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Abstract The occurrence of surface melt in Antarctica has hitherto been associated with the austral
summer season, when the dominant source of melt energy is provided by solar radiation. We use in situ and
satellite observations from a previously unsurveyed region to show that events of intense surface melt on
Larsen C Ice Shelf occur frequently throughout the dark Antarctic winter, with peak intensities sometimes
exceeding summertime values. A regional atmospheric model confirms that in the absence of solar
radiation, these multiday melt events are driven by outbreaks of warm and dry föhn wind descending
down the leeside of the Antarctic Peninsula mountain range, resulting in downward turbulent fluxes of
sensible heat that drive sustained surface melt fluxes in excess of 200 W/m2. From 2015 to 2017 (including
the extreme melt winter of 2016), ∼23% of the annual melt flux was produced in winter, and spaceborne
observations of surface melt since 2000 show that wintertime melt is widespread in some years. Winter
melt heats the firn layer to the melting point up to a depth of ∼3 m, thereby facilitating the formation of
impenetrable ice layers and retarding or reversing autumn and winter cooling of the firn. While the absence
of a trend in winter melt is consistent with insignificant changes in the observed Southern Hemisphere
atmospheric circulation during winter, we anticipate an increase in winter melt as a response to increasing
greenhouse gas concentration.

Plain Language Summary Around the coast of Antarctica, it gets warm enough in summer for
snow to start melting, and the sun provides most of the energy for that melt. Almost all meltwater refreezes
in the snowpack, but especially on floating glaciers in Antarctica, it has been observed that meltwater forms
large ponds. The pressure exerted by these ponds may have led to ice shelves collapsing into numerous
icebergs in recent decades. It is therefore important to understand how much meltwater is formed. To find
out, we installed an automatic weather station on a glacier in Cabinet Inlet, in the Antarctic Peninsula in
2014. The station recorded temperatures well above the melting point even in winter. The occurrence of
winter melt is confirmed by satellite images and by thermometers buried in the snow, which measured a
warming of the snow even at 3 m depth. Between 2014 and 2017, about 23% of all melt in Cabinet Inlet
occurred in winter. Winter melt is due to warm winds that descend from the mountains, known as föhn.
We have not seen the amount of winter melt increasing since 2000. However, we expect winter melt
to happen more frequently if greenhouse gas continues to accumulate in the atmosphere.

1. Surface Melt in Antarctica

Current mass loss of the Antarctic Ice Sheet is made up almost entirely of ice shelf basal melting and iceberg
calving (Depoorter et al., 2013). Although supraglacial and englacial runoff has been widely observed, espe-
cially in regions of low albedo such as blue ice and bare rock (Bell et al., 2017; Kingslake et al., 2017; Lenaerts
et al., 2016), models suggest that only a small fraction (<1%) of the∼115 Gt (1 Gt = 1012 kg) of surface meltwa-
ter produced annually (Trusel et al., 2013; Van Wessem et al., 2017) runs off directly into the ocean. Instead, it
is refrozen within underlying snow and firn layers (Kuipers Munneke, Picard, et al., 2012). The indirect impact
of meltwater is profound, however, as an important role for meltwater-induced fracturing is implicated in
the collapse of coastal ice shelves (Banwell et al., 2013; Scambos et al., 2000). Observed collapse following
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Figure 1. False-color Moderate Resolution Imaging Spectroradiometer image of Larsen C Ice Shelf in 2016. The magenta
circle indicates the location of the automatic weather station (AWS) in Cabinet Inlet.

atmospheric warming (Abram et al., 2013) led to a manifold acceleration of grounded-ice flow (De Angelis
& Skvarça, 2003; Rott et al., 2011), explaining part of the increased dynamic ice loss witnessed in the Antarc-
tic Peninsula in recent decades (Harig & Simons, 2015). Further loss of ice shelves may induce rapid retreat
by mechanical failure of grounded-ice cliffs (Bassis & Walker, 2012; DeConto & Pollard, 2016). Ice shelves may
become more vulnerable to breakup due to sustained high rates of surface meltwater refreezing, which warms
and softens the ice englacially (Hubbard et al., 2016; Phillips et al., 2010) and ultimately removes the layer of
snow and firn (Kuipers Munneke et al., 2014).

