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ABSTRACT 

 

This study investigated the impact of fertigation frequency and fertigation time on wheat 

production. The field experiment included nine treatments during two seasons, 2014/2015 and 

2015/2016. The same amount of water and nitrogen fertilizer was given for all treatments, either 

over one day, divided over two days or over three days. Three fertigation times FT (period of 

injecting fertilisers in irrigation water) as a fraction of irrigation period were also applied. In FT 

strategies, nitrogen is given either during the same period of the irrigation from the start to the 

end, at the last three quarters of the irrigation period or at the second half of the irrigation 

period, IT [FT = IT, FT = 0.75IT and FT = 0.5 IT]. The observed and simulated nitrogen uptake 

and grain nitrogen content showed increasing trend when fertigation frequencies increased and 

the fertigation time decreased. The field and modelling results, indicated that increasing 

fertigation frequencies and decreasing fertigation time has benefits particularly for sandy soils 

including higher yields, and less pollution. In conclusion, the use of the fertigation frequency of 

three days and fertilizer injection in the second half of the irrigation period is a good fertigation 

strategy for sandy soils. 

 

KEY WORDS: SALTMED modelling; soil moisture; irrigation; wheat crop; fertigation 

frequency; fertigation time. 
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RÉSUMÉ 

 

Cette étude porte sur l'impact de la fréquence de fertigation et du temps de fertigation sur la 

production de blé. L'expérience de terrain a inclus neuf traitements pendant deux saisons, 

2014/2015 et 2015/2016. La même quantité d'eau et d'engrais azoté a été donnée pour tous les 

traitements, répartis sur un, deux ou trois jours, Trois périodes de fertigation FT (période 

d'injection d'engrais dans l'eau d'irrigation) en tant que fraction de la période d'irrigation ont 

également été appliquées. Dans les stratégies FT, l'azote est donné soit pendant toute la période 

de l'irrigation, du début à la fin, soit au cours des trois derniers quarts de la période d'irrigation 

ou à la seconde moitié de la période d'irrigation, IT [FT = IT, FT = 0.75 IT et FT = 0.5 IT]. 

L'absorption d'azote observée et simulée et la teneur en azote des grains ont montré une 

tendance croissante lorsque les fréquences de fertigation ont augmenté et que le temps de 

fertigation a diminué. Les résultats sur le terrain et la modélisation indiquent que l'augmentation 

des fréquences de fertigation et la diminution du temps de fertigation présentent des avantages, 

en particulier pour les sols sableux, avec des rendements plus élevés et moins de pollution. La 

période d'irrigation de trois jours et une fertigation appliquée pendant la deuxième moitié de la 

periode d’irrigation est une bonne stratégie de fertigation pour les sols sableux. 

 

MOTS CLÉS : modélisation SALTMED ; 'humidité du sol ; irrigation ; culture de blé ; 

fréquence de fertigation ; temps de fertigation. 

 

 

INTRODUCTION 

 

Application of chemical fertilizers is vital for crop growth and yields. Fertigation is the addition 

of fertilizers through irrigation water. Fertilizer management is particularly important for 

irrigated agriculture of sandy soils where large quantities of fertilizers, if not managed properly, 

could be lost by deep percolation to the groundwater. The characteristics of soil moisture 

movement and nutrient dynamics influence the growth and yield of crops substantially.  

The split application of water and nitrogen fertiliser according to crop requirements at 

different growth stages and the application of the fertiliser closer to the roots would increase the 

nitrogen use efficiency and reduce nitrogen losses to the environment (Kennedy et al., 2013). 

Fertigation frequency affects the amount of water and N per application and, 

consequently, the soil moisture and nutrient concentration in the rhizosphere (Zotarelli et al., 
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2009; Abalos et al., 2014). The fertigation–irrigation frequency may also affect crop biomass 

accumulation and partitioning, i.e. root growth and the shoot/root ratio (Sensoy et al., 2007), as 

well as the water and N uptake efficiency and yield (Katerji et al., 2008; Zotarelli et al., 2009). 

High fertigation frequency is often recommended as it maintains a stable soil moisture 

and nutrient concentration in the root zone (Segal et al., 2006). High fertigation frequency has 

been found to improve crop performance in bell peppers (Sezen et al., 2006), melon (Sensoy et 

al., 2007) and processing tomato (Badr, 2007); however, these results differ according to the 

climate, soil, and experimental treatments (i.e., water volumes and time intervals between 

irrigations). A simultaneous reduction in irrigation and N availability would increases the 

harvest index due to the reduction in vegetation growth (Zegbe et al., 2004). 

