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Globally discordant Isocrinida (Crinoidea)
migration confirms asynchronous Marine Mesozoic
Revolution
Rowan J. Whittle1, Aaron W. Hunter2,3, David J. Cantrill4 & Kenneth J. McNamara2,3

The Marine Mesozoic Revolution (MMR, starting ~200 million years ago) changed the

ecological structure of sea floor communities due to increased predation pressure. It was

thought to have caused the migration of less mobile invertebrates, such as stalked isocrinid

crinoids, into deeper marine environments by the end of the Mesozoic. Recent studies

questioned this hypothesis, suggesting the MMR was globally asynchronous. Alternatively,

Cenozoic occurrences from Antarctica and South America were described as retrograde

reversions to Palaeozoic type communities in cool water. Our results provide conclusive

evidence that isocrinid migration from shallow to deep water did not occur at the same time

all over the world. The description of a substantial new fauna from Antarctica and Australia,

from often-overlooked isolated columnals and articulated crinoids, in addition to the first

compilation to our knowledge of Cenozoic Southern Hemisphere isocrinid data, demonstrates

a continuous record of shallow marine isocrinids from the Cretaceous-Paleogene to the

Eocene/Oligocene boundary.
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Interactions between predators and prey have shaped the
evolution of life and predation is thought to have been
responsible for many major trends in the fossil record1–3.

During the Marine Mesozoic Revolution (MMR, starting ~200
million years ago2), the evolution of shell-crushing (dur-
ophagous) and boring predation in marine organisms caused a
change from the dominance of sedentary, epifaunal suspension
feeders to more mobile organisms including infauna and pre-
dators2–5. It is thought that the MMR heavily affected the stalked
crinoids (sea lilies), making the majority of forms extinct as their
sessile nature made them easy prey for durophagous predators in
shallow waters. Stalked isocrinid crinoids (Order Isocrinida) were
displaced into deeper water4,6–8, potentially by the more mobile
comatulid crinoids (featherstars, Order Comatulida), which were
better able to evade predation and which underwent a series of
radiations during the MMR9,10.

Today stalked isocrinids are almost entirely restricted to deeper
water environments, their shallowest occurrences being 100–170
m in the western Pacific11,12 and western Atlantic6,13. They occur
to depths of 200–300 m and, rarely, they occur at >400 m14.
Isocrinids are more mobile than other stalked forms and capable
of local relocation15–18. Despite this, it was thought that isocrinids
were restricted to middle-shelf and deeper environments during
the Late Cretaceous and to outer-shelf and deeper by the
Eocene6,13.

There is fossil evidence for an increase in predation on shallow
water crinoids in the Mesozoic1,10, including an increased fre-
quency of bite marks and rate of regenerated arms as a result of
autotomy (arm shedding)12,19. In modern populations, elevated
rates of predation in shallower waters compared with deep waters
has also been cited as evidence of increased predation during the
MMR12,19. However, the main lines of evidence for changes in
predation intensity on isocrinids bought about by the MMR are
the apparent lack of isocrinids from shallow water fossil sites in
the Cenozoic and their absence from shallow waters at the present
day.

Globally, the fossil record of stalked crinoids is extremely good
for the Middle to Late Cretaceous20–22. Deep water isocrinid
occurrences are found from the early Eocene (Rösnäs Formation,
Denmark20, the Eocene London Clay, England23), the early Oli-
gocene (Keasey Formation, Oregon, USA24–27), the late Oligo-
cene (West Indies28), the Miocene (Japan29,30) and the Pliocene
(Philippines31), and these are consistent with the argument that
stalked crinoids migrated from shallower to deeper water in the
early Cenozoic4,6–8. However, in the Northern Hemisphere some
shallow water isocrinids persisted until the end of the Danian20,24,
and there are a few isolated occurrences from the late Paleocene6

and the late Oligocene6. Recently stalked crinoids have been
described from the early Paleogene of Central Europe21, indi-
cating that stalked forms remained in shallow water settings for

