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ABSTRACT 37 

 38 

Aim This study examined phytoplankton blooms on a global scale with the intention of describing 39 

patterns of bloom timing and size, the effect of bloom timing on the size of blooms, and time series 40 

trends in bloom characteristics.  41 

 42 

Location Global. 43 

 44 

Methods We used a change-point statistics algorithm to detect phytoplankton blooms in time series of 45 

chlorophyll concentration data over a global grid. At each study location, the bloom statistics for the 46 

dominant bloom, based on the search time period that resulted in the most blooms detected, were used 47 

to describe the spatial distribution of bloom characteristics over the globe. Time series of bloom 48 

characteristics were also subjected to trend analysis to describe regional and global change in bloom 49 

timing and size. 50 

 51 

Results The characteristics of the dominant bloom were found to vary with latitude and in localized 52 

patterns associated with specific oceanographic features. Bloom timing had the most profound effect on 53 

bloom duration, with early blooms tending to last longer than later starting blooms. Time series of 54 

bloom timing and duration were trended, suggesting blooms have been starting earlier and lasting 55 

longer, respectively, on a global scale. Blooms have also increased in size at high latitudes and decreased 56 

in equatorial areas based on multiple size metrics. 57 

 58 

Main conclusions Phytoplankton blooms have changed on both regional and global scales, which has 59 

ramifications for the function of food webs providing ecosystem services. A tendency for blooms to start 60 

earlier and last longer will have an impact on energy flow pathways in ecosystems, differentially favoring 61 

the productivity of different species groups. These changes may also affect the sequestration of carbon 62 

in ocean ecosystems. A shift to earlier bloom timing is consistent with the expected effect of warming 63 

ocean climate conditions observed in recent decades. 64 

 65 

 66 

 67 

  68 
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INTRODUCTION 69 

Primary production in the oceans accounts for approximately half of the carbon fixed by 70 

photosynthesis on a global scale (Field et al., 1998). This production fuels the growth and reproduction 71 

of living marine resources and is a critical factor exerting control over which species produce harvestable 72 

surpluses, contributing to fishery yields (Ryther, 1969; Chassot et al., 2010; Stock et al., 2017) and 73 

ensuring global food security (Perry, 2011; Christensen et al., 2015). In addition to the production of 74 

continental shelf species that are exploited in fisheries, there is also significant trophic transfer between 75 

open ocean primary production and mesopelagic fishes on a global basis (Davison et al., 2013; Irigoien et 76 

al., 2014). At a more fundamental level, phytoplankton production is the central driver of most marine 77 

ecosystems (Sigman & Hain, 2012) and the biogeochemical processes governing carbon flow and export 78 

flux (Doney et al., 2014; Laufkotter et al., 2016). However, oceanic photosynthetic production is not 79 

constant in time and space; geographic and phenological (bloom timing and duration) variability occurs 80 

due to complex biophysical factors controlling phytoplankton blooms owing to the dynamics between 81 

the rates of cell reproduction and mortality associated with death and grazing (Behrenfeld & Boss, 2014; 82 

Cherkasheva et al., 2014). The variability in blooms affect energy flow from phytoplankton production to 83 

pelagic and demersal communities and thus both horizontal and vertical transport of energy in the 84 

water column (Corbiere et al., 2007). 85 

Phytoplankton bloom dynamics have been characterized on basin and global scales, identifying 86 

differing patterns of bloom phenology by latitude and oceanic province. Analyses of time series change 87 

in bloom dynamics complement descriptions of the spatial organization of blooms utilizing a number of 88 

different sources of data. For example, a study with a geographic focus in the North Atlantic found that 89 

spring bloom timing has advanced for some temperate latitude regions and was delayed in other areas, 90 

whereas the fall and winter blooms have been mostly delayed (Taboada & Anadon, 2014). Other longer-91 

term studies identified the effects of changing mixed layer dynamics on the relative strength of spring 92 

and fall blooms in the North Atlantic (Martinez et al., 2011) and widespread shifts in bloom phenology 93 

associated with broad-scale changes in the coupled atmosphere-ocean system (D'Ortenzio et al., 2012). 94 

Some of the most dramatic changes in bloom characteristics and phenology have occurred in the Arctic, 95 

where bloom maximums have advanced on the order of fifty days from 1997 to 2009 as a consequence 96 

of changes in seasonal ice cover (Kahru et al., 2011). Changes in bloom magnitude and timing alter 97 

energy flow in the ecosystem, which in turn impact the growth and reproduction of higher trophic levels 98 

in the food web (Cushing, 1990; Hunt et al., 2002; Platt et al., 2003; Schweigert et al., 2013; Malick et al., 99 

2015). 100 
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 Climate variation can indirectly modify bloom timing and size through mechanisms that 101 

influence water column conditions such as the supply and ratio of nutrients and light availability.  As 102 

climate systems shift in response to anthropogenic forcing, there is a need to understand their impact 103 

on bloom dynamics both retrospectively and in a forecasting context. As an example, in the Baltic Sea, 104 

investigators found that bloom duration has increased in recent years and associated this change in 105 

bloom dynamics to increasing water temperature and declining wind stress, which they attributed to 106 

global climate change (Groetsch et al., 2016).  Change in climate conditions may act to modify blooms 107 

through the direct effects of nutrient supply and grazing; additionally, changing distributions of parasites 108 

and viruses associated with climate change will likely play a larger role in the dynamics of blooms and 109 

the nature of fixed carbon available to primary grazers (Frenken et al., 2016). Projections of bloom 110 

dynamics by global earth system models (e.g., CanESM2, GFDL-ESM2M, HadGEM2-CC, IPSL-CM5A-MR, 111 

MPI-ESM-LR, and NEMO-MEDUSA) suggest that regions dominated by seasonal blooms may see 112 

diminished bloom events that are replaced by smaller seasonal blooms more typical of contemporary 113 

subtropical regions (Henson et al., 2013). Other simulations suggest that future climate will greatly 114 

change the nature of seasonal and permanent stratification features, which is one of the more 115 

important physical factors controlling the onset and duration of blooms (Holt et al., 2016). Furthermore, 116 

direct temperature effects on cell division rates and physiological processes could also influence bloom 117 

timing in a warming climate (Hunter-Cevera et al., 2016).  118 

In this manuscript we describe the spatial and temporal dynamics of the dominant 119 

phytoplankton blooms of the global ocean.  While phytoplankton phenology has been actively 120 

investigated, here we define events detected using change-point statistics (Friedland et al., 2015; 121 

Friedland et al., 2016) as opposed to other frequently used algorithms which generally rely on threshold 122 

methods and curve fitting (Ueyama & Monger, 2005; Ji et al., 2010; Brody et al., 2013; Blondeau-123 

Patissier et al., 2014; Marchese et al., 2017). Furthermore, many of these methods rely on the 124 

availability of a full yearly cycle of data, which limits their application at high latitudes due to the missing 125 

winter values from satellite data (Cole et al., 2012; Ferreira et al., 2014; Ferreira et al., 2015); noting 126 

however, that productive approaches to deal with this issue are emerging (Marchese et al., 2017). The 127 

change-point approach provides distinct determinations of bloom start and end, which allows 128 

exploration of the internal relationships among bloom characteristics, and represents an area of novelty 129 

compared to previous analyses of global, satellite-derived trends in phytoplankton phenology (Kahru et 130 

al., 2011; Racault et al., 2012). As will be the case with subsequent analyses, our time series is longer 131 

than those used by these previous studies, thus statistics of association and trend are informed by more 132 
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data. Using this more mature remote sensing ocean color time series, our analysis examines times series 133 

trends in bloom parameters on both regional and global scales, with summary data for specific 134 

latitudinal ranges. 135 

 136 

 137 

METHODS 138 

 139 

Chlorophyll data 140 

We analyzed phytoplankton blooms using chlorophyll a concentration ([Chl]) data extracted from 141 

remote-sensing databases using a global 1° latitudinal/longitudinal grid centered on half degrees. [Chl] 142 

was based on measurements made with the Sea-viewing Wide Field of View Sensor (SeaWiFS), 143 

