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Abstract

Water level from sea ice-covered oceans is particularly challenging to retrieve with

satellite radar altimeters due to the different shapes assumed by the returned signal

compared with the standard open ocean waveforms. Valid measurements are scarce in

large areas of the Arctic and Antarctic Oceans, because sea level can only be estimated

in the openings in the sea ice (leads and polynyas). Similar signal-related problems affect

also measurements in coastal and inland waters.

This study presents a fitting (also called retracking) strategy (ALES+) based on a

subwaveform retracker that is able to adapt the fitting of the signal depending on the sea

state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive

Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied

to Envisat and ERS-2 missions.

The validation in a test area of the Arctic Ocean demonstrates that the presented

strategy is more precise than the dedicated ocean and sea ice retrackers available in the

mission products. It decreases the retracking open ocean noise by over 1 cm with respect

to the standard ocean retracker and is more precise by over 1 cm with respect to the

standard sea ice retracker used for fitting specular echoes. Compared to an existing open

ocean altimetry dataset, the presented strategy increases the number of sea level retrievals

in the sea ice-covered area and the correlation with a local tide gauge. Further tests

against in-situ data show that also the quality of coastal retrievals increases compared to

∗©2018 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

∗∗This is the accepted version of the manuscript identified as https://doi.org/10.1016/j.rse.2018.02.074
and available at https://www.sciencedirect.com/science/article/pii/S0034425718300920

Preprint submitted to Remote Sensing of Environment April 11, 2018



the standard ocean product in the last 6 km within the coast.

ALES+ improves the sea level determination at high latitudes and is adapted to fit

reflections from any water surface. If used in the open ocean and in the coastal zone,

it improves the current official products based on ocean retrackers. First results in the

inland waters show that the correlation between water heights from ALES+ and from

in-situ measurement is always over 0.95.

Keywords: Satellite Altimetry, retracking, subwaveform retracker, validation, tide

gauge, Leads, Arctic Ocean, ALES;

1. Introduction

Sea level is an Essential Climate Variable (ECV) regarded as one of the main indi-1

cators of climate variability (Cazenave et al., 2014). For more than 25 years, traditional2

measurements obtained by means of in-situ pressure gauges have been supported by the3

repeated global remotely sensed estimations from the radar signals registered onboard4

satellite altimeters. This has lead to significant advancements in our knowledge of the5

seasonal and interannual sea level fluctuations (Vinogradov & Ponte, 2010; Ablain et al.,6

2016), of the regional distribution of trends in a changing climate (Palanisamy et al.,7

2015) and of the mid to large scales of geostrophic circulation (Pascual et al., 2006).8

The basic concept of this remote sensing technique considers the sea surface height9

(SSH) as the difference between the height of the satellite referenced to the earth ellipsoid10

and the distance (range) between the satellite centre of mass and the mean reflecting11

surface. The SSH has then to be corrected for instrumental, atmospheric and geophysical12

effects. For a full description of the corrections the reader is referred to Fu & Cazenave13

(2001). The progress of satellite altimetry has been fostered by the developments in orbit14

determination (Rudenko et al., 2014), in the corrections (Handoko et al., 2017) and in15

the range retrieval, based on the fitting of a functional form to the received signal in a16

procedure called retracking (Cipollini et al., 2017).17

The processing of the echoes sent by pulse-limited radar altimeters (i.e. every radar18

altimeter before the launch of CryoSat-2 in April 2010 and, more recently, Sentinel-3A) is19

well known in the open ocean, where the shape of the received signal resembles the Brown-20

Hayne (BH) model (Brown, 1977; Hayne, 1980) perturbed by Rayleigh noise (Quartly21

et al., 2001), characterised by a steep leading edge and a slowly decaying trailing edge.22
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Departures of the received signal (also called ’waveform’, a sampled time series whose23

resolution cell is called ’gate’) from the BH shape are instead found in the presence of24

sea ice and in the proximity of land (i.e. both in coastal and inland waters) (Boergens25

et al., 2016; Laxon, 1994b). The common feature is the presence of the so-called ’bright26

targets’ or ’hyperbolic targets’: points with a higher backscatter coefficient that perturb27

the expected shape travelling along the trailing edge as they appear in the illuminated28

area, eventually constituting the main leading edge.29

These retracking issues, together with the degradation of some corrections in the same30

areas, have been a major impediment in expanding our knowledge of sea level variability31

in the coastal ocean and in the Arctic Ocean. These are regions of primary importance,32

since a growing number of people and infrastructures are located at the coast (Neumann33

et al., 2015) and since changes in the Arctic Ocean dynamics significantly affect the global34

climate (Marshall et al., 2014).35

This study is motivated by the need of increasing the quality and the quantity of sea36

level retrievals in the Arctic Ocean. It focuses on a retracking procedure that is able37

to retrieve the ranges of pulse-limited radar altimeters reflected from the leads (water38

apertures in sea ice) while improving the retracking in open and coastal ocean as well.39

Given the similarities of the problem, we aim also at demonstrating the validity of this40

strategy for the retrieval of water level in inland waters. The result is the definition of a41

single algorithm that is able to adapt the estimation to any kind of water returns.42

Here, our efforts are aimed at improving the times series for 1995-2010 by fitting the43

signals from the altimeters on two European Space Agency (ESA) missions: ERS-2 and44

Envisat, which have occupied the same ground tracks of a 35-day repeat cycle between45

latitudes 82◦ S and 82◦ N.46

Previous and on-going studies share the objective of improving the quality of satellite47

altimetry at high latitudes. Giles et al. (2007) applied a dedicated empirical functional48

form to lead waveforms, separating the typical peaky shape into a Gaussian and an49

exponential function. For the open water points though, they used the standard product,50

which adopts the BH fitting. The use of heterogenous retrackers leads to a significant51

bias, which was quantified in 15±11 cm. Two different retrackers for ocean and leads52

and a consequent bias adjustment were also the choice of Peacock & Laxon (2004).53

More recently, Cheng et al. (2015) edited the Envisat data from the Radar Altimetry54
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Database System (RADS) without applying a specific retracker, while Poisson et al.55

