decomposition at the Rhizophora site explains the lower carbohydrate to aromatic 

ratio at this site. Below the surface peat layers, progressing decomposition was 

indicated by an increase in mid-chain length n-alkanes at the Cyperus and the 

Campnosperma sites, however, this was not the case at the other two sites 

suggesting either preservation of the vegetation puts or redistribution of fresh litter 

inputs to deeper in the peat profile by for example soil fauna. The fact that the 

carbohydrate to aromatic ratios became not only lower but also more similar with 

depth (but slightly less so at the Rhizophora site) indicate that the decay processes 

gives similar end points irrespective of the contrasting surface peat chemistry as 

indicated by strong variation in both peat functional organic chemistry and 

thermolability. In line with the shifts toward more aromatic peat chemistry, the peat 

was more thermostabile with depth, which suggest initial rapid depletion of the labile 

pool followed by more gradual decomposition.  

 

Taken together, it is clear that litter inputs strongly impact litter chemistry of the 

surface peat. However, as litter decay and the formed peat is affected by additional 

factors (e.g. sedimentation and soil fauna) the chemical signature of the original litter 

inputs are heavily modified. Our data suggest that although the quality of the fresh 

litter inputs (e.g. aromaticity) may explain initial decomposition rates and contribute 

to peat formation (Hoyos Santillan et al., 2016), ultimately the total carbon storage at 
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these sites is controlled by how variation in environmental conditions govern long 

term decay processes rather than litter inputs linked to specific vegetation types.  
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Figure 1 Map of San San Pond Sak wetland, Panama.  

The locations of the four sampling sites shown are: Rhizophora forest (Rhizophora 

mangle): 9°22’47.6”N, 82°22’06.0”W; mixed forest swamp: 9°23’07.1”N, 

82°22’17.8”W; Campnosperma panamensis forest swamp: 9°23’16.3”N, 82°22’7.1”W 

and Cyperus 9°23’39.70”N, 82°21’58.33”W. 

 

Figure 2 Depth profiles for: a) bulk density (BD) and b) carbon storage, for the four 

vegetation types. c) total carbon storage for the four vegetation types. All data 

excludes basal shelly and sandy intervals.  

 

Figure 3 Visual down core log and down profile changes using Rock-Eval pyrolysis 

for: a) Rhizophora, b) Mixed Forest, c) Campnosperma and d) Cyperus sites. 

Samples for n-alkanes (data shown in Figure 4) were analysed from the following 

layers at the different sites Rhizophora: 0-2 cm, 116-118 cm, 316-318 cm, and 616-

618 cm, Mixed Forest: 0-2 cm, 64-66 cm, 236-238 cm, 507-509 cm, Campnosperma: 

15-17 cm, 276-278 cm, 464-466 cm, 527-529 cm, Cyperus 0-2 cm, 36-38 cm, 320-

322 cm, 525-529 cm. 

 

Figure 4 Changes in n-alkane abundances (ng g-1) with depth for a) Rhizophora, b) 

mixed forest, c) Campnosperma and d) Cyperus. Higher n-alkane lengths indicate 

more terrestrial organic matter, lower n-alkane lengths indicate organic matter from 

aquatic origin.  
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Figure 5 Illustrative example of FTIR absorbance spectra, for Cyperus peat. Spectra 

were stacked and normalised (see text). Characteristic FTIR absorption bands are 

labelled. 

 

Figure 6 Profiles of carbohydrate (average of 1029-1031 cm-1) to aromatic (average 

of 1505-1507 cm-1) ratios through the peat cores. The data is from peat only, i.e. 

excludes basal shelly and sandy intervals. Samples for n-alkanes (data shown in 

Figure 4) were analysed from the following layers at the different sites Rhizophora: 

0-2 cm, 116-118 cm, 316-318 cm, and 616-618 cm, Mixed Forest: 0-2 cm, 64-66 cm, 

236-238 cm, 507-509 cm, Campnosperma: 15-17 cm, 276-278 cm, 464-466 cm, 

527-529 cm, Cyperus 0-2 cm, 36-38 cm, 320-322 cm, 525-529 cm. 

 

 

Figure 3 Relationships between a) HI and TOC; b) Tmax and TOC. The data is from 

peat only layer, i.e. excludes basal shelly and sandy intervals.  

 

Figure 8 Changes in relative carbon pool size with depth for a) Cl, b) Ci, c) Cp pools 

in Rhizophora, Mixed forest, Campnoserpma and Cyperus stands. 

 

Figure 9 a) Principal component scores for PC 1 and PC 2 for samples from the four 

different vegetation types, sampling depth is indicated in (m) by the side of each 
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symbol and b) Latent vector loadings for PC 1 and PC 2, n-alkanes are indicated in 

grey, all other parameters are shown in black. 

 

 

 

 

 

 



Table 1. Radiocarbon ages, peat and carbon accumulation rates through the peat profiles at the 
four different sites. Dates 2, 4 and 7 correspond to the approximate earliest point of peat 
accumulation.

No. Site
Depth 
Interval (cm)

Age 14C yr 
BP

Peat accumulation
rate* (mm yr-1)

Carbon accumulation
rate* (mm yr-1)

1 Rhizophora 314-316 1190 +/- 30 2.6 102.2
2 Rhizophora 354-356 1530 +/- 30 1.2 62.9
3 Mixed forest 234-236 1200 +/- 30 2 56.5
4 Mixed forest 438-440 1920 +/- 30 2.9 91.9
5 Campnosperma 234-236 1000 +/- 30 2.3 61.5
6 Cyperus 234-236 1120 +/- 30 2.1 45.6
7 Cyperus 502-506 2680 +/- 30 1.7 48.4

*Peat and carbon accumulation rate are calculated up to the next know dates towards the surface, 
or, to the present (surface) date.
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