Moderate Resolution Imaging Spectroradiometer on the Aqua satellite (MODIS), Medium Resolution 144 

Imaging Spectrometer (MERIS), and Visible and Infrared Imaging/Radiometer Suite (VIIRS) sensors. We 145 

used the Garver, Siegel, Maritorena Model (GSM) merged data product at 100 km (equivalent to a 1° 146 

grid) and 8-day spatial and temporal resolutions, respectively, obtained from the Hermes GlobColour 147 

website (hermes.acri.fr/index.php). These four sensors provide an overlapping time series of [Chl] 148 

during the period 1998 to 2015 and were combined based on a bio-optical model inversion algorithm 149 

(Maritorena et al., 2010).  The compiled time series from January 1, 1998 to December 27, 2015, 150 

consisted of 828 8-day [Chl] observations for each grid location.  There were 38,433 grid locations with 151 

sufficient [Chl] to perform at least one bloom determination (at least one run of 23 time steps with 12 152 

[Chl] observations), including some locations that were in inland waters which did not factor into the 153 

analysis. Some aspects of the analysis do not include data from high latitudes (>62° N/S) due to the 154 

increased frequency of gaps at these latitudes reflecting the limited period of available data during the 155 

year and the presence of sea ice and cloud cover, which both obscure ocean color satellite imagery.  156 

 157 

Dominant plankton bloom analyses 158 

Seasonal phytoplankton blooms, as evidenced by changes in [Chl], were detected using change-point 159 

statistics. In this study, we define a seasonal bloom as a discernable elevation in [Chl], one that is 160 

bracketed by distinct start and end points as identified using the change-point algorithm, occurring 161 

within a 6-month time frame. For each grid location, the search for bloom events started with the first 162 

half-year block of the time series (the first 23 8-day [Chl] measurements), progresses to search for 163 

blooms during the next half-year block beginning with the second [Chl] measurement of the year, and 164 
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then continues to step through the entire time series. Only half-year series with a minimum of 12 165 

observations were considered for analysis; linear interpolation was used to fill missing values within the 166 

range of the data and missing values outside the range were filled with the first and last observations at 167 

the beginning or end of the time series, respectively. Hence, for each grid location, 806 bloom 168 

determinations were attempted and each detected bloom was associated with one of the 46 search 169 

start days of the year (46 bloom detections over the first 17 years of the times series and 24 attempts in 170 

the final year). From these data, we identified the search start day of the year that yielded the dominant 171 

bloom, which was defined as the search window that yielded the highest number of bloom detections. If 172 

more than one start day yielded the highest number of bloom detections, the dates were sorted 173 

sequentially and the median day was used as the dominant bloom. With the 38,433 grid locations and 174 

factoring 806 bloom determinations per location, ~31 million bloom determinations were attempted. 175 

Blooms were detected using the sequential averaging algorithm called STARS or “sequential t-176 

test analysis of regime shifts” (Rodionov, 2004, 2006) which finds the change-points in a time series. 177 

STARS algorithm parameters were specified a priori: the alpha level used to test for a change in the 178 

mean was set to α = 0.1; the length criteria, the number of time steps to use when calculating the mean 179 

level of a new regime, was set to 5; and, the Huber weight parameter, which determines the relative 180 

weighting of outliers in the calculation of the regime mean, was set to 3. A bloom was considered to 181 

have occurred if there was a period bracketed by a positive and negative change-point. We ignored 182 

change-points (positive or negative) that occurred in the first or last two periods of the time series (8-183 

day periods 1, 2, 22 and 23). The minimum duration of a bloom was three sample periods, which 184 

represents the minimum span the algorithm needed to find a positive followed by a negative change-185 

point. This method has been used in previous analyses of US Northeast Shelf (Friedland et al., 2008; 186 

Friedland et al., 2015), Arctic (Friedland & Todd, 2012), and North Atlantic bloom patterns (Friedland et 187 

al., 2016).  188 

We extracted a suite of statistics to characterize the timing and size of each bloom event. For 189 

each location, we calculated bloom frequency as the percentage of years with a detected bloom in study 190 

years with sufficient data to do a bloom determination, i.e. some locations may have had persistent 191 

cloud cover in a year so a bloom detection could not be attempted. Bloom start was defined as the first 192 

day of the year of the bloom period. Bloom duration was defined as the number of days of the bloom 193 

period. Bloom intensity was the mean of the [Chl] during the bloom period which carries the unit mg m-3 194 

and reflects the biomass of the bloom. Bloom magnitude was the integral of the [Chl] during the bloom 195 

period and describes the overall size of the event considering that short and long duration blooms can 196 
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have the same intensity. Magnitude can be calculated as the sum of the [Chl] during the blooms, which 197 

carries the unit mg m-3; or, as the product of the mean [Chl] during the bloom and the duration in 8-day 198 

periods, which carries the unit mg m-3 8-day. We used the latter unit designation to distinguish it from 199 

bloom intensity.  200 

 201 

Effect of bloom timing on bloom characteristics 202 

For each grid location, we examined the correlation between bloom start and duration, magnitude, and 203 

intensity of the dominant bloom. Pearson product-moment correlations were calculated and limited to 204 

grid locations with a minimum of eight detected blooms. Significant correlations with a probability level 205 

α <0.05 were highlighted in global maps. Given that regressions were performed on a grid cell-by-cell 206 

basis, it is possible that multiple testing could have led to excess accumulation of Type I error.  However, 207 

spatial patterns shown herein generally remain consistent if a different threshold of statistical 208 

significance is used.   209 

 210 

Trends in bloom parameters 211 

We evaluated the time series changes in bloom parameters using Mann-Kendall non-parametric trend 212 

analysis. We calculated Kendall's tau test for the significance (two-tailed test) of a monotonic time series 213 

trend (Mann, 1945) for bloom start day, magnitude, intensity and duration of the dominant bloom. We 214 

also calculated Theil-Sen slopes of trend, which is the median slope joining all pairs of observations. In 215 

addition to absolute Theil-Sen slopes, we also calculated relative Theil-Sen slopes, where the slope is 216 

joining each pair of observations divided by the first of the pair before the overall median is taken. Trend 217 

tests and slope estimates were limited to grid locations with at least 10 detected blooms. Mean relative 218 

Theil-Sen slopes were calculated over 5° latitude and longitude bands excluding data from latitudes 219 

north and south of 62°N and 62°S, respectively. Absolute trends, calculated as the product of the 220 

absolute Theil-Sen slope and the length of study period, were summarized on a global and regional 221 

basis. In addition to the data requirements on number of blooms, outliers, as identified as estimates 222 

outside the range of ±2 standard deviations of the mean, were removed. Global mean trends were 223 

expressed by trend test probability intervals and cumulative intervals. While individual grid cells with 224 

probabilities > 0.05 inevitably have a Theil-Sen slope whose 95% confidence interval overlaps with zero, 225 

we nevertheless opted to examine all probability intervals in order to see if any global or regional 226 

patterns emerged in the direction and magnitude of the mean Theil-Sen slopes when examined across 227 

all grid cells. Probabilities were rounded to intervals of 0.1 such that interval 0.0 includes p<0.05, 228 
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interval 0.1 includes 0.05≤p<0.15, etc. The cumulative trends are based on the same data as the interval 229 

trends summing data over each progressive probability interval. Regional trends were based on eight 230 

subdivisions of the world ocean (see Fig. 1) and the contrast between oligotrophic and non-oligotrophic 231 

ocean areas, eutrophic and mesotrophic areas (see: ocean.acri.fr/multicolore for source of oligotrophic 232 

ocean mask). These regional trends were presented for probability interval 0.0 and cumulative interval 233 

