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Abstract We present the first spatially resolved wetland δ13C(CH4) source signature map based on data
characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived
from atmospheric observations. The source signature map resolves a latitudinal difference of ~10‰ between
northern high-latitude (mean �67.8‰) and tropical (mean �56.7‰) wetlands and shows significant
regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming
to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved
map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger
interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period
2000–2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases
imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are
significant when compared to the size of observed signals.

Plain Language Summary Concentrations of methane are increasing in the atmosphere. In order
to understand the reasons behind such variations, carbon isotopes are used to help identify changes in
emission sources and sinks. We present a new global map of the carbon isotope signature associated with
wetland methane emissions, the largest global source of methane to the atmosphere. We show how this
newly synthesized information can lead to more accurate understanding of the causes of variations in the
amount and rate of increase of methane in the atmosphere.

1. Introduction

Methane (CH4) is the second most important greenhouse gas after carbon dioxide and is emitted from a
variety of natural and anthropogenic sources (Saunois et al., 2016). Natural wetlands are the single largest
individual source of CH4 emissions to the atmosphere, which can vary significantly in time and space due
to environmental factors such as temperature and precipitation. Numerous studies have quantified wetland
CH4 emissions through both bottom-up and top-down approaches, often with large disparity, particularly on
regional scales (Saunois et al., 2016).

The rate of increase of CH4 in the atmosphere exhibits strong year-to-year changes due to variations in the
strengths of sources and sinks (Saunois et al., 2016). In the 1980s, the CH4 growth rate was>10 ppb yr�1, then
after 1992, was approximately zero and again resumed at about 6 ppb yr�1 after 2007 (Nisbet et al., 2016).
Diagnosing the mechanisms behind these fluctuations continues to generate considerable attention and
controversy, in particular for the period after 2007, when CH4 concentrations began to rise globally after a
decade of near stability (Dlugokencky et al., 2009; Nisbet et al., 2016; Rigby et al., 2008). Explanations pro-
posed for the post-2007 rise include increases in tropical wetland emissions (Nisbet et al., 2016), increases
in fossil fuel emissions (Hausmann et al., 2016), increases in agricultural emissions (Schaefer et al., 2016),
reduction in biomass burning (Worden et al., 2017), and changes to the main atmospheric sink, the hydroxyl
radical (Rigby et al., 2017; Turner et al., 2017). These varying conclusions are largely driven by the same or
similar sets of observations: measurements of CH4 mole fraction and observations of the 13CH4 isotopologue
of CH4 (hereby expressed as δ13C(CH4) = ((Rsample/Rstandard)� 1) where R = 13C/12C and the standard is Vienna
Peedee Belemnite; Coplen, 2011) at atmospheric monitoring stations around the world. While the
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atmospheric mole fraction of CH4 has increased after 2007, atmospheric δ13C(CH4) has simultaneously
decreased (i.e., become more 13C-depleted; Nisbet et al., 2016). Measurements of δ13C(CH4) are useful for
source attribution because fossil fuel, and biological CH4 sources have distinctive signatures and sink
process partition 13CH4 and 12CH4 to different extents. Accurate characterization of these isotopic
“fingerprints” coupled with observations of atmospheric CH4 and δ13C(CH4) enables the diagnosis of
drivers of variability in the growth rate of atmospheric CH4. However, the accuracy of those diagnoses
relies strongly upon accurate characterization of the δ13C(CH4) signatures of emission sources.

Previous studies that have utilized δ13C(CH4) observations to examine drivers of interannual variability
have typically employed a globally uniform isotopic source signature for wetlands of approximately
�60‰ (Bousquet et al., 2006; Houweling et al., 2000; Mikaloff Fletcher et al., 2004; Monteil et al., 2011;
Quay et al., 1999; Rigby et al., 2012). This simplifying assumption has been made mostly due to the lack of
a gridded δ13C(CH4) wetland source signature map. A similar approach has been used in studies that ana-
lyzed the post-2007 increase in the growth rate of atmospheric CH4 (Ghosh et al., 2015; Rice et al., 2016;
Schaefer et al., 2016; Schwietzke et al., 2016) with the exception of Warwick et al. (2016), who attributed
separate δ13C(CH4) signatures to high-latitude and tropical wetlands, and Feinberg et al. (2018), who
employed a uniform δ13C(CH4) signature for the tropics and linearly decreasing δ13C(CH4) values for high-
latitude wetlands.

