
© 2018 Elsevier Ltd. 
 
This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/   

   
 

This version available http://nora.nerc.ac.uk/id/eprint/519920/ 
   
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
NOTICE: this is the author’s version of a work that was accepted for 
publication in Ecological Engineering. Changes resulting from the publishing 
process, such as peer review, editing, corrections, structural formatting, and 
other quality control mechanisms may not be reflected in this document. 
Changes may have been made to this work since it was submitted for 
publication. A definitive version was subsequently published in  
Ecological Engineering, 117. 28-37. 
https://doi.org/10.1016/j.ecoleng.2018.03.017 
 
www.elsevier.com/  

   
 
 
Article (refereed) - postprint 
 
 

Czerwiński, Marek; Woodcock, Ben A.; Golińska, Barbara; Kotowski, Wiktor. 
2018. The effect of tillage management and its interaction with site 
conditions and plant functional traits on plant species establishment 
during meadow restoration. Ecological Engineering, 117. 28-37. 
https://doi.org/10.1016/j.ecoleng.2018.03.017  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Contact CEH NORA team at  
noraceh@ceh.ac.uk 

 
The NERC and CEH trademarks and logos (‘the Trademarks’) are registered 

trademarks of NERC in the UK and other countries, and may not be used 
without the prior written consent of the Trademark owner. 



The effect of tillage management and its interaction with 1 

site conditions and plant functional traits on plant species 2 

establishment during meadow restoration 3 

 4 

Marek Czerwińskia*, Ben A. Woodcockb, Barbara Golińskaa, Wiktor Kotowskic 5 

a Department of Grassland and Natural Landscape Sciences, Poznań University of Life 6 

Sciences, ul. Dojazd 11, 60-632 Poznań, PL 7 

b NERC Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire 8 

OX13 6NT, UK  9 

c Department of Plant Ecology and Environmental Conservation, Faculty of Biology, 10 

University of Warsaw, Centre for Biological and Chemical Sciences, ul. Żwirki i Wigury 101, 11 

02-089 Warszawa, PL 12 

* Corresponding author: Marek Czerwiński. E-mail: m.czerwinski@up.poznan.pl 13 

 14 

Abstract 15 

The restoration of grasslands is a key management practice that supports biodiversity 16 

across Europe. On species poor grasslands and ex-arable fields, the establishment of plant 17 



species is often limited by the availability of habitat niches, in particular space to 18 

germinate. We investigated the impacts of full inversion tillage and its interaction with site 19 

conditions and functional traits on the abundance of 51 plant species sown into a 2 ha ex-20 

arable site in Poland. Soils of the donor site were characterized by high levels of 21 

heterogeneity in terms of water content and plant availability of N, P and K. One year after 22 

sowing the cover of species typical of semi-natural grasslands was significantly higher on 23 

the tilled plots than on the non-tilled plots. However, in the case of widespread generalist 24 

species the tillage of soil resulted in no significant effect on their establishing percentage 25 

cover. The establishment of plants on the tilled area was more successful where soils were 26 

relatively rich in mineral N. It was also more successful for species with low Ellenberg’s N 27 

values. Species indicative of moist soil established poorly where the soil was tilled. This 28 

study has clear implications for the applied restoration of grasslands, demonstrating a 29 

vital role of soil tillage to promote the establishment of species typical of semi-natural 30 

grasslands. This is particularly important where seed mixtures may contain both desirable 31 

and undesirable competitive species that would disproportionately benefit from the 32 

absence of tillage management. 33 

Keywords: community assembly; ecological filtering; species-rich grassland; plowing; gaps; 34 

seed size 35 

Abbreviations: ENIV - Ellenberg’s nitrogen (nutrients) indicator value; EMIV - Ellenberg’s 36 

moisture indicator value 37 



1. Introduction 38 

During the restoration of species-rich grasslands, sowing seeds of the target species is 39 

often preceded by plowing, rotovating, harrowing or other methods of mechanical soil 40 

disturbance that aim to break up the old vegetation cover and help deplete the soil seed 41 

bank (Edwards et al., 2007; Long et al., 2014; Pywell et al., 2007; Schnoor et al., 2015; 42 

Wagner et al., 2011). The main theoretical basis for applying mechanical soil disturbance 43 

before sowing is that gaps in vegetation are necessary for the regeneration of plant 44 

populations. A gap is a competition-free space for seedlings where the requirements for 45 

dormancy-breaking, germination and establishment are fulfilled, while the effects of 46 

predators, competitors and pathogens are reduced (Bullock, 2000; Grubb, 1977; Harper, 47 

1977). However, the openings created with available farming equipment (e.g. a plow) are 48 

different in size, duration, and character from the natural gaps in grasslands that 49 

temporarily appear as a result of plants death, livestock trampling and dung deposition. 50 

One of the major differences is that with the use of agricultural machinery plant-free 51 

spaces at the scale of whole fields can be created almost instantaneously, whereas 52 

naturally occurring gaps in grasslands are typically just a few centimeters or decimeters 53 

across (Bullock, 2000; Grubb, 1977). Therefore in ecological terms, seedbed preparation 54 

for grassland restoration can be considered to be large scale vegetation disturbance that 55 

substantially modifies conditions for the establishment of plants by exposing them to 56 

direct insolation, wind, air temperature fluctuations, and drying of soil surface.  57 



On emergence, many seedlings of grassland plants require protection from these extreme 58 

environmental conditions (Gibson, 2009). It remains unclear the extent to which the 59 

presence of few shoots of non-target species co-emerging in a tilled restoration area may 60 

provide such protection. Moreover, herbaceous litter, removed through mechanical 61 

disturbance of old vegetation, has been shown to promote seedlings emergence by 62 

keeping the soil surface moist (Thompson, 1987). However, for some species this surface 63 

vegetation litter can act to inhibit species emergence (Donath et al., 2006; Goldberg and 64 

Werner; 1983). How soil tillage promotes the establishment of plant species particularly in 65 

response to underlying soil conditions remains an important issue in restoration ecology. 66 

In the context of the restoration of temperate grasslands, plowing, rotary cultivation and 67 

harrowing prior to sowing, have all been shown to increase the rate of target species 68 

establishment from sown seed mixes, and in most cases this response was promoted by 69 

higher disturbance levels (Donath et al., 2007; Edwards et al., 2007; Hofmann and 70 

Isselstein, 2004; Hopkins et al., 1999; Poschlod and Biewer, 2005; Schmiede et al., 2012). 71 

However, these studies have typically either focused on a very limited number of species 72 

or are related to specific habitat types (e.g. Donath et al., 2006; Edwards et al., 2007; 73 

Hofmann and Isselstein, 2004; Hutchings and Booth, 1996). Therefore, the effects of 74 

tillage and their interactions with soil conditions on plant species establishment during 75 

grassland restoration has remained largely unexplored. 76 

The intrinsic reasons for the differences in establishment success among grassland plant 77 

species following sowing into tilled soil when compared to undisturbed sward also need 78 



further elucidation. The evidence for such differences has been collated since the 1950s 79 

(Black, 1958), but an overwhelming majority of the experiments focus on the importance 80 

of small gaps, not larger openings typical of large scale mechanical disturbance. 81 