1.0 only. 234 

 235 

Effects of abiotic factors on bloom parameters 236 

We considered a suite of five abiotic factors that may be related to bloom timing and the size of blooms 237 

through regionally varying mechanisms. Sea surface temperature (SST) extracted from the NOAA 238 

Optimum Interpolation Sea Surface Temperature Analysis datasets (OISST), provides SST with a spatial 239 

grid resolution of 1.0° and temporal resolution of 1 month (Reynolds et al., 2002). The dataset uses in 240 

situ data from ships and buoys as a means of adjusting for biases in satellite data. Salinity, mixed layer 241 

depth (MLD), and zonal and meridional wind stress data were extracted from the Ocean Data 242 

Assimilation Experiment, which incorporates near-real time data into an ocean model to estimate ocean 243 

state parameters (Zhang et al., 2007). The data are distributed on a non-standard global grid (360 244 

longitudinal data points by 200 latitudinal data points) that was resampled to a 1.0° grid resolution and 245 

temporal resolution of 1 month. Bloom parameters were correlated to the abiotic factors at monthly 246 

(month and year of the bloom) and annual (mean of the year of the bloom) time resolutions for each 247 

global grid location. We also calculated relative Theil-Sen slopes of abiotic factors and calculated mean 248 

slopes over 5° latitude and longitude bands excluding data from latitudes north and south of 62°N and 249 

62°S, respectively. These latitude and longitude means of the abiotic factors were correlated with the 250 

matching latitude and longitude mean relative Theil-Sen slopes of bloom parameters. 251 

 252 

RESULTS 253 

 254 

Dominant bloom characteristics 255 

The timing and size of the dominant bloom varied globally revealing distinct patterns often associated 256 

with latitudinal bands. Bloom frequency had an interquartile range of 67% and 89% over the global 257 

ocean (Fig. 2a), which may seem low considering we selected the detection time frame that produced 258 

the most bloom detections. An algorithm optimized to find the maximum number of blooms may be 259 

expected to detect a bloom in most years. It should be noted that while setting a constraint on bloom 260 



9 
 

duration was necessary to categorize a spatially and temporally variable phenomenon, this constraint 261 

can result in ‘missing’ blooms. For instance, the bloom duration constraint may underestimate bloom 262 

frequency in areas where the dominant bloom tends to be a multi-season event. This can be seen in the 263 

North Atlantic frequency data where a segment of the Northeast Atlantic has relatively low bloom 264 

frequency; detailed analysis of this region showed the blooms tended to be of long duration often 265 

exceeding the duration constraint resulting in non-detection in some years (Friedland et al., 2016). Most 266 

of the eastern North Pacific has bloom frequency closer to the lower end of the interquartile range 267 

contrasting the distinct latitudinal patterns found in the South Pacific. The South Atlantic and Indian 268 

oceans were dominated by high bloom frequencies; however, the highest bloom frequencies at the 269 

basin scale appear to be associated with the North Atlantic. 270 

 The mean start day of the dominant bloom was arrayed primarily by latitude. At high latitudes in 271 

the southern hemisphere, the dominant bloom started near the end of the calendar year typically 272 

having start days in the 300s, November-December (Fig. 2b). This coincides with austral spring. 273 

Progressing equatorward, start day of blooms at lower latitudes in the southern hemisphere shifted to 274 

earlier in the year over an approximate range of day 150 to 250 (June – August), which corresponds to 275 

austral winter. North of the equator, there was a band of bloom start days at the end of the calendar 276 

year with similar timing to the dominant bloom in the Antarctic. In the temperate Northern Hemisphere, 277 

there was a band of spring blooms with start days ranging from approximately day 50-150 (March – 278 

May), shifting to summer blooms in the high northern latitudes with start days in the 200s (June – July). 279 

Thus, in both hemispheres, there are similar latitudinal patterns where fall/winter blooms are dominant 280 

at low-to-mid latitudes and spring/summer blooms occur in subpolar and polar ecosystems. 281 

 Bloom magnitude was lowest in the oligotrophic ocean areas and highest in shelf seas and the 282 

northern hemisphere. Over much of the north Atlantic and Pacific, bloom magnitude was between 10.0-283 

15.0 mg m-3 8-day [1.0-1.2 log (mg m-3 8-day +1); Fig. 2c]. For the areas of the globe between 284 

approximately 40°N to 60°S, bloom magnitude was typically <5.0 mg m-3 8-day [< 0.8 log (mg m-3 8-285 

day+1)], with values in the oligotrophic ocean ranging from 0.5-1.5 mg m-3 8-day [0.2-0.3 log (mg m-3 8-286 

day+1)]. Bloom intensity followed a similar pattern to bloom magnitude with its lowest values in the 287 

oligotrophic ocean and highest in shelf seas and the northern hemisphere (see Appendix S1). In the 288 

northern hemisphere above 50°N, bloom intensity was approximately 2.0-4.0 mg m-3 [0.5-0.7 log (mg m-289 
3+1)] and tended to be between 1.0-1.5 mg m-3 [0.3-0.4 log(mg m-3+1)] over the latitude range of 40°N 290 

to 60°S. Bloom intensity in the oligotrophic ocean was <0.2 mg m-3 [< 0.1 log (mg m-3+1)] in many areas. 291 
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 Mean bloom duration of the dominant bloom was longest in much of the oligotrophic ocean and 292 

shortest in shelf seas and the higher latitude areas of the northern and southern hemispheres. Bloom 293 

duration tended to exceed 60 days, or two months, in these oligotrophic ocean areas and was often as 294 

short as one month in continental shelf ecosystems (Fig. 2d).   295 

 296 

Effect of bloom timing on bloom duration and size 297 

The timing of the dominant bloom was related to multiple measures of bloom size including bloom 298 

duration, magnitude, and intensity. Over global scales, bloom timing was negatively correlated to bloom 299 

duration, indicating that early blooms lasted longer than blooms that began later in the year (Fig. 3a). 300 

Very few grid locations had significant positive correlations (~0.1%) indicative of early blooms of short 301 

duration. Instead, fully half (50%) of the global grid was found to have significant negative relationships 302 

between bloom start and duration.  303 

 The correlation between bloom start and magnitude was less robust (Fig. 3b), but reflected the 304 

strong correlation found with duration. Over the global grid, most locations had non-significant 305 

correlation between bloom start and magnitude (70%). For those locations with significant correlations, 306 

98% had significant negative correlation indicating that early blooms produced high magnitude blooms. 307 