Decades of field measurements show that the δ13C(CH4) values of wetland CH4 emissions are not uniform
(Bellisario et al., 1999; Chasar, 2000; Crill et al., 1988; Lansdown et al., 1992; Quay et al., 1988). Northern
high-latitude wetlands, which are dominated by ombrotrophic bogs and minerotrophic fens, are the best
characterized wetlands globally with respect to CH4 source strength (Turetsky et al., 2014) and δ13C(CH4)
values (Hornibrook, 2009). CH4 is produced in ombrotrophic bogs primarily via the CO2/H2 methanogenesis
pathway because low pH limits acetoclastic methanogenesis (Duddleston et al., 2002; Hines et al., 2001),
resulting in the production of CH4 that is highly

13C-depleted (Lansdown et al., 1992). In contrast, minero-
trophic fens, which receive significant input of groundwater, have a neutral to alkaline pH and greater preva-
lence of methanogenesis via acetate fermentation, yielding more positive δ13C(CH4) values (Bellisario et al.,
1999). Differences in primary δ13C(CH4) compositions (Bellisario et al., 1999; Hornibrook & Bowes, 2007)
coupled with predictable distributions of methanogenic pathways (Hornibrook, 2000) and gas transport pro-
cesses (Chanton, 2005) yield CH4 emissions with distinctly different δ13C(CH4) values in ombrotrophic bogs
(�74.9 ± 9.8‰, n = 42) and minerotrophic fens (�64.8 ± 4.0‰, n = 38). These values are means and standard
deviations from a compilation of field-based chamber studies of δ13C(CH4) flux to the atmosphere
(Hornibrook, 2009).

Tropical wetlands are dominated by marshes and swamps (Bartlett & Harriss, 1993) and are less well studied
than bogs and fens. There is little distinction in methanogenic metabolism between marshes and swamps;
however, differences in tropical δ13C(CH4) source signatures can result from a prevalence of C4 (i.e., Hatch-
Slack photosynthetic pathway) plants, which when decomposed anaerobically, produce CH4 that is markedly
13C-enriched (Chanton et al., 1989; Quay et al., 1988; Stevens & Engelkemeir, 1988; Tyler et al., 1988). In this
study, we use δ13C(CH4) source signatures of �60 ± 4‰ for C3 and �50 ± 4‰ for C4 tropical wetlands,
consistent with current literature δ13C(CH4) values for tropical wetlands.

Here we develop a wetland δ13C(CH4) source signature map based on current understanding of key biogeo-
chemical distinctions between wetland types and the source signatures associated with those types as
discussed above.

2. Methods

We develop a 0.5° resolution wetland δ13C(CH4) source signature map based on differences in wetland eco-
systems. We evaluate the map against independent observations of regional wetland δ13C(CH4) signatures
inferred from Keeling plots of atmospheric observations. Using the refined δ13C(CH4) source signature map
for wetlands, we assess its potential impact on modeling atmospheric δ13C(CH4) variability, specifically on
spatial and seasonal patterns in δ13C(CH4), and trend during the period 2000 to 2012. We show the benefit
of using spatially resolved wetland δ13C(CH4) signatures for atmospheric inversion studies by quantifying
inaccuracies that would result from using a uniform wetland δ13C(CH4) source signature.
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2.1. Distribution of Major Wetland Classes With Distinct Source Signatures

We investigate whether the variability in global wetland source signatures can be captured using four major
wetland types: ombrotrophic and minerotrophic wetlands at northern high latitudes (defined as>45°N) and
C3 and C4 wetlands in the subtropics and tropics (between 40°N and 40°S). Over 95% of ombrotrophic bogs
and minerotrophic fens wetlands exist in the northern high latitudes (Matthews & Fung, 1987). In the region
between 40° to 45°N and S, we apply a smooth gradient for each band of longitude. Wetlands located south
of 45°S were not considered because their area comprises less than 1% of total wetland area globally (Poulter
et al., 2017).

