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Abstract The development of large ice sheets across the Northern Hemisphere during the late Pliocene
and the emergence of the glacial-interglacial cycles that punctuate the Quaternary mark a significant
threshold in Earth’s climate history. Although a number of different mechanisms have been proposed to
initiate this cooling and the onset of major Northern Hemisphere glaciation, reductions in atmospheric
concentrations of CO2 likely played a key role. The emergence of a stratified (halocline) water column in the
subarctic northwest Pacific Ocean at 2.73 Ma has often been interpreted as an event which would have
limited oceanic ventilation of CO2 to the atmosphere, thereby helping to cool the global climate system. Here
diatom carbon isotopes (δ13Cdiatom) are used to reconstruct changes in regional carbon dynamics through
this interval. Results show that the development of a salinity stratification did not fundamentally alter the net
oceanic/atmospheric flux of CO2 in the subarctic northwest Pacific Ocean through the late Pliocene/early
Quaternary. These results provide further insights into the long-term controls on global carbon cycling and
the role of the subarctic Pacific Ocean in instigating global climatic changes.

1. Introduction

Understanding the processes associated with the progressive Late Pliocene glaciation of the Northern
Hemisphere remains an essential objective for understanding the long-term functionality and temporal varia-
bility of the global climate system (Mudelsee & Raymo, 2005). Of particular note is the transition associated
with the onset of major Northern Hemisphere Glaciation (oNHG) and its intensification (iNHG) from circa
2.75 to 2.73 Ma onward in Marine Isotope Stage (MIS) G6 when significant ice sheets developed across
Greenland, Eurasia, and Northern America (Bailey et al., 2013; Kleiven et al., 2002; Maslin et al., 1996;
Matthiessen et al., 2009; Raymo, 1994). Instrumental to this transition are Late Pliocene changes in solar inso-
lation, tectonic uplift, water column stratification, and the opening/closure of oceanic gateways, all of which
triggered oceanic/atmospheric feedbacks that initiated cooler conditions and the increased supply of moist-
ure to high-latitude continental regions (Brierley & Fedorov, 2016; Driscoll & Haug, 1998; Haug & Tiedemann,
1998; Maslin et al., 1998; Ravelo et al., 2004; Ruddiman & Kutzbach, 1989; Sarnthein et al., 2009).

The extent to which variations in atmospheric pCO2 (pCO2(atm)) played a role in triggering both the oNHG and
iNHG remains unconstrained. Ocean-atmospheric models have demonstrated that reductions in pCO2(atm)

were probably critical in both instigating and sustaining the development of large ice sheets through the
oNHG (Bonelli et al., 2009; Frank et al., 2010; Lunt et al., 2008, 2010; Willeit et al., 2015), a view supported
by most but not all pCO2(atm) reconstructions (e.g., Badger et al., 2013; Martinez-Boti et al., 2015; Pagani
et al., 2010; Seki et al., 2010; Stap et al., 2016; van de Wal et al., 2011; Willeit et al., 2015). With any significant
change in pCO2(atm) likely linked to oceanic atmosphere exchanges, a need exists to identify and evaluate
possible marine sources/sinks of CO2 through the late Pliocene.

1.1. Subarctic Northwest Pacific Ocean

The subarctic northwest Pacific Ocean (Figure 1) is one location that may have experienced significant
changes in ocean atmospheric carbon dynamics through the late Pliocene and iNHG. Today the subarctic
northwest Pacific Ocean acts as a net sink of atmospheric CO2 due to a halocline driven stratification at a
depth of ~150–200 m that minimizes deep water exposure at the ocean-atmosphere interface (Chierici et al.,
2006; Honda et al., 2002; Tabata, 1975; Figure 1). Proxy data records from Ocean Drilling Program (ODP) Site
882 indicate that the halocline developed over the iNHG at 2.73 Ma with increases in surface freshwater trans-
forming the mixed water column to a stratified system (Haug et al., 2005; Sigman et al., 2004; Swann, 2010;
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Swann et al., 2006). This development altered regional biogeochemical cycling (Bailey et al., 2011; Reynolds
et al., 2008; Shimada et al., 2009; Studer et al., 2012; Swann et al., 2016) with a drop in opal mass accumulation
rates (MAR) from ~3 g·cm�2·ka�1 to <1 g·cm�2·ka�1 at 2.73 Ma (Haug et al., 1999; Sigman et al., 2004).