(2017) (personal communication) are also aiming at a homogenous retracking strategy,56

as this paper, by using the modified BH proposed by Jackson et al. (1992), in which the57

peakiness of the waveform is modelled by a surface roughness parameter.58

Our starting point is the Adaptive Leading Edge Subwaveform (ALES) retracker by59

Passaro et al. (2014), which is based on a BH fitting of a portion of the echo in order60

to avoid bright targets on the trailing edge of the waveforms. The ALES-reprocessed61

altimetry data have already been validated against in-situ measurements from tide gauges62

(TGs) and used for coastal sea level variability studies (Passaro et al., 2015a, 2016). The63

potential for the application to peaky echoes was already identified in a paper by Passaro64

et al. (2015b), where ALES was applied on the tidal flats in the German Bight, whose65

still waters produce returns analogous to lead echoes. Here, we develop a new version66

of the algorithm (ALES+) to improve the fitting of the peaky waveforms and abate the67

noise in the open ocean compared to the standard processing.68

In the framework of the ESA Sea Level Climate Change Initiative (SL CCI), ALES+69

will be the retracker of choice for Envisat and ERS-2 missions in the DTU/TUM high70

latitude sea level product (Rose et al., in preparation). Therefore, the main part of this71

paper is dedicated to the description and validation of the ALES+ solution in a test zone72

of the Arctic Ocean. We also evaluate the performances at the coast and in the inland73

waters, in order to exploit ALES+ as a homogenous retracker solution for any kind of74

water surfaces.75

The dataset and the areas of study are defined in Section 2; The ALES+ procedure76

and the methodologies followed to identify leads among the sea ice are described in Section77

3; validation and discussion follow in Section 4, while Section 5 derives the conclusions.78

2. Areas of Study and Datasets79

2.1. Areas of Study80

As a main area of study the surroundings of the Svalbard Islands (the Svalbard test81

area, latitude limits: 78 − 82◦N , longitude limits: 0 − 20◦E) are chosen, in order to82

validate ALES+ in the sea ice and in the open ocean. This geographical box presents83

both constant open water and sea ice. The presence of a TG, which is very rare at such84

latitudes, also allows a validation in areas that are seasonally covered by sea ice. Figure85
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1 (a) shows the minimum (September 2007) and maximum (February 1998) extent of the86

sea ice during the period considered in this study, provided by the Sea Ice Index Data87

and Image Archive at NSIDC (Fetterer et al., 2016) and is given as a monthly sea ice88

extent polygon. Also the TG Ny Ålesund used in the validation is shown in Figure 1 (a).89

To validate ALES+ as a coastal retracker, the coastal waters of a region in the North-90

East Atlantic Ocean within 70 km of the coast are considered, due to the availability of91

local TG data with high temporal resolution. Figure 1 (b) displays the TGs used in the92

study and highlights in red the analysed segments of the altimetry tracks.93

Finally, the Mekong River is taken as example of an inland water application in order94

to allow the comparison with previous studies that exploit the synergy between altimetry95

and in-situ stations, which are shown in Figure 1 (c).96

2.2. Satellite Altimetry Data97

The waveforms and all the additional information needed to apply the ALES+ al-98

gorithm are taken from the ESA Sensor Geophysical Data Records (SGDR) of ERS-299

REAPER (Femenias et al., 2014) and Envisat version 2.1. For Envisat the entire dura-100

tion of the phase 2 (May 2002 - October 2010) is considered; for ERS-2 the REAPER101

data cover the period from September 1995 to July 2003. The RADS altimetry database102

(http : //rads.tudelft.nl/) with its default settings is used to provide an alternative sea103

level anomaly (SLA, see Section 3.3) product for comparisons..104

2.3. In-situ Data105

In the sea ice region Revised Local Reference (RLR) TG data of the Ny Ålesund sta-106

tion are downloaded as monthly averages from the Permanent Service for Mean Sea Level107

(PSMSL) at http://www.psmsl.org/data/obtaining/stations/1421.php. In the coastal re-108

gion TG records were obtained from the UK National Tide Gauge Network archives at109

the British Oceanographic Data Centre (BODC) and the University of Hawaii Sea Level110

Center (UHSLC). The temporal resolution of the sea level data is 15 minutes for records111

stored at the BODC and 1 hour for those stored at the UHSLC. Here, we use a set of 10112

TGs with nearly continuous records of sea level over the period 1995-2010, which have113

been visually inspected for shifts and outliers. In the Mekong river, telemetric gauge data114

is provided by the Mekong River Commission (MRC, http://ffw.mrcmekong.org/). The115

latter has a daily resolution, but no absolute height reference.116
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Figure 1: (a) The Svalbard test area in the Arctic Ocean. The dotted area with red border is the

minimum sea ice cover, while the wavy area with blue border is the maximum. The red dot indicates

the location of the Ny Ålesund TG used for validation. (b and c) Location of the TGs used for coastal

and inland waters validation and (red) along-track extension of nominal Envisat and ERS-2 tracks used

for comparison with in-situ data.

6



This kind of in-situ data are widely used by the Scientific Community as valida-117

tion means. All types of TG (acoustic, pressure, float, and radar) can measure sea-118

level variations with an accuracy of at least 1 cm (see the IOC Manual on Sea Level at119

http : //www.psmsl.org/train and info/training/manuals), which is significantly bet-120

ter than the accuracy achieved by altimeters. Telemetric river monitoring system is con-121

sidered to reach a mm accuracy (see http : //www.radio−data−networks.com/products/122

flooding/radar − based− river − level −monitoring − telemetry/)123

3. Methodology124

3.1. ALES+ Retracker125

3.1.1. The Brown-Hayne model126

ALES+ inherits the functional form used to fit the waveforms from the BH model.127

In order to clarify the terminology in use, we report here the corresponding Equations.128

The return power Vm is129

Vm (t) = aξPu
[1 + erf (u)]

2
exp (−v) + Tn (1)

where130

erf (x) = 2
1√
π

x∫
0

e−t
2

dt aξ = exp

(
−4 sin2 ξ

γ

)
γ = sin2 (θ0)

1

2 · ln (2)
(2)

u =
t− τ − cξσ2

c√
2σc

v = cξ

(
t− τ − 1

2
cξσ

2
c

)
(3)