To our knowledge, a high-resolution globally consistent data set delineating ombrotrophic and minero-
trophic wetlands currently does not exist. Consequently, we define the areal extent of these wetlands via a
soil pH proxy. The fraction of ombrotrophic and minerotrophic wetland in each grid cell is computed
using the Harmonized World Soil Database v1.1, which contains soil pH data at 30 arc-second resolution
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2009). We test a range of pH thresholds (pH 4.5–5.2) to delineate ombrotrophic
and minerotrophic wetlands, validating the resulting distributions against observational peatland data from
two high-latitude regions in Canada andWestern Siberia (Peregon et al., 2009; Tarnocai et al., 2000). A pH of 5
yields the best fit to observational data (supporting information).

In the tropics, we use the C3 and C4 vegetation distribution map from Still et al. (2003), which is based on a
combination of remote-sensing, climate modeling, and ground-based data. Extensive validation of the areal
extent of C3- and C4-dominated wetlands in the tropics was limited by poor availability of observational data.

2.2. Generation of δ13C(CH4) Source Signature Map

The fraction of each wetland type within a 0.5° grid cell is weighted by δ13C(CH4) source signatures associated
with those wetlands (section 1) to produce the net δ13C(CH4) source signature map. The impact of the ranges
in δ13C(CH4) values for each wetland type is investigated further in section 3. Because multiple wetland flux
data sets exist (using different wetland areas), the source signature data file provided in the supporting infor-
mation contains a source signature value for every grid cell globally. It can therefore be used in conjunction
with any flux and wetland area data set. In our analyses, we use wetland fluxes defined over the inundated
area data set from Poulter et al. (2017). The inundated fraction associated with rice is removed using the
monthly climatology rice map from Portmann et al. (2010).

2.3. Validation Against Atmospheric Observations

To provide an independent evaluation of the source signature map, we compare simulated atmospheric
δ13C(CH4) values at several locations against regional source signatures inferred from atmospheric observa-
tions. Regional source signatures were inferred through Keeling plots from Brownlow et al. (2017), Fisher et al.
(2017), Umezawa et al. (2012), and Umezawa et al. (2011) for Alaska, Canada, Scandinavia, Siberia, Costa Rica,
Bolivia, Uganda, South Africa, Borneo, and Hong Kong. There are several requirements that need to be met to
infer signatures from Keeling plots (Pataki et al., 2003), and these are discussed in the measurement studies.
For this study, it is important that wetlands are the sole source of CH4 emissions in the regions sampled by the
observations. These studies have sampled from regions where wetlands were isolated from other CH4

emission sources.

The source signatures derived through atmospheric measurements are representative of a larger scale
(tens of kilometers) than the chamber measurements from which the signatures for each wetland type
have been assigned (meters). Any fine-scale heterogeneity, which would not be represented by the flux
model or the transport model, is integrated by the atmosphere. The intention of the source signature
map is to simulate regional patterns and not to represent fine-scale heterogeneity.

The simulated atmospheric δ13C(CH4) at a particular site is the flux and surface sensitivity weighted contribu-
tions of source signature from each grid cell in the domain:

δ13C CH4ð Þsite ¼
P

i f i ·hi ·δiP
i f i ·hi

(1)

where i is the grid cell, fi is the 12CH4 flux in mol m�2 s�1, hi is the surface sensitivity in (mol/mol)/
(mol m�2 s�1), and δi is the wetland source signature.
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The sensitivity of each observation to fluxes from the surface is derived using the Lagrangian Particle
Dispersion Model, NAME (Numerical Atmospheric dispersion Modelling Environment). NAME simulates
atmospheric transport using three-dimensional meteorological fields from the Unified Model at approxi-
mately 17-km resolution (in 2016; the resolution depends on the year the measurements were made).
The model output quantifies the relationship between concentration at a measurement location and time,
and surface emissions from each grid cell of the regional domain (e.g., Manning et al., 2011). The mean
sensitivity over the period that the samples were collected for the Keeling plot analysis is used for hi
in equation (1).