The latter result was most likely related to the underlying correlation between bloom start and duration, 308 

as duration is a key component in the calculation of magnitude; longer lasting blooms will likely have 309 

higher magnitudes. Locations with significant negative correlations between bloom start and magnitude 310 

tended to occur at mid-latitudes in both hemispheres.   311 

 The final relationship considered was between bloom timing and intensity. These data produced 312 

the weakest correlation field with 82% of the global grid found to be non-significant. Of the significant 313 

correlations, 92% were significant positive correlations indicating that later starting blooms were of 314 

higher intensity or associated with higher mean [Chl] (Fig. 3c).  315 

 316 

Relative trends in bloom parameters 317 

The relative Theil-Sen slopes of the bloom parameters start day, magnitude, intensity, and duration 318 

reveal distinct regional and global patterns. Distinct clusters of negative trends in bloom start day (i.e., 319 

earlier blooms) can be seen in the southern Pacific, Atlantic, and Indian oceans (Fig. 4a). Distinct clusters 320 

of positive trends in bloom magnitude (i.e., increasing magnitude) and bloom intensity (i.e., increases in 321 

intensity) can be seen across higher latitudes in both northern and southern hemispheres (Fig. 4b and 322 

4c). Also negative trends in bloom magnitude and intensity were more common at low latitudes. While 323 



11 
 

present, trends in bloom duration were less spatially coherent making spatial patterns difficult to 324 

identify (Fig. 4d).  325 

 Averaging relative Thiel-Sen slopes over latitude and longitude bins revealed distinct 326 

distributional patterns. Mean relative Thiel-Sen slopes for bloom start day binned over latitude show 327 

that slopes tended to be negative over most latitudes with the largest relative change found in the 328 

southern hemisphere (Fig. 5a). Mean slopes for magnitude were positive at high latitudes and negative 329 

for bands around the equator (Fig. 5c), with positive slopes increasing with latitude. Mean slopes for 330 

intensity were arrayed by latitude in a similar fashion to magnitude (Fig. 5e). Mean relative Thiel-Sen 331 

slopes for bloom duration tended to be positive over most latitudes with the exception of a group of five 332 

high latitude northern bands that were negative indicating a shortening of blooms at these latitudes 333 

(Fig. 5g). Mean relative Thiel-Sen slopes for bloom start day binned over longitude show that slopes 334 

tended to be negative over most longitudes (Fig. 5b). Mean slopes for magnitude were positive for most 335 

longitudes with the exception of a cluster associated with the Indian Ocean (Fig. 5d). Mean slopes for 336 

intensity were arrayed by longitude in a similar fashion to magnitude (Fig. 5f). Mean relative Thiel-Sen 337 

slopes for bloom duration tended to be positive over most longitudes with the exception of ranges of 338 

longitudes associated with Indian and Atlantic oceans (Fig. 5h). Compared to other variables, fewer 339 

slopes for bloom duration were significantly different from zero. 340 

 341 

Effects of abiotic factors on bloom parameters 342 

Our efforts to detect global scale relationships between abiotic factors and bloom characteristic yielded 343 

mixed results. The correlation analysis examining the effect of abiotic factors including SST, salinity, 344 

mixed layer depth, and wind stress did not reveal any comprehensive global relationships between 345 

these factors and dominant bloom dynamics. The monthly and mean annual correlations are presented 346 

in supporting information Appendix S2 (figures s2-1-10). These correlation fields are dominated by grid 347 

locations with non-significant correlations. However, some inference on the effect of the abiotic factors 348 

may be made by comparing their time series trend patterns to the patterns in time series trends in 349 

bloom parameters.  350 

Relative Theil-Sen slopes of trends in SST suggest the most dramatic changes in thermal 351 

conditions have occurred at high latitudes associated with changes in patterns of sea ice extent and 352 

polar amplification of climate change, noting however that most of these data fall outside the latitude 353 

constraints (>62° N/S) used here in most analyses (Fig. 6a). At lower latitudes, SST trends were generally 354 

positive with the exception of the parts of the North Atlantic, the western North Pacific, and the eastern 355 
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South Pacific.  Salinity has changed dramatically in isolated high latitude locations in the North Atlantic, 356 

likely related to an increase in Arctic melting, where elsewhere over the global ocean there has been a 357 

high degree of variability in salinity (Fig. 6b). Mixed layer depth trends have been mostly positive, and to 358 

a higher degree in the southern hemisphere, although a lot of spatial variability in trends is evident in 359 

the northern hemisphere (Fig. 6c). Both zonal and meridional wind stress have generally declined 360 

globally, with a pattern of zonal wind decline most intense along certain lines of latitude (60° S, 30° S, 0°, 361 

30° N, and 60° N) and meridional decline apparently circumscribing basin-scale oceanic gyres (Figs. 362 

6d&e, respectively). Areas with the most intense declines in zonal wind stress correspond to the 363 

transition zones between trade winds and westerly winds.  364 

Trends in abiotic factors were summarized by latitude and longitude in the same manner as 365 

bloom parameter trends were summarized in Figure 5.  Mean relative Thiel-Sen slopes for SST binned 366 

over latitude show that slopes tended to be positive over most latitudes with the largest relative 367 

changes found at high latitudes, with a secondary peak just north of the equator (Fig. 7a). SST slopes 368 

were also positive over most longitudes with the exception of bands associated with parts of the North 369 

Atlantic, the western North Pacific, and the eastern South Pacific (Fig. 7b). SST was positively correlated 370 

with bloom intensity and negatively correlated with bloom duration over latitudinal bins whereas it was 371 

uncorrelated with bloom start and magnitude (Table 1). There were no significant correlations between 372 

SST and bloom parameters arrayed by longitude. There did not appear to be a pattern in the latitudinal 373 

distribution of salinity slopes; however, the longitudinal pattern suggests an anomalous freshening of 374 

the Indian Ocean compared to other ocean areas (Figs. 7c & d, respectively). Despite weak latitudinal 375 

patterns, salinity over latitude was correlated with latitudinal pattern of bloom intensity. The 376 

longitudinal patterns of salinity trend were positively correlated with bloom magnitude and duration. 377 

Slopes of mixed layer depth are mostly positive over latitudinal intervals, with the higher values at 378 

higher latitudes; the only areas with negative slopes were associated with the lower latitudes of the 379 

northern hemisphere (Fig. 7e). The increase in mixed layer depth appear highest in the Atlantic Ocean 380 

basin compared to other areas based on longitudinal summary of slopes (Fig. 7f). Mixed layer depth 381 

trend over latitude was uncorrelated with bloom parameters, but were positively correlated with all 382 

four bloom parameter over longitudinal bins. Mean slopes were almost all negative for zonal wind 383 

stress, over latitude and longitude, with little evidence of spatial patterns in either data summary (Figs. 384 

7g & h, respectively). The only significant correlation between zonal wind stress and bloom parameter 385 

was found with bloom duration over longitude. Likewise, mean meridional wind stresses were almost all 386 

negative over latitudes and longitudes; however, there may be some level of patterning in the latitudinal 387 
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distribution of mean slopes with the largest change occurring at middle latitudes (Figs. 7i & j, 388 

respectively). These changes in meridional wind stress over latitude were negatively correlated with 389 

bloom magnitude and intensity. Longitudinal patterns of meridional wind stress trends was negatively 390 

correlated with bloom start. 391 

 392 

Mean Absolute Trends in bloom parameters 393 

Absolute trends expressed as change in bloom parameters over the study period suggest there have 394 

been substantial shifts in bloom timing and size. Bloom start day has shifted on the order of 3 days 395 

earlier on a global basis and for regions associated with statistically significant shifts, blooms have 396 

advanced on the order of two weeks (Fig. 8a). Bloom magnitude and intensity have both increased on a 397 

global basis on the order of 0.3 mg m-3 8-day and 0.05 mg m-3, respectively, which represents about a 398 