One can design a field experiment to test a number of treatments. However, that number 

will be limited by labour and equipment cost. Tested and verified models can be useful in that 

respect. Once validated against a limited number of treatments, the models can run with ‘what 

if’ scenarios, depicting the other set of untried treatments in the field to select the optimum 

treatment. Therefore, validated models that are able to predict crop growth under different water 

qualities, fertilizer applications, irrigation managements and strategies can be very useful tools 

to improve water and nutrient use efficiency and productivity without the need for extensive 

field trials.  

The SALTMED model (Ragab, 2015) is one of the models that has adopted such 

integrated approach. It has been developed for generic applications and has proved its ability to 

simulate several crops under different field managements. The model accounts for different 

irrigation systems, irrigation strategies, different water qualities, different crops and soil types, 

N-fertilizer applications, fertigation, impact of biotic stresses such as salinity, temperature, 

drought and the presence of shallow groundwater and a drainage system. 

SALTMED 2015 allows real-time simultaneous simulation of 20 fields, each of which 

would have different irrigation systems, irrigation strategies, crops, soils and N-fertilizers. The 

model simulates the evapotranspiration, crop water uptake, soil temperature, soil salinity and 

soil moisture profiles, dry matter, yield, salinity and N-leaching, soil nitrogen dynamics, 

groundwater level and its salinity, and drainage flow to open and tile drains. The model has 

been calibrated and validated with field data of drip irrigation on tomato and potato crops 

(Ragab et al., 2005b and 2015), on sugar cane using sprinkler irrigation (Golabi et al., 2009), on 

quinoa, sweet corn and chickpea using drip irrigation (Hirich et al., 2012) on vegetable crops 

(Montenegro et al., 2010), on quinoa using saline water (Pulvento et al., 2013), on amaranth 

using saline water (Pulvento et al., 2015a), on rainfed and irrigated chickpea (Silva et al., 2013), 

on quinoa under deficit drip irrigation (Fghire et al., 2015), on sweet pepper in green houses 
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(Rameshwaran et al., 2015) and on potato using gated pipes (El-Shafie et al., 2016). In all these 

studies the model proved its reliability and ability to predict the field measured yield, dry 

matter, soil moisture and salinity. The model was also used to predict the impact of climate 

change on the amaranth and corn water requirement, yield, sowing and harvest dates and the 

length of the growing season (Pulvento et al., 2015b; Hirich et al., 2016). 

The objective of this study was to identify the best fertigation scheduling and duration for 

wheat production under sandy soil conditions through field and modelling study using 

SALTMED model. 

 

 

MATERIALS AND METHODS 

 

Location and climate of experimental site 

Field experiments were conducted during 2014/2015 and 2015/2016 at the research farm 

of the National Research Centre (NRC) (latitude 30o 30’ 1.4’’ N, longitude 30o 19’ 10.9’’ E, and 

mean altitude 21m+ MSL (mean sea level)) at Nubaria Region, Al Buhayra governorate, Egypt. 

The experimental area has an arid climate with cool winters and hot dry summers. The data of 

maximum and minimum temperature, relative humidity, and wind speed as shown in Figure 

1were obtained from the local weather Station at El-Nubaria Farm. 

 

Figure 1. Daily meteorological data in the research farm of the National Research Centre (NRC) in 

Nubaria, Egypt, during wheat growth seasons 2014/2015 and 2015/2016 

 

Physical and chemical properties of soil and irrigation water 

Irrigation water was supplied by an irrigation channel passing through the experimental 

area. The irrigation water had a pH of 7.35 and an electrical conductivity of 0.41 dS m-1. The 
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main physical and chemical properties of the soil were determined in situ and in the laboratory 

at the beginning of the field trial (Table I). The main physical, and chemical properties of 

irrigation water are reported in Table II. 