Fig. 1 Examples of newly discovered and described Southern Hemisphere stalked crinoids. a, b Isocrinus sp. 1 lateral surface views (a WAM 88.32; b WAM
88.6) Cardabia Formation (Wadera Calcarenite Member), Paleocene, Western Australia. c Saracrinus sp. lateral side of the crown (D.916.1) from the Cross
Valley Formation, Seymour Island, Antarctica. d, e Metacrinus sp. 2 articular surface views (‘Katie’s Stars’ WAM 17.1938) from Nanarup Limestone, middle
Eocene, Western Australia. f Metacrinus sp. 2 lateral surface views (WAM 88.374a) Wilson Bluff Limestone (Toolina Limestone) middle Eocene, Western
Australia. g Metacrinus sp. 3 articular surface views (WAM 17.1937) Wilson Bluff Limestone (Toolina Limestone) middle Eocene, Western Australia. Scale
bars= 5mm
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some time after the initiation of the MMR, until the late Mesozoic
and into the early Cenozoic21. This led to the suggestion that
predation intensity during the Mesozoic was not the only factor
controlling the presence or absence of stalked forms in shallow
and deep water environments22 and the off-shore displacement of
isocrinids was a gradual process that occurred later than pre-
viously supposed9. Isolated occurrences of Cenozoic stalked iso-
crinids from Antarctica32–36, New Zealand37–46, South
America47, and Australia48, have also been described from

shallow water deposits. Explanations for the South American and
Antarctic occurrences have focused on a hypothetical reversion to
Palaeozoic type communities in response to environmental
perturbations35,47,49. However, isolated occurrences of isocrinids
in the Cenozoic have led to suggestions that the MMR was not
globally synchronous9,22,34 or that there was a possible delayed
onset of MMR38 in Southern Hemisphere regions.

We describe 37 new Antarctic and Australian isocrinid
occurrences of isolated columnals (often ignored in evolutionary
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studies) and articulated crowns, assigned to nine different species
in three genera. Crinoids from the Cenozoic basins of Australia,
one of the largest packages of shallow water sediment of this age,
have not been studied in detail and, until now, have only yielded
one crinoid occurrence48. Exhaustive studies of museum collec-
tions and detailed provenance information were applied together
with field sampling. Antarctic isocrinids were collected with
detailed sedimentological information, enabling accurate envir-
onmental and temporal placement. In addition to previously
described fossil occurrences32–48, this substantial new body of
data indicates that the Southern Hemisphere was an important
shallow water isocrinid province during the Paleogene. The data
presented herein provides conclusive evidence that the migration
of stalked isocrinids from shallow to deep water did not occur at
the same time all over the world.

Results
Identification of new isocrinid species. Nine new Cenozoic
species (and one indeterminate species) of the Order Isocrinida
are identified from shallow water deposits in Antarctica and
Australia (Figs. 1and 2) using traditional crown characters as well
as columnals or sets of columnals (pluricolumnals) (Supple-
mentary Note 1, Supplementary Figs. 1–5). Three genera of the
Order Comatulida are identified from Australia (Fig. 2, Supple-
mentary Note 1, Supplementary Fig. 5c, g-i). Two different iso-
crinid families are identified: the Metacrinidae (Metacrinus and
Saracrinus) and Isocrindae (Isocrinus). New occurrences of
Metacrinidae are identified from Antarctica (Figs. 1–4, Supple-
mentary Note 1, Supplementary Figs. 4 and 6); and Metacrinidae
plus Isocrinidae from Australia (Figs. 1–4, Supplementary Note 1,

Supplementary Figs. 1–3, 5 and 7). A taxonomic monograph
describing all of these new species is in production.

Western Australian isocrinids. In Western Australia four
Paleocene species of Isocrinus are identified from shallow marine
shelf strata in the Carnarvon Basin (Figs. 2–5, Supplementary
Notes 1 and 2, Supplementary Figs. 1, 2 and 7), and isocrinids
persisted in this region until the Eocene (Metacrinus sp. 1).
Metacrinus species are identified from shallow water deposits in
Western and Southern Australia, from the middle and late
Eocene (Metacrinus sp.1, Carnarvon Basin, Metacrinus sp. 2;
Eucla and St Vincent Basin, Metacrinus sp. 3 Eucla and St Vin-
cent Basin) (Fig. 2, Supplementary Figs. 3, 5d – f and 7 and
Supplementary Notes 1 and 2). An indeterminate species of Iso-
crinus is identified from Eocene shallow water sediments of the
Otway Basin, Victoria (Figs. 2–4, Supplementary Fig. 5a, b and
Supplementary Notes 1 and 2). In Australia comatulids (the
following genera are identified: Glenotremites sp., Notocrinus sp.,
and Loriolometra sp., Figs. 2–5, Supplementary Note 1, Supple-
mentary Fig. 5c, g–i) first appear in the fossil record in the early
Miocene shallow water Mannum Formation50 (Supplementary
Note 2). Our descriptions (Supplementary Note 1) of previously
collected specimens represent the richest accumulation of fossil
comatulids in the Southern Hemisphere.