These changes observed in the subarctic North Pacific Ocean may also have dramatically impacted ocean-
atmosphere exchanges of CO2. With the deep North Pacific Ocean enriched in CO2 relative to other ocean
basins with dissolved inorganic carbon at >2,300 μmol/kg (Lauvset et al., 2016), a mixed water column prior
to 2.73 Ma characterized by deep water upwelling may have ventilated CO2 to the atmosphere, thereby help-
ing to maintain the warm Pliocene climatic state (Haug et al., 1999). The emergence of a halocline from
2.73 Ma would have then minimized such exchanges, transforming the region to a net sink of atmospheric
CO2 similar to the modern day. This alteration in the direction of net ocean-atmosphere CO2 exchange would
have aided the iNHG and the global shift to colder climatic conditions (Haug et al., 1999). In an attempt to
constrain the role of the subarctic Pacific in regulating the global climate system and pCO2(atm) in the
Piacenzian (3.60–2.58 Ma), diatom carbon isotopes (δ13Cdiatom) are employed to reconstruct carbon dynamics
in the subarctic northwest Pacific Ocean and assess their response to the expansion of ice sheets across the
Northern Hemisphere over the iNHG and the transition to a stratified water column.

1.2. Reconstructing pCO2 From δ13Cdiatom

Hitherto, estimates of marine pCO2 (pCO2(aq)) and pCO2(atm) have been derived from the boron isotopes
(δ11B) of foraminifera (Foster & Rae, 2016), the δ13C composition of alkenones (Pagani, 2002), B/Ca measure-
ments in foraminifera (Yu et al., 2007), fossil leaf stomata (Bai et al., 2015), and pedogenic carbonate
(Montañez et al., 2016). Although each approach contains uncertainties and assumptions, the combination
of approaches together with model simulations (Stap et al., 2016; van de Wal et al., 2011) are providing
increasing consensus on the magnitude of past pCO2(atm) and on the drivers, responses, and climate sensitiv-
ity of the Earth system.

Emerging work has promoted the use of δ13Cdiatom to reconstruct pCO2(atm) (Heureux & Rickaby, 2015; Mejía
et al., 2017; Stoll et al., 2017). The intrinsic organic carbon matter in diatoms frustules is comprised of proteins
and polyamines that forms a key template for diatom biomineralization (Hecky et al., 1973; Kröger et al., 1999,

Figure 1. Location of ODP Site 882 (50°220N, 167°360E) in the northwest subarctic Pacific Ocean. Colors indicate annual modern gridded surface water pCO2(aq)
(Takahashi et al., 2016). Map created using Ocean Data View (https://odv.awi.de).
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2000; Swift & Wheeler, 1992; Sumper & Kröger, 2004). During the photosynthetic production of this organic
matter, diatoms preferentially fractionate 12C over 13C with the isotopic composition of δ13Cdiatom:

δ13Cdiatom ¼ δ13CDIC � εp � εf � εp
� � Ci

Ce
(1)

where δ13CDIC is the isotopic value of the dissolved inorganic carbon (DIC) substrate, εp is the isotopic fractio-
nation for the diffusion of carbon into the cell, εf is the isotopic fractionation associated with carbon capture
by the photosynthetic enzyme RuBisCO having been constrained at +25‰ by Bidigare et al. (1997) and
where Ci and Ce are the intracellular and extracellular concentrations of CO2 in the water column (CO2(aq);
Laws et al., 1995; Rau et al., 1996, 1997). Accordingly, δ13Cdiatom can be linked to factors including changes
in (1) δ13CDIC arising from changes in ocean circulation and the production/dissolution of carbonate produ-
cers, (2) photic zone pCO2(aq) with increases (decreases) triggering a corresponding decrease (increase) in
δ13Cdiatom through modification of Ci:Ce, and (3) photosynthetic carbon demand with increases causing a
12C depletion in ambient seawater and so increasing δ13Cdiatom. Attempts to reconstruct pCO2(aq) have
mainly focused on εp (the fractionation between diatom bound carbon and CO2(aq)):

εp ¼ δ13CO2 aqð Þ þ 1000

δ13Cdiatom þ 1000
� 1

" #
·103 (2)

In turn, δ13CO2(aq) can be calculated from the δ13C of planktonic carbonate (δ13Ccarbonate), such as a plank-
tonic foraminifera, building on the temperature-dependent fractionation between HCO3

� and CO2(aq) at a
given sea surface temperature (T; Mook et al., 1974; Romanek et al., 1992):

δ13CO2 aqð Þ ¼
εCO2 aqð Þ�CO2 gð Þ

1000
þ 1

� �
· δ13CO2 gð Þ þ 1; 000
� �� 1; 000 (3)