Differences in survival have been observed at either the germination or the seedling 82 

emergence stage, but when both these stages of the establishment process were 83 

considered together, the results were often complex and inconsistent (Bullock, 2000). In 84 

general, the published literature indicates that seed size may be of particular importance 85 

in this process. Large seeds are assumed to provide individuals with a competitive 86 

advantage in dense turf, as seed reserves allow the seedlings to tolerate prolonged 87 

periods of intense competition from the established vegetation (Burke and Grime, 1996; 88 

Donath et al., 2006; Goldberg, 1987; Gross, 1984). Where large areas of bare ground are 89 

created, differential species establishment on disturbed soil vs. intact vegetation is often 90 

better explained by species association with fertile or infertile soils (Pywell et al., 2003), 91 

specific ecological guilds (Hopkins et al., 1999; Pywell et al., 2003), tolerance to water 92 

stress (Bullock, 2000), as well as again in seed size (Donath et al., 2006). It is also possible 93 

that specific leaf area (SLA) may play a role, as low SLA allows young plants to persist 94 

during summer drought, while high SLA, by contrast, helps species establishing into 95 

existing swards with shady conditions (Lambers et al., 2008). 96 

This paper describes a study investigating the initial establishment of 51 grassland plant 97 

species during grassland restoration in response to tillage and mowing management as it 98 

interacts with soil moisture and the availability of mineral nutrients. The sown species are 99 



characteristic of a wide range of semi-natural vegetation types typical of the surrounding 100 

dry calcareous grasslands, mesic lowland meadows, and Molinia semi-wet meadows. The 101 

study was split into two parts. The first part assessed species level responses and asked 102 

how much tillage (temporal vegetation removal) promotes the establishment of plant 103 

species introduced by sowing, and how many and which species establish successfully 104 

within the sward. In the second part, we tested whether the success of species 105 

establishment on tilled soil vs. intact vegetation is associated with their functional traits, 106 

realized habitat niche or other soil conditions. Assuming that the main effect of tillage lies 107 

in the alleviation of the competitive effect from established vegetation on species 108 

establishment, we hypothesize that (H1) this measure favors the establishment of 109 

competitively weak species which are typical of low-productive, semi-natural grasslands; 110 

(H2) that under dry conditions tillage poses the risk of drought, especially to those species, 111 

which are typically associated with wet habitats, whereas this measure should be 112 

beneficial to all species in moist sites. With respect to the effect of functional traits of 113 

species, we hypothesize that (H3) tillage is more beneficiary for the establishment of 114 

small-seeded, small-stature, and low-SLA species, which are less capable of growth under 115 

dense canopies dominated by grasses.  116 

 117 



2. Material and methods  118 

2.1. Design of the experiment 119 

A 2-ha experimental site was located in abandoned fields in Bagno Serebryskie Nature 120 

Reserve, East Poland (51°10ʹ16ʹʹN, 23°32ʹ01ʹʹE). The terrain is almost flat with height 121 

differences of ca. 1 m and mean elevation of 178 m above sea level. The climate of this 122 

area is warm, humid continental (Köppen's classification, www.physicalgeography.net), 123 

with 574 mm mean annual rainfall and mean annual air temperature of 7.5 °C. For 1.5 ha 124 

of the site the underlying soils were Rendzic Cambic Leptosol, with the remaining 0.5 ha - 125 

Mollic Gleysol (IUSS Working Group WRB, 2007). Before 1990 the area had been used as 126 

an extensive grassland, but was converted to arable agricultural in 1991 and then 127 

abandoned in 2005. Soon after the abandonment the former fields were colonized by 128 

ruderal and common grassland plants (Appendix A). In the autumn of 2008 the whole area 129 

was mown and divided into ca. 8-m-wide strips. Every second strip of land was moldboard 130 

plowed, so that the Ap horizon of the soil (average depth of 24 cm) was completely 131 

inverted. In this way, 11 parallel strips of plowed land, separated with 11 strips of 132 

uncultivated land, were created (Fig. 1a). The introduction of desired plant species was 133 

delayed for a year with the aim of reducing the weed burden to a manageable level (UK 134 

Rural Development Service staff, 2010). This was achieved by leaving the plowed area in 135 

furrows throughout the winter so that the perennating organs of unwanted plant species 136 

were exposed to frost. In the following growing season shallow disking or harrowing was 137 

carried out every 5–6 weeks from June to October to progressively exhaust the weeds’ 138 

http://www.physicalgeography.net/


food reserves by stimulating regrowth from the rootstock after each cultivation, and 139 

homogenize the seedbed. 140 

In December 2009, the experimental area was hand-sown with seed mixture collected by 141 

means of vacuum harvesting from nearby meadows that represented Molinietalia and 142 

Arrhenatheretalia orders and Festuco-Brometea class (Kącki et al., 2013). The sowing was 143 

conducted in bands perpendicular to the plowed lines, again in ca. 8 m wide strips 144 

separated by 8 m. These created a lattice work of intermittent tilled and untilled strips 145 

going in one directions, overlain with intermittent sown and unsown bands going in the 146 

other direction (Fig. 1a). This lattice of sowing and tillage management allowed us to 147 

establish four experimental treatments (Fig. 1b) in a replicated 2 (±tillage) × 2 (± sowing) 148 

experimental design. These treatment levels were: 1) control with neither soil tillage or 149 

the addition of vacuum harvested seed, 2) tillage only, 3) vacuum harvested seed addition 150 

only, 4) tillage and vacuum harvested seed addition. Each of these four treatment levels 151 

was positioned in adjoining 8 × 8 m plots to form a replicate block. Nineteen replicate 152 

blocks (representing 76 experimental plots) were randomly located within this lattice of 153 

tillage and sowing management. 154 



 155 

Figure 1 a) The study area and its location; the encircled vegetation quadrats compose a randomized block 156 
design. b) Design of each experimental block; there were 19 replicate blocks randomly located within the 157 
lattice of sowing and tillage management; each block contained four experimental treatments: “a”: control 158 
without soil tillage or the addition of vacuum harvested seed; “b” tillage only; “c” vacuum harvested seed 159 
only; “d” tillage and vacuum harvested seed addition. 160 

The vacuum harvested material was thoroughly homogenized and sampled for the 161 

analysis of species composition. Seedling emergence tests, which were conducted in a 162 

greenhouse, showed that the material contained 70 plant species (see Appendix B). 163 

Within the vacuum harvested seed mix 33 species were already identified as being 164 

present in the experimental area before sowing. Plant species transfer was planned to 165 

maximize the probability that all the species present in the vacuumed seed mix were sown 166 

on every experimental plot, and that seed number of each species was similar across the 167 



plots. To achieve this, large amount of seeds were sown with a 5:1 ratio of donor to 168 

receptor site area used.  Seeds were harvested twice in the growing season and harvesting 169 

was continued until the majority of seeds were collected from plants.  The harvested seed 170 

mix was carefully and thoroughly homogenized during sowing. 171 

 172 

2.2. Plant community assessments 173 

Plant species composition was assessed within 4 m2 quadrats situated in the middle of 174 

each of the 76 experimental plots. In September 2010 percentage cover was estimated by 175 

vertical projection using eight-class scale (0–0.1%, 0.1-1%, 1–5%, 5-12.5%, 12.5–25%, 25-176 