 

Table I. Main physical and chemical characteristics of the soil of the experimental area (Note: 

three significant figures imply already an accuracy of better than one promille, which you 

cannot achieve in practice. Please check the whole text and the Tables and Graphs for not 

more than three significant figures) 

 

Soil Characteristics 

Soil layer (cm) 

0–20 20-40 40-60 60-80 80-120 

Physical parameters 

Texture Sandy Sandy Sandy Sandy Sandy 

Course sand (%) 47.8 56.7 36.8 35.8 33.3 

Fine sand (%) 49.8 39.6 59.4 60.1 62.3 

Silt + clay (%) 2.49 3.72 3.84 4.12 4.32 

Bulk density (t m-3) 1.69 1.68 1.67 1.69 1.65 

Chemical parameters 

EC1:5 (dS m-1) 0.35 0.32 0.44 0.45 0.53 

pH (1:2.5) 8.7 8.8 9.3 9.0 9.2 

Total CaCO3 (%) 7.02 2.34 4.68 5.01 5.2 

Organic matter (%) 0.65 0.40 0.25 0.24 0.21 

 

Table II. Main characteristics of irrigation water of the experimental area 

Parameter Irrigation canal water, IW 

Electric Conductivity, dS m-1 0.41 

pH 7.35 

Chemical characteristics, concentrations in mmole l-1 

 Calcium, Ca2+ 1.00 

Magnesium, Mg2+ 0.50 

Sodium, Na2+ 2.40 

Potassium, K+ 0.20 

Carbonate, CO3
2- < 0.01 

Bicarbonate, HCO3
- 0.10 

Chloride, Cl- 2.70 

Sulphate, SO4
2- 1.30 

Nitrogen, N(NH4
++NO3

-) < 0.01 

Phosphorus, P (PO4
3-) 0.20 

Copper, Cu++ 0.02 

Nickel, Ni++ 0.01 

Zinc, Zn++ 1.00 
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Calcium, Ca2+ 1.00 

 

Experimental Design 

The planting and harvesting dates for wheat were 15th of November and 15th of April for 

both seasons 2014/2015 and 2015/2016. The growth period for wheat was 152 days. The 

statistical design of this experiment was a split design. The experimental design included nine 

treatments: three irrigation times (IT) [1, 2and 3 days] as main plot and three fertigation times 

(FT) as sub main plot, where the irrigation water is dosed with the nitrogen fertiliser during the 

complete irrigation time, during the last three quarters of the irrigation time, or during the 

second half of the irrigation time, the treatments are referred to as FT = IT, FT = 0.75 IT and FT 

= 0.5 IT. 

The same recommended amount of nitrogen fertilizer, 192 kg N ha-1 season-1 in the form 

of ammonium nitrate (33.5%N), was applied for all treatments. 

The irrigation amount was calculated using the modified Penman-Monteith equation 

according to Allan et al., 1998). The daily values of crop evapotranspiration, ETc, were 

calculated. In daily irrigation, the daily ETc was added while in two days irrigation frequency, 

the sum of the two days, previous day and current day ETc was added. The same principle for 

the three days irrigation frequency, the amount applied is the sum of the ETc of the previous 

two days and the current day. The total number of plots was 27 and each plot area was 720 m2. 

The 27 plots were divided into three replicates of 9 plots each. The statistical design of this 

experiment was a split design. The soil moisture profile probe access tubes were placed in each 

plot to measure the soil moisture (Figure 2 and Table III).  
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Figure2. Layout of the experimental design. 

 

Table III. The irrigation and fertigation frequencies (Nitrogen fertigation scheduling) 
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FT: Fertigation Time IT: Irrigation Time 

 Nitrogen with low 

concentration 

 Nitrogen with medium concentration  Nitrogen with high 

concentration 

IS1: Irrigation scheduling for one day on and 2 days off, IS2: Irrigation scheduling for 2 days on and 1 

day off, IS3: Irrigation scheduling for 3 days on and no days off 

 

Treatment 

Number 

Irrigation time 

(IT) 

days 

Fertigation time, 

FT, 

as fraction of IT 

Dosing of specific amount of N-fertiliser 

T1 1 FT = IT Fertilizer is added from the start till end of the irrigation period 

T2 1 FT = 0.75IT 1st quarter of irrigation time no fertilizer is added 

T3 1 FT = 0.5IT 1st half of the irrigation time no fertiliser is added 

T4 2 FT = IT Fertilizer is added from the start till end of the irrigation period 

T5 2 FT = 0.75IT 1st quarter of irrigation time no fertilizer is added 

T6 2 FT = 0.5IT 1st half of the irrigation time no fertiliser is added 

T7 3 FT = IT Fertilizer is added from the start till end of the irrigation period 

T8 3 FT = 0.75IT 1st quarter of irrigation time no fertilizer is added 

T9 3 FT = 0.5IT 1st half of the irrigation time no fertiliser is added 
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Irrigation requirements for wheat 

The daily irrigation water requirement was calculated using Penman Monteith equation and the 

crop coefficient, according to Allen et al. (1989). The seasonal irrigation water applied was 

3220 and 2710 m3 ha-1 season-1 for 2014/2015 and 2015/2016, respectively. Sprinkler irrigation 

system has been used with 85% efficiency. 