εCO2 aqð Þ�CO2 gð Þ ¼ �373
T þ 273:15

þ 0:19 (4)

δ13CO2 gð Þ ¼ δ13Ccarbonate þ 1000
εcalcite�CO2 aqð Þ=1000þ 1

(5)

εcalcite�CO2 gð Þ ¼ 11:98� 0:12T (6)

By targeting marine sediments in which both diatoms and planktonic foraminifera are preserved in the sedi-
ment record, δ13Cdiatom and δ13Cforam can be combined to obtain absolute values of CO2(aq) in the ambient
photic zone waters:

CO2 aqð Þ ¼ b
εf � εp

(7)

where εf is the isotopic fractionation during carbon fixation which has been constrained as 25‰ (Bidigare
et al., 1997) and b is the combination of physiological factors relating to cell size and growth rate. From this
relationship, pCO2(aq) can be calculated using Henry’s law via the solubility coefficient KH (Weiss, 1970, 1974):

pCO2 aqð Þ ¼
CO2 aqð Þ
KH

(8)

from which differences between pCO2(aq) and pCO2(atm) can be calculated as

ΔpCO2 ¼ pCO2 aqð Þ � pCO2 atmð Þ (9)

In instances where equilibrium exists between the surface ocean and the atmosphere, ΔpCO2 should be zero.
Where the two system are not in equilibrium, ΔpCO2 provides insights into the net exchange between the
two systems with positive (negative) values of ΔpCO2 indicating the marine system acts a source (sink) of
atmospheric CO2.

An advantage in using δ13Cdiatom to reconstruct pCO2(aq) is the widespread abundance of well-preserved
diatoms in sediments across the globe, particularly in polar regions where carbonates are not readily
preserved. However, while clear evidence exists that diatom carbon fixation is linked to CO2(aq) (Popp
et al., 1998; Rosenthal et al., 2000), reconstructions of pCO2(aq) require robust estimates of b that accounts
for physiological fractionation effects in δ13Cdiatom including those related to growth rate and cell size
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(Bidigare et al., 1997; Laws et al., 1995, 2002). For example, alkenone δ13C reconstructions of pCO2(aq) rely on
the strong relationship between b and PO4

3� concentrations in the modern water column (Bidigare et al.,
1997; Pagani et al., 2005). Recent work has demonstrated a strong link between b in diatoms and measures
of productivity/growth rate such as opal concentrations, thereby allowing reconstructions of pCO2(aq) from
δ13Cdiatom (Heureux & Rickaby, 2015; Stoll et al., 2017).

2. Methods

ODP Site 882 lies at the western section of the Detroit Seamounts (50°220N, 167°360E) in the open waters of
the northwest Pacific Ocean at a water depth of 3,244 m (Figure 1). Samples from 2.85 to 2.55 Ma that have
previously been analyzed for diatom δ18O (δ18Odiatom) and δ30Si (δ30Sidiatom; Bailey et al., 2011; Haug et al.,
2005; Swann, 2010; Swann et al., 2006), using an age model derived from the astronomical calibration of high
resolution GRAPE density andmagnetic susceptibility measurements (Tiedemann & Haug, 1995), were reana-
lyzed for δ13Cdiatom. Samples were previously cleaned and prepared for isotope analysis using standardmeth-
odologies for diatom isotope research involving chemical treatment with H2O2, HCl, and sieving with sample
purity confirmed through light microscopy and scanning electron microscopy (see Swann et al., 2006, for full
details). All analyzed samples originated from the 75 to 150 μm fraction and are exceptionally well preserved
with no signs of dissolution. This fraction is dominated by two taxa, Coscinodiscus marginatus (Ehrenb.) and
Coscinodiscus radiatus (Ehrenb.), with C. marginatus dominating (approximately >90% relative biovolume
abundance) until after the development of the halocline at 2.73 Ma when C. radiatus becomes dominant
(see supporting information Table S1; Figure 2). Blooms of C. marginatus and C. radiatus occur through the
year with elevated fluxes in autumn/early winter (Onodera et al., 2005; Takahashi, 1986; Takahashi et al.,
1996). Consequently, the diatom isotope data obtained here are interpreted as primarily reflecting annually
averaged conditions with a slight bias toward autumn/early winter months. All δ13Cdiatom analyses were
completed using a Costech elemental analyzer linked to an Optima mass spectrometer via cold trapping
at the Natural Environment Research Council Isotope Geoscience Facility at the British Geological Survey
(Hurrell et al., 2011).