Monthly wetland CH4 fluxes are estimated from the land-surface model JULES (Joint UK Land Environment
Simulator) during the period 2000 to 2012 (Comyn-Platt et al., 2018; Saunois et al., 2016). Because the rela-
tive differences in fluxes between different wetlands in the region impacts the calculation of atmospheric
δ13C(CH4), we tune fluxes for bogs and fens based on the comprehensive evaluation in Turetsky et al.
(2014; supporting information). A similar tuning is not possible for the tropical wetlands because there
are not enough tropical wetland sites with fluxes resolved by C3 and C4 vegetation in the Turetsky et al.
(2014) analysis. For the tropics, standard JULES output was used (Comyn-Platt et al., 2018; Saunois
et al., 2016).

For each site, we simulate 1,000 δ13C(CH4) values using randomly drawn samples of the source signature from
each wetland type and compare this distribution to the observed δ13C(CH4). Samples are drawn from a
Gaussian distribution with the mean and standard deviation defined by observed values (section 1). The
resulting distribution provides an estimate of the uncertainty in the simulated δ13C(CH4) values at each site
owing to variability in the underlying source signature.

2.4. Atmospheric Chemical Transport Modeling of δ13C(CH4)

We use the global atmospheric chemical transport model Model for Ozone And Related Tracers (MOZART) to
simulate atmospheric CH4 concentrations and δ13C(CH4) (Emmons et al., 2010). The model is run at 1.9° × 2.5°
resolution for 56 vertical levels using the MERRA reanalysis meteorology. The atmosphere is spun up using
year 2000 emissions and 1999 meteorology for 100 years at low resolution (12° × 11.25°) followed by 20 years
at high resolution. After spin-up, time-varying emissions and dynamics from 2000 to 2012 are used and con-
centrations analyzed between 2000 and 2012. Fluxes from all source and sink categories and the associated
source signature or fractionation factor are presented in the supporting information. All flux magnitudes fall
within the range of values reported in Saunois et al. (2016). Global mean δ13C(CH4) source signatures are
broadly similar to those presented in Schwietzke et al. (2016), but some differences are found in ruminants
and fossil fuel. The impact of using an alternate database of source signatures is shown in the supporting
information. This suite of fluxes and source signatures provide modeled northern hemisphere (NH) and
southern hemisphere (SH) mean CH4 concentrations and δ13C(CH4) values that are consistent with observed
atmospheric observations from 2000 to 2012 (Nisbet et al., 2016).

Two scenarios are modeled in which everything is held the same apart from the wetland source signature:
Scenario 1 (S1) uses a globally uniform wetland signature of �62‰, and Scenario 2 (S2) uses the wetland
source signature map derived in this study. The S1 value is chosen to give the same mean area- and flux-
weighted signature for the years 2000–2012 as derived from S2 (equation (2)):

δ ¼
P

f iAiδiP
f iAi

(2)

where f, A, and δ are the flux, area, and source signature of grid cell i andδ is the global mean source signature.

This approach avoids any significant systematic offset in mean atmospheric δ13C(CH4) arising from the differ-
ent mean values in the two cases. The mean value of S1 and S2 is similar to the value of�60‰ typically used
in previous inverse modeling studies. We assess differences between S1 and S2 in the global mean, spatial
distribution, seasonal distribution, and trend during the period 2000 to 2012.

3. Spatially Resolved Wetland Source Signatures

Figure 1 shows the wetland source signature map (masked to show grid cells where wetland fraction from
Poulter et al. (2017) is at any time greater than 5%). The mean (flux and area weighted) global source
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signature from wetlands is�62.0‰, while the mean boreal signature is
�67.8‰ and the mean tropical signature is�56.7‰. In addition to the
latitudinal differences, there is significant regional variability. CH4 emis-
sions from Canadian and Scandinavian wetlands at approximately
�75‰ are significantly more 13C-depleted than the high-latitude
mean, while Alaskan wetlands are more 13C-enriched at �65‰.
Regions, such the Okavango Delta, which host significant C4 papyrus
wetlands, are more enriched at �50‰. Our mean global source signa-
ture is similar to the mean microbial signature of �61.5 ± 0.6‰
reported in Schwietzke et al. (2016), but more negative than the one
derived by Feinberg et al. (2018) (approximately �60.5‰), in which a
function was fit through samples spanning the tropics and high lati-
tudes. However, the Feinberg et al. (2018) wetland signature function
does not capture regional variability in δ13C(CH4) source signature,
which is a primary aim of our study.