 

Acquiring the model parameters 

The data required for the model calibration and validation were taken during each growth 

stage. The soil moisture was measured using the profile probes at four depths 0-20, 20-40, 40-

60 and 60-80 cm. All the required climatic variable data were collected in situ from the site 

weather station. Climate data required as input to the model consisted of precipitation, 

maximum temperature and minimum temperature, the relative humidity, wind speed, and net 

and total radiation. In addition, dry matter and total leaf area, required to calculate the Leaf Area 

Index (LAI), were obtained at regular intervals. At harvest, a random plant sample was taken 

from each plot to determine grain yield, which was then converted to yield in ton ha-1. Other 

plant parameters, such as plant height, root depth, length of each growth stage and harvest 

index, were also based on field measurements. Grain nitrogen content was determined in the lab 

using the standard method based on digestion and distillation by Micro Kjeldahl apparatus. 

Water productivity of wheat was calculated according to James (1988) as follows: 

 

WP wheat = Ey/Ir (1) 

 

Where: WP is the water productivity of wheat (kg grains m-3
water), Ey is the marketable yield (kg 

grains ha-1 season-1) and Ir is the amount of applied irrigation water (m3 
water ha-1 season-1). 

 

 

SALTMED MODEL 

 

The new version of SALTMED (Ragab, 2015) which accounts for surface and subsurface 

irrigation, partial root drying (PRD) or deficit irrigation, fertigation, soil nitrogen fertiliser 

application and plant nitrogen uptake, biomass and dry matter production and nitrate leaching 

was used in this study. A detailed description of the SALTMED model is provided in Ragab 

(2015), Ragab et al. (2005a), and Ragab et al. (2015). The SALTMED model is a free download 

from the Water4Crops EU funded project web site: http://www.water4crops.org/saltmed-2015-
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integrated-management-tool-water-crop-soil-n-fertilizers/and from the International 

Commission on Irrigation and Drainage, ICID, web site: 

http://www.icid.org/res_tools.html#saltmed_2015 

 

Model calibration 

During the calibration, fine tuning of the relevant SALTMED model parameters was 

carried out to obtain good agreement between the simulated and observed soil moisture, dry 

matter, and crop yield. For the calibration, the ‘FT = IT, 1day’ treatment was selected. Different 

soil parameters such as soil hydraulic properties including bubbling pressure, saturated 

hydraulic conductivity, saturated soil water content and pore distribution index, ‘lambda’ were 

fine-tuned until close matching between the simulated and observed soil moisture values was 

achieved. In addition to the soil parameters, crop parameters such as the crop coefficient, Kc 

that is used to predict crop evapotranspiration (ETc), and basal crop coefficient, Kcb (represents 

the crop transpiration part of the Kc), were also slightly tuned to find the best fit of the soil 

moisture against the observed soil moisture for each soil layer (Tables IV and V). After 

achieving a good fit for the soil moisture, only fine tuning was needed for dry matter and crop 

yield. The key parameter that was required to be fine-tuned for the crop yield was 

photosynthetic efficiency. 

The goodness of fit expressions used were the root mean square error (RMSE), the 

coefficient of determination (R2), and the coefficient of residual mass (CRM). The RMSE 

values, calculated using Equation 2, indicate by how much the simulations under or 

overestimate the measurements. 

 

 

 (2) 

 

Where: 𝒚
𝒐

= predicted value, 𝒚
𝒔
 = observed value, 𝑵= total number of observations. 

The R2 statistics demonstrate (Equation 3) the ratio between the scatter of simulated 

values to the average value of measurements: 

 

R2 =  
1

N

  yo − yo
−  ys − ys

− 

σyo −  σys
  

 (3) 

𝑅𝑀𝑆𝐸 =  
    −    2
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Where: 𝒚𝒐
−

= averaged observed value, 𝒚𝒔
−

 = averaged simulated value, 𝝈𝒚𝒐 = observed data 

standard deviation, 𝝈𝒚𝒔 = simulated data standard deviation. 