50%, 50-75%, 50–100%) (Appendix C). This was converted into ratio scale by replacing the 177 

classes with their middle values. We focus the analysis on only that sub-set of species that 178 

were identified as being present within the sown seed mixture, regardless of whether they 179 

were or were not present in the experimental area before sowing. We further restricted 180 

the analysis to those 52 species that occurred in at least three experimental plots. Note, of 181 

the 52 species considered in the study, Plantago major ssp. intermedia was excluded from 182 

the analysis as the response of this species to tillage was disproportionally high on the 183 

tilled and non-sown plots. This was likely caused by massive recruitment of this species 184 

from the soil seed bank, however, this made it difficult to detect changes in the 185 

abundance as a result of sowing.  The exclusion of P. major ssp. intermedia did not 186 

qualitatively change the overall trends presented in the results. The ‘ initial species 187 



establishment’ term used in this paper means successful seed germination and seedling 188 

emergence as well as the survival of juveniles during the summer drought.  189 

2.3. The effect of tillage on the abundance of the subsequently sown plant 190 

species (Ei index) 191 

The cover of individual species was scaled into the range [0, 100] to allow the comparisons 192 

of the change of cover among the species as a result of sward destruction and sowing. The 193 

following equation was used for scaling: 194 

Xi = (xi - xi,min) / (xi,max - xi,min) × 100, ( 1 ) 195 

where: Xi is the scaled percentage cover of species i, hereafter referred to as the 196 

abundance of plant species i; xi is the recorded percentage cover of species i; xi,min and 197 

xi,max are the minimum and maximum cover of species i recorded within the four variants 198 

of plots. 199 

The measure of the effect of tillage that preceded sowing on the abundance of the sown 200 

species, Ei was determined by the following equation: 201 

Εi = (Xi,d – Xi,b) – (Xi,c – Xi,a), ( 2 ) 202 

 where: Xi,a is the abundance of sown species i in the non-tilled and unsown plots; Xi,b is 203 

the abundance of sown species i in the tilled and unsown plots; Xi,c is the abundance of 204 

sown species i in the non-tilled and sown plots; Xi,d is the abundance of sown species i in 205 

the tilled and sown plots. Therefore (Xi,d – Xi,b) represents the increase in the abundance of 206 

sown species i on the tilled plots solely as a result of sowing, not as a result of soil 207 



diaspore bank activation following tillage. Similarly (Xi,c – Xi,a) represents the increase of 208 

the abundance of species i on the non-tilled plots solely as a result of sowing, and plants 209 

which were present in the sward before sowing are not taken into account. Positive value 210 

of Ei indicates a positive effect of tillage on the establishment of a sown species, whereas 211 

negative values denotes a negative effect. 212 

The Ei parameter could be used for all sown plant species, regardless of whether they 213 

were or were not present in the experimental area before sowing. 214 

 215 

2.4. Traits selection 216 

Plant functional traits influence plant’s survival, fitness, as well as their establishment 217 

success during grassland restorations (Pywell et al., 2003; Woodcock et al., 2011). Trait 218 

data was derived from Biolflor traitbase (Klotz et al., 2002), LEDA traitbase (Kleyer et al., 219 

2008) and the database of ecological indicator values of vascular plants of Central Europe 220 

and Alps (Ellenberg and Leuschner, 2010). From these data sets we derived for each plant 221 

species: (1) guild - grass, sedge, forb or herbaceous legume (Klotz et al., 2002); (2) realised 222 

ecological optima of plant species in terms of soil moisture, and soil mineral 223 

nitrogen/nutrients content given by Ellenberg’s indicator value for N (ENIV) and 224 

Ellenberg’s indicator value for moisture (EMIV) (Ellenberg and Leuschner, 2010); (3) seed 225 

mass (Kleyer et al., 2008); 4) canopy height, defined as the distance between the highest 226 

photosynthetic tissue and the base of the plant (Kleyer et al., 2008); 5) SLA (Kleyer et al., 227 



2008), i.e. the one sided area of a fresh leaf divided by its oven-dry mass (Pérez-228 

Harguindeguy et al., 2013). For this paper, we have chosen for the simplicity and 229 

consistency to use term "trait" in its broad sense (Pywell et al., 2003) to apply to species 230 

Ellenberg's indicator values. It should be noted, though, that Ellenberg's numbers are not 231 

basic traits, but attributes that integrate various ecophysiological and morphological 232 

characteristics of plants (Bartelheimer and Poschlod, 2016). 233 

2.5. Soil analysis 234 

Seven randomly positioned soil samples were taken in January 2011 from each of the 76 235 

experimental plots after the first season of growth.  This soil was sampled from the layer 236 

of 0–8 cm, i.e. from the root zone. The depth of rooting was determined in the field by 237 

observing the soil profile in a few different places. The seven subsamples collected from 238 

each experimental plot were then combined into a single averaged sample. The content of 239 

plant-available forms of the main nutrients: nitrogen (N), phosphorus (P) and potassium 240 

(K), as well as pH and texture were determined. The measured content of the nutrients 241 

was referenced to the thresholds for agricultural plant nutrition levels for the assessment 242 

of fertilizer needs (Appendix E).  243 

Soil moisture was determined in the field with a ‘FOM/mts’ meter (the Institute of 244 

Agrophysics of the Polish Academy of Sciences, Lublin). The meter measures volumetric 245 

soil moisture content by responding to changes in the apparent dielectric constant of 246 

moist soil. The moisture was measured in the layer 0-11 cm, six times during the growing 247 

season in 2010 and twice in 2011. Although the recorded relative differences in soil 248 



moisture across experimental plots were broadly similar for both these years, we used 249 

only data collected in 2011, because it met the minimum sample size criteria (Appendix F). 250 

In 2011 the measurements were performed in May and July, in four points that were 251 

distributed regularly along the diagonal of each plot, and the results were averaged for 252 

each plot. 253 

The availability of soil N for plants was expressed by means of the content of ammonium 254 

(NH4-N) and nitrate (NO3-N) forms, assayed with the method of segmented-flow 255 

colorimetry. In subsequent regression analysis, the sum of both these forms (soil mineral 256 

N) was used as a predictor. Determination of plant-available forms of P and K was made 257 

with the use of the Egner-Riehm DL method. The methodology of soil analysis is described 258 

in detail in our previous paper (Czerwiński et al., 2015). As the response metric Ei is 259 

derived from the four plots within each block an average value of each of the soil 260 

parameters was determined for each of the 19 blocks. 261 

2.6. Data analysis 262 

2.6.1. The response of individual species to the conditions caused by tillage 263 

The size of the effect of tillage on the abundance of each of the sown species i was 264 

expressed by Ei value. The significance of this effect was estimated by calculating the 265 

significance of the difference in the abundance of a species i between the tilled plots (Xi,d – 266 

Xi,b) and the non-tilled plots (Xi,c – Xi,a). A paired two-sided t-test at 95% confidence level 267 



was used to test the significance of the difference. There were 51 species so the t-test was 268 

performed 51 times. 269 

2.6.2. The response of the target vs. non-target species to the site conditions 270 

changed by tillage 271 

We also analyzed how the conditions caused by tillage affected the establishment of 272 

particularly desired, semi-natural grassland species (“target species”) and non-priority 273 

species (“non-target species”). These were considered as two separate groups. Target 274 

species were those that represent species-rich, semi-natural grasslands, particularly of 275 