To assess the accuracy of this spatially resolved source signature map,
we compare simulated and measured atmospheric δ13C(CH4) at high-
latitude and tropical sites using JULES and a suite of additional models

to assess any sensitivity to the flux model (Tables 1 and S2 in the supporting information). For each site and in
all models, the mean simulated δ13C(CH4) value is broadly consistent with the observed values (for reference,
S1 would result in atmospheric δ13C(CH4) of �62‰ at all sites). There is typically a larger uncertainty in the
modeled values due to the wetland source variability. The observed wetland source signatures further high-
light large regional differences even within similar latitude bands. The largest differences between modeled
and observed δ13C(CH4) values occur in the tropics, suggesting that more studies are needed to either deter-
mine fundamental source signatures between C3- and C4-dominated wetlands or to better classify their
spatial distribution.

4. Impact on Atmospheric δ13C(CH4) Variability

We assess the impact on atmospheric δ13C(CH4) by using the spatially resolved map (S2) presented here
rather than a globally uniform wetland signature (S1). This analysis is based on forward modeling, keeping
flux fields and source signatures from non-wetland CH4 sources the same between the two scenarios. We
analyze the differences in global mean, spatial distribution, seasonality, and trends during the period 2000
to 2012 between S1 and S2 (Figure 2). While the numbers presented here are specific to this setup of the for-
ward model, the results of the simulation demonstrate the biases that would result in an inversion analysis by

Figure 1. Wetland δ13C(CH4) source signature map (‰) masked for grid cells
where wetland fraction is greater than 5% at any time during the period
2000–2012.

Table 1
ObservedWetland δ13C(CH4) Signatures (‰) and Modeled Values Using the Source Signature Map Presented in This Study, Fluxes From the JULES Model, and Poulter et al.
(2017) Wetland Areas

Site Measurement type Observed δ13C(CH4) Modeled δ13C(CH4)

Alaska Aircraft �63.4 ± 3.0a �65.1 ± 3.8
Scandinavia Aircraft �70.5 ± 2.7b �70.0 ± 5.0
East Trout Lake, Canada Air above surface �66.8 ± 1.6b �68.1 ± 4.2
Fraserdale, Canada Air above surface �67.2 ± 1.1b �68.8 ± 4.5
Surgut, Siberia Aircraft �70c,* �69.9 ± 5.5
Palo Verde, Costa Rica Air above surface �53.3 ± 1.7d �55.6 ± 3.4
Lake Titicaca, Bolivia Air above surface �59.7 ± 1.0d �59 ± 4.4
Tor Doone, South Africa Air above surface �61.5 ± 0.1d �59.7 ± 4.6
Danum Valley, Borneo Air above surface �61.5 ± 2.9d �60.3 ± 3.9
Mai Po, Hong Kong Air above surface �54.6 ± 0.7d �56.9 ± 3.8
Kajjansi, Uganda Air above surface �53.0 ± 0.4d �54.2 ± 3.5

aUmezawa et al. (2011). bFisher et al. (2017). cUmezawa et al. (2012). dBrownlow et al. (2017).
*Fossil fuel emissions may influence this site, and this signature has applied a correction.
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not employing the more accurate spatially resolved map. A direct com-
parison to observations is out of the scope of this study because we
focus on only one component of the global CH4 budget, whereas
uncertainties exist in all components which must be reconciled
together.

In both S1 and S2, mean global, NH, and SH CH4 mole fractions are the
same because both scenarios use the same fluxes. The mean global
atmospheric δ13C(CH4) also is similar in both S1 and S2 because we
define the mean global flux- and area-weighted δ13C(CH4) wetland sig-
natures to be the same. Therefore, any differences are solely due to the
different spatial distributions in δ13C(CH4) source signatures. Mean NH
and SH δ13C(CH4) values are 13C-depleted and 13C-enriched, respec-
tively, in S2 compared to S1, by approximately �0.1‰ and 0.1‰,
owing to more 13CH4-depleted boreal and more 13CH4-enriched tropi-