The coefficient of residual mass (CRM) is defined by Equation 4: 

 

CRM =   
  yo −  ys 

 yo
 

 (4) 

 

The CRM is a measure of the tendency of the model to over or underestimate the 

measurements. Negative values for CRM indicate that the model underestimates the 

measurements and positive values for CRM indicate a tendency to overestimate. For a perfect fit 

between observed and simulated data, values of RMSE, CRM and R2 should equal 0.0, 0.0, and 

1.0, respectively.  

 

Table IV. Main calibrated and observed input parameters used in the study for wheat, 

2014/2015, Egypt 

Calibrated Observed Developmental Stage Parameter 

   Cultivation dates 
 15 November  Sowing (day) 

 1  Emergence (day after sowing) 
 152  Harvest (day after sowing) 

   Growth stages duration in days 
 29  Initial  

 35  Development 

 50  Middle 
 37  Late 

   Crop inputs 
0.7  Initial Crop coefficient, Kc 

1.15  Middle  
0.45  End  

0.6  Initial Transpiration crop coefficient, Kcb 

0.8  Middle  
0.4  End  

 0.4 Initial Fraction cover, FC 
 1 Middle  

 1 End  

  0.45 Initial Plant height (m), h 
  0.85 Middle  

 0.8 End  
 0.5 Initial Leaf area index, LAI 

 3.7 Middle  

 3.2 End  
 0  Minimum root depth (m) 

 1  Maximum root depth (m) 
2.5   Photosynthesis efficiency 

0.9  Initial Water uptake effect 
0. 5  Middle  
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0.75  End  
 0.43  Harvest index, HI 

 

 

 

 

 

 

Table V. Main calibrated and observed input parameters used in the study for sandy soil 

Parameter Observed Calibrated 

Saturated moisture content (m3 m-3) 0.25  

Field capacity (m3 m-3) 0.15  

Wilting point (m3 m-3) 0.04  

Lambda pore size  0.2 

Residual water content (m3 m-3)  0.0 

Root width factor 0.30  

Saturated hydraulic conductivity (mm day-1) 2900  

Max. depth for evaporation, mm  50 

Bubbling pressure, cm  10 

 

 

RESULTS AND DISCUSSION 

Soil moisture  

Initially the soil moisture was calibrated with ‘FT = IT, 1 day’ and validated against all 

the other treatments for two seasons 2014/2015 and 2015/2016. The model calibration simulated 

the soil moisture for all layers (0-20, 20-40, 40-60, and 60-80 cm depth) as shown in Figure 3 

for the 2014/2015 season and was validated for the 2015/2016 season (Figure 4). Only the soil 

moisture of the ‘FT = IT, 1 day’ treatment is shown here, as other treatments received the same 

amount of water and showed similar results. Overall the model was able to simulate reasonably 

well the observed data both during the calibration and validation processes. These results are 

consistent with those obtained by Pulvento et al. (2013), Pulventoet al. (2015a), Hirich et al. 

(2012), Silva et al. (2013) Ragab et al. (2015), Fghire et al. (2015) and Rameshwaran et al. 

(2015). 

The model showed increasing correlation (i.e. increasing R2 values) with depth during 

2014/2015. The values of R2 were 0.91, 0.92, 0.94 and 0.97 for the soil layers 0-20, 20 – 40, 40- 

60 and 60-80 cm, respectively. Also, during 2015/2016, the model showed increasing R2 values 

with increasing the soil depth. The values of R2 were 0.89, 0.90, 0.93 and 0.95 for the soil layers 
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0-20, 20-40, 40-60 and 60-80 cm, respectively (Table VI). Similar tabulated results were 

obtained for 2014/2015, not shown here. 

SALTMED proved its ability to simulate the soil moisture changes caused by irrigation 

events. Overall the simulated and the observed soil moistures for all treatments combined 

showed a strong correlation for both the 2014/2015 and 2015/2016 seasons. The implication of 

good soil moisture prediction is that there is a good chance to also simulate reasonably well 

other chemical elements such as nitrogen that move together with water.  