10% increase in both parameters (Fig. 8b&c). The increases in these parameters in regions associated 399 

with statistically significant shifts have been much greater and on the order of 0.9 mg m-3 8-day and 0.4 400 

mg m-3, respectively, which represents about a 35% increase again for both. Bloom duration has shifted 401 

on the order of 2 days longer on a global basis and for regions associated with statistically significant 402 

shifts, blooms have lengthened on the order of one week (Fig. 8d).  403 

 The bloom absolute trends partitioned by the eight subdivisions of the world ocean and the 404 

between oligotrophic and non-oligotrophic ocean areas differed from the global means in a number of 405 

ways. Bloom start had negative trends, indicating earlier blooms, in all ocean areas; but, the trend was 406 

greater in the southern oceans and in oligotrophic areas (Fig. 9a). For regions associated with 407 

statistically significant shifts, the North Atlantic had a positive bloom start trend suggesting that the 408 

bloom started approximately five days later, whereas the other ocean areas had negative trends 409 

suggesting shifts of 1-3 weeks (Fig. 10a). Bloom magnitude and intensity had positive trends in the 410 

northern and southern oceans and between oligotrophic and non-oligotrophic regions (Fig. 9b&c). The 411 

tropical ocean areas either had zero or negative trends in these parameters. The pattern of change in 412 

magnitude and intensity in the regions associated with statistically significant shifts were nearly identical 413 

to the global averages, but the size of the shifts was larger when considering only statistically significant 414 

results (Fig. 10b&c). Bloom duration increased in all areas except the North Atlantic and tropical Indian 415 

oceans where the trend confidence interval included zero (Fig. 10d). The pattern of change in duration 416 

in the regions associated with statistically significant shifts was similar to the global patterns; however, 417 

four regions had confidence intervals that included zeros (Fig. 10d).  418 

 419 
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DISCUSSION 420 

Our analysis of phytoplankton blooms on a global scale suggests directional time series change in the 421 

timing, duration, and size of blooms, which portends changes in the functioning of marine ecosystems 422 

and carbon cycling from local to basin scales (Ji et al., 2010). Notably, we provide evidence that blooms 423 

are initiating earlier in the year, having shifted in timing on the order of weeks in some regions, and are 424 

of longer duration suggesting the timing of bloom cessation has also changed. There have also been 425 

changes in the pattern of bloom size, suggesting an increase in bloom size at high latitudes and a 426 

decrease at low latitudes in a gradated fashion. It is critical to understand these changes in bloom 427 

dynamics since they provide labile biomass that form the basis of food webs and are fundamentally 428 

important to the biogeochemical functioning of marine ecosystems (Sigman & Hain, 2012).  429 

The low spatial coherence between correlations of the abiotic factors and bloom intensity and 430 

magnitude is in stark contrast to the high spatial coherence of global trends in these bloom parameters 431 

and time series trends in the abiotic factors, suggesting the importance of variability and local factors in 432 

the control of blooms on a global scale. Local changes in salinity and temperature affect stratification, 433 

which can trap phytoplankton above the pycnocline and decrease nutrient inputs from deeper layers, 434 

while decreased wind-driven mixing will exacerbate this scenario. In a global comparison of the effects 435 

of stratification on chlorophyll biomass, Dave and Lozier (2013) showed mixed trends in stratification 436 

over much of the globe, with much of the eastern subtropical Pacific experiencing increased 437 

stratification, while much of the Atlantic experiencing decreased stratification. However these changes 438 

were not well correlated with trends in chlorophyll concentrations, further suggesting the importance of 439 

local processes controlling blooms. Similar to the results presented in this study, Dave and Lozier (2013) 440 

found trends in decreasing stratification over much of the mid- and lower latitudes, which were driven 441 

primarily by increased rates of warming of subsurface water relative to surface waters, resulting in an 442 

increased mixed layer depth. 443 

Though clearly not a test of hypotheses, the comparison of latitudinal and longitudinal patterns 444 

of trends in potential abiotic forcing factors may offer some insights on both global and regional changes 445 

in bloom dynamics. The latitudinal patterns in SST and meridional wind stress trends are similar to the 446 

latitudinal pattern in bloom duration in that all show bimodal distributions at low latitudes. This 447 

particular pattern is consistent with an increase in bloom duration in the Baltic Sea that also coincided 448 

with warming temperatures and decreased winds (Groetsch et al., 2016). Likewise, there are features in 449 

the latitudinal pattern of mixed layer depth that match the latitudinal patterns in bloom magnitude and 450 

intensity trends. Furthermore, the advance in bloom timing over all latitudes may be related to the 451 
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global changes in wind stress. The most striking longitudinal pattern in global bloom dynamics is 452 

associated with the Indian Ocean characterized by reductions in bloom magnitude, intensity, and 453 

duration corresponding roughly with meridians 50° to 100° E. Phytoplankton dynamics in the Indian 454 

Ocean have been considered in the context of abiotic forcing. Goes et al. (2005) and Gregg et al. (2005) 455 

documented increases in net primary production in the western Indian Ocean; however, a more recent 456 

study is consistent with our findings, suggesting a reduction in [Chl] over the past 16 years (Roxy et al., 457 

2016). These researchers attributed the change in [Chl] to a reduction in available nutrients in the 458 

euphotic zone due to increasing SST that increased stratification-induced trapping of nutrients in the 459 

deeper Indian Ocean. The confounding influence of increasing SST trends on mixing and phytoplankton 460 

growth rates make prediction of phytoplankton dynamics difficult, especially in the Indian Ocean, an 461 

area experiencing the largest warming trend in the tropical ocean (Roxy et al., 2014). However, it is 462 

worth noting that the most striking longitudinal pattern in the abiotic data we found was in the salinity 463 

data suggesting a freshening of Indian Ocean waters, which may have amplified thermal effects on 464 

stratification as described due to changes in monsoon patterns. 465 

A general decrease in zonal and meridional wind stress has the potential to impact production 466 

by reducing the wind-driven mixing in areas of light-limited production (Kim et al., 2007). Contrary to 467 

this, while our analysis suggests an overall decrease in winds on a broad scale, there is an associated 468 

broad increase in the mixed layer depth. This may be due in part to local changes in temperature and 469 

salinity affecting stratification. While most regions of the globe are experiencing decreasing wind stress, 470 

the few regions where wind stress is increasing are also experiencing the largest increases in mixed layer 471 

depth, such as in the southern Atlantic Ocean at 60°S. This is likely a result of higher mean wind speeds 472 

in these locations since the power of wind exerted on the water scales with the cube of mean wind 473 

speed. Therefore, even a small increase in wind stress in an area can result in profound changes in wind-474 

driven mixing and increased MLD. The global trends in MLD bear a striking resemblance to the global 475 

trends in bloom intensity, and to a lesser degree, bloom magnitude. However, the spatial correlations 476 

between MLD and these bloom parameters is low and bears few spatially significant regions, save for 477 

the oligotrophic southern subtropical Pacific, where enhanced mixing may enhance nutrient 478 

concentrations (de Boyer Montegut et al., 2004). In the subpolar and northern subtropical regions of the 479 

North Atlantic, Ueyama and Monger (2005) found an inverse relationship between bloom intensity and 480 

wind-induced mixing, where decreased mixing during blooms resulted in enhanced bloom intensity, 481 

while the opposite was true for the southern subtropical region where nutrients may be limiting 482 

production and light penetration is greater. Atmospheric-related variability in wind-driven mixing was 483 
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also found to affect the timing of bloom initiation, where the start day of blooms in the North Atlantic 484 

was strongly associated with the winter North Atlantic Oscillation index (Ueyama & Monger, 2005). A 485 

similar relationship between wind speed and bloom timing has also been detected in the Japan Sea 486 