σ2
c = σ2

p + σ2
s σs =

SWH

2c
(4)

cξ = bξa a =
4c

γh
(

1 + h
Re

) bξ = cos (2ξ)− sin2 (2ξ)

γ
(5)

where c is the speed of light, h the satellite altitude, Re the Earth radius, ξ the off-131

nadir mispointing angle, θ0 the antenna beam width, τ the Epoch with respect to the132
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nominal tracking reference point (linked to the range), σc the rise time of the leading133

edge (depending on a term σs linked to the Significant Wave Height (SWH) and on the134

width of the radar point target response σp), Pu the amplitude of the signal (linked to135

the backscatter coefficient σ0) and Tn the thermal noise level.136

The variables that can alter the slope of the trailing edge in BH are all contained in137

the term cξ. It is important to note that cξ has also a small effect on u via the term cξσ
2
c .138

This means that changes in cξ also slightly affect the position of the retracking point τ139

along the leading edge. An approach to fit the trailing edge slope was also attempted in140

other studies, such as in the empirical 5-parameter model by Deng & Featherstone (2006),141

in which nevertheless a change in the parameter related to the slope of the trailing edge142

would not cause any change in the location of the retracking point on the leading edge.143

In Equations 1-5, the trailing edge slope variability is constrained by the fact that144

θ0 is given and the variations of ξ are slow and must be smaller than 0.3◦ (Dorandeu145

et al., 2004). While these constraints correctly model a typical open ocean response, they146

prevent the fitting of peakier waveforms. Therefore, in order to be able to fit waveforms147

with a steep trailing edge slope, ALES+ preliminary estimates cξ. The steps followed by148

ALES+ are the following:149

1. Detection of the leading edge150

2. Choice of cξ151

3. First retracking of a subwaveform restricted to the leading edge, i.e. first estimation152

of the SWH153

4. Extension of the subwaveform using a linear relationship between width of the154

subwaveform and first estimation of the SWH155

5. Second retracking of the extended subwaveform, i.e. precise determination of τ ,156

SWH and Pu157

Steps 1 and 2 are described respectively in Section 3.1.2 and Section 3.1.3. Steps 3158

to 5 are unchanged compared to the ALES retracker (Passaro et al., 2014) and they are159

recalled in Section 3.1.4. A flow diagram of the main steps followed by ALES+ to retrack160

each waveform is shown in Figure 2.161
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Figure 2: Flow diagram of ALES+ retracking procedure for each waveform. PP stands for Pulse Peaki-

ness, Norm PP for Pulse Peakiness computed on the normalised waveforms. SOLED and NOLED are the

leading edge detection procedures for standard and non-standard ocean waveforms described in Section

3.1.2. The steps highlighted in green are described in Section 3.1.3 and the ones in grey, analogous to

ALES in Passaro et al. (2014), are recalled in Section 3.1.4.

3.1.2. Leading edge detection162

Since ALES+ is based on the selection of a subwaveform, it is essential that the163

leading edge, containing the information on the range between satellite and reflecting164

surface, is correctly detected in all cases. Lead waveforms and ocean/coastal waveforms165

are characterised in this respect in two different ways: in the first case, the lead return166

(if at nadir) clearly dominates any other return, but the decay of the trailing edge is167

extremely quick; in the latter, the leading edge is better characterised, but spurious168

strong returns can precede (if from icebergs, ships, or targets at a higher height than the169
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water level) or follow (if from areas of the footprint characterised by different backscatter170

characteristics) the main leading edge, whose trailing edge decreases very slowly.171

To distinguish between the two cases, a Pulse Peakiness (PP) index is computed in172

ALES+ following the formula in Peacock & Laxon (2004). The order of magnitude of PP173

ranges from 10−1 for waveforms in which the peak power is comparable to the average174

backscatter in the other waveform gates, to over 101 for echoes dominated by a strong175

specular reflector. Waveforms with PP<1 are sent to the standard ocean leading edge176

detection (SOLED) procedure, the others are sent to the non-standard ocean leading edge177

detection procedure (NOLED). This is not a physical classification aimed at detecting178

leads, but only a way to aid the correct detection of the leading edge; moreover, the179

retracking (steps 3-5 in Section 3.1.1) remains the same in both cases.180

Non-standard ocean waveforms are in our case not only the leads (peaky waveforms),181

but any waveform whose trailing edge decay is more pronounced than in the standard182

ocean return. We do not exclude the waveforms coming from sea ice, since these are183

excluded in the post-processing by the classification of Section 3.2. The aim is therefore184

different from Peacok and Laxon (2004), in which a strict classification is needed in order185

to send each kind of waveform to a different retracker and to avoid the detection of false186

leads, which would cause inconsistencies in the sea level retrieval.187

The steps followed by NOLED are the following:188

1. The waveform is normalised with normalisation factor N, where N = 1.3 * me-189

dian(waveform)190

2. The temptative starting point of the leading edge, defined as startgate, is assigned191

to the first gate higher than 0.01 normalised power units compared to the previous192

gate193

3. If any of the subsequent 4 gates after the selected startgate have a normalised power194

below 0.1 units, the algorithm goes back to step 2 and a new startgate is found195

4. The end of the leading edge (stopgate) is fixed at the first gate in which the deriva-196

tive changes sign (i.e. the signal start decreasing and the trailing edge begins), if197

the change of sign is kept for the following 3 gates.198

The steps followed by SOLED are the following:199

1. The waveform is normalised with normalisation factor N, where N = max(waveform)200
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2. The stopgate is the maximum value of the normalised waveform201

3. Going backwards from stopgate, the startgate is the first gate in which the derivative202

is lower than 0.001 units203

N=1.3*median(waveform) was chosen empirically as a reference power whose value204

is close to the maximum of the leading edge also in case of high trailing edge noise.205