 

  

  

Figure 3. Observed and simulated soil moisture for 0-80 cm depth under FT = IT, 1 day (calibration 

treatment), 2014/2015 
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Figure 4. Observed and simulated soil moisture for 0-80 cm depth under FT = IT, 1 day, (selected 

example from validation treatments), 2015/2016 
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Table VI. The coefficient of determination, RMSE and CRM for soil moisture in the layers from 0-80 cm, 2015/2016 
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n
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Soil layers cm 

0-20 cm 20 – 40 cm 40 – 60 cm 60 – 80 cm Overall 

0-80 cm 

R
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R
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S
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C
R
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R
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R
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S
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C
R
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R
2
 

R
M

S
E

 

C
R

M
 

1
 D

ay
 

FT = IT 0.89 0.039 -0.015 0.90 0.039 -0.013 0.93 0.005 -0.014 0.95 0.004 -0.007 

0
.9

2
 

0
.0

0
5
 

-0
.0

0
5
 

FT = 

0.75 IT 

0.90 0.039 -0.013 0.91 0.039 -0.014 0.93 0.005 -0.009 0.95 0.005 -0.013 

FT = 

0.5IT 

0.89 0.039 -0.015 0.90 0.039 -0.008 0.94 0.004 -0.007 0.96 0.003 -0.005 

2
 d

ay
s 

FT = IT 0.90 0.036 0.002 0.92 0.036 0.001 0.95 0.004 -0.006 0.96 0.004 -0.008 

FT = 

0.75 IT 

0.92 0.036 -0.001 0.94 0.036 -0.004 0.95 0.004 -0.007 0.96 0.004 -0.004 

FT = 0.5 

IT 

0.86 0.036 0.010 0.94 0.003 0.004 0.96 0.003 0.001 0.97 0.003 -0.008 

3
 D

ay
s 

FT = IT 0.94 0.035 -0.006 0.95 0.035 -0.008 0.95 0.004 -0.010 0.98 0.002 -0.011 

FT = 

0.75 IT 

0.90 0.006 -

0.00.001 

0.94 0.005 -0.007 0.95 0.004 -0.005 0.96 0.003 0.003 

FT = 0.5 

IT 

0.93 0.005 -0.009 0.94 0.004 -0.001 0.95 0.003 0.002 0.98 0.002 -0.006 

FF: Fertigation Frequency, FT: Fertigation Time, IT: Irrigation Time, HI: Harvest Index, RMSE: Root Mean Square Error, CRM: Coefficient of Residual Mass, R2: 

Coefficient of determination/correlation coefficient 
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Nitrogen dynamics 

Accumulative nitrogen (N) uptake, N uptake efficiency (uptake to applied N ratio), and 

grain N content for observed and simulated values increased with increasing fertigation 

frequencies and decreasing fertigation time (period of injection of fertilisers into irrigation 

water) for 2014/2015 and 2015/2016, as shown in Figures 5, 6 and 7. This is mainly due to the 

better containment of nitrogen in the sandy soil profile and minimizing N-losses by leaching 

below the root zone. Sandy soil has high permeability and N leaching is likely to take place 

under high dose of irrigation that is associated with low frequency and high fertigation duration. 

Neelam et al. (2015) reported that the distribution of nutrients in soil profile is greatly 

influenced by fertigation frequency in sandy-loam soil. 

Valkama et al. (2013) derived a relation between N uptake, yield and protein content for 

cereals. This relation has been adopted to obtain the wheat nitrogen uptake from the grains 

protein content and yield. 

Despite that accumulative N uptake in 2014/2015 was higher than 2015/2016, the yields 

of 2015/2016 were higher than those of 2014/2015 as the protein content of the grains of 

2014/2015 was higher than that of 2015/2016, as shown in Figure 8. 

The higher values of N uptake during 2014/2015 compared with 2015/2016 may be due 

to the increasing salinity level of the root zone during 2015/2016 in comparison with 2014/2015 

as shown in Figure 9. 

Nitrogen uptake efficiency, accumulative N uptake and grain N content for observed and 

simulated values for 2014/2015 and 2015/2016 followed the same trend under all treatments. A 

linear relationship was found between observed and simulated values of accumulative N uptake 

with R2 of 0.94 and 0.96 for 2014/2015 and 2015/2016, respectively. A similar relation was 

established for grain N content with R2 values of 0.94 and 0.96 for 2014/2015 and 2015/2016, 

respectively. This indicates a strong correlation between observed and simulated values. 
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Figure 5. Observed and simulated accumulative N uptake for 2014/2015 and 2015/2016 

 

 

Figure 6. Observed and simulated N uptake efficiency for 2014/2015 and 2015/2016 

 

 

Figure 7. Observed and simulated grain N content for 2014/2015 and 2015/2016 
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Figure 8. Relation between accumulative N uptake and yield and protein content for 2014/2015 and 

2015/2016 

 

 

Figure 9. Comparison between simulated salinity during the period of fertigation for 2014/2015 and 

2015/2016presented as average of all treatments for the root zone (0 – 80 cm) 

 

Dry matter 

The results showed that there were no significant differences between total dry matter 

values under all treatments during the two seasons, 2014/2015 and 2015/2016, there were 

significant differences between harvest index values under all treatments during the two seasons 

2014/2015 and 2015/2016 (Table VII). The observed and the simulated total dry matter were in 

good agreement at all stages for all treatments. The intermediate observed and the simulated dry 

matter have shown a good agreement over the entire growth period as shown in Figure 10 for 

2015/2016 (2014/2015 was similar). 