Molinion caerulae alliance and Festuco-Brometea class (Kącki, 2013). All the other species 276 

were considered non-target, because they were ubiquitous in the region and did not need 277 

to be transferred to the restoration area. To compare the response of the two species 278 

groups, average Ei value across each of these groups was used. In addition, for each group 279 

the significance of the difference in multivariate species abundance between the tilled 280 

plots (Xi,d – Xi,b) and the non-tilled plots (Xi,c – Xi,a) was calculated, using a multivariate 281 

Hotteling's T2 test (Zar, 2007). 282 

2.6.3. The effects of species attributes and site conditions on the 283 

establishment success of the sown species on tilled vs. non-tilled soil 284 

We tested which trait characteristics of plant species in combination with underlying soil 285 

conditions would predict the effect of tillage on the abundance of plant species (Ei index). 286 

This was undertaken using a multi-model inference approach with MuMIn (Bartoń, 2013) 287 

in R version 3.0 (R Core Team, 2015) with linear mixed effects models defined by the lme4 288 

package (Bates et al., 2015). The Ei score of each species within each block was treated as 289 



a single data point so that the sample size for the analysis was 19 (number of blocks) × 51 290 

(number of sown species). Fixed effects included in the model were seed mass, canopy 291 

height, SLA, guild, as well as habitat requirements in terms of soil moisture and plant-292 

available forms of N, P, and K, whereas random effect were blocks. Soil pH was excluded 293 

from the model because it proved to be almost the same across all experimental plots. 294 

The approach runs all possible combinations of these models excluding interactions (1024 295 

models) and uses Akaike’s Information Criterion (AIC) to compare model fit (Burnham and 296 

Anderson, 2002). Models were ranked on the basis of their AIC value. For each of these 297 

models an AIC difference (∆i) was calculated as ∆i = AICi – AICmin, where AICmin is the lowest 298 

recorded value for any model, and AICi is the model specific AIC value. ∆i indicates the 299 

relative support for each model and is used to derive Akaike weights (wi) (Burnham and 300 

Anderson, 2002), which describe the probability that model i would be selected as the 301 

best fitting model if the data were collected again under identical conditions. The wi of all 302 

N models sums to 1, so that the higher the value of this parameter the greater is the 303 

weight of evidence that it has an effect on the response variable of interest. Following 304 

Burnham and Anderson (2002) any model with a ∆i of less than 2 has equivalent power in 305 

explaining variation in the data relative to the identified best fit model. This is referred to 306 

as the ΔAIC<2 model sub-set. Within this sub-set individual fixed effects will be 307 

represented to different extents, from inclusion within all models present in the ΔAIC<2 308 

model sub-set to none. To assess the relative weight of evidence in support of each fixed 309 

effect a variable importance score was calculated as the sum of the wi scores of models 310 



containing a given explanatory factor over the sum of wi scores from all models within 311 

that ΔAIC<2 subset. In addition, averaged parameter estimates weighted by individual 312 

model wi scores were calculated (Burnham and Anderson, 2002). Finally, as AIC provides a 313 

relative measure of model fit we also followed the recommendations of Symonds and 314 

Moussalli (2011) and derived a marginal R2 value for the global model. This provides an 315 

indication of goodness of fit of the models to the data, and allows an objective assessment 316 

of the importance of the considered variables in explaining responses in Ei. 317 

3. Results 318 

3.1. Effects of tillage management on the establishment of individual 319 

species 320 

The difference in species abundance between the tilled and non-tilled plots (Ei) show a 321 

high level of variation across the sown species, which means that full inversion tillage had 322 

a variable effect on the success of species establishment. Over a quarter of plant species 323 

were significantly more abundant on the tilled area. For over two-thirds of species no 324 

significant difference between the control and treatment area was detected (the 95% 325 

confidence interval includes zero). Considerable variation of species response within the 326 

19 blocks was observed, as indicated by wide confidence intervals (Fig. 2). Most of the 327 

plant species that were significantly more abundant on the tilled area were target species, 328 

characteristic of semi-natural grasslands. Also, an overwhelming majority of the species, 329 

for which no significant difference between the control and treatment area was detected, 330 



are common, generalist, non-target plants that do not need to be introduced during 331 

grassland restoration (Fig. 2). 332 



 333 

 334 

 335 

Fig. 2. The difference (Ei) between the abundance of sown species on the tilled plots (without plants which 336 
emerged as a result of soil diaspore bank activation during the tillage) and on the non-tilled plots (without 337 



plants which were present in the sward before sowing). Species abundance is normalized percentage cover 338 
(see the main text for further details). The size of the difference, averaged across all 19 blocks, is denoted by 339 
the gray bars. The error bars are confidence intervals constructed for the difference between the means (paired 340 
two-sided t-test at the 95% confidence level). If the confidence interval includes zero, the difference between 341 
the means is non-significant. The numbers in brackets on the right denote species percentage cover averaged 342 
across all blocks and treatments at the experimental site.  343 

The observed pattern in species response to the conditions caused by tillage was 344 

confirmed by the multivariate T2 test, which showed that the abundance of the target 345 

species is significantly higher on the tilled plots than on the non-tilled plots, whereas the 346 

abundance of the non-target species between these two experimental treatments was not 347 

significantly different (Table 1). 348 

Table 1 349 

Statistical difference in the abundance of the sown plant species between the group of the tilled and non-tilled 350 
(control) plots. The significance was assessed separately for the semi-natural grassland species and for the 351 
other (non-target) species, using the multivariate two-sided Hotelling’s T2 test. 352 

Group of the 
sown species 

Mean 
abundance in 
the non-tilled 
plots,  

(Xi,c – Xi,a), (%) 

Mean 
abundance in 
the tilled 
plots, 

(Xi,d – Xi,b), (%) 

Test 
statistic, 
T2 

Degrees of 
freedom 

p-value 

Semi-natural 
grassland species 

1.2 21.4 9.89 24, 13 <0.001 

The other (non-
target) species 

0.1 3.3 1.15 28, 9 0.438 

 353 

3.2. Predicting the effect of tillage on plant establishment based on site 354 

conditions and species functional traits 355 

Of 1024 models explaining the size of the effect of tillage on the abundance of the sown 356 

plants (Ei), only 17 were represented within the ΔAIC<2 confidence set (Table 2). The 357 

global model for this relationship explained 7.6% of the variance in the data. Only two 358 



explanatory variables were present in all 17 models within the ΔAIC<2 confidence set. 359 

These were ENIV and soil mineral N content (Table 2).  360 

The establishment from seed on tilled soil was more successful for plant species with low 361 

ENIV (from 1 to 3), i.e. Pimpinella saxifraga, Galium verum, Plantago media, Lotus 362 

corniculatus, Galium boreale, Leucanthemum vulgare, Prunella grandiflora, Serratula 363 

tinctoria, Anthyllis vulneraria, Succisa pratensis and Stachys officinalis (Appendix D). 364 

Moreover, species establishment from seed on a tilled soil was more successful for soils 365 

that are richer in mineral N (Table 2), or more specifically, NH4-N (Appendix E). 366 