(Yamada & Ishizaka, 2006). Furthermore, Moore et al. (2013), in a review of nutrient limitation dynamics 487 

in the global ocean, concluded that nitrogen was limiting in much of the surface waters in tropical 488 

latitudes, consistent with our observations. In areas where nitrogen is not limiting, iron limitation tends 489 

to dominate (e.g., the Southern Ocean and the eastern equatorial Pacific (Behrenfeld et al., 1996)). Iron 490 

limitation may play a particularly large role in the differences we observed between the bloom dynamics 491 

in the eastern North and South Pacific  (Behrenfeld & Kolber, 1999). 492 

Despite methodological differences in bloom detections and analyses, our results do align with 493 

those from other global and basin-scale estimates of bloom parameters. Different bloom detection 494 

algorithms lead to varying accuracy and precision of bloom phenology metrics (Ferreira et al., 2014); and 495 

consequently, varying depictions of bloom dynamics (Brody et al., 2013). Our focus is on the dominant 496 

annual bloom occurring within a grid cell and on the main period of elevated bloom conditions 497 

constrained by the length of our detection time window. As a number of investigators have 498 

characterized (Sapiano et al., 2012; Taboada & Anadon, 2014), most areas of the globe are dominated 499 

by a single bloom with the exception of some regions that are characterized by a secondary bloom in 500 

regions predominately oriented in specific latitudinal bands. Despite this methodological difference, our 501 

characterization of bloom start is similarly patterned to previous global (Racault et al., 2012; Sapiano et 502 

al., 2012) and basin scale studies (Henson et al., 2009; Taboada & Anadon, 2014; Zhang et al., 2017). 503 

However, our estimates of bloom duration are at variance with most studies owing to the contrast in 504 

methods applied between studies. In studies estimating bloom duration using a threshold approach 505 

(Siegel et al., 2002), bloom duration tended to be 2-fold longer than ours (Racault et al., 2012; Sapiano 506 

et al., 2012). However, the spatial patterns of long versus short bloom duration were consistent with our 507 

results. The measures of bloom size, here referred to as magnitude and intensity and variously named 508 

and applied by different investigators, were also similar between studies and generally followed 509 

climatological patterns of the distribution of [Chl] (Doney et al., 2003).  510 

On a global scale, the spatial organization of areas with homogenous bloom dynamics appears 511 

to have a high degree of zonal band patterning and more complex organization associated with 512 

meridional bands (Sapiano et al., 2012). For example, mean relative Thiel-Sen slopes for bloom duration 513 

tended to be positive over most latitudes with exception of a group of five high latitude northern bands, 514 

which were negative indicating a shortening of blooms at these latitudes. Mean slopes for magnitude 515 
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and intensity were positive for most longitudes with the exception of a cluster associated with the 516 

Indian Ocean.  517 

Changes in bloom timing and size were not uniform over the globe. Owing to contrasts in 518 

oceanographically defined functional regions and latitudinal patterns, changes in bloom dynamics will 519 

likely have different regional impacts. An analysis of spring and fall blooms in the north Atlantic and 520 

Pacific basins that employed a spectral decomposition approach for bloom detection characterized 521 

regional scale time series change in bloom timing and magnitude (equivalent to bloom intensity as used 522 

here) that hold many similarities to the patterns described in our analysis (Zhang et al., 2017). Bloom 523 

timing was alternatively advanced and delayed on the order of weeks with coherent trends in matching 524 

areas of both basins. It is difficult to compare our trends in bloom intensity to their results for trends in 525 

magnitude since our spatial characterization is based on relative Theil-Sen slopes. Similarly, in a study 526 

focused on the North Atlantic, Taboada and Anadon (2014) provided estimates of bloom intensity trends 527 

that match our study results; however, their method of estimating bloom timing trends differed from 528 

those presented here. Racault et al. (2012) estimated trends in bloom duration on a global scale also 529 

using linear regression, but with a time series restricted to the length of the SeaWiFS time series only 530 

(1998-2007). Their estimates of global trends in bloom duration were mostly negative indicating a 531 

tendency for blooms to be shortened over global scales. We note, however, that their time series is 532 

shorter than that analyzed here and bloom duration was estimated using a threshold approach (Siegel et 533 

al., 2002), which, as noted above, provides estimates of bloom duration 2-fold longer than ours. Hence, 534 

they are estimating a different aspect of phytoplankton dynamics, whereas we are focusing on the 535 

discrete portion of the bloom associated with highly elevated [Chl].  536 

 We view our results in the context of changes that have occurred and will likely occur to the 537 

global climate system. Global thermal conditions are changing and it is important to consider change in 538 

the level of system variability and its impact on ecosystems (Vazquez et al., 2017). Change in thermal 539 

regime is having profound effects on atmospheric circulation and the forcing factors related to bloom 540 

development, which may be more important to phytoplankton than the direct effect of change in 541 

thermal regime itself (Francis & Vavrus, 2015). The latitudinal changes in bloom magnitude and intensity 542 

are also consistent with the effects of global thermal change on phytoplankton community composition 543 

(Marinov et al., 2010), shifting communities to include members which are capable of different growth 544 

rates or resistance to grazing that allow for a change in [Chl]. Furthermore, changing thermal regimes 545 

have been associated with shifting species composition of blooms, where for a fixed study site blooms 546 

have become increasingly dominated by the genus Synechococcus (Hunter-Cevera et al., 2016). The 547 
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changing role of cyanobacteria is expected to have a profound effect on plankton dynamics in a range of 548 

aquatic systems (Visser et al., 2016). We can also expect changes to the seasonal nature of blooms 549 

(Henson et al., 2013) and likely impacts on secondary production as well (Litchman et al., 2006). The 550 

change in dominant bloom timing we observed is consistent with the effect of an increase in global 551 

temperature and its role in mixed layer dynamics, though the rate of stratification and turbulent mixing 552 

remains unclear (Franks, 2015). These are changes to the base of food web warrant further 553 

investigation.  554 

Change in phytoplankton bloom dynamics would be expected to impact the rate of flux of 555 

particulate organic carbon (POC) from the water column to the benthos. Parts of the world ocean are 556 

dominated by production cycles that are characterized by blooms associated with high concentrations of 557 

biomass whereas other regions have bloom features that are not as prominent, though in many cases 558 

primary production can still be at a high level (Reygondeau et al., 2013). However, phytoplankton 559 

blooms, in particular, support conditions that result in the intense flux of POC (Reigstad et al., 2011; 560 

Belley et al., 2016). It follows that changes in the timing and size of a bloom will affect the amount of 561 

POC exported to the benthos. Over most regions of the globe, blooms appear to have lasted longer, 562 

which could result in an increase in POC flux. Bloom magnitude and intensity have changed over 563 

latitudinal ranges, most notably with decreased bloom magnitude at low latitude and increases at high 564 

latitudes.  Similar changes in bloom magnitude across a range of latitudes were obtained in a study that 565 

used an earth system model that included data assimilation to examine changes in North Pacific bloom 566 

characteristics since the 1960s (Asch, 2013). Together these results indicate that POC fluxes to the 567 

benthos may increase at high latitudes, while decreasing at lower latitudes. These changes in bloom 568 

dynamics should be taken into account in global carbon flux estimation models. 569 

Species composition of phytoplankton communities varies over global scales and is principally 570 

influenced by dispersion and competitive exclusion (Barton et al., 2010). However, species composition 571 

is also influenced by environmental conditions, such as mixing regimes and light conditions, (Barton et 572 

al., 2015) leading to concerns that shifting thermal conditions will actuate shifts to smaller size taxa 573 