cal signatures. The interhemispheric difference in δ13C(CH4) values is 1.4 times larger in S2 (S2-S1 of�0.2‰),
and this magnitude is significant compared to the observed interhemispheric (NH-SH) difference of approxi-
mately �0.4‰ (Nisbet et al., 2016). The NH seasonal cycle amplitude in δ13C(CH4) is enhanced by a factor of
1.5 in S2 (S2-S1 of 0.25‰), and this difference is important considering that the observed NH amplitude is
~0.7‰. The trend in δ13C(CH4) is smaller in S2 than S1, due to greater increases in wetland emissions occur-
ring at high latitudes than in the tropical regions in this wetland flux field. The 0.06‰ difference in trend is a
significant fraction of the observed change of ~0.2‰ that occurred between 2007 and 2014 (Nisbet et al.,
2016). This analysis demonstrates that if the uniform δ13C(CH4) map, S1, were used in an atmospheric inver-
sion, emissions would be derived to compensate for these biases: Emissions would have greater seasonality, a
greater spread between NH and SH emissions and slower growth rate than the true emissions. The setup of
this forward model is based on commonly used estimates for source and sink fluxes, and quantification of the
difference between S2 and S1 is based on forward model configuration. However, the implication is that the
biases imparted from inaccurate spatial distribution in δ13C(CH4) can be of significant size compared to
observed values.

In addition to the large-scale differences in global and hemispheric means that are broadly due to latitudinal
differences in source signature, there also exist large regional variations in atmospheric δ13C(CH4) (Figure 3).
In Canada and Western Siberia, simulated δ13C(CH4) is more than 0.5‰ too high without using the spatially
resolved map of S2. In contrast, in some South American and African wetland areas, simulated δ13C(CH4) is
0.5‰ too low. Compared to the surrounding overall latitudinal differences, these regions would still be more

than 0.3‰ biased, if one were to use only a simple latitudinal gradient
for source signatures. In regional atmospheric inversions assimilating
δ13C(CH4) observations, differences of this magnitude would impart a
significant bias on retrieved sources.

5. Further Development

There are several areas in which this map could be used to inform
future studies. First, the source signature map is a static map and it is
likely that wetland source signatures exhibit some seasonal variations,
although such temporal differences are expected to be smaller than
spatial variations driven by wetland type (Brownlow et al., 2017;
Fisher et al., 2017; Hornibrook, 2009). There currently is a scarcity of
measurements spanning full annual cycles both in the δ13C(CH4) flux
measurements needed to develop a time-varying map and the atmo-
spheric δ13C(CH4) data required to validate such a map. Second, we
have assimilated the data that currently exist in the literature, but more
field studies characterizing δ13C(CH4) emissions from tropical wetlands
are required. Third, we have not included potentially important altera-
tions to wetland signatures based on emission pathways such as trees

Figure 2. Comparison of atmospheric δ13C(CH4) (‰) using the spatially
resolved wetland source signature distribution (S2, solid lines) versus the
common assumption of globally uniform signature (S1, dashed lines). The black
lines correspond to the global mean, the blue lines to the northern hemisphere
means, and the red lines to the southern hemisphere means.

Figure 3. Difference in spatial distribution of atmospheric δ13C(CH4) (‰)
derived using the spatially resolved wetland source signature distribution and
a globally uniform signature (S2-S1).
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(Pangala et al., 2017). Finally, while we have used mean δ13C(CH4) signatures from each wetland type, there
exists variability likely linked to fundamental physical processes such as emission pathway and substrate
isotopic composition. When this variability is better quantified, the δ13C(CH4) source signature map can
better incorporate fundamental processes.

6. Conclusions

This work demonstrates the need for accurate, spatially resolved δ13C(CH4) source signature information to
make better use of atmospheric measurements of δ13C(CH4) for source and sink characterization. We present
a spatially resolved wetland δ13C(CH4) source signature map based on data that have been collected on fun-
damental differences in δ13C(CH4) emissions between wetland types. We have validated this map against
regional-scale atmospheric observations of wetland δ13C(CH4) signatures. The δ13C(CH4) source signature
map represents broad features, such as latitudinal gradient, in observed atmospheric δ13C(CH4), and includes
important regional variations. The map provides more accurate regional-scale δ13C(CH4) source signatures
that should be used in atmospheric inversions. We have demonstrated that significant biases would result
in flux estimates derived through atmospheric inverse modeling by using a globally uniform wetland
δ13C(CH4) source signature rather than the spatially resolved map presented here.
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