The dependence of Ei on species ENIV and soil mineral N content was caused by the 367 

response of species that were sown on the tilled plots. The response of the species that 368 

were sown into the non-tilled area was similar across the whole gradient of soil N 369 

availability and over the whole range of species ENIV (Figures 4a and 4b). 370 

Soil moisture measured in the field was the third most important co-variable, being a 371 

component of 14 out of 17 models explaining species response to tillage.  A slightly 372 

negative effect of tillage on the establishment of the introduced plant species was 373 

detected for the experimental blocks where soil was the moistest (Table 2 and Fig. 3c). 374 

The fourth factor that diversified plant species composition of the experimental area in 375 

the first year after sowing was EMIV. This variable occurred in 11 out of 17 best fit models. 376 

The moister the realized habitat niche of a species, the poorer was the establishment from 377 

sown seed into tilled soil. This result was due largely to the unsuccessful establishment of 378 



plants that are indicative of moist habitats, such as Carex flava, Lythrum salicaria, 379 

Trifolium fragiferum, Ranunculus repens, Potentilla erecta and Selinum carvifolia (where 380 

the EMIV score is 7 or 8). Typically greater establishment success was observed for plants 381 

that occur in semi-dry habitats (EMIV is 3 or 4): Plantago media, Pimpinella saxifraga, 382 

Prunella grandiflora, Medicago lupulina, Hypericum perforatum, Daucus carota, 383 

Leucanthemum vulgare (Appendix D). The relationship between Ei and species EMIV was 384 

shaped mainly by the response of species that were sown on the tilled plots (Fig. 3d). 385 

386 



Table 2. The 17 linear mixed models (M1-M17) within the ΔAIC<2 confidence set that explain the response of individual species establishment success on tilled 387 
soil to the fixed effects of individual species traits and soil conditions. The inclusion of a fixed effect within each of these models is indicated by 1, while AIC 388 
scores, delta weight (∆i) and the model selection probabilities (wi) are provided. Parameter estimates (β) were generated by averaging across all models within the 389 
ΔAIC<2 confidence set and using the selection probabilities to weight this process. VI-scores refer to the variable importance scores derived from summed wi 390 
values. Abbreviations: : ENIV = Ellenberg’s indicator value for N / nutrients (-); Soil N = Soil mineral N; EMIV = Ellenberg’s moisture (-); SLA = Specific leaf 391 
area; Soil K = Plant-available K content in soil; Soil P – Plant-available P content in soil. 392 

 
ENIV Soil N 

Soil 
moistur

e 
EMIV SLA 

Seed 
mass 

Soil K 
Canopy 
height 

Soil P AIC ∆i wi 

M1 1 1 1 1      9682.2 0 0.10 

M2 1 1 1 
      9682.3 0.12 0.10 

M3 1 1 1 1 1 
    9682.4 0.24 0.09 

M4 1 1 1 
 

1 
    9683.0 0.84 0.07 

M5 1 1 1 1  1 
   9683.2 1.05 0.06 

M6 1 1 1 
  1 

   9683.3 1.15 0.06 

M7 1 1 
 

1      9683.5 1.32 0.05 

M8 1 1 1 1   1 
  9683.6 1.38 0.05 

M9 1 1 
       9683.6 1.45 0.05 

M10 1 1 1 1 1 1 
   9683.6 1.47 0.05 

M11 1 1 1 
   1 

  9683.7 1.50 0.05 

M12 1 1 
 

1 1 
    9683.7 1.55 0.05 

M13 1 1 1 1 1 
 

1 
  9683.8 1.62 0.05 

M14 1 1 1 
    1 

 
9684.0 1.82 0.04 

M15 1 1 1 1    1 
 

9684.0 1.84 0.04 

M16 1 1 1 1 1 
  1 

 
9684.1 1.93 0.04 

M17 1 1 1 1     
1 9684.1 1.97 0.04 

VI-
score 

1.00 1.00 0.85 0.63 0.35 0.17 0.15 0.12 0.04    

β -3.013 1.090 -0.342 -1.949 -0.239 -0.779 0.055 -4.984 0.023    
 393 



 394 

 
 

 
 

 
Fig. 3. 395 

The abundance of the sown plant species on the tilled and non-tilled plots in the function of the most important 396 
predictors identified in the previous analysis (Table 2). The abundance of the species on the tilled plots refer to (Xi,d – 397 
Xi,b) term in the equation 2; the abundance of the species on the non-tilled plots refer to (Xi,c – Xi,a) term in the 398 
equation 2. The difference between these two terms is the effect of tillage on the abundance of the subsequently 399 
sown plant species (Ei). The following regressors were used: soil mineral nitrogen/nutrients content (a), Ellenberg's 400 



N indicator value (b), volumetric soil moisture content (c), and Ellenberg's indicator value for soil moisture (d). 401 
Species abundance, i.e. the terms (Xi,d – Xi,b) and (Xi,c – Xi,a), were averaged across all plant species having the same 402 
Ellenberg’s indicator value (plots a and c) or across all species recorded in the same pair of plots (plots b and d). The 403 
error bars denote the standard error of the mean. Regression lines (dashed line) are for univariate relationships only 404 
and are included to provide a visual reference for the relationship. 405 

 406 

In addition to these key variables that dominated the best fit models of the ΔAIC<2 confidence 407 

set, other factors were also seen to affect establishment. However, these all had low 408 

importance score (<0.4) and weak slope estimates (β), indicating that these variables were 409 

unlikely to be important predictors of predictors of Ei. This included SLA, seed mass, canopy 410 

height, and the availability of K and P in the soil. The tillage favored the establishment of species 411 

with relatively low SLA, small seeds and low canopy. Also, the sown species established more 412 

successfully on plots where the soil was richer in plant available K and P. None of the 17 models 413 

that were represented within the ΔAIC<2 confidence set included guild (Table 2). 414 

4. Discussion 415 

4.1. Effects of tillage management on the establishment of sown plant species 416 

The restored vegetation was observed after the sown plant species had survived the first phases 417 

of development: seed germination, seedling emergence and the growth of juveniles. Plant 418 

survival rates in this period shape long-term trajectories of community development and can 419 

determine the ultimate success of the restoration project as small differences in initial species 420 

establishment can result in priority effects with permanent impacts on community composition 421 

(Galatowitsch, 2008; Fukami et al., 2005; Young et al., 2005).  422 

In general the comparison of the abundance of individual sown plant species between tilled and 423 

non-tilled plots suggests that soil tillage, used as a restoration management practice before 424 



sowing seeds promoted the establishment of semi-natural grassland species (Fig. 2). The 425 

multivariate test of the response of the target vs. non-target species provided evidence for this 426 

hypothesis (Table 1). These findings match results obtained in previous studies (Hofmann and 427 

Isselstein, 2004; Hopkins et al., 1999; Pywell et al., 2007; Schmiede et al., 2012) and are also in 428 

agreement with the rule formulated by Bullock (2000) whereby most species in most 429 

communities will establish better in gaps, although most species can also establish some 430 

seedlings in intact vegetation.  431 

4.2. Predicting the effect of tillage on plant establishment: explanatory power of 432 

the model 433 

Although percentage cover varied considerably across the sown species and experimental 434 

blocks, only 7.6% of the variation in cover was explained by extrinsic environmental conditions 435 