Antarctic isocrinids. New specimens of Metacrinus are identified
from Antarctic Paleocene deltaic sediments on Seymour Island
(Metacrinus sp. 4, Sobral Formation, Supplementary Figs. 4 and
6, Supplementary Notes 1 and 2). These are the oldest confirmed
specimens of Metacrinus in the fossil record. Previously described
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Geological settings were identified as being shallow water (inner shelf or shallower) based on field studies and published literature (Supplementary
Note 2), taxonomic descriptions of the new taxa are detailed in Supplementary Note 1

ARTICLE COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0048-0

4 COMMUNICATIONS BIOLOGY |  (2018) 1:46 | DOI: 10.1038/s42003-018-0048-0 |www.nature.com/commsbio

www.nature.com/commsbio


Notocrinus sp.

Loriolometra sp.

Isocrinidae indet

Isocrinidae indet

DepthTaxa

This Study

This Study

Waitemata Group
Cape Rodney Fm

Meyer & Oji 199333

Rasmussen 197932

Zinsmeister et al 198936

Malumian & Olivero
200547

Eagle 200439

Eagle 199337

Feldmann & Maxwell
199045

Stilwell et al. 199438

This study

Rasmussen 197932

Baumiller & Gazdicki
199634

Meyer & Oji 199333

Eocene

Eocene

Paleocene

Eocene

Paleocene

Paleocene

Eocene

Eocene

Eocene

Baumiller & Gazdicki
199634

Malumian & Olivero
200547

Nanurup Limestone
Toolina Limestone
Blanche Point Marl

Mannum Fm

Browns Creek Clay

Sobral Fm

Cross Valley Fm

Cardabia Fm (C.M)

Cardabia Fm (W.M)

La Meseta Fm

La Meseta Fm

La Meseta Fm

La Meseta Fm

Sobral Fm

Sobral Fm

Island Sandstone

Isocrinus sp. indet

Isocrinus sp. 2

Isocrinus sp. 3
Isocrinus sp. 4

Metacrinus sp. 1

Metacrinus sp. 2

Metacrinus sp. 3

Metacrinus sp. 4

M. fossilis

Eometacrinus
australis

Metacrinus (?)
seymouriensis

Isselicrinus
antarcticus

Glenotremites sp.

Notocrinus
rasmusseni

Notocrinus
seymourensis

Isselicrinus sp.

?Metacrinus

Metacrinus
motuketeketeensis

Nielsenicrinus
waiteteensis

Metacrinus sp.

Leticia Fm

Salamanca Fm

Torehina Fm

Kauru Fm

Taxon Time Distribution Source

This Study

This Study

This Study

This Study

Saracrinus sp.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Isocrinus sp. 1

Paleocene

Paleocene

Paleocene

Paleocene

Eocene

Eocene

Eocene

Eocene

Oligocene

Miocene

S

Eagle 200741

Stenometra
otekaikeensis
Cypelometra

aotearoa
Hertha otakauica

Eocene to
Oligocene

Ototara LimestoneIsocrinida indet Kelly et al. 200343

Robinson & Lee 201142

Isocrinidae indet

Paleocene Red Bluff TuffIsocrinus
cf I. stellatus

Eagle 200546S

S

S

?Nielsenicrinus sp. Milner 198948

Otekaike
Limestone Fm

OligoceneS

Miocene
Mantunau Gp,

Curiosity Shop Sandstone Hutton 187340S

S Mantunau Gp, Waikari
& Mount Brown Fm

Hutton 187340Miocene

Isocrinidae indet Oligocene Otekaike
Limestone Fm

Eagle 200741

MetacrinidaeIsocrinidaeIsselicrinidae Comatulida

Fig. 4 Distribution data for taxa mentioned in Fig. 3, with data sources for this information. All samples were collected in shallow water. In the Distribution
column Australian localities are presented in light blue, Antarctic localities are displayed in dark blue, South American localities are shown in pink, New
Zealand localities are presented in green

COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0048-0 ARTICLE

COMMUNICATIONS BIOLOGY |  (2018) 1:46 | DOI: 10.1038/s42003-018-0048-0 |www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