Model- and satellite-derived surface melt rates range from less than 20 mm w.e./year on ice shelves in Dron-
ning Maud Land and the Amundsen Sea sector to ∼250 mm w.e./year on average over Larsen C Ice Shelf, with
certain sectors of Larsen C peaking at 400 mm w.e./year (Trusel et al., 2013). In summer, the bulk of the energy
for snowmelt in Antarctica is provided by solar radiation, which is only partly offset by turbulent fluxes of sen-
sible and latent heat directed away from the surface (Van den Broeke et al., 2005). In winter, the sensible heat
flux is directed toward the surface, to compensate for the absence of solar radiation and consequent surface
cooling. Winter temperatures above the melting point of snow have been reported in the Antarctic Peninsula
(e.g., Cape et al., 2015; Kuipers Munneke, Picard, et al., 2012; Leeson et al., 2017), in conjunction with warm and
dry downslope winds known as föhn. In particular, Leeson et al. (2017) discuss that strong, likely föhn-related
autumnal melting led to high surface melt fluxes 2 years before collapse of the Larsen B Ice Shelf in 2002.
Föhn-induced melt is also observed in spring (King et al., 2017). Overall, however, the inventory of winter sur-
face melt has been very sparse. Here we report peak annual melt fluxes in the austral winter, derived from
measurements from an automatic weather station (AWS) located in Cabinet Inlet, a climatologically unsur-
veyed area of Larsen C Ice Shelf in the Antarctic Peninsula (Figure 1 and Appendix A), and for the first time
discuss the occurrence, significance, context, and impact of wintertime surface melt in Antarctica.
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Figure 2. (a) Daily mean melt flux (W/m2, red) and cumulative melt (m w.e., gray) for November 2014 to November 2017, computed from automatic weather
station observations. Background gradient shows daily mean top-of-atmosphere incoming solar radiation, SWtoa: black is 0, white is 514 W/m2. Text labels in the
top of the panel denote cumulative melt (m w.e.) for austral summer (1 November to 31 March) and winter (1 April to 31 October) seasons. (b) Thermistor string
observations of firn temperature (∘C) as a function of depth (m), in 2015.

2. In Situ Observation of Winter Melt

Almost 3 years of AWS observations (25 November 2014 to 13 November 2017) were used to drive a model
of the snow surface energy budget (Appendix B; Kuipers Munneke, van den Broeke, et al., 2012). It simulates
a cumulative melt of 1,040 mm w.e. in Cabinet Inlet (Figure 2), equating to a melt rate of 350 mm w.e./year.
We find that only 77% of the cumulative melt (800 mm w.e.) occurs in the austral summer season, which we
define here to last from 1 November to 31 March. This summer melt mostly occurs in prolonged episodes
of days to weeks, with peak daily melt fluxes of 40–60 W/m2. Melt energy in these conditions is supplied by
absorbed solar radiation (Kuipers Munneke, van den Broeke, et al., 2012). Thus, 23% of the surface melt in
the period under consideration (240 mm w.e.) is generated in the winter season, here defined from 1 April
to 31 October. Most of the observed wintertime melt occurred in the austral winter of 2016 (190 mm w.e.),
with smaller fractions in 2015 (50 mm w.e.) and 2017 (10 mm w.e.). Over the three years recorded, wintertime
surface melt took place in all months except July. In contrast to summer melt, the winter melt episodes are
usually shorter (at most a few days) and more intense, with daily mean melt fluxes ranging from 25 to over
120 W/m2 (equating to a melt rate of 6–31 mm w.e./day).