Note that for NOLED waveforms the maximum of the leading edge does not necessarily206

correspond to the maximum power registered in the waveform, since it may come from207

spurious coastal reflections and/or noise in the trailing edge.208

3.1.3. Choice of cξ209

The non-standard ocean waveforms undergo a further preliminary step: cξ is esti-210

mated externally. Beforehand, a further check on the PP recomputed on the normalised211

waveform (Norm PP >0.3) is computed in order to avoid, where possible, the estimation212

of cξ in the presence of other peaks in the trailing edge. Norm PP is useful because by213

using a normalised waveform it is easier to set up a threshold for all peaky waveforms214

regardless of their maximum backscatter power, which greatly differ between specular215

reflections (Passaro et al., 2017). The threshold was determined by empirical observation216

of waveforms, of which Figure 3 provides an example.217

In the external estimation, the full waveform is fitted using a simplified BH model up218

to Equations 4, having 4 unknowns: τ ,σc,Pu, cξ. From this result, only cξ is kept and219

used as an input in the remaining steps of the ALES+ algorithm.220

If Norm PP <0.3, cξ is computed from Equations 5.221

cξ can be therefore estimated for all the waveforms that successfully pass through222

SOLED and if Norm PP >0.3, i.e. all the peaky waveforms in which one clear leading223

edge can be identified. Since the estimation of cξ is suitable for peaky waveforms, irregular224

waveforms where no leading edge is identifiable cannot be correctly fitted by ALES+.225

Figure 4 shows the estimations of cξ for cycle 35 of Envisat (February-March 2005). The226

areas where cξ is estimated are all located in the sea-ice-covered region.227

3.1.4. Subwaveform retracking228

Steps 3 to 5 are analogous to the ALES retracker. In step 3, a first subwaveform from229

startgate to stopgate is fitted with the BH model having τ ,σc,Pu as unknowns.230
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The SWH derived from σc and τ are used in step 4 to compute the new stopgate using231

the following linear relationship:232

Stopgate = Ceiling( Tracking point + 2.4263 + 4.1759× SWH ) (6)

for Envisat and:233

Stopgate = Ceiling( Tracking point + 3.1684 + 2.3203× SWH ) (7)

for ERS-2. The Tracking point is the gate corresponding to the estimated Epoch τ .234

Finally, in step 5 a new fitting is performed using a subwaveform up to the new235

stopgate and the final estimations of τ ,σc and Pu are obtained. Note that in every fitting,236

the subwaveform is oversampled by means of the Akima interpolation by Akima (1970) in237

order to increase the redundancy of the information across the leading edge as described238

in Passaro et al. (2015b); in ALES+, the waveforms are oversampled by a factor of 8 for239

both Envisat and ERS-2.240

Figure 5 shows three examples of ALES+ waveform fitting for three different trailing241

edge slope conditions typical of open ocean, coast and leads. A black vertical line high-242

lights the location of the retracking point estimated by ALES+. In the lead case (Figure243

5c), it is evident how the retracking point (Epoch) is not located at the mid-point of the244

visible leading edge, since the retracking point τ and cξ are present both in the expo-245

nential term v and in the argument of the error function u as described in Section 3.1.1.246

This effect is not simply empirical, but is related to the mean square slope (MSS) of the247

sea surface, as shown in Jackson et al. (1992). In the latter, the so-called trailing edge248

parameter, which has an effect on the retracking point as well, depends explicitly on the249

MSS and hence on the surface roughness. Indeed, using the mid-point of the ’visible’250

leading edge as the retracking point of any peaky waveform has no physical meaning,251

because the waveform, i.e. a discrete time series, is in this case highly undersampled: the252

information on the position of the true maximum power and consequently the location253

of the true mid-point of the leading edge cannot be retrieved. ALES+ cannot create new254

information and solve the problem of the undersampled leading-edge, but it can perform255

a consistent guess of τ given cξ, using an existing waveform model and adapting it to a256

more general case.257
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Figure 3: Normalised waveforms and their pulse peakiness (Norm PP). Left: a peaky waveform in which

cξ can be estimated by ALES+; Right: a waveform with a peak following the trailing edge.

3.1.5. Sea State Bias recomputation258

The Sea State Bias (SSB) is among the time-variable corrections that are applied to259

SSH estimates from satellite altimetry. SSB is linked with both the signal processing of260

the radar echo and the interaction between the latter and the waves. Given the theoretical261

complexity and the different sources of SSB, the accepted procedure to derive an SSB262

correction is to infer an empirical relationship between the height error due to SSB,263

and the SWH and wind speed (derived from σ0) estimated from the retracking of each264

altimetry mission. Sandwell & Smith (2015) have studied the relationship between the265

parameters estimated by the retracking algorithms (range, SWH and σ0) and have found266

significant correlated errors. In the same study, they argue that correlated errors in the267

retrackers explain a significant part of the SSB. It is therefore fundamental to correct the268

ranges for the SSB corresponding to SWH and σ0 values estimated by the same retracker.269

The SSB applied to the ALES+ data is obtained by bilinear interpolations from a270

look-up table in which this correction is a function of SWH and Wind Speed (Labroue,271

2007). The look-up table could be obtained from the SGDR data by tabulating the values272
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Figure 4: Estimations of cξ for cycle 35 of Envisat. In the plot, cξ is set to 0 for NOLED waveforms and

for waveforms in which Norm PP <0.3, because cξ is in these cases not estimated.

assumed by the given SSB correction for each value of SWH and Wind. In order to be273

more accurate, the authors have obtained the look-up table with permission from Collecte274

Localisation Satellite (CLS). When performing the bilinear interpolations, SWH and σ0
275

obtained from ALES+ were used. σ0 was converted to wind speed using the algorithm276

described in Abdalla (2012). This follows the procedure applied and validated against277

in-situ data for ALES Envisat in Gómez-Enri et al. (2016). For ERS-2, we use the same278

look-up Table as for Envisat mission, since the one used in the REAPER product has279

not been published (Gilbert et al., 2014).280

3.2. Waveform classification281

To allow the validation of the retracking strategy in the sea ice region, lead and282

open ocean waveforms need to be isolated by means of a classification algorithm. For283

our purposes, given that sea ice waveforms can be hard to distinguish from open ocean284

returns (Drinkwater, 1991; Laxon, 1994a), we first separate the ice-covered region from the285

open ocean using the daily ice concentration grids from the Global Sea Ice Concentration286
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Figure 5: Examples of ALES+ waveform fitting for three different trailing edge slope conditions typical

of open ocean (a), coast (b) and leads (c). A black vertical line highlights the location of the retracking

point estimated by ALES+.