Maastrichtian specimens32 have been cited as being identified
from the Sobral Fm and are thus probably also Paleocene in age
(Figs. 3 and 4, Supplementary Note 2). Saracrinus sp., also
identified from Seymour Island, inhabited a very shallow marine
environment (Cross Valley Formation, Supplementary Note 2).
This is the oldest confirmed occurrence of the extant genus
Saracrinus in the fossil record (Supplementary Note 1). Several
Cretaceous and Eocene occurrences of isocrinids have already
been described from Seymour Island32–36, and fossil comatulids
have previously been described from Antarctica from the early34

and late Eocene33 (Figs. 3, 4).
In addition to previously published shallow water Cenozoic

Australian48, New Zealand37–46, Patagonian47 and Antarctic
specimens32–36 (Fig. 4), our new occurrences (Fig. 2)
provide evidence for a Southern Hemisphere Paleocene to
Eocene faunal province inhabited by shallow water isocrinids
(Figs. 3 and 5). Isocrinids were not present above the
Eocene/Oligocene boundary in Australia or Antarctica; but
remained in New Zealand shallow waters until the early
Miocene39 (Figs. 3 and 5). The more motile comatulids first
occur in the fossil record of Antarctica in the early Eocene and
appeared in abundance in Australia in the early Miocene (Figs. 3
and 5).

Discussion
The nine newly identified Cenozoic Southern Hemisphere iso-
crinid species (Fig. 2), and previously identified occurrences32–48

which have been compiled together for the first time to our
knowledge (Fig. 4), confirm that the response of stalked crinoids
to increased predation pressure as part of the MMR was
asynchronous34,38. Our data refute the hypothesis that the Ant-
arctic and South American benthic communities experienced
periodic reversions to a Palaeozoic type community structure as a
response to environmental perturbations35,47. The new data
provided herein, in addition to previously published occur-
rences32–48, demonstrate that a shallow water Southern Hemi-
sphere fauna of isocrinid crinoids persisted over the Cretaceous-
Paleogene boundary, continued into the early Paleocene and to at
least the Eocene/Oligocene boundary (Figs. 3 and 5). The shift in
distribution of isocrinids out of shallow water may have occurred
at the end of the Eocene around Antarctica and Australia, and
later in the Miocene in New Zealand. The modern deep water
Isocrinida Metacrinus and Saracrinus may have evolved from
shallow water Antarctic habitats in the Paleocene, spreading to
the southern margin of Australia in the Eocene, and to their

present distribution in deeper waters around Australia, New
Zealand, New Caledonia, Indonesia, the Philippines and
Japan14,51–53.

The late persistence of isocrinid crinoids in Antarctica, Aus-
tralia, New Zealand and South America could be explained either
as a result of an absence of, or reduced durophagous predation
during the MMR in the Southern Hemisphere. Alternatively, it
could be as a result of a delayed distribution and/or radiation of
motile and more competitive comatulid crinoids which had
greater success in shallow waters than the less mobile isocrinids13.
These two options are considered below.

The role of durophagous predation in relation to the dis-
tribution of isocrinid crinoids is difficult to assess because, until
recently, there was little information about predation on
crinoids1,10,54–56. Diving investigations have shown predation on
recent comatulid crinoids by fishes of several families, consisting
of sublethal damage to the crinoid visceral mass and arms56.
Crinoid ossicles from the Order Millericrinida were found in
bromalites from the Triassic; durophagous sharks, colobodontid
fish, placodonts, and some pachypleurosaurs or sauropterygian
reptiles were suggested as possible predators57. Predation on
comatulid crinoids by cidaroid echinoids has been indicated by
studying bite marks on crinoid columnals as well as through
direct observation1,10. However, thus far, the only confirmed
evidence of predation on isocrinid crinoids has come from
laboratory observations and in situ observations using sub-
mersibles of predation by cidaroid echinoids10. Therefore, echi-
noid predation was suggested as a major driver of crinoid
radiation and diversity in the Mesozoic1,10. Predation has also
been inferred by looking at arm loss and regeneration, suggested
to be a response to predation, in fossil isocrinids like Metacrinus
from the La Meseta Formation33.