A number of low-resolution foraminifera δ13C records exist at ODP Site 882 over the iNHG (Maslin et al.,
1996) and so can be used to monitor the δ13C of the HCO3

� substrate. For the purpose of this study only
the planktonic Globigerina bulloides record is used due to its tendency to mainly calcify in the uppermost
section of the water column at depths similar to the analyzed diatom taxa. For example, data from other
available planktonic taxa, including Neogloboquadrina pachyderma (right plus left coiling), are not compar-
able to δ13Cdiatom due to their scarcity in the sediment record and/or due to their potential to calcify at
lower depths outside the photic zone. In an attempt to increase the resolution of the G. bulloides record,
additional samples were picked where possible and analyzed using an Isoprime Multiprep system attached
to a GV Isoprime dual-inlet mass spectrometer as a tracer of δ13CDIC. All δ

13Cdiatom and δ13Cforam values are
expressed on the V-PDB scale by reference to an internal laboratory standard calibrated against NBS-19
and NBS-22.

Other records from ODP Site 882 that are relevant to this study include estimates of sea surface salinity (SSS;
δ18Odiatom) and sea surface temperature (SST; Uk

37; Haug et al., 2005; Swann, 2010; Swann et al., 2006), which
are required for calculating KH in equation (8). Values of pCO2(aq) were reconstructed following
equations (1)–(8) using interpolated values of δ13Cforam, SST, and SSS with δ13Cforam measurements corrected
for their offset from δ13CDIC following Spero and Lea (1996). Estimates of b were derived using existing opal
concentrations data (Haug et al., 1999; Sigman et al., 2004) and calibrations for b published in Stoll et al.
(2017) for centric taxa (R2 = 0.86, p < 0.01). The uncertainty associated with b and pCO2(aq) was calculated
using Monte Carlo simulations (10,000 replicates) with the Monte Carlo package in R (Leschinski, 2017;
R Core Team, 2017), assuming a normal distribution for proxy data uncertainty (SSS = 0.3 practical salinity
unit, SST = 1.2 °C) in equations (1)–(8).

3. Results

Analytical reproducibility (1σ) from replicate analysis of sample material was 0.3‰ and<0.1‰ for δ13Cdiatom
and δ13Cforam, respectively. Over the analyzed interval through the Pliocene/early Quaternary, values of
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δ13Cdiatom range from�12.9‰ to�20.8‰ (Figure 2, supporting information Table S1). From 2.85 to 2.73 Ma
values of δ13Cdiatom are near constant (mean = �14.1‰, 1σ = 0.6‰). Values of δ13Cdiatom then decrease for
the remainder of the analyzed interval (mean = �18.0‰, 1σ = 2.1‰) in a shift that is concomitant with the
marked decline in opal MAR at ODP Site 882. Through the post-iNHG interval significant variability is apparent
in the δ13Cdiatom data with recurrent changes of up to 3–4‰ that do not coincide with further changes in
opal MAR. Values of δ13Cforam typically range from �0.46‰ to �0.95‰ with a shift to marginally higher
values after the iNHG (Figure 2). Despite efforts to increase the resolution of the δ13Cforam record, the
number of data points declines after 2.73 Ma with sediments largely free of carbonate microfossils
(Figure 2).

Values of εp are at or below 5 until 2.73 Ma before increasing to >5 and a mean of 8 (Figure 3).
Reconstructed pCO2(aq) at ODP Site 882 typically range from ~225 to 250 ppm with a peak value of
314 ppm at 2.81 Ma, a low of 192 ppm at 2.58 Ma, and mean uncertainties of 39.5 ppm (1σ; Figure 3
and supporting information Table S1). From 2.85 to 2.73 Ma pCO2(aq) displays a long-term decline
from ~280 to ~230 ppm (x̄ = 247 ppm; 1σ = 25 ppm). Thereafter, from 2.71 to 2.55 Ma, pCO2(aq)

show a marked increase in variability with fluctuation of 20–60 ppm over the interval
(x̄ = 225 ppm; 1σ = 28 ppm).