Climate Data Records 1978-2015 (v1.2, 2015) of the Norwegian and Danish Meteorological287

Institutes (available online from EUMETSAT Ocean and Sea Ice Satellite Application288

Facility http://osisaf.met.no). The sea ice area is defined by all the points in the grid289

with a sea ice concentration over 15% (Fetterer et al., 2016).290

In this study, the following classification criteria are used for both Envisat and ERS-2:291

• The samples within the sea ice area characterised by PP>20 and σc <3 ns are292

classified as leads;293

• The samples outside the sea ice area characterised by PP<1.5 and σ0 <15 dB are294

classified as open water295

Any other point is either classified as unknown or as sea ice and is therefore not296

considered in our analysis. The criterion on σ0 is applied to remove spurious data near297

the ice edge and in the ice pack (Chelton & McCabe, 1985). Additional discussion and298

validation of the classification method will be provided in Rose et al. (in preparation).299
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3.3. Corrections applied to the range300

While the retracking technique at the centre of this investigation influence the range301

and the SSB, as mentioned in the introduction other corrections are needed in order to302

obtain a sea level that is comparable to external sources for validation. In particular, we303

define the SSH as follows:304

SSH =Orbit altitude − Corrected Range − (Solid Earth Tide + Load Tide + Ocean Tide) (8)

where305

Corrected Range =Range + Dry tropospheric correction + Wet Tropospheric Correction +

+ Sea State Bias + Ionospheric correction
(9)

Note that the correction that eliminates the static and dynamic response of the sea306

level to the atmospheric wind and pressure forcing (often called Dynamic Atmosphere307

Correction) is not applied, since the water level measured by pressure gauges used for308

validation is also subjected to these factors.309

We use the corrections for the wet and dry troposphere and for the ionosphere from310

the models available in the SGDR. The SSB is recomputed for ALES+ as previously311

described. The sea level is also corrected for tides: the FES2014 model is used in the312

Svalbard test area, given the improvements brought by the model in the Arctic region313

(Carrere et al., 2015); the Empirical Ocean Tidal model EOT2011a (Savcenko & Bosch,314

2012) is used in the coastal validation, since it has scored best in a recent validation effort315

against coastal TGs (Stammer et al., 2014). Finally, the Sea Level Anomaly (SLA), i.e.316

the variation of the SSH with respect to a local mean, is obtained by subtracting the317

Mean Sea Surface model DTU15 to the SSH (Andersen et al., 2016).318

4. Validation and discussion319

4.1. Svalbard test area320

4.1.1. Comparison among retrackers321

The first index that proves the quality of the retracking is the fitting error on the322

leading edge. The fitting error is a measure of how close the fitted waveform is to the323
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real signal and corresponds to the normalised square root of the difference between the324

modelled waveform and the real signal along the leading edge. It has already been used325

in Passaro et al. (2015a) for outliers detection. In Figure 6, the histogram of the fitting326

error for the waveforms classified as leads is compared to the one for the open ocean327

waveforms with low SWH, whose leading edge is therefore more similar to the peaky328

case. The fitting error of lead waveforms is in the vast majority of instances lower than329

for the low-SWH ocean case, which proves the capability of ALES+ to fit the leading330

edge of all the peaky waveforms. The statistics for ERS-2 are slightly worse than for331

Envisat: this can be attributed to the fact that the original ERS-2 data are defined on332

half the number of gates (64) compared to Envisat (128).333

Firstly, we compare our retracked data with the SGDR output in the sea ice domain.334

In particular, concerning SGDR we consider both the ocean retracker and the sea ice335

retracker, which was specifically designed for the fitting of specular waveforms by Laxon336

(1994a) and included in the official ESA products from Envisat and ERS-2. This retracker337

was used to estimate sea level from leads by Peacock & Laxon (2004). Given the absence338

of network of high-resolution in-situ data at such latitudes, we validate the retrackers339

following the procedure of Deng & Featherstone (2006) by means of an independently340

surveyed reference . We use GOCO5s, the latest release of the GOCOs geoid model,341

which is independent from altimetry, being based exclusively on satellite gravimetry data342

(Pail et al., 2010), although as such it is not able to observe the shorter wavelengths343

(below 100 km) detected by the altimeter. The GOCO5s geoid height are interpolated to344

the altimetry tracks in the whole area and the differences between SSH and geoid height345

are computed. These differences of course include the mean dynamic topography and346

the uncertainties in the corrections to the altimetry data. Nevertheless what matters347

for our analysis are the differences among the retrackers and the corrections do not348

have an influence, since exactly the same corrections are applied to every dataset. In349

order to make our results independent of the performances of the waveform classification,350

we compute the differences for any point with PP>1 and we only keep the additional351

criteria of σc <3 ns, to be sure that we are dealing with peaky echoes. After removing352

outliers (absolute value of SLA above 2 m), the Median Absolute Deviation (MAD) of353

the differences is computed for every cycle and the average values are shown in Table354

1. For both missions ALES+ is the best performing dataset, improving not only the355
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Table 1: Median Absolute Deviation between GOCO5s geoid heights and SSH data retracked with

ALES+, SGDR-Ocean and SGDR-Seaice retracker for peaky waveforms in the Svalbard test area.