(e.g. soils) and intrinsic species traits. This means that the variations in the abundance among 436 

the sown plant species in the first year following sowing cannot be attributed merely to the 437 

characteristics of those species, so the exclusion of plant species from the sown pool in 438 

continuous sward represents a habitat and trait independent process to a certain degree. 439 

However, ecological filtering (Keddy, 1992) can still continue during the reproductive phase of 440 

plants’ life histories. Independent of this, full inversion tillage represents a seedbed preparation 441 

measure that increases the chance that sown semi-natural grassland species will be able to 442 

outcompete common grassland plants.  443 

It is highly likely that the variation in Ei metric, which describes the effect of tillage on the 444 

abundance of the subsequently sown plant species, was influenced by the timing of tillage and 445 



seed sowing. On the non-tilled area, the conditions for plant establishment were relatively 446 

constant throughout the first growing season after sowing, whereas on the tilled area, the 447 

chance of successful plant establishment from seed was highest in the spring in the first year 448 

following tillage. This was before the canopy of the developing vegetation had shaded soil 449 

surface. By the following summer and autumn, the conditions for seed germination and seedling 450 

emergence were not so favorable. The time niche for plant establishment which was created by 451 

tillage might have facilitated the establishment of species for which regeneration takes place in 452 

spring the year after their production, while inhibiting species that establish typically in autumn, 453 

shortly after seed shedding (Grime, 2002). The time window created by tillage might have also 454 

supported the establishment of species that quickly respond to the favorable environmental 455 

conditions by massive and rapid recruitment from the released seed, and do not rely on 456 

persistent soil seed bank (Grime, 2002). Since we had monitored the developing vegetation in 457 

spring or early summer after sowing, we were not able to investigate these effects. 458 

Nevertheless, they could have decrease the accuracy (R2) of our model, and, given the possible 459 

priority effects, they should be investigated in future studies. 460 

4.3. Predicting the effect of tillage on plant establishment based on site conditions 461 

4.3.1 Soil nitrogen and Ellenberg’s N indicator value 462 

Among the intrinsic and extrinsic (environmental) predictors of species response to tillage, soil 463 

mineral N content was one of the most important factors. On the tilled part of the experiment 464 

area, lower availability of N in soil was accompanied by lower abundance of the sown species 465 

(Table 2, Fig. 3a). The other most important predictor was ENIV. The higher ENIV of a species so 466 

the lower was the abundance of this species on a tilled soil (Table 2, Fig. 3b). It is not clear what 467 



kind of environmental limitation underlies the latter relationship, as ENIV may reflect species 468 

response to the availability of nutrients in general, not only to the availability of N (Bartelheimer 469 

and Poschlod, 2016; Ellenberg and Leuschner, 2010; Schaffers and Sykora, 2000). However, the 470 

following findings suggest that ENIVs reflect species response to the availability of N: (1) the role 471 

of soil availability of P and K on species abundance was negligible; (2) the impact of soil N 472 

availability was relatively high, and its direction was the same as that seen for the relationship 473 

with ENIVs (Table 2). Moreover, the significant relationship between ENIVs of sown species and 474 

their abundance cannot be explained in terms of seedling adaptation to emerge in dense sward. 475 

This is because the relationship was determined by the response of species that were sown on 476 

the tilled plots, whereas the response of the species that were sown on the non-tilled area was 477 

similar over the whole range of ENIVs (Fig. 3b). Altogether, the results indicate that plants 478 

establishing on the tilled part of the experiment area grew under N deficiency in the year 479 

following tillage. Plowing grasslands in autumn greatly increases mineralization of soil N and this 480 

effect lasts for about a year. At this time, from 60 to 350 kg ha-1 is leached in the form of nitrate 481 

(Besnard et al., 2007; Conijn and Taube, 2004; Hatch et al., 2004; Shepherd et al., 2001). 482 

Certainly, the intensity of N mineralization on the studied ex-arable area was not as intense as 483 

reported for fertilized grasslands, because the studied soils were already poor in mineral N 484 

before tillage (Table 1). Also, the biomass which was plowed down was probably smaller than 485 

for fertilized grasslands, because it was produced by ruderal vegetation, which did not develop 486 

dense sod. Nevertheless, the literature cited above supports the hypothesis that in the 487 

experimental area, the rate of N mineralization was elevated in the year following soil inversion, 488 

but its resources liberated to the soil were rapidly leached from the surface layer and were no 489 



longer available for plants during the establishment of the sown species. Chemical analysis did 490 

not detect any difference in soil mineral N content between the tilled and non-tilled plots 491 

(Czerwiński et al., 2015). The failure to detect significant effects may have been due to the 492 

limited number of soil samples, with the many values below detection limits in the analyzed 493 

data set, necessitating the use of non-parametric tests which tend to be less sensitive to small 494 

differences than parametric tests (Czerwiński et al., 2015). 495 

We were not able to unambiguously identify ecophysiological and morphological characteristics 496 

which lied behind the ENIVs of the sown species and influenced their abundance on the tilled 497 

area. However, among many traits of plant species that correlate with their ENIVs (Bartelheimer 498 

and Poschlod, 2016), the following seem to have played a significant role in our experiment: (1) 499 

N requirements for germination (species with high ENIVs germinate better at high N availability 500 

in soil while species with low ENIVs have optimum germination at lower N availability); (2) N 501 

requirements for the formation of leaves (the requirements are higher for species that have 502 

higher ENIVs); (3) relative growth rate (which is limited by the availability of N or nutrients in 503 

general). 504 

4.3.2 Soil moisture and Ellenberg’s M indicator value 505 

The predictors of species response to tillage linked to soil moisture were the other two most 506 

important factors. The establishment success on the tilled vs. non-tilled area was lower for 507 

species that are indicative of moist habitats and for sites (experiment blocks) where the soil was 508 

moister. These two relationships seem to be contradictory, but further analysis shows that they 509 

complement each other (Fig. 3c and 3d). The former relationship can be easily explained by the 510 

effects of drought that occurred in July in the year when the introduced plants were 511 



establishing. The drought seem to have limited the development of the introduced plants, 512 

particularly those that are typical of moist habitats and this limitation must have been stronger 513 

on the tilled area because of the exposure of plants to direct insolation and wind (Fig. 3d). This 514 

explanation is consistent with the second hypothesis of our study. The latter dependence, which 515 

does not support this hypothesis, was shaped by low Ei scores obtained for three blocks that 516 

were flooded in the first spring after sowing seeds. Within these blocks many introduced plants 517 

must have died from soil anoxia and the mortality was higher on bare soil surface, which was 518 

situated a few centimeters lower that on the non-tilled area due to the lack of the layer of turf 519 

and litter (Fig. 3c). 520 

4.3.3 Other soil conditions 521 

The positive effect of tillage was more pronounced on the experimental plots where soil K was 522 

more available (Table 2). This indicates that the plants introduced into a tilled area grew under K 523 

deficiency during their establishment. Indeed, in our previous study we observed a decrease in 524 

the content of mobile K in the surface layer of the soil under the influence of tillage operations 525 