Latitudinal differences in predation may explain the patterns of
Cenozoic isocrinid depth distribution seen in the Southern
Hemisphere, if predation pressure decreased with increasing
latitude3. In modern brachiopods, lower frequencies of repaired
predator attacks were observed at high latitudes, possibly due to a
lower diversity of crushing predators58. However, it is only today
that durophagous predators are rare or absent from Antarctica59.
The presence of isocrinids in the La Meseta Formation was
attributed to the population being subjected to lower predation
pressure than generally prevailed in post-Mesozoic shallow water
environments33 as the isocrinids had a lower rate of regenerated
arms than in modern settings33. However, taxa thought to pre-
date upon crinoids are found along with isocrinids in Antarctic
deposits so a lack of predators cannot be invoked to explain the
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presence of the isocrinids in the region at the time. Teleost fish,
crustaceans and sharks are found in Cretaceous, Paleocene and
Eocene deposits of Antarctica60–64 in the same formations as
isocrinids. The same is true for Western Australian Eocene
deposits (K. McNamara pers. obser.). Isocrinids also co-occur
with spines of cidaroid echinoids (known to predate on iso-
crinids10) in the Sobral Formation, and cidaroid echinoids have
also been described from the La Meseta Formation65. Similarly
cidaroids and isocrinids are both common in the middle Eocene
Nanarup Formation in south-western Australia (McNamara pers.
obser.).

Isocrinids are capable, as are comatulids, of autotomy to avoid
predatory attacks15. Autotomy planes in stalks and arms and
muscular articulations allowing rapid crawling originated in the
Middle Triassic57. This, along with recent evidence that isocrinids
are motile15, indicates that isocrinids evolved adaptations that
enabled them to evade predators during the Mesozoic. Recent
specimens of the isocrinids Metacrinus, Saracrinus and Endox-
ocrinus have been shown to exhibit arm regeneration12,19.
Endoxocrinus shows a greater frequency of arm regeneration in
shallower (~150 m deep) water than in deeper water (~750 m),
leading to the suggestion that predation in shallow water caused
isocrinids to move to deeper water12. However, this also shows
that today isocrinids are able to inhabit areas which are subject to
predation. Isocrinids have been subject to predation throughout
their evolutionary history, and have evolved strategies to deal
with predatory attacks. Salamon and Gorzelak22 suggested that
predation intensity during the Mesozoic was not the only factor
controlling the presence or absence of stalked forms in shallow
and deep water environments and our data seem to be consistent
with this.

Comatulids (feather stars) are thought to have had a higher
survival capacity in shallow water than stalked isocrinids13 due to
their greater adaptability13. This resulted in comatulids becoming
dominant in shallow waters at the present day66. The timing of
the onset of comatulid radiation may have not been globally
consistent, accounting for longer survival for isocrinids in shallow
waters in the Southern Hemisphere. The first true comatulids
date from the Early Jurassic66, but overall their fossil record is
poor due to a lack of articulated fossils. Using disarticulated
elements relies heavily on finding a single centrodorsal ossicle, as
arm ossicles are largely taxonomically indeterminate. The oldest
known Antarctic comatulid (Notocrinus) was described from the
early Eocene and co-occurred with isocrinids34. In South Aus-
tralia, specimens of comatulids (Glenotremites, Notocrinus, and
Loriolometra–Notocrinidae) have been collected in abundance50

from the shallow water early Miocene Mannum Formation, with
no co-occurring Isocrinida. This may indicate comatulid dom-
inance in the marine community.

Here we show that Australia has a shallow water fossil record
of Isocrinida from the Paleocene to the end of the Eocene (Fig. 3).
The oldest (Paleocene) Australian Isocrinida are from Western
Australia (Fig. 3). At this time the southern margin of Australia
was still connected to Antarctica67 (Fig. 5), but a transgression in
the north led to the formation of a shallow water basin68, which
the Isocrinida inhabited until the early Eocene. Australia finally
separated from Antarctica later in the Eocene, forming an
embayment with a complex of shallow water basins from west to
east across the southern margin of the Australian continent
(Fig. 5). Like echinoids69, foraminifera70, and brachiopods71, the
Isocrinida show a pattern of dispersal in a southerly direction
along the western Australia coast during the early Paleogene, then
an easterly spread across the southern margin of the Australian
continent (Fig. 5). Isocrinids do not occur in post- Eocene strata
in Australia (Figs. 3 and 5), having seemingly been replaced by
comatulids in shallow water habitats. New Zealand was left as an

apparent shallow water refugium for isocrinids until the early
Miocene (Fig. 3), isocrinids having persisted here from the
Paleocene (Figs. 3 and 5)37–46. Following this, isocrinids were
displaced to deeper water environments, which they still inhabit
today14.