Figure 2. Late Pliocene/early Quaternary palaeoceanographic records from ODP Site 882. Changes in δ18Odiatom derived sea surface salinity (Swann, 2010; Swann
et al., 2006), Uk37 derived SST (Haug et al., 2005), δ13Cforam (G. bulloides; Maslin et al., 1996, 1998; this study) and δ13Cdiatom, used to reconstruct pCO2(aq)
(equation (1)–(9)), are compared to the relative diatom species biovolume in samples analyzed for δ13Cdiatom. Orange dashed line denotes transition from unstra-
tified to stratified water column at 2.73 Ma with gray (white) shading reflecting glacial (interglacial) intervals.
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Figure 3. Temporal changes in carbon dynamics at ODP Site 882. Values of δ13Cdiatom, εp, b and pCO2(aq) are compared to pCO2(atm) (Martinez-Boti et al., 2015) and
used to calculate ΔpCO2. Shaded polygons for b, pCO2(aq), pCO2(atm), and ΔpCO2 reflect the 1σ uncertainty derived from Monte Carlo simulations. Changes in
opal concentrations (Haug et al., 1999; Sigman et al., 2004) and rates of Si(OH)4 utilization (Swann et al., 2016) provide information on the biological pump and the
export of carbon into the ocean interior. Orange dashed line denotes transition from unstratified to stratified water column at 2.73 Ma with gray (white) shading
reflecting glacial (interglacial) intervals.
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4. Discussion
4.1. Changes in Photic Zone pCO2(aq)

High values of δ30Sidiatom and opal MAR from 2.85 to 2.73 Ma indicate significant upwelling of nutrient-rich
subsurface waters, which resulted in a productive water column marked by high rates of silicic acid
[Si(OH)4] utilization (Bailey et al., 2011; Haug et al., 1999; Reynolds et al., 2008; Sigman et al., 2004; Swann
et al., 2016; Figure 3). This situation contrasts with the post-2.73 Ma interval when the development of a halo-
cline ceased significant upwelling and led to associated reductions in Si(OH)4 utilization and siliceous produc-
tivity (Haug et al., 1999, 2005; Reynolds et al., 2008; Sigman et al., 2004; Swann et al., 2006, 2016; Figure 3). The
presence of lower pCO2(aq) after 2.73 Ma is consistent with these palaeoceanographic changes, namely, a
reduction in deeper CO2-rich waters reaching the photic zone under conditions of enhanced near-surface
stratification. On this basis, the increased variability of pCO2(aq) after 2.73 Ma may reflect changes in the
strength of this stratification, an event which might impact the advection of carbon and nutrient-rich deep
water supply to the photic zone and so rates of Si(OH)4 utilization. However, before and after the
establishment of the halocline at 2.73 Ma, changes in pCO2(aq) show no relationship to rates of Si(OH)4
utilization, SSS or SST (Figure 3).

4.2. Implications for Ocean Ventilation Over the iNHG

To establish whether changes in subarctic Pacific pCO2(aq) resulted in the region acting as a net sink or source
of CO2, comparisons are needed to estimates of global pCO2(atm). A number of modeled and proxy-based
records have been published in recent years, but here we focus our comparisons on a recent multisite
δ11B record, which is the highest-resolution record to date and displays a decline in pCO2(atm) of
40–90 ppm through the late Pliocene/early Pleistocene interval (Martinez-Boti et al., 2015). Calculation of
ΔpCO2 (equation (9)) between all δ13Cdiatom derived pCO2(aq) at ODP Site 882 and interpolated pCO2(atm)

reveals considerable variation over the analyzed interval (Figure 3). The mean age difference between the
interpolated and original pCO2(atm) data is 4.3 ka (1σ = 3.7 ka). With the exception of one sample at
2.81 Ma, values of ΔpCO2 are negative throughout the analyzed interval (x̄ = �68 ppm; 1σ = 43 ppm).
While ΔpCO2 is lower after the development of the halocline at 2.73 Ma (pre-2.73 Ma: x̄ = �61 ppm;
1σ = 40 ppm; post-2.73 Ma: x̄ = �78 ppm; 1σ = 47 ppm), consistent with reduced upwelling of deep waters
to the photic zone, this change is not significant (p = 0.2). The lack of a systematic shift in mean ΔpCO2 values
after 2.73 Ma can be attributed to the large variations in both pCO2(aq) and ΔpCO2 post-iNHG. More signifi-
cantly, the results cast doubt on the notion that changes in the regional carbon dynamics in the subarctic
Pacific Ocean played a key role in driving the iNHG. Although there is considerable variability in estimates
of late Pliocene pCO2(atm) both within and between individual studies (e.g., Badger et al., 2013; Bartoli
et al., 2011; Martinez-Boti et al., 2015; Pagani et al., 2010; Seki et al., 2010; Stap et al., 2016; van de Wal
et al., 2011; Willeit et al., 2015) in all cases reconstructed values of pCO2(atm) remain above typical values of
pCO2(aq) at ODP Site 882. Values of ΔpCO2 at ODP Site 882 remains predominantly negative even when con-
sidering the Monte Carlo-derived uncertainties for both pCO2(aq) and pCO2(atm) (Figure 3).