The strongest wintertime melt episode in the record occurred on 25–30 May 2016 (Figure 3) and featured
observed melt fluxes that greatly exceeded those seen during summer. A combination of high observed wind
speed (5–18 m/s) and warm air (5–13∘C at 2 m above the surface) resulted in a large turbulent flux of sensible
heat downward to the surface. Negative fluxes of longwave radiation (longwave cooling and under clear skies)
and latent heat (sublimation) offset some of this sensible heat flux. Still, the resulting melt flux is dominated
by sensible heat transfer, which frequently reaches up to 200 W/m2 with sustained extremes of >300 W/m2

lasting for up to 30 min (the recording resolution of the AWS data). In total, 71 mm of meltwater was pro-
duced as a consequence of this föhn event. During melt, the strong winds advect air that is dried by adiabatic
warming, with relative humidity between 35% and 65%.

3. Cause and Consequence

The combination of strong wind, high temperature, and low relative humidity is common to all wintertime
melt events. These are fingerprints for föhn winds that sometimes occur over the Antarctic Peninsula moun-
tain range. Such föhn winds are caused by flow across a topographic barrier, whereby the downslope winds
on the leeward side are heated adiabatically (Kuipers Munneke, van den Broeke, et al., 2012; Luckman et al.,
2014). Additional heating can occur due to the drawdown of potentially warm and dry air from aloft when the
flow is blocked at lower levels on the windward side and due to entrainment of potentially warm and dry air
from upper levels into the flow over the mountains (Orr et al., 2008). The vertical cross section (Figure 3d) over
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Figure 3. Hourly values of observed meteorological conditions and surface energy balance in Cabinet Inlet, 22–31 May
2016. (a) Air temperature (at 2 m above the surface, ∘C, black), wind speed (at 10 m above the surface, m/s, red), relative
humidity (at 2 m above the surface, %, blue). The vertical gray bar indicates the time of the model snapshots in panels
(c) and (d). (b) Net longwave radiation (gray), turbulent fluxes of sensible (red) and latent (blue) heat, and melt flux
(orange). All fluxes in W/m2. (c) Map showing modeled temperature (in ∘C) at 10 m above sea level over Larsen C, on 26
May 2016 at 00:00 UTC. The dashed line indicates the location of the transect shown in panel (d), and the green square
shows the location of the Cabinet Inlet automatic weather station. (d) Modeled vertical cross section through the
Antarctic Peninsula mountains into Cabinet Inlet on 26 May 2016 at 00:00 UTC. Filled color contours show potential
temperature (in ∘C), and black open contours show wind speed (in m/s).

the Antarctic mountain range through Cabinet Inlet from a high-resolution regional atmospheric model (the
UK MetOffice Unified Model, see Appendix C) confirms the occurrence of föhn during 25–30 May 2016, with
moist air rising on the windward side of the mountains and relatively dry, adiabatically warmed air descend-
ing on its leeside. In the lee of the mountains, a hydraulic jump is apparent in the vertical wind component
(at about 70 km on the horizontal axis in Figure 3d), characteristic of föhn (Elvidge & Renfrew, 2016).

The regional atmospheric model further shows that during this event, temperature at 10 m above the surface
was above the melting point for most of the ice shelf, indicative of widespread surface melt not restricted
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Figure 4. Sentinel 1A C-band synthetic aperture radar imagery from locations near the grounding line of Larsen C Ice
Shelf. Elongated black features on the ice shelf indicate meltwater lakes and ponds. See Figure 1 for locations of
the inlets.

to Cabinet Inlet (see Figure 3c). A collection of synchronous Sentinel-1A synthetic aperture radar images of a
part of Larsen C Ice Shelf (Figure 4), taken near the end of the May 2016 föhn event, confirms that surface melt
was occurring beyond Cabinet Inlet. It shows extensive snow melt across the northwestern and western inlets
of the shelf (apparent in the satellite images as dark-hued areas), along with a large number of meltwater lakes
collected in local depressions of the ice shelf (shown as black elongated features in the images of Figure 4).
The elongated depressions express channels in the basal topography, possibly arising from buoyant basal
meltwater generated at the grounding line (Sergienko, 2013) or from the grounded ice being extruded over
a strongly undulating grounding line (Gladish et al., 2012).