Isocrinids inhabited Antarctic shallow water communities until
the end of the Eocene33 (Fig. 3). There is no evidence for fossil
isocrinids in Antarctica, Australia or South America after the
Eocene (Figs. 2 and 4). This was a time of speciation and radia-
tion in the Southern Hemisphere for many taxa, including
comatulids72,73 when changes in continental configuration and
ocean circulation brought in different water masses and isolated
Antarctic marine faunas74. The Antarctic Circumpolar Current
(ACC) started around the Eocene⁄Oligocene boundary to early
Oligocene75 physically isolating Antarctica and preventing war-
mer water masses from reaching the continent. Full development
of the ACC resulted in faunal turnover in the Southern Hemi-
sphere, and an increase in cool water cosmopolitan and true
Antarctic endemic forms76,77. This is supported by molecular
clock data, which shows that modern species of the comatulid
Promachocrinus evolved in the Antarctic region after the onset of
the ACC73. Similar radiation events after the onset of the ACC
are seen in other taxa such as amphipods, isopods and octo-
pods72. The radiation of apparently more successful modern
comatulid taxa in the Southern Hemisphere is co-incident with
the demise of isocrinids in the region. The onset of the ACC may
have caused a local extinction of isocrinids in the Southern
Ocean. The repeated extension of ice sheets across the Antarctic
continental shelf may also have discouraged the less mobile iso-
crinids from living at the depths at which they are found else-
where today.

Overall, based on the evidence presented herein, it is clear that
isocrinids inhabited shallow waters in the Southern Hemisphere
region in the early Cenozoic, with the oldest metacrinid speci-
mens found in Antarctica. Opening seaways resulted in isocrinids
dispersing along newly formed shallow Australian basins around
the southern margin of Australia to New Zealand.

Methods
Taxonomic study of isocrinids. The taxonomy of Cenozoic crinoids is virtually
unstudied24 other than the notable exceptional occurrences where the crowns have
been preserved such as the Rösnäs Formation (Eocene), Denmark, the London
Clay (Eocene), England, the Keasey Formation (Oligocene) Mist, Columbia
County, Oregon and the La Meseta Formation (Eocene), Seymour Island, Ant-
arctica. The vast majority of material consists of single columnals or sets of
columnals, much of which is in need of revision24. We used a new systematic
framework based on recent taxonomic work on Jurassic and Cretaceous65 taxa and
applied this to the new taxa collected from Australia and Antarctica (Supple-
mentary Note 1). We also compared specimens to recent isocrinids from the
Natural History Museum (NHM) UK and the University of Tokyo Museum.
Articulated isocrinid crinoids are typically identified based on the number of
brachials in the arms and their surface ornamentation. The systematics of isocrinid
crinoids has been previously restricted to characters within the crown. In contrast,
taxonomy using stem columnals or sets of columnals (pluricolumnals) is con-
sidered problematic78. However, there are studies which have extensively utilised
columnals in the absence of preserved cup material79–81. We use the methodology
detailed in these studies and summarised in Supplementary Fig. 8 for the material
described herein. Taxonomic features include the outer surface of the stem (latera),
the shape and articular face of the columnals, and its articulations (Supplementary
Fig. 8). Sets of columnals called pluricolumnals typically represent stem segments
shed in life. These can be quickly incorporated into the sediment or can remain in
the substrate where they are subject to abrasion or local transport. The majority of
the columnals have not been abraded, suggesting little transport81,82; the high
number of articulated sets of columnals in the dataset also suggests rapid burial of
columnal segments. However, it should be noted that articulated stalks and
headless erect stalks have been observed to survive in the deep-sea and in lab-held
Metacrinus from Japan83. Therefore, some caution is needed in claiming that
articulated lengths of stalk found widely in the fossil record indicate rapid burial.