Consistently low values of ΔpCO2 from 2.85 to 2.73 Ma suggest that the mixed water column that prevailed in
the Pliocene prior to stratification did not release significant volumes of CO2 to the atmosphere and so did
not help maintain the warm Pliocene climate state. This interval in the ODP Site 882 record is marked by
exceptional high opal concentrations of circa 60–75% (~2.2–3.2 g·cm�2·ka�1; Haug et al., 1999) and rates
of Si(OH)4 utilization (Swann et al., 2016; Figure 3). Consequently, although the mixed water column in this
interval would have led to increased delivery of carbon rich waters to the surface, the negative values of
ΔpCO2 suggest that the associated flux of nutrients to the photic zone enabled a highly efficient biological
pump that prevented carbon release from the ocean to the atmosphere (Figure 3, 4a). We note, however, that
this scenario is not supported by comparisons to themodern day where regions of strong upwelling and high
diatom productivity/export remain net sources of CO2 to the atmosphere (Takahashi et al., 2009, 2016). The
uncertainties in using δ13Cdiatom to reconstruct pCO2(aq) are discussed in section 4.3. While these indicate the
issues in quantifying pCO2(aq) and ΔpCO2 from δ13Cdiatom, thereby potentially explaining the anomalous
negative values ofΔpCO2 at ODP Site 882, the underlying trends in pCO2(aq) andΔpCO2 can be used to under-
stand regional late Pliocene/early Quaternary carbon dynamics in the subarctic Pacific. Although the devel-
opment of the halocline at 2.73 Ma lowered pCO2(aq) in line with reduced deep water upwelling, the
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absence of a bigger decline in pCO2(aq) as well as ΔpCO2 is unexpected. After 2.73 Ma, opal concentration fall
to ~20–33% (~0.5–1.0 g·cm�2·ka�1; Haug et al., 1999; Sigman et al., 2004) with corresponding declines in
silicic acid utilization (Swann et al., 2016; Figure 3). We argue that a decline in Si(OH)4 utilization and the
efficiency of biological export of carbon balanced out the reduced rate at which deep water carbon was
advected to the photic zone, preventing a major decline in pCO2(aq) or the net flux of CO2 across the
ocean-atmosphere interface (ΔpCO2; Figure 4b).

A number of models have indicated that a decline in pCO2(atm) is critical for the development of large
Northern Hemisphere ice sheets (e.g., Lunt et al., 2008). With evidence presented here that carbon dynamics
and ΔpCO2 did not significantly change in the subarctic North Pacific Ocean over the iNHG, the focus shifts to
the Southern Ocean which plays a key role in regulating the ~100 ppm variations in pCO2(atm) over
Pleistocene glacial-interglacial cycles (Sigman et al., 2010). Evidence for changes in Antarctic ice sheet extent
together with variations in Southern Ocean sea ice and stratification through the Pliocene and oNHG
(Hillenbrand & Cortese, 2006; Hodell & Venz-Curtis, 2006; McKay et al., 2012; Naish et al., 2009; Waddell
et al., 2009) could have enhanced the ability of the Southern Ocean to act as a sink of atmospheric
pCO2(atm) through mechanisms that are analogous to those that occur in the Pleistocene (see Sigman
et al., 2010). These processes could have been strengthened by increased eolian iron deposition in the
Southern Ocean over this interval, which would have increased the efficiency of the biological pump and
the sequestration of carbon into the ocean interior (Martínez-Garcia et al., 2011).

4.3. Uncertainties With δ13Cdiatom

Despite measurements of δ13Cdiatom having been used in palaeoenvironmental reconstructions for over a
decade to examine changes in photosynthetic carbon demand/productivity, its use to reconstruct pCO2(aq)

is relatively novel. Consequently, a discussion of the potential errors/limitations with δ13Cdiatom is appropriate
to place the reconstructions of pCO2(aq) at ODP Site 882 into a wider context.
4.3.1. Diatom Carbon Uptake
In contrast to foraminifera formed via the precipitation of HCO3

�, diatoms uptake carbon from both HCO3
�

and CO2(aq) through carbon concentrating mechanisms (CCM) that enable the saturation of the enzyme
RuBisCO that catalyzes carbon fixation (Tortell et al., 1997). Such processes primarily involve either an active,
direct, transportation of HCO3