(Czerwiński et al., 2015). This decrease should be attributed chiefly to the acceleration of the 526 

chemical weathering of the primary minerals in which nearly all of the soil K is bound, and the 527 

accompanying leaching of K into the deeper soil layers (Mengel, 2007). 528 

The influence of soil P content on the cover of the sown plant species on the tilled vs. non-tilled 529 

area was found to be marginal. This could be due to plant growth being limited principally by 530 

the availability of soil mineral N (Table 2), and so according to the Liebig’s law of the minimum, 531 

this element determined the results. Alternatively, soil P content was similar for ca. 80% of the 532 



experimental plots (Appendices E and G), which could have hampered the detection of the 533 

effect of this element. 534 

4.4. Predicting the effect of tillage on plant establishment based on species 535 

functional traits 536 

The difference in cover of the sown plant species between the tilled and non-tilled plots 537 

decreased with the increasing SLA of the species. This relationship can be interpreted in view of 538 

the severeness of the conditions that prevailed on the tilled land, and in the context of plant 539 

species characteristics that are associated with SLA. High SLA is typical for plants that are 540 

relatively sensitive to drought, and occur in shady and wind-sheltered places. Also, plants with 541 

high SLA fail to dominate on nutrient-poor places (Lambers et al., 2008). 542 

Tillage was advantageous for the establishment of smaller-seeded species, but the observed 543 

relation was quite weak (Table 2). It is worth noting that the results of studies investigating the 544 

establishment of grassland plants in naturally appearing gaps also failed to sufficiently support 545 

the hypothesis that seed size plays important role in this process (Bullock, 2000). 546 

We found that the relationship between canopy height and the effect of tillage on the 547 

abundance of the subsequently sown plant species was quite weak. This may seem somewhat 548 

surprising, since canopy height, similarly to seed mass, affects the competitive vigor of plants. 549 

What is more, for the analyzed species pool these two traits were positively correlated (r=0.39). 550 

It should be noted, though, that seed mass influences species competitiveness during seedling 551 

establishment (Kotowski et al., 2010), the phase which was crucial for the outcome of our 552 

experiment, whereas canopy height is associated with competitive vigor throughout the whole 553 

plant life. 554 



 555 

4.5. Implications for practice 556 

The results of this study have important implications for grassland restoration, particularly 557 

where seed mixtures contain a diverse range of species. This may be the case where seeds are 558 

harvested from existing species-rich grasslands, using indiscriminate and extensive suction or 559 

brushing methods. Where soil tillage precedes sowing of these seed mixtures, and the time 560 

period between these two restoration measures is sufficiently long, plants typical of low-561 

productive but diverse communities will be the principal beneficiaries. However, the absence of 562 

tillage is likely to select against such species, creating an establishment bias for common 563 

generalist herbs that while present in many grasslands, do not represent a key target for 564 

restoration. These results favor the inclusions of tillage into environmental management 565 

schemes aimed at promoting grassland restoration. 566 

 567 

Acknowledgements 568 

The establishment of the experiment was co-founded within the framework of the LIFE project 569 

“Butterfly Meadows” (LIFE06 NAT/PL/000100) and as the statutory task of the Institute of 570 

Technology and Life Sciences, Poland. BW is funded under the research program NE/N018125/1 571 

LTS-M ASSIST - Achieving Sustainable Agricultural Systems, funded by NERC and BBSRC During 572 

the research mainly free/open source software was used: Linux OS, R-project package and 573 

several R libraries, LibreOffice, Zotero, and QuantumGIS. The first author thanks all developers 574 

who contributed to the creation of these non-proprietary programs. 575 



5. References 576 

 577 

Bartelheimer, M., Poschlod, P., 2016. Functional characterizations of Ellenberg indicator values – a 578 

review on ecophysiological determinants. Funct. Ecol. 30, 506–516. 579 

Bartoń, K., 2016. MuMIn: Multi-Model Inference. R package. 580 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models Using lme4. J. 581 

Stat. Softw. 67, 1–48.  582 

Besnard, A., Laurent, F., Hanocq, D., Vertès, F., Nicolardot, B., Mary, B., 2007. Effect of timing of 583 

grassland destruction on nitrogen mineralization kinetics. Grassland Sci. Eur. 12, 335–338. 584 

Black, J.N., 1958. Competition between plants of different initial sizes in swards of subterranean clover 585 

(Trifolium subterraneum L.) under spaced and sward conditions. Aust. J. Agr. Res. 9, 299–312. 586 

Bullock, J.M., 2000. Gaps and Seedling Colonization, in: Fenner, M. (Ed.), Seeds: The Ecology of 587 

Regeneration in Plant Communities. CABI Publishing, Wallingford, UK, pp. 375–395. 588 

Burke, M.J.W., Grime, J.P., 1996. An Experimental Study of Plant Community Invasibility. Ecology 77, 589 

776–790.  590 

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical 591 

Information-Theoretic Approach, 2nd ed. Springer, New York. 592 

Conijn, J.G., Taube, F. (Eds.), 2004. Grassland resowing and grass-arable crop rotations - consequences 593 

for performance and environment. Second workshop of the EGF-Working Group “Grassland 594 

Resowing and Grass-arable Rotations”. Report 80. Plant Research International B.V., 595 

Wageningen, Kiel, Germany. 596 

Czerwiński, M., Kobierski, M., Golińska, B., Goliński, P., 2015. Applicability of full inversion tillage to semi-597 

natural grassland restoration on ex-arable land. Arch. Agron. Soil Sci. 61, 785–795.  598 

Donath, T.W., Bissels, S., Hölzel, N., Otte, A., 2007. Large scale application of diaspore transfer with plant 599 

material in restoration practice - Impact of seed and microsite limitation. Biol. Conserv. 138, 600 

224–234.  601 



Donath, T.W., Hölzel, N., Otte, A., 2006. Influence of competition by sown grass, disturbance and litter on 602 

recruitment of rare flood-meadow species. Biol. Conserv. 130, 315–323.  603 

Edwards, A.R., Mortimer, S.R., Lawson, C.S., Westbury, D.B., Harris, S.J., Woodcock, B.A., Brown, V.K., 604 

2007. Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement 605 

of botanical diversity in grasslands. Biol. Conserv. 134, 372–382.  606 

Ellenberg, H., Leuschner, C., 2010. Vegetation Mitteleuropas mit den Alpen, 6th ed. Ulmer, Stuttgart. 607 

Fukami, T., Martijn Bezemer, T., Mortimer, S.R., van der Putten, W.H., 2005. Species divergence and trait 608 

convergence in experimental plant community assembly. Ecology Lett. 8, 1283–1290.  609 

Galatowitsch, S.M., 2008. Seedling establishment in restored ecosystems, in: Seedling Ecology and 610 

Evolution. Cambridge University Press, New York, pp. 352–370. 611 

Gibson, D.J., 2009. Grasses and Grassland Ecology, 1st ed. Oxford University Press, New York. 612 

Goldberg, D.E., Werner, P.A., 1983. The effects of size of opening in vegetation and litter cover on 613 

seedling establishment of goldenrods (Solidago spp.). Oecologia 60, 149–155.  614 

Goldberg, D.E., 1987. Seedling Colonization of Experimental Gaps in Two Old-Field Communities. Bull. 615 