Wintertime meltwater is able to percolate deeply into the snowpack, bringing snow temperatures to the melt-
ing point up to a depth of about 3 m (Figure 2b) when latent heat is released as the meltwater refreezes.
Observations from thermistor-instrumented boreholes (Appendix D) suggest that effective pathways for
this major source of latent energy are available year-round, as even during winter melt, the warming of
near-surface layers is almost instantaneous (e.g., in two episodes of melt during end of March and April 2015,
apparent in Figure 2b, percolation to 3 m depth occurred in about 12 hr). As a consequence, winter melt warms
the snowpack, allowing for an earlier start of the main melt season in spring and summer and heating of the
deeper ice layers. Also, it forms relatively impermeable infiltration ice (Hubbard et al., 2016) that can act as a
runoff surface for meltwater (Bell et al., 2017).

4. Past, Present, and Future Winter Melt

To put the occurrence of wintertime surface melt into a longer-term perspective, we use satellite-borne Quik
Scatterometer (QuikSCAT) (2000–2009) and Advanced Scatterometer (ASCAT) (2009–2016) scatterometer
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Figure 5. Maps over the Antarctic Peninsula showing annual number of melt days per winter (1 April to 31 October)
between 2000 and 2016, observed by QuikSCAT (2000–2009) and ASCAT (2010–2016).

sensors to estimate the number of melt days over the Antarctic Peninsula for each winter season (Figure 5
and Appendix E). Radar scatterometry is an active remote sensing technique that is sensitive to the presence
of liquid water in snow or firn. While the presence of liquid water does not necessarily imply the occur-
rence of surface melt, the two are highly correlated (Van den Broeke et al., 2010). In some years, little or no
meltwater is present during winter, whereas in other years, the number of days with liquid water present
on Larsen C approaches 10. In all years, we see enhanced melt over the Larsen C Ice Shelf near the base of
the eastern slopes of the Antarctic Peninsula mountain range, which is consistent with föhn-driven warming
(Luckman et al., 2014). Near the calving front of Larsen C, wintertime melt occurred in the extreme melt winter
of 2006 and to a lesser extent in 2016. These stand out in our records as the most intense winter melt seasons
since 2000.

No trend in the occurrence of winter melt over Larsen C is evident over the 17-year record of satellite scat-
terometry, which implies that there have been no contemporaneous changes in the frequency or duration of
westerly föhn events in winter over the Antarctic Peninsula. This is consistent with the absence of any statisti-
cally significant winter trends in the Southern Annular Mode (SAM), which is the principal mode of Southern
Hemisphere extratropical climate variability, during the scattermometry period considered or even since
1958 (Marshall, 2003). By contrast, the SAM has shifted toward a more positive phase in summer in recent
decades (Marshall, 2003), resulting in increased westerly flow over the Antarctic Peninsula and associated föhn
events (Marshall et al., 2006; Orr et al., 2008). These led to anomalous warming and melt due to föhn (Cape
et al., 2015). As the winter SAM is projected to trend toward its positive phase during the 21st century because
of increased greenhouse gas concentrations (Simpkins & Karpechko, 2012), we can thus expect an enhance-
ment of winter melt in this century, from atmospheric circulation changes alone. The magnitude of this effect
increases with the atmospheric concentration of greenhouse gases (Zheng et al., 2013).

Ice shelf collapse by hydrofracturing is implicated in future scenarios of rapid Antarctic ice discharge and
sea level rise (DeConto & Pollard, 2016). For these processes to be understood and predicted, a reliable esti-
mate of future surface melt and its impact on the state of the firn layer on ice shelves is required. Such
estimates can only be achieved if subtle processes like the formation of impermeable ice layers, winter warm-
ing, and densification of firn, due to meltwater percolation, ponding, and refreezing, are appropriately taken
into account.