The correlation analysis between the observed and the simulated dry matter shows that 

the model was able to simulate the total dry matter with R2 of 0.99 for all treatments during the 

two seasons 2014/2015 and 2015/2016.  
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Figure 10. Observed and simulated dry matter for different treatments, 2015/2016 

 

Crop yield  

The impact of fertigation frequency and fertigation time on the crop yield of wheat during 

2014/2015 and 2015/2016 is shown in Table VII and Figure 11. There was a positive impact on 

the yield by increasing the fertigation frequency and decreasing the fertigation time in both 

seasons 2014/2015 and 2015/2016. The yield under 3 days fertigation frequency treatment was 

higher than the yield under 2 days and 1day treatments for 2014/2015 and 2015/2016. This is 

mainly due to the increased availability of nitrogen in soil profile and prevention of possible 

water and N losses by leaching under low fertigation frequency in such high permeable sandy 

soil. This result is in agreement with the findings of Neelam et al. (2015). The relative yield 

calculated as a ratio of yield to the maximum yield obtained under 3 days IT frequency with 

fertigation in the second half of irrigation time showed (Table VII) that a 1day irrigation 

frequency on average produced 24% less yield and 2 days IT frequency on average produced 

13% than the 3 days IT frequency. Within each IT frequency, the yield was higher for 

fertigation at the second half of the irrigation time. 

The statistical analysis indicated that there were significant differences among crop yield 

values under all treatments during the two seasons 2014/2015 and 2015/2016. The yield was 

found to be decreasing in the following order for season 2014/2015 and 2015/2016:  

FT = 0.5IT on 3 days > FT = 0.75 IT on 3 days FT = IT on 3 days >FT = 0.5IT on 2 days 

> FT = 0.75 IT on 2 days FT = IT on 2 days> FT = 0.5IT on 1 day > FT = 0.75 IT on 1day FT = 

IT on 1 day. 

Good correlation between observed and the simulated crop yield was obtained during the 

two seasons, with R2  of 0.99 for all treatments. 

 

0

2

4

6

8

10

                                        

D
ry

 m
a
tt
e
r 
-
t 

h
a

-1
Date

FT= 0 5 IT, 3 day

Observed dry matter Simulated dry matter 



21 
 

 

Figure 11. Observed and simulated yield for all treatments for seasons 2014/2015 and 2015/2016 

 

Water productivity 

The water productivity was calculated as the amount of grain yield produced per unit of 

irrigation water applied, expressed in kg per cubic meter. Total water volume (irrigation and 

rainfall) was 3990m3 for 2014 and 3500m3 for 2015. Water productivity values in 2015/2016 

were higher than in 2014/2015 and may be due to increasing the yields values during 2015/2016 

compared to 2014/2015, in addition to that the total water volume was smaller in 2015/2016 

than in 2014/2015.The water productivity, WP showed a similar trend as it increased by 

increasing fertigation frequency and also by decreasing fertigation time, as shown in Figure 12. 

The correlation analysis between the observed and the simulated water productivity 

showed a good agreement, with R2 of 0.99 for all treatments during the two seasons. 
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Figure 12. Observed and simulated water productivity for all treatments for seasons 2014/2015 and 

2015/2016 

 

 

CONCLUSION 

 

This study investigated the impact of fertigation frequencies and fertigation times (period of 

injection fertilisers in irrigation water) on the crop yield of wheat during 2014/2015 and 

2015/2016 through a field and modelling study using SALTMED model.  

Nitrogen uptake efficiency, accumulative N uptake and grain N content for observed and 

simulated values increased with increasing fertigation frequencies and decreasing fertigation 

time for 2014/2015 and 2015/2016.This is mainly due to the fact that the soil is sandy and has a 

high permeability that would allow fast percolation of water and leaching of nitrogen below the 

root zone if the fertigation was conducted in a relatively large dose rather than in small doses. 