Torrey Botanical Club 114, 139–148. 616 

Gross, K.L., 1984. Effects of Seed Size and Growth Form on Seedling Establishment of Six Monocarpic 617 

Perennial Plants. J. Ecol. 72, 369–387.  618 

Grubb, P.J., 1977. The Maintenance of Species-Richness in Plant Communities: The Importance of the 619 

Regeneration Niche. Biol. Rev. 52, 107–145. 620 

Harper, J.L., 1977. Population biology of plants. Academic Press, London. 621 

Hatch, D.J., Hopkins, A., Velthof, G.L., 2004. Nitrogen and phosphorus cycling in grass-to-grass resowing 622 

and grass- arable rotations, in: Grassland Resowing and Grass-Arable Crop Rotations - 623 

Consequences for Performance and Environment. Second Workshop of the EGF-Working Group 624 

“Grassland Resowing and Grass-Arable Rotations”. Report 80. Plant Research International B.V., 625 

Wageningen, Kiel, Germany, pp. 5–23. 626 



Hofmann, M., Isselstein, J., 2004. Seedling recruitment on agriculturally improved mesic grassland: the 627 

influence of disturbance and management schemes. Appl. Veg. Sci. 7, 193–200. 628 

Hopkins, A., Pywell, R.F., Peel, S., Johnson, S.W., Bowling, P.J., 1999. Enhancement of botanical diversity 629 

of permanent grassland and impact on hay production in Environmentally Sensitive Areas in the 630 

UK. Grass Forage Sci. 54, 163–173. 631 

Hutchings, M.J., Booth, K.D., 1996. Studies of the feasibility of re-creating chalk grassland vegetation on 632 

ex-arable land. 2. Germination and early survivorship of seedlings under different management 633 

regimes. J. Appl. Ecol. 33, 1182–1190. 634 

IUSS Working Group WRB, 2007. World Reference Base for Soil Resources 2006, first update 2007 (No. 635 

103), World Soil Resources Reports. FAO, Rome. 636 

Kącki, Z., Czarniecka, M., Swacha, G., 2013. Statistical determination of diagnostic, constant and 637 

dominant species of the higher vegetation units of Poland, Monographiae Botanicae. Societas 638 

Botanicorum Poloniae, Łódź. 639 

Keddy, P.A., 1992. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 640 

3, 157–164. 641 

Kleyer, M., Bekker, R.M., Knevel, I.C., Bakker, J.P., Thompson, K., Sonnenschein, M., Poschlod, P., Van 642 

Groenendael, J.M., Klimeš, L., Klimešová, J., Klotz, S., Rusch, G. m., Hermy, M., Adriaens, D., 643 

Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., Hodgson, J. g., Jackel, A.-644 

K., Kühn, I., Kunzmann, D., Ozinga, W. a., Römermann, C., Stadler, M., Schlegelmilch, J., 645 

Steendam, H. j., Tackenberg, O., Wilmann, B., Cornelissen, J. h. c., Eriksson, O., Garnier, E., Peco, 646 

B., 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. 647 

Ecol. 96, 1266–1274.  648 

Klotz, S., Kühn, I., Durka, W. (Eds.), 2002. BIOLFLOR - Eine Datenbank zu biologisch-ökologischen 649 

Merkmalen der Gefäßpflanzen in Deutschland, Schriftenreihe für Vegetationskunde. Bundesamt 650 

für Naturschutz, Bonn. 651 

Kotowski, W., Beauchard, O., Opdekamp, W., Meire, P. and Van Diggelen, R., 2010. Waterlogging and 652 

canopy interact to control species recruitment in floodplains. Func Ecol. 24, 918–926. 653 



Lambers, H., Chapin III, F.S., Pons, T.L., 2008. Plant Physiological Ecology, 2nd ed. Springer, New York. 654 

Long, Q., Foster, B.L., Kindscher, K., 2014. Seed and microsite limitations mediate stochastic recruitment 655 

in a low-diversity prairie restoration. Plant Ecol. 215, 1287–1298.  656 

Mengel, K., 2007. Potassium, in: Pilbeam, D.J., Barker, A.V. (Eds.), Handbook of Plant Nutrition. Taylor & 657 

Francis, Boca Raton / London / New York, pp. 91–120. 658 

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., 659 

Cornwell, W.K., Craine, J.M., Gurvich, D.E., others, 2013. New handbook for standardised 660 

measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234. 661 

Poschlod, P., Biewer, H., 2005. Diaspore and gap availability are limiting species richness in wet 662 

meadows. Folia Geobot. 40, 13–34. 663 

Pywell, R.F., Bullock, J.M., Roy, D.B., Warman, L., Walker, K.J., Rothery, P., 2003. Plant traits as predictors 664 

of performance in ecological restoration. J. Appl. Ecol. 40, 65–77. 665 

Pywell, R.F., Bullock, J.M., Tallowin, J.B., Walker, K.J., Warman, E.A., Masters, G., 2007. Enhancing 666 

diversity of species-poor grasslands: an experimental assessment of multiple constraints. J. Appl. 667 

Ecol. 44, 81–94. 668 

R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for 669 

Statistical Computing, Vienna, Austria. 670 

Schaffers, A.P., Sýkora, K.V., 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil 671 

reaction: a comparison with field measurements. J. Veg. Sci. 11, 225–244. 672 

Schmiede, R., Otte, A., Donath, T.W., 2012. Enhancing plant biodiversity in species-poor grassland 673 

through plant material transfer - the impact of sward disturbance. Appl. Veg. Sci. 15, 290–298.  674 

Schnoor, T., Bruun, H.H., Olsson, P.A., 2015. Soil Disturbance as a Grassland Restoration Measure—675 

Effects on Plant Species Composition and Plant Functional Traits. PLOS ONE 10, e0123698.  676 

Shepherd, M. a., Hatch, D. j., Jarvis, S. c., Bhogal, A., 2001. Nitrate leaching from reseeded pasture. Soil 677 

Use Manage. 17, 97–105.  678 



Symonds, M.R.E., Moussalli, A., 2011. A brief guide to model selection, multimodel inference and model 679 

averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 680 

13–21.  681 

Thompson, K., 1987. Seeds and Seed Banks. New. Phytol. 106, 23–34. 682 

UK Rural Development Service staff, 2010. Arable reversion to species rich grassland: establishing a sown 683 

sward (TIN067), Natural England Technical Information Note TIN067. Natural England. 684 

Wagner, M., Pywell, R.F., Knopp, T., Bullock, J.M., Heard, M.S., 2011. The germination niches of grassland 685 

species targeted for restoration: effects of seed pre-treatments. Seed Sci. Res. 21, 117–131.  686 

Woodcock, B.A., McDonald, A.W. & Pywell, R.F. 2011. Can long-term floodplain meadow recreation 687 

replicate species composition and functional characteristics of target grasslands? J. Appl. Ecol. 688 

48, 1070-1078. 689 

Young, T.P., Petersen, D.A., Clary, J.J., 2005. The ecology of restoration: historical links, emerging issues 690 

and unexplored realms. Ecology Lett. 8, 662–673.  691 

Zar, J.H., 2007. Biostatistical Analysis, 5th ed. Prentice Hall, Inc., Upper Saddle River, New Jersey. 692 

 693 


	postprint cover - Elsevier 1111
	document