Sample collection. Information about the collecting localities of the newly iden-
tified specimens in this study can be found in Fig. 2, Supplementary Figs. 6 and 7,
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and Supplementary Notes 1 and 2. Twelve specimens of Metacrinus sp. 4 from the
Paleocene Sobral Formation Seymour Island, Antarctica, were collected in the
2009/2010 British Antarctic Survey (BAS) field season. These fossils were collected
by R.J. Whittle and J.A. Crame in conjunction with section lines measured using an
Abney level and Jacobs staff, along with detailed field studies and sedimentological
logging by J. Francis and J. Ineson (Fig. 2, Supplementary Figs. 4c, d and 6). They
are preserved as pluricolumnals only. Two specimens of Saracrinus from the Cross
Valley Formation, Seymour Island, Antarctica, were collected by David Cantrill in
the 1998/1999 BAS field season (Fig. 2, Supplementary Figs. 4a, b and 6). They are
very well preserved with arms attached to the calyx, but with no stalk. To aid
identification of Antarctic material, taxonomic comparisons were made with Sey-
mour Island fossil specimens in collections at the Springer Room, National
Museum of Natural History, Smithsonian Institution, Washington DC and with
modern taxa at the Natural History Museum, London. The ages for the sections
and the specimens collected were based on Bowman et al.84. Data for water depth
for Antarctic localities was based on the field studies of Dr J. Ineson (Geological
Survey of Denmark and Greenland) and have also been the focus of geological
study from other authors85,86.

Geological settings and environment of deposition including water depths for
rock units mentioned herein are given in Supplementary Note 2 along with the
supporting literature references for their interpretation. Herein shallow water is
defined as occurring on the inner shelf or shallower.

The 23 Australian crinoid specimens came from spot sampling in the field and
museum collections; previously overlooked data from disarticulated columnals
were also included. The Paleocene Australian specimens were sampled by A.W.
Hunter from the Cardabia Formation (Giralia Anticline, north part of the Southern
Carnarvon Basin, Supplementary Fig. 7). Paleocene to Oligocene Australian data
came from the series of basins that form the Great Bight Basin System
(Supplementary Note 2, Supplementary Fig. 7) and the Southern Carnarvon Basin.
They were sampled over a 30 year period by K.J. McNamara and team (S.P.
Radford, K.A. McNamara, T. McNamara, J. McNamara, A. Baynes, K.M. Brimmell,
G.W. Kendrick and A. Longbottom). Comatulid specimens from the Mannum
Formation were collected by A. Baynes, D. Nelson, N. Pledge, E. Holmes and A.B.
Smith. To aid identification of the Australian specimens, extant material was
studied in reference collections in the Muséum National d’Histoire Naturelle, Paris,
the Natural History Museum, London (NHM), the Western Australian Museum,
Perth (WAM), the Southern Australian Museum, Adelaide (SAM), the Museum of
Victoria, the Australian Museum, Sydney, the University of Tokyo Museum, and
the National Museum of Natural History, Smithsonian Institution. Monographs of
Cenozoic taxa plus specimens and monographs of modern taxa were compared.
Australian and Antarctic fossil sample data were combined with published data
from Australia, Antarctica, South America and New Zealand.

Data availability. Information regarding the data that support the findings of this
study are available within the paper, Supplementary Figures and Supplementary
Notes 1 and 2. All Antarctic fossil specimens are deposited at the British Antarctic
Survey, Cambridge. Australian specimens are housed in the Western Australian
Museum, South Australian Museum and the Natural History Museum (UK).
Detailed provenance information for the newly collected specimens is given in
Fig. 2, and Supplementary Notes 1 and 2.

Accession Numbers. Western Australian Museum-WAM 88.32, WAM 88.6,
WAM 88.103, WAM 88.130, WAM 92.716, WAM 92.718, WAM 97.936, WAM
17.842, WAM 17.861, WAM 94.510, WAM 84.597, WAM 87.223, WAM 17.1938,
WAM 88.374a, WAM 06.313, WAM 17.1937, WAM 06.238, WAM 18.1, WAM
85.1252 and WAM 07.87.

South Australian Museum-SAM P511, SAM P3321, SAM P18447, SAM
P18649, SAM P6836, SAM P21991, SAM P19183 and SAM P18446.

Natural History Museum (UK)-NHM-UK EE 1261-2, NHM-UK EE 1263-5,
NHM-UK EE 1266-74 and NHM-UK EE 1759.

British Antarctic Survey (Cambridge)-D9.209.801, D9.209.802, D9.209.214 A,
D9.209.214B, D9.211.81, D9.211.528, D9.211.529, D9.211.530, D9.211.531 A,
D9.211.531B, D9.211.531 C, D9.211.531D, D.916.1 and D.916.2.
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