Applying water and nitrogen on small doses and shorter time of injection will allow high 

containment and presence of nitrogen in the root zone available for plant uptake. 

The modelling results indicated that there were linear relationships between observed and 

simulated values of N uptake efficiency, accumulative N uptake and grain N content for 

2014/2015 and 2015/2016, with R2 ranging between 0.94 and 0.96. This indicates a strong 

correlation between observed and simulated values. Although, there were no significant 

differences between dry matter values under all treatments during both the 2014/2015 and 

2015/2016 seasons, there were significant differences between harvest index values under all 
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treatments during the two seasons and that led to the differences in yields. There was a positive 

impact on the yield by increasing of fertigation frequencies and decreasing fertigation time in 

both seasons 2014/2015 and 2015/2016. The yield under the 3 days frequency treatment was 

higher than the yield under 2 days and 1day treatments for 2014/2015 and 2015/2016. This was 

mainly due to the increased availability of nitrogen in such sandy soil profile. The same was 

observed under shorter fertigation time. 

In summary, the field and modelling results, indicated increasing fertigation frequencies 

and decreasing fertigation time has some benefits particularly for sandy soils that include a 

higher yield, and less pollution to the environment by decreasing N leaching through deep 

percolation process. Therefore, this study recommends dividing the water and nitrogen amounts 

on small applications by using fertigation frequency of three days and fertilisers injecting time 

to take place at the second half of irrigation period as a good fertigation management strategy 

for sandy soils. 
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Table VII. Impact of water quality and fertigation rate of nitrogen on Harvest Index, yield and water productivity of wheat during 2014/2015 and 

2015/2016 
S

ea
so

n
s FF FT HI Observed 

yield  

t ha-1 

Simulated 

yield 

t ha-1 

% Relative 

error 

Irrigation + 

Rainfall 

mm  

Observed water 

productivity 

kg m-3 

Simulated water 

productivity 

kg m-3 

(Yield / 

Yield3d0.5IT)*

100 

2
0

1
4

/ 
2

0
1
5
 

1
 D

ay
 FT = IT (Calib.) 0.43 3.35i 3.27 2.89 3990 1.04 1.01 74.3 

FT = 0.75 IT 0.44 3.41 h 3.35 3.74 3990 1.07 1.03 75.6 

FT = 0.5 IT 0.46 3.57 g 3.50 2.49 3990 1.11 1.08 79.0 

2
 d

ay
s 

FT = IT 0.48 3.79 f 3.66 1.51 3990 1.17 1.15 84.0 

FT = 0.75 IT 0.50 3.93 e 3.81 2.51 3990 1.20 1.17 87.1 

FT = 0.5 IT 0.52 4.07 d 3.96 2.99 3990 1.26 1.22 90.2 

3
 D

ay
s FT = IT 0.54 4.20 c 4.11 2.70 3990 1.30 1.26 93.1 

FT = 0.75 IT 0.55 4.30 b 4.19 1.69 3990 1.33 1.31 95.3 

FT = 0.5 IT 0.58 4.51 a 4.42 1.41 3990 1.42 1.40 ? 

LSD at 5%  0.04       

2
0

1
5

/ 
2

0
1
6
 

1
 D

ay
 

FT = IT 0.44 4.15i 4.03 2.89 3500 1.19 1.15 73.2 

FT = 0.75 IT 0.45 4.28 h 4.12 3.74 3500 1.22 1.18 75.5 

FT = 0.5 IT 0.47 4.42 g 4.31 2.49 3500 1.26 1.23 78.0 

2
 d

ay
s 

FT = IT 0.50 4.65 f 4.58 1.51 3500 1.33 1.31 82.0 

FT = 0.75 IT 0.51 4.79 e 4.67 2.51 3500 1.37 1.34 84.5 

FT = 0.5 IT 0.53 5.01 d 4.86 2.99 3500 1.43 1.39 88.4 

3
 D

ay
s FT = IT 0.55 5.18 c 5.04 2.70 3500 1.48 1.44 91.4 

FT = 0.75 IT 0.57 5.31 b 5.22 1.69 3500 1.52 1.49 93.7 
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FT = 0.5 IT 0.61 5.67 a 5.59 1.41 3500 1.62 1.60  

LSD at 5%  0.05       

F: Fertigation Frequency, FT: Fertigation Time, IT: Irrigation Time, HI: Harvest Index 
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