�, and CO2(aq) into the cell or an indirect HCO3
� uptake in which an extracel-

lular carbonic anhydrase dehydrates HCO3
� to CO2 (Badger, 2003; Sültemeyer et al., 1993). In addition to

these C3 photosynthetic pathways, an indirect C4 pathway has also been identified in which HCO3
� is

Figure 4. Conceptual model of the palaeoceanographic changes in the northwest subarctic Pacific Ocean. (a) From 2.85 to 2.73 Ma an unstratified water column
leads to unimpeded upwelling of deep water. The transportation of nutrients and carbon rich waters to the photic zone is compensated by high levels of silic-
eous productivity and Si(OH)4 utilization creating a highly efficient biological pump that minimizes CO2 leakage to the atmosphere. (b) Following the development of
the halocline, deepwaters are limited from reaching the photic zone. The corresponding decline in both the strength and efficiency of the biological pump, however,
results in the net ocean atmospheric flux of CO2 remaining similar to conditions prior to 2.73 Ma with only minor decreases in pCO2(aq) and ΔpCO2.
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converted to malic or aspartic acid and then to CO2 by decarboxylation (Reinfelder et al., 2000, 2004; Roberts
et al., 2007).

Results from the Bering Sea, North Pacific, Equatorial Pacific, and Southern Oceans show that significant,
but variable, amounts of diatom carbon originates from HCO3

� with the majority of this occurring via
direct transportation (Cassar et al., 2004; Martin & Tortell, 2006; Tortell et al., 2006, 2008, 2010; Tortell
& Morel, 2002). Although HCO3

�:CO2(aq) uptake ratios may vary with large changes in pH (Trimborn
et al., 2008) and interspecies variations in cell morphologies (Martin & Tortell, 2008), others have shown
that this ratio does not change with pCO2(aq), Fe availability, growth rates, primary productivity, or
frustule area:volume ratios (Cassar et al., 2004; Martin & Tortell, 2006; Tortell et al., 2006, 2008). The
results presented here from ODP Site 882 do not account for any isotopic offset that may arise over
the usage of HCO3

� over CO2 or the potential for active carbon uptake to alter εp (Burkhardt et al., 2001).
For example, increases in pCO2(aq) have been shown to downregulate CCM (Hennon et al., 2015),
introducing a nonlinear relationship between εp and δ13Cdiatom, which impacts the ability to accurately
reconstruct changes in pCO2(aq) (Laws et al., 2002; Raven et al., 2011). Although these issues may impact
the absolute values of reconstructed pCO2(aq), we feel confident given the points made above that
changes in HCO3

�:CO2 uptake ratios and transportation mechanism have not significantly altered over
the analyzed interval or impacted the underlying trends in pCO2(aq) and our assertion that the develop-
ment of the halocline did not fundamentally alter regional carbon dynamics across the iNHG. For
example, attempts to reconstruct pCO2(aq) over the last 14 Ma using models that accounts for diffusive
and active uptake of CO2 by CCM results in different absolute values of pCO2(aq) but similar temporal
trends (Mejía et al., 2017).
4.3.2. Physiological Factors
Physiological controls on the diffusion and fractionation of carbon into diatom, summarized by the term b
(equation (7)), may change and alter δ13Cdiatom in response to different forms of RuBisCO, amino acids,
growth rates, cell morphology, and CCM (Cassar et al., 2006; Laws et al., 1995, 2002; Rau et al., 1996,
1997, 2001; Rosenthal et al., 2000; Scott et al., 2007), which in turn are potentially linked to evidence of
a possible interspecies isotope vital effects in fossil measurements of δ13Cdiatom (Jacot des Combes
et al., 2008).

Within the context of this study the impact of isotope vital effects, other symbiont/physiological processes
such as diatom cell size, geometry as well as the aforementioned HCO3

�:CO2 uptake process (Jacot des
Combes et al., 2008; Laws et al., 1995, 1997; Martin & Tortell, 2008; Popp et al., 1998) can be partially circum-
vented by the use of a single size fraction of diatoms, dominated by only two taxa (supporting information
Table S1). This point is emphasized from 2.85 to 2.73 Ma when analyzed samples are dominated by C. margin-
atus (>90% relative abundance) and high nutrient concentrations would have created near-steady photic
zone growth rates. While declines in δ13Cdiatom and b as well as increases in εp coincide at 2.73 Ma with a
change from C. marginatus to C. radiatus dominance in the analyzed samples, we attribute this change to
the development of the regional halocline, with concordant changes in SST, SSS, and opal concentrations,
rather than an interspecies vital effect process (Figures 2 and 3). While modern samples/culture experiments
are needed to fully confirm the absence of an interspecies vital effect, we note that values of δ13Cdiatom both
before (R2 = 0.01) and after 2.73 Ma (R2 =�0.12) are not related to the relative abundance of either C. margin-
atus or C. radiatus despite notable variation in the populations of both taxa in each interval (supporting
information Table S1). Finally, to fully account for physiological processes and reconstruct pCO2 from
δ13Cdiatom, accurate estimates of b are required. Some previous studies have primarily based pCO2