ALES+ SGDR-Ocean SGDR-Seaice

ERS-2 0.2620 m 0.3659 m 0.2901 m

Envisat 0.2142 m 0.2961 m 0.2364 m

results of the ocean retracker (more than 7 cm improvement for Envisat, more than 10356

cm improvement for ERS-2), which is not able to fit peaky waveforms properly, but also357

of a dedicated solution (more than 2 cm improvement for Envisat against the sea ice358

retracker, 2.8 cm for ERS-2).359

To further investigate the noise performances of ALES+ compared to a standard ocean360

retracker, the analysis of repetitive tracks in the open sea is needed. For this purpose, we361

limit our area of study using only the track segments that are out of the maximum extent362

of the sea ice, as shown in Figure 7. As a noise index we use the standard deviation363

of the high frequency data within a 1-Hz block. For comparison, the same analysis is364

performed using the SGDR ranges (from the ocean retracker) corrected and processed365

in the same way as ALES+ ranges. In the figure, the maps in (a) and (b) show for366

each 1-Hz point in ERS-2 and Envisat the median of the difference between the noise of367

the ocean retracker (SGDR) and the noise of the ALES+ retracker (ALES+). Positive368

numbers therefore mean that SGDR is noisier than ALES+. The histograms considering369

each 1-Hz point are shown in (c) and (d). In both missions, ALES+ is less noisy than370

SGDR in over 70% of the domain and in 20% of the domain it improves by over 3 cm.371

The maps show that, although the best improvements are reached at the border with372

the maximum sea ice extent, ALES+ is superior to the standard ocean retracking also373

in the open ocean. Overall, the median SGDR noise is 6.23 cm in Envisat and 9.18 cm374

in ERS-2, while the ALES+ noise is 5.08 cm in Envisat and 7.95 cm in ERS-2, meaning375

over 1.1 cm of improvement.376

This demonstrates that the ALES+ compromise between a sufficient width of the377

subwaveform to characterise the signal. A limited influence of the noise in the trailing edge378

in the fitting allows a more precise estimation of the open ocean sea level, if compared with379

a full-waveform retracker. This clear improvement in the open ocean was not evident in380

Passaro et al. (2014) for ALES. The reason lies in the recomputation of the SSB correction381
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using the ALES+ SWH and backscatter coefficient. We demonstrate this in Figure 9,382

where the standard deviation of the 1-Hz points is plotted against the SWH for ALES+383

corrected by the standard SSB and by the recomputed SSB. For comparison, the SGDR384

statistics are also shown. From the linear fit it is evident that without a recomputed385

SSB correction ALES+ is slightly noisier than SGDR, while the new correction brings a386

strong improvement.387

4.1.2. Comparison of sea level products388

The main application of ALES+ is the provision of improved ranges that will be used389

to compute SLA in the SL CCI DTU/TUM high latitude sea level product. We evaluate390

the improvements in this section. We take RADS as an open ocean sea level reference391

that flags coastal and sea ice data, with the objective to show what improvements a392

dataset including these areas can bring to the sea level records.393

We apply a gridding procedure to the dataset. First of all, outliers are treated by a394

MAD filter. The RADS data are per default already post-processed so no further outlier395

detection to this dataset is applied. Subsequently, for each week the SLA values are396

gridded using a least squares collocation (kriging) method with a second order Markov397

covariance function (Andersen, 1999):398

c(r) = C0

(
1 +

r

α

)
e−r/α (10)

where C0 is the signal variance, r is the spatial distance, and α is the correlation399

length. The covariance scale is derived from the data variance, the correlation length is400

set to 500 km. Each grid cell measures 0.1◦ latitude × 0.5◦ longitude. For reference, we401

process RADS data in the same way. The collocation error is displayed in Figure 8 (a)-402

(b), while (c)-(f) show the number of valid measurements used for each grid point. The403

much higher number of measurements used by ALES+ is simply explained by the fact404

that it uses high-frequency measurements (18 Hz for Envisat, 20 Hz for ERS-2), while405

RADS is based on 1-Hz averages. This allows ALES+ to retrieve much more points in406

the sea ice-covered regions. Even if the number of measurements is much lower than in407

the open ocean, the error is kept below 2 cm also in most of the northern and coastal408

areas of the domain. Overall, the mean error for ALES+ in the sea ice covered zone is409

2.1 cm (2.7 cm for RADS) while in the open ocean domain the mean error is 0.9 cm (1.3410

cm for RADS).411
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Finally, we verify the accuracy of our sea level estimations by comparison with the Ny412

Ålesund TG. The location of the TG is visible in Figure 1(a). SLA from ALES+, gener-413

ated from the range using the corrections in Section 3.3 is averaged in space in a radius414

of 350 km around the TG and in time to generate a monthly time series. The radius of415

350 km is needed to perform a regional average that includes both sea ice cover and open416

ocean areas and the choice was already justified in the same area by Cheng et al. (2015).417

The agreement of the time series (Figure 10) is proved by a correlation of 0.85. For418

comparison, we also build a time series using RADS. Indeed, the better correlation using419

ALES+ is expected, given that RADS is not optimised for the Arctic Ocean: the benefit of420

the ALES+ retracking is particularly evident in the winter months of 1996 and 1998. As421

mentioned in Section 4.1, the winter of 1998 had the maximum sea ice extent; a significant422

part of the area considered for the comparison (the coast west of the Svalbard islands) was423

covered by sea ice and therefore the use of a standard altimetry product is more problem-424

atic. In the last decade, most of the area was ice-free during winter as well (not shown,425

see for example https : //nsidc.org/data/seaiceindex/archives/image select.html) and426

therefore the RADS and ALES+ time series are more similar.427

4.2. Coast428

In this Section, the performances of ALES+ in the coastal ocean are tested by com-429

parison with the set of TGs in Figure 1 (b). The comparison is performed for detided430

time series of sea level. The amplitudes and phases of the tidal constituents in the tide431

gauge records were estimated on a year-by-year basis by harmonic analysis using the432

program t-tide (Pawlowicz et al., 2002). Harmonic analysis produces non-tidal residuals433

that are more representative of the true variability that can then be used as our ground434

truth against which we assess the altimetry data. Only constituents with a signal-to-noise435

ratio equal or larger than three were used to reconstruct the tidal signal. This guarantees436

the estimation of the most important constituents, while less energetic tidal constituents437

are not well resolved given the observations and their noise level and thus it is better to438

remove them.439

At each tide gauge station, the performance of the altimetry data is assessed as a440

function of distance from the coast by assigning such data to distance bands of 1 km441

width starting from the 0-1 km band. As shown in Figure 1 (b), only data that fall within442

70 km of the TG are used. For each altimetry pass we obtain one altimetry value by443
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Figure 6: Error of the leading edge fit computed w.r.t. the normalised waveform for echoes classified as

leads (red) and as open water with SWH<0.5 m (blue) in ERS-2 (upper plot) and Envisat (lower plot).