(Moran et al., 2010). These smaller producers have different dynamics and vertical transport properties, 574 

which have the potential to affect both export flux and the way an ecosystem functions (Mouw et al., 575 

2016). Utilizing phytoplankton size estimated from remote sensing data (Kostadinov et al., 2016; Mouw 576 

et al., 2017), Mouw et al. (2016) contrasted the difference in export flux and transfer efficiency during 577 

times dominated by small and large cells within biogeochemical provinces. They found periods 578 

dominated by small cells to have both greater export flux efficiency and lower transfer efficiency than 579 
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periods dominated by large cells. Rising temperatures will likely shift phytoplankton niches poleward 580 

and are predicted to have the greatest potential impact on tropical phytoplankton diversity (Thomas et 581 

al., 2012). Considering the importance of species groups to the role of phytoplankton production, the 582 

phenology of various methods to determine phytoplankton size has been compared (Kostadinov et al., 583 

2017) and the phenology of some methods has been connected to environmental conditions (Cabré et 584 

al., 2016; Soppa et al., 2016).  However, the changes in phenology of various phytoplankton groups have 585 

yet to be explored, which could provide refinements to both retrospective and forecasted modelling 586 

efforts.  587 

This study provides substantial evidence to support the observation that early blooms are longer 588 

lasting blooms and conversely delayed bloom start is associated with shorter blooms. This phenomenon 589 

has been described previously on a global scale (Racault et al., 2012) and for the North Atlantic 590 

(Friedland et al., 2016), with the latter study exploring the hypothesis that bloom duration is in large 591 

measure shaped by grazing by zooplankton that have a diapause life cycle. It is important to note that 592 

despite using a different bloom measurement methodology, results from Racault et al. (2012) and for 593 

the North Atlantic (Friedland et al., 2016) agree with the current study in the overall nature of the 594 

relationship (i.e., the direction of trends and coherence at large spatial scales), but differ in the fine scale 595 

regional patterning of this correlation. It may be through this regional patterning that we are able to 596 

evaluate the relative role of nutrient limitation and grazing in shaping bloom development (Evans & 597 

Parslow, 1985; Fasham et al., 1990). The latitudinal banding of this relationship would have to be 598 

reflected in the nature of pre-bloom mixing and initial nutrient supply over a range of physical 599 

environments for nutrient supply to be the unifying factor controlling bloom duration as a function of 600 

bloom initiation. This work has yet to be done, but in a practical sense has a better chance of being 601 

accomplished considering the paucity of grazing information in most parts of the world ocean.  602 

The observational results of this study provide some level of validation for earth systems models 603 

that simulate global climate and ocean systems dynamics.  Multiple earth system models suggest that 604 

climate change will have the greatest impact on bloom phenology at high latitudes (Henson et al., 2013).  605 

Under a business-as-usual emissions scenario, the month of maximum primary productivity is projected 606 

to advance by 0.5-1 months by the end of the 21st century across many ocean ecosystems.  The 607 

exception to this pattern is the oligotrophic subtropical gyres where delays in the timing of peak primary 608 

production have been projected.  These changes have been attributed to earlier easing of light limitation 609 

due to increases in stratification (Henson et al., 2013).  These future projections utilize earth system 610 

model outputs with a monthly resolution, so additional research that can detect finer scale changes in 611 
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phenology is needed.  One study that used finer temporal resolution data from the NCAR Community 612 

Earth System Model (CESM) model assimilated historical data on atmospheric observations and sea 613 

surface temperature (Asch, 2013).  In contrast to models of future projections, this study of historical 614 

patterns identified the largest trends in bloom phenology in oligotrophic areas (Asch, 2013), which may 615 

reflect an influence of inter-annual climate variability rather than climate change.  Our observational 616 

results are consistent with this pattern, and thus provide an indication of the skill of the NCAR model, 617 

which did not assimilate any ocean color data. 618 

As ocean color time series have grown in length, there have been efforts to describe time series 619 

trends in bloom characteristics.  Importantly, these efforts have included disciplined analyses of the 620 

requirements to detect trends in the face of noisy and incomplete data and whether trends can be 621 

attributed to climate change or not (Beaulieu et al., 2013; Henson et al., 2016). Furthermore, Henson et 622 

al. (2013) estimates that it would require ~ 30 years of data to distinguish trends in bloom phenology 623 

from natural decadal variability. Given the results of these investigations, we approach our findings with 624 

caution. As encouraging as it is to now have a nearly twenty-year time series of data, it is difficult to be 625 

conclusive about the description of trends and to attribute any of these trends to climate change. 626 

However, it is reasonable to compare these trends to observed climate variation over the past two 627 

decades and discuss whether these trends are consistent with future projections under different climate 628 

change scenarios.   629 

 630 

CONCLUSIONS 631 

The timing and size of phytoplankton blooms have changed on both regional and global scales. This 632 

finding is important because blooms play a pivotal role in the flow of energy in marine ecosystems, 633 

impacting the way food webs work and the way these ecosystems provide a range of services. The 634 

dominant bloom was found to vary with latitude and in localized patterns associated with specific 635 

oceanographic features.  Blooms have increased in magnitude and intensity at high latitudes and 636 

decreased in equatorial areas. Overall, blooms started earlier and lasted longer, with bloom timing 637 

having the most profound effect on bloom duration; early blooms tended to last longer than later 638 

starting blooms. This finding has the potential to impact phenological relationships between producer 639 

and consumer species such as mesozooplankton and higher trophic position fish and invertebrates. 640 

Timing mechanisms for reproduction in many species have evolved that ensure adequate forage for 641 

early life stages, which may be impacted by changes in bloom timing. In regions where blooms last 642 

longer and are associated with higher [Chl], the dynamics of the biological pump are likely to alter the 643 
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rates of carbon cycling and export. A shift to earlier bloom timing is consistent with the expected effect 644 

of warming ocean conditions seen in recent decades. It is incumbent upon assessment and modelling 645 

practitioners to account for the dynamic variability of phytoplankton production. 646 

 647 
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Table 1 Pearson product-moment correlation between mean relative Theil-Sen slope binned by 5° latitude and longitude  
groupings of bloom parameters start day, magnitude, intensity, and duration and abiotic factors sea surface temperature, salinity,  
mixed layer depth, zonal wind stress, and meridional wind stress. Significant correlations shown in bold.  
  
  
  

  SST  Salinity  MLD  u-wind  v-wind  
  r p r p r p r p r p 
Latitude Start 0.173 0.429 0.159 0.447 -0.103 0.626 0.034 0.872 0.014 0.946 

 Magnitude 0.345 0.107 0.336 0.100 0.201 0.334 -0.230 0.269 -0.576 0.003 

 Intensity 0.576 0.004 0.428 0.033 0.386 0.056 -0.265 0.200 -0.571 0.003 

 Duration -0.656 0.001 -0.128 0.543 -0.241 0.246 0.075 0.722 0.091 0.665 

            
Longitude Start -0.074 0.534 0.185 0.117 0.303 0.009 -0.116 0.327 -0.364 0.002 

 Magnitude 0.066 0.579 0.334 0.004 0.338 0.003 0.124 0.298 0.053 0.654 

 Intensity 0.026 0.826 0.210 0.074 0.286 0.014 0.006 0.960 0.224 0.057 

 Duration 0.072 0.547 0.382 0.001 0.239 0.042 0.343 0.003 -0.193 0.101 
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Figure 1 Global map showing the extent of 1° latitudinal/longitudinal grid locations with at least 10 years with detected blooms  
color coded by eight subdivisions of the world ocean. Latitude limits of tropical subdivisions approximate the Tropic of Cancer and  
Capricorn. Red stippling marks grid locations representing oligotrophic ocean areas.   
  