Appendix A: Automatic Weather Station

An AWS was installed in Cabinet Inlet (66∘24.1′S, 63∘22.3′W) in November 2014. Data were recorded at
half-hourly resolution. Instrument height was monitored and usually between 1.7 and 2.4 m above the
surface. Reported quantities are at a nominal levels of 2 m for temperature and humidity and 10 m for
wind speed. Shortwave radiation was tilt corrected using a Moderate Resolution Imaging Spectroradiometer
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satellite-guided procedure (Wang et al., 2016). Air temperature observations were unventilated, leading to
overestimation during calm, sunny days. A correction function was derived from concurrent thermocouple
observations during November 2014 through January 2015. Observations of relative humidity were corrected
for solar heating of the housing of the humidity sensor and for hysteresis effects due to a long response time
of the sensor.

Appendix B: Surface Energy Balance Model

The surface energy balance was computed using a model that includes a multilayer snowpack. The model
forces the energy budget to close by iterating to a surface temperature for which all the terms balance (Kuipers
Munneke, Picard, et al., 2012). If that temperature is above the freezing point, all excess energy is used for melt-
ing, and the surface temperature (and associated outgoing longwave radiation) is set to the melting point.
The model is evaluated by comparing computed surface temperature with observed values (computed from
the outgoing longwave radiation with the Stefan-Boltzmann law). The difference between these is 0.21 K on
average (RMS = 1.85 K; RMS = root-mean-square). Further, the timing of melt is corroborated with surface
height lowering observed by a sonic height ranger attached to the AWS mast and by observations of outgoing
longwave radiation indicating the surface temperature to be at the melting point.

Appendix C: Regional Atmospheric Model

Version 10.4 of the UK Met Office Unified Model (Orr et al., 2014) is used to downscale operational analysis data
to a horizontal grid spacing of 1.5 km, a resolution sufficient to represent föhn over the Antarctic Peninsula
reasonably well (Elvidge et al., 2014). The 1.5 km inner domain, encompassing the Larsen C Ice Shelf and the
adjacent region of the Antarctic Peninsula (see Figure 3C) is nested within a 4 km outer domain that includes
the entire Antarctic Peninsula. Boundary and surface conditions for the outer domain are provided by a global,
25 km version of the Unified Model, which is driven by Met Office operational data. Only results from the 1.5
km domain are examined here.

Appendix D: Borehole Thermistor Strings

Firn temperatures were measured using a string of NTC thermistors in a Wheatstone half-bridge and recorded
every 30 min using a Campbell Scientific data logger. Resistances were converted to temperatures using a
Steinhart-Hart equation (Steinhart & Hart, 1968) and the manufacturer calibration data. A second calibration
was performed by using a well-mixed distilled water/ice bath, assumed to be 0∘C, to derive the zero offset
for each thermistor. After-correction sensors gave an RMS error of ±0.03∘C in an identical ice bath. In total,
26 sensors were spaced between 0.25 and 0.40 m apart, along 7 m of the thermistor string. The string was
installed in a borehole drilled with pressurised hot water which was then backfilled with fine surface snow.
The borehole drilling introduces a minor thermal disturbance to the firn, and so data from the first 5 days were
discarded as a precaution.

Appendix E: Radar Scatterometry

Radar scatterometry is an active remote sensing technique that is sensitive to the presence of liquid water
in snow or firn. To estimate the number of melt days for each winter, we use SeaWinds QuikSCAT Ku-band
(2000–2009) and ASCAT C-band (2010–2016) enhanced resolution (4.45 km effective) backscatter products
(ftp://ftp.scp.byu.edu/pub/). To maximize consistency in melt detection between the two sensors, we chose
the morning overpass, vertical-polarization QuikSCAT product and the “all-pass” ASCAT product, also verti-
cally polarized. This may underestimate the number of melt days for the QuikSCAT era, as more overpasses
are available per day. A melt day was recorded if backscatter dropped more than a chosen threshold below
the mean backscatter of the previous winter season. For QuikSCAT, the threshold was 3 dB (Luckman et al.,
2014; Trusel et al., 2012). A lower threshold of 2.7 dB was chosen for ASCAT due to the reduced sensitivity of
C-band microwaves.
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