averaging all the high frequency records falling within the selected distance band. Records444

with an absolute SLA larger than 2 m or three standard deviations above the mean were445

rejected prior to computing the average. The corresponding tide gauge matching value is446

obtained by linearly interpolating the tide gauge observations to the time of the altimetry447

pass. The corresponding time series for each km-band are then evaluated according to the448

Percentage of Cycles for High Correlation (PCHC): the maximum percentage of cycles449

of data that could be retained while guaranteeing a correlation with the TG time series450

of at least 0.8 (Passaro et al., 2015b).The same procedure is applied to the SGDR ocean451

retracker and to the ALES retracker as described in Passaro et al. (2014), but with the452

addition of the recomputed SSB.453

Firstly, the results are displayed in Figure 11 considering each TG-altimetry track454

couple. The values shown in the figures are the median PCHC in the last 10 km from455

the coast. Statistics vary considerably depending on the TG and satellite tracks. For456
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Figure 7: Difference of high-frequency noise in SGDR and ALES+ for ERS-2 (a,c) and Envisat (b,d).

The noise is computed as standard deviation of the 1-Hz averages. The maps in (a) and (b) show the

median of the noise difference for each 1-Hz point along the satellite tracks considering the entire period

of study. Areas characterised by seasonal or multi-year sea ice are masked out.

example PCHC is below 20% in 2 cases for Envisat and 4 cases for ERS-2. This is457

partly related to the general worse performances and loss of altimetry data in land to458

sea transitions (see for example Gómez-Enri et al. (2016)). This is not a problem for our459

analysis, in which the objective is the comparison between the retrackers. In many cases,460

the three retrackers have very similar performances. This is well known from previous461

studies such as Passaro et al. (2014): a different retracking method is not always needed.462

Nevertheless, SGDR has a better PCHC than ALES+ in only 2 cases out of 33 in Envisat463

(Fishguard-401 and Workington-704) and ERS-2 (Fishguard-160 and Lowenstoff-57). In464

several cases ALES+ and ALES are substantially better than SGDR (for example Tregde-465

543 in ERS-2 and Wick-143 in Envisat). Nevertheless there are 3 cases in Envisat and466

5 cases in ERS-2 in which ALES scores better than ALES+ by over 5%. To produce a467

final rating of the coastal performances with respect to the tide gauges, we looked at the468

median value of the PCHC considering all the tracks.469

The results are displayed in Figure 12, where a median of the PCHC considering all470

33 tracks is highlighted with a continuous line for each dataset. In terms of PCHC, the471

performances of the three retrackers are indistinguishable until 8 km from the coast. From472

8 to 2 km from the coast, ALES is the best-performing dataset, followed by ALES+, while473
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Figure 8: Collocation error estimate for (a) ALES+ and (b) RADS. The error is dependent on the

number of samples. Number of samples in each grid cell for (c) ALES+ and (d) RADS. Notice the

different color scales. (e) and (f) are the same as (c) and (d), but with saturated color scales in order to

highlight points in the sea ice-covered areas.
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SGDR is the worst-performing. In the last km, where waveforms are extremely irregular,474

but also where most of the oceanic peaky waveforms are located (Deng & Featherstone,475

2006), ALES+ is the best performing dataset.476

This is expected, since ALES+ needs to reach a compromise in the normalisation and477

leading edge detection, in order to be able to treat peaky waveforms as well, while the478

objective of ALES is to maximise the number of retracked coastal waveforms, which are479

normally characterised by strong peaks in the trailing edge.480

We further validate and compare the retracking solutions by means of the comparison481

with the geoid model. The GOCO5s geoid height are interpolated to the altimetry tracks482

in the whole coastal area of the North Sea (Latitude limits: 50-61, Longitude limits: -11483

15). We divide the domain via 5-km coastal distance bands. For each cycle of Envisat484

and ERS-2, after excluding unrealistic values of |SLA| > 2 m and SWH > 11m, we store485

the MAD of the differences between SSH and geoid height. Figure 13 show the averages486

of the results for Envisat and ERS-2. In the last 5 km to the coast, ALES scores better487

in terms of STD, and ALES+ scores second. Both are much better than the original488

SGDR data, which scores 2.7 cm worse than ALES+ for Envisat and 1.6 cm worse than489

ALES+ for ERS-2. ALES and ALES+ are of course equivalent going towards the open490

ocean and their MAD against the geoid is always lower than in SGDR.491

We conclude that in the coastal zone ALES is the best choice among the three meth-492

ods, but ALES+ scores constantly better than the current SGDR standard.493

4.3. Inland waters494

The possibility of using the same retracker to treat altimetry echoes from leads, open495

and coastal waters can be extended to retrieve water level in inland water bodies. Indeed,496

it has been shown that waveforms from rivers and small lakes are mostly quasi-specular497

or quasi-Brown (Berry et al., 2005).498

For a first investigation, we have integrated the ALES+ ranges from Envisat for the499

Mekong river in the Database for Hydrological Time Series over Inland Waters (DAHITI,500

processed at the DGFI-TUM), in which altimetric ranges are used to produce water levels501

for river and lakes using a set of corrections, outlier rejection criteria and Kalman filter502

processing as described in Schwatke et al. (2015). As a comparison, we use the results503

from the Improved Threshold Retracker (ITR), implemented selecting a threshold of 50%504

(Hwang et al., 2006), processed through DAHITI in the same way as ALES+. The ITR505
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is of common use in the reprocessing of inland water data (Hossain et al., 2014) and has506

already been used in the area of study (Boergens et al., 2016). It references a threshold507

value to the amplitude of the detected leading edge and determines the range by linearly508

interpolating between adjacent samples (Gommenginger et al., 2011).509

The comparison of the water level time series is shown in Figure 14 and the results510

in terms of root mean square (RMS) error and correlation coefficient are reported in511

Table 2, as well as the number of points in each time series. It is observed that none512

of the retrackers is able to catch the water extremes: this is due to the fact that the513

temporal resolution of Envisat (one pass every 35 days) is suboptimal compared to an in-514

situ gauge. The results of the two retrackers are comparable in terms of correlation, while515