reconstructions from diatoms on growth rates (μ; e.g., Heureux & Rickaby, 2015; Rosenthal et al., 2000).
Here we elect to directly constrain b based on the results of a Southern Ocean core-top study between the
Polar Front and Southern Antarctic Circumpolar Current Front (Stoll et al., 2017). Despite calibrations being
statistically significant, the standard error associated with this calibration results in a large uncertainty with
the estimates of b used in this study (1σ = 32.3 ± 0.5). This, in turn, is the main source of the uncertainty
derived in the Monte Carlo simulations for pCO2(aq) (Figure 3). It also remains unknown to what extent the
Southern Ocean calibration of b can be directly applied elsewhere in the global ocean, to different taxa
and/or through the geological record (Stoll et al., 2017), although these calibrations have been used on
samples back to the Miocene (Mejía et al., 2017).
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4.3.3. Underestimation of pCO2(aq)

In addition to the discussion above, we note that the reconstructed values of pCO2(aq) (173–288 ppm) are
considerably lower than modern values of pCO2(aq) (331–408 μatm) from 50°–50.5°N and 167°–168°E that
have been collected over the past two decades in different seasons (Takahashi et al., 2016). The low values
are also reflected in the reconstructed values of ΔpCO2 over the analyzed interval (+15 to �145 ppm;
x̄ = �68 ppm; 1σ = 43 ppm). In contrast, modern monthly ΔpCO2 from the region range from �50 to
+44 μatm (Takahashi et al., 2009) with mean annual preindustrial ΔpCO2 + 3 ppm (pCO2(aq) = ~280 ppm;
pCO2(atm) = ~277; Japan Agency for Marine-Earth Science and Technology; Atmosphere and Ocean
Research Institute; Centre for Climate System Research-National Institute for Environmental Studies, 2013).
Although comparing modern and palaeo-estimates of pCO2(aq) and ΔpCO2 is problematic given the storage
of anthropogenic carbon and warming SST in the modern marine system, these lines of evidences suggest
that our δ13Cdiatom reconstruction might underestimate the true values of pCO2(aq) and ΔpCO2 at ODP Site
882 through the late Pliocene/early Quaternary. While part of this underestimation may relate to differences
in pCO2(aq) seasonality before/after the development of the halocline, the impact of this is likely to be less
than the Monte Carlo inferred uncertainty of the pCO2(aq) reconstruction (mean uncertainty = 39.5 ppm;
see Supplementary Table 1). Given the limited work conducted to date on diatom b and its identification
above as the main source of uncertainty in reconstructing pCO2(aq) in this study, we suggest that further
calibrations of this parameter are needed outside of the Southern Ocean and involving a greater range of
taxa. Notwithstanding this issue, based on current knowledge we remain confident in the overall trend
and magnitude of change in our reconstructed record of pCO2(aq) and ΔpCO2. As such, we reiterate our main
finding that the development of the halocline in the subarctic northwest Pacific Ocean at 2.73 Ma did not
lead to a major change in regional marine-atmospheric fluxes of CO2 and that therefore carbon dynamics
in the region did not play a major role in aiding the iNHG.

5. Conclusions

Understanding the potential sources and sinks of atmospheric CO2 that helped regulate the global climate
through the late Pliocene is of critical importance given the interval’s potential to act as an analog for a
warmer climate state in the 21st century and beyond. New results based on δ13Cdiatom from ODP Site 882
in the northwest subarctic Pacific Ocean show that regional ocean atmospheric exchanges of CO2 did not
fundamental alter over the iNHG. This occurred despite a reduction in the upwelling of high-pCO2(aq) deep
waters at 2.73 Ma that were balanced by a corresponding reduction in carbon export by a less efficient
biological pump. While uncertainties exist in using δ13Cdiatom to reconstruct pCO2(aq) and ΔpCO2, highlight-
ing the need for more modern calibrations in particular for the term b, the results suggest that any decline in
pCO2(atm) through the late Pliocene and early Quaternary was not driven by changes in the northwest
subarctic Pacific Ocean.
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