  

  
   



29 
 

Figure 2 Bloom frequency (a), start day (b), magnitude (c), and duration (d) for the dominant annual bloom based on a global 1°  
latitudinal/longitudinal grid over the study period 1998-2015. Units: bloom frequency (percentage); bloom start day (day of the  
year), Day/Date: 50/Feb 19, 100/Apr 9, 150/May 29, 200/Jul 18, 250/Sep 6, 300/Oct 26, 350/Dec 15; bloom magnitude [log (mg m- 
3 8-day+1)]; and, bloom duration (days).  
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Figure 3 Correlation between bloom start day and duration (a), magnitude (b), and intensity (c) for the dominant annual bloom  
based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least eight years  
with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue makers indicate  
significant positive correlations, and beige markers indicate non-significant correlations.  
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Figure 4 Relative Theil-Sen slope showing time series trends in start day (a), magnitude (b), intensity (c), and duration (d) for the  
dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations  
with at least ten years with detected blooms were included. Blue shades denote positive change and red denote negative  
change.  
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Figure 5 Mean annual relative Theil-Sen slope binned by 5° latitude and longitude groupings showing time series trends in start  
day (a and b, respectively), magnitude (c and d, respectively), intensity (e and f, respectively), and duration (g and h,  
respectively) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015.  
Only grid locations with at least ten years of detected blooms were included. Error bars are 95% confidence intervals and gray  
lines are LOESS smoothers using a span setting of 0.5.   
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Figure 6. Relative Theil-Sen slope showing time series trends in sea surface temperature (a), salinity (b), mixed layer depth (c),  
zonal wind stress (d), and meridional wind stress (e) based on a global 1° latitudinal/longitudinal grid over the study period 1998- 
2015.  
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Figure 7. Mean annual relative Theil-Sen slope binned by 5° latitude and longitude groupings showing time series trends in SST  
(a and b, respectively), salinity (c and d, respectively), mixed layer depth (e and f, respectively), zonal wind stress (g and h,  
respectively), and meridional wind stress (i and j, respectively) for the dominant annual bloom based on a global 1°  
latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations with at least ten years of detected blooms  
were included. Error bars are 95% confidence intervals and gray lines are LOESS smoothers using a span setting of 0.5.  
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Figure 8 Mean global interval and cumulative absolute trends in bloom start day (a), magnitude (b), intensity (c), and duration  
(d) versus Mann-Kendall trend test probability intervals. Trends are the product of Theil-Sen slopes for the dominant annual  
bloom and the number of years in the time series. Probability interval 0.0 includes p<0.05, interval 0.1 includes 0.05≤p<0.15,  
etc. Each interval estimate includes trends associated with that interval probability level only and are estimated from all data  
excluding outliers. Cumulative trends are based on data from the interval trends and all lower probability intervals. Only grid  
locations with at least ten years with detected blooms were included based on a global 1° latitudinal/longitudinal grid over the  
study period 1998-2015 excluding data from latitudes north and south of 62°N and 62°S, respectively. Error bar are 95%  
confidence intervals.  
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Figure 9 Mean absolute trends over ocean areas for bloom start day (a), magnitude (b), intensity (c), and duration (d) for areas  
regardless of significance level (all p-levels). Trends are the product of Theil-Sen slopes for the dominant annual bloom and the  
number of years in the times series based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015 excluding  
data from latitudes north of 62°N and south of 62°S. Grid locations are combined as per ocean areas and oligotrophic versus non- 
oligotrophic area as per figure 1 [N_Atl, N_Pac = North Atlantic and Pacific (red circles); S_Atl, S_Ind, S_Pac = South Atlantic,  
Indian, and Pacific (green squares); T_Atl, T_Ind, T_Pac = Tropical Atlantic, Indian, and Pacific (blue triangles); Olig, Non-Olig =  
Oligotrophic and Non-Oligotrophic areas (magenta diamonds)]. Only grid locations with at least ten years with detected blooms  
were included and outliers were excluded. Error bar are 95% confidence intervals.  
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Figure 10 Mean absolute trends over ocean areas for bloom start day (a), magnitude (b), intensity (c), and duration (d) for areas  
with significant trends (p<0.05). Trends are the product of Theil-Sen slopes for the dominant annual bloom and the number of  
years in the times series based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015 excluding data from  
latitudes north of 62°N and south of 62°S. Grid locations are combined as per ocean areas and oligotrophic versus non- 
oligotrophic area as per figure 1 [N_Atl, N_Pac = North Atlantic and Pacific (red circles); S_Atl, S_Ind, S_Pac = South Atlantic,  
Indian, and Pacific (green squares); T_Atl, T_Ind, T_Pac = Tropical Atlantic, Indian, and Pacific (blue triangles); Olig, Non-Olig =  
Oligotrophic and Non-Oligotrophic areas (magenta diamonds)]. Only grid locations with at least ten years with detected blooms  
were included and outliers were excluded. Error bar are 95% confidence intervals.  
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Supporting information  
  
Short Title: Bloom intensity.  
  
Appendix S1 Bloom intensity [log (mg m-3+1)] for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid  
over the study period 1998-2015.  
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Supporting information Appendix S2  
Short Title: Analysis of abiotic factors.  
  
Figure s2-1. Correlation between monthly SST and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the  
dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations  
with at least eight years with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue  
makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  

 

  
Figure s2-2. Correlation between annual mean SST and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the  
dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations  
with at least eight years with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue  
makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  
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Figure s2-3. Correlation between monthly salinity and bloom start day (a), duration (b), magnitude (c), and intensity (d) for the  
dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations  
with at least eight years with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue  
makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  

 

  
Figure s2-4. Correlation between mean annual salinity and bloom start day (a), duration (b), magnitude (c), and intensity (d) for  
the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid locations  
with at least eight years with detected blooms were included; red makers indicate significant negative correlations (ρ<0.05), blue  
makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  

 

   



41 
 

Figure s2-5. Correlation between monthly mixed layer depth and bloom start day (a), duration (b), magnitude (c), and intensity (d)  
for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid  
locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations  
(ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  

 

  
Figure s2-6. Correlation between mean annual mixed layer depth and bloom start day (a), duration (b), magnitude (c), and  
intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015.  
Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative  
correlations (ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant  
correlations.  
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Figure s2-7. Correlation between monthly u-vector wind stress and bloom start day (a), duration (b), magnitude (c), and intensity  
(d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid  
locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations  
(ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  

 

  
Figure s2-8. Correlation between mean annual u-vector wind stress and bloom start day (a), duration (b), magnitude (c), and  
intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015.  
Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative  
correlations (ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant  
correlations.  
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Figure s2-9. Correlation between monthly v-vector wind stress and bloom start day (a), duration (b), magnitude (c), and intensity  
(d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015. Only grid  
locations with at least eight years with detected blooms were included; red makers indicate significant negative correlations  
(ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant correlations.  

 

  
Figure s2-10. Correlation between mean annual v-vector wind stress and bloom start day (a), duration (b), magnitude (c), and  
intensity (d) for the dominant annual bloom based on a global 1° latitudinal/longitudinal grid over the study period 1998-2015.  
Only grid locations with at least eight years with detected blooms were included; red makers indicate significant negative  
correlations (ρ<0.05), blue makers indicate significant positive correlations, and beige markers indicate non-significant  
correlations.  
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