ITR has a better RMS in two of the three stations. In Kratie, if one excludes the clear516

outlier in the time series in 2003, ALES+ RMS scores 1.37 and therefore is inline with517

the ITR result. Also the number of points in the time series is comparable between both518

retrackers in two of the three stations, while only in Mukdahan ITR has considerably519

more points. Unfortunately, the comparison with the gauges is only relative, because520

the in-situ stations lack an absolute reference. Nevertheless, the average bias between521

ALES+ and ITR changes from 1.8 m in Luang Prabang to slightly more than 0.30 m in522

Mukdahan and Kratie. The variable bias is due to the fact that, while ITR locates the523

range using always the same threshold of the waveform amplitude, the location of the524

retracking point of ALES+ varies depending on the estimated cξ, as explained in Section525

3.1.1. Further validation against absolute water levels are needed to assess whether this526

improves the accuracy of the altimeter for rivers.527
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Table 2: Comparison of water level time series in the Mekong river from Envisat retracked by ALES+

and by Improved Threshold Retracker at 50% w.r.t. data from three TGs. In terms of root mean square

(RMS), correlation coefficient and number of points in the time series (Num of points).

RMS (m) Correlation Coefficient Num of points

Luang Prabang vs Envisat pass 651
ALES+ 0.87 0.97 72

ITR 50% 0.81 0.97 72

Mukdahan vs Envisat pass 21
ALES+ 0.79 0.99 69

ITR 50% 0.79 0.99 74

Kratie vs Envisat pass 565
ALES+ 1.59 0.96 80

ITR 50% 1.33 0.98 79
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Figure 9: Scatter plot and linear fit of the standard deviations of the 1-Hz points (used as measurement

of high-frequency noise) against the SWH, for ALES+ corrected by the standard SSB and by the recom-

puted SSB. For comparison, the SGDR statistics are also shown. The contours delimit the location of

90% of the data for each dataset.
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Figure 10: Time series of SLA of ALES+ and RADS data compared to the Ny Alesund TG. The gridded

weekly median data are resampled to monthly SLAs. The inverse barometer effect is excluded to be

comparable to the TG. R stands for the value of the correlation coefficient between the corresponding

altimetry dataset and the TG.
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Figure 11: Median PCHC for ERS-2 tracks (upper plot) and the Envisat tracks (lower plot) within 10

km of the TG for SGDR, ALES+ and ALES (with recomputed SSB). On the x axis, the name of each

TG and the corresponding satellite track numbers are shown.
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Figure 12: PCHC for ERS-2 tracks (upper plot) and the Envisat tracks (lower plot) within 10 km of

the TG w.r.t. the distance to the coast for SGDR, ALES+ and ALES (with recomputed SSB). Single

results are shown as grey dots (SGDR), red squares (ALES+) and cyan circles (SGDR). The continuous

lines show the median of the statistics.
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Figure 13: Median Absolute Deviation between GOCO5s geoid heights and SSH data retracked with

ALES, ALES+ and SGDR in 5-km wide distance bands.
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Figure 14: Visual comparison of water level time series in the Mekong river from Envisat retracked by

ALES+ (red squares), Envisat retracked by Improved Threshold Retracker at 50% and data from three

gauges.
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5. Conclusion528

In this study, we have presented a homogenous retracking strategy that uses the same529

functional form to fit signals reflected back from leads in the sea ice pack and open ocean.530

The algorithm named ALES+ is applied to ERS-2 and Envisat missions and is based on531

modifications to the ALES algorithm described in Passaro et al. (2014). Thanks to a532

preliminary step aimed at estimating the slope of the trailing edge, it is able to adapt533

the fitting to specular echoes. As a result of a subwaveform strategy aimed at limiting534

the impact of the noise in the trailing edge and to a recomputed SSB correction, it is535

able to decrease the high-frequency noise by over 1.1 cm in the open sea unaffected by536

sea ice. Even considering only peaky waveforms, range retrieval by ALES+ is over 2 cm537

more precise than the available solution used in previous studies to estimate sea level538

from leads (the sea ice retracker).539

The validation against a TG situated on the Svalbard islands demonstrates that540

ALES+ can improve the quality and the amount of data of the sea level records at541

high-latitudes. The improvement is brought by the retracking of non-standard ocean542

waveforms and the use of high-frequency data instead of 1-Hz averages, which are of lim-543

ited use at high-latitudes given that most of the leads are narrower than 1 km (Lindsay &544

Rothrock, 1995; Kwok et al., 2009). ALES+ is able to decrease the error on the sea level545

estimation of the sea ice-covered ocean up to a comparable level with the open ocean and546

therefore should be used in the next steps of the research to update the sea level record547

in the Arctic and Antarctic ocean.548

The lower noise of ALES+ in the open ocean could be used to study mesoscale struc-549

tures and a spectral analysis should be able to reveal if this can be useful to solve at550

least partially the noise problems that affect standard altimetry at these scales (Dibar-551

boure et al., 2014). The improvements obtained by recomputing the SSB using ALES+552

estimations could be even higher if a new SSB model is recomputed specifically for this553

retracker.554

A validation against coastal TGs has demonstrated that ALES+ improves the quality555

of sea level retrievals in the last 6 km within the coastline compared to the standard open556

ocean retracking. For coastal studies, ALES still overperforms ALES+. As a possible557

improvement to ALES+, future studies will seek a better strategy for the leading edge558

detection in order to avoid that peaks in the trailing edge, typical of coastal waveforms,559
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could be interpreted as peaky leading edges by the algorithm.560

A preliminary validation has shown that ALES+ time series of water level of the561

Mekong River are very highly correlated with in-situ data. Nevertheless, the typical562

retracker used for inland waters (improved threshold) have better statistics, mainly due563

to outliers still present in ALES+. Future studies should further validate this application564

and exploit the seamless transition between inland waters and open sea, in order to study565

the sea level variations across deltas and estuaries.566

In conclusion, ALES+ offers the chance to fit the echoes from any water surface567

without the need to change the retracking strategy and therefore avoiding internal bias568

corrections and calibrations. It provides a more precise and accurate sea level estimation569

than the available sea ice and ocean retrackers for ERS-2 and Envisat in leads and in570

open and coastal waters.571
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