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Abstract Outlet glaciers of the Greenland Ice Sheet transport ice from the interior to the ocean and
contribute directly to sea level rise because discharge and ablation often exceed the accumulation. To
develop a better understanding of these fast-flowing glaciers, we investigate the basal conditions of Store
Glacier, a large outlet glacier flowing into Uummannaq Fjord in west Greenland. We use two crossing
seismic profiles acquired near the centerline, 30 km upstream of the calving front, to interpret the physical
nature of the ice and bed. We identify one notably englacial and two notably subglacial seismic reflections
on both profiles. The englacial reflection represents a change in crystal orientation fabric, interpreted to be
the Holocene-Wisconsin transition. From Amplitude-Versus-Angle (AVA) analysis we infer that the deepest
∼80 m of ice of the parallel-flow profile below this reflection is anisotropic with an enhancement of simple
shear of ∼2. The ice is underlain by ∼45 m of unconsolidated sediments, below which there is a strong
reflection caused by the transition to consolidated sediments. In the across-flow profile subglacial
properties vary over small scale and the polarity of the ice-bed reflection switches from positive to
negative. We interpret these as patches of different basal slipperiness associated with variable amounts of
water. Our results illustrate variability in basal properties, and hence ice-bed coupling, at a spatial scale of
∼100 m, highlighting the need for direct observations of the bed to improve the basal boundary conditions
in ice-dynamic models.

1. Introduction

Mass loss from the Greenland Ice Sheet (GrIS) consists of two main components: meltwater runoff and ice
discharge into the surrounding ocean (e.g., Fürst et al., 2015). Since the late 1990s, Greenland has lost ice
at an increasing rate (Bevan et al., 2012; Hanna et al., 2013; Joughin et al., 2012; Shepherd et al., 2012). The
most recent estimate from 2009 to 2012 is a mass loss of 378 Gt/a equivalent to an estimated sea level rise
(SLR) of 1.1 mm/a over the period 2009–2012 (Enderlin et al., 2014; Van den Broeke et al., 2016), which makes
the GrIS the single largest contributor of the global cryosphere to SLR. Approximately half of this ice loss is
attributed to dynamic thinning with the other half explained by surface melting and runoff (Csatho et al.,
2014; Rignot & Mouginot, 2012; Van den Broeke et al., 2009). Whereas meltwater production and runoff is
well represented in global sea level prediction (Intergovernmental Panel on Climate Change, 2013), the con-
tribution to SLR resulting from ice discharge and dynamic thinning is still relatively poorly understood (e.g.,
Csatho et al., 2014). Several possible mechanisms have been suggested as to the cause of increased dynamic
thinning. They can generally be divided into two end-members: A warmer atmosphere leading to increased
surface melt which partly drains to the base, thereby enhancing sliding, or a warmer ocean interacting with
the ice sheet’s marine-terminating glaciers, causing melt, thereby reducing the back force and increasing out-
let ice flow. Both end-members cause an increase in outlet glacier flow leading to a lowering of the ice surface
resulting in an increase in the surface slope. This, in turn, increases the driving force of outlet glaciers.
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An important boundary condition for ice discharge and dynamic thinning, regardless of which end-member
is more important, is the nature of the subglacial material. It is especially important to establish whether ice
flows over hard bedrock or water saturated sediments, and whether sliding at the bed occurs in a strict sense
by deformation of ice or sediment, or a combination of both.

There is abundant evidence that fast outlet glaciers and ice streams in Antarctica are underlain by soft sed-
iments (e.g., Alley et al., 1986; Anandakrishnan et al., 1998; Anandakrishnan, 2003; Blankenship et al., 1986;
Smith & Murray, 2008; Smith et al., 2007, 2013). Thick saturated till has been identified on Antarctic ice streams
giving little resistance, thus allowing fast ice flow. Routing of subglacial water is thought to be the cause of
sticky spots resisting ice flow (Winberry et al., 2014), so water content in subglacial sediments regulates the
basal friction and thus the sliding velocity.

It has long been thought that Greenland’s outlet glaciers predominantly slide over hard bedrock. However,
more recent evidence has revealed the presence of sediments beneath several areas of the GrIS (Walter et al.,
2014). Christianson et al. (2014) and Vallelonga et al. (2014) recently identified dilatant till beneath the onset
of the Northeast Greenland Ice Stream, demonstrating that the single largest ice stream in Greenland has soft
basal conditions that are very similar to those observed more frequently beneath Antarctic ice streams. In
west Greenland glacial sediments are widespread on the continental shelf (Dowdeswell et al., 2014; Hogan
et al., 2012) and are also likely to be present subglacially. Dow et al. (2013) found highly porous sediments
under Russell Glacier in Southwest Greenland, the same place where van de Wal et al. (2015) found seasonality
in ice flow caused by water pressure build up in and release from subglacial sediments.

To identify and characterize the basal mechanical and hydrological conditions at a large, fast-flowing
marine-terminating outlet glacier, we collected seismic data along two perpendicular profiles on the central
flow line of Store Glacier in west Greenland.

2. Data and Methods
2.1. Field Site
Store Glacier is the third largest tidewater glacier on the west coast of Greenland (Chauché et al., 2014) with
an outlet velocity of 5,300 m/a and a seasonal ice velocity variation of approximately 500–700 m/a at the
terminus (Howat et al., 2010; Todd & Christoffersen, 2014). It drains an area of 35,100 km2, has an ablation
area of 5,200 km2, and discharges approximately 12 km3 of ice and 2–3 km3 of meltwater in Uummannaq
Fjord annually. A 450 m overdeepened trough in the fjord gives Atlantic Water access to its ice-ocean interface
(Chauché et al., 2014). The seasonality of the ice flow of Store Glacier has been linked to ice-ocean interaction
(Howat et al., 2010; Todd & Christoffersen, 2014). However, very little is known about basal conditions and the
meltwater runoff that largely occurs subglacially.

2.2. Survey Area
The survey area is located in the ablation zone, 30 km upstream of the calving front of Store Glacier at ∼900 m
elevation (Figure 1). The glacier flows here in the direction 262∘ relative to True North (T), at a rate of∼600 m/a
on the eastern (up-flow) side, increasing to ∼700 m/a toward the western (down-flow) side. The 2 km2 survey
area has a densely crevassed, but nevertheless accessible surface, and provides an opportunity to investigate
the glacial and subglacial conditions beneath the fast-moving ice of a marine-terminating outlet glacier in
an otherwise inaccessible area. Two high-resolution seismic profiles were collected in the summer of 2014.
At that time the ice surface was characterized by ice, abundant drainage channels, melt ponds, moulins, and
water-filled crevasses orientated perpendicular to the ice flow direction. The ice surface had some meter scale
undulation, a 100 m lowering in ice flow direction (maximum surface slope of 4∘), and a 30 m depression in
the center of the crossline (maximum surface slope of 2∘).

2.3. Seismic Data Sets
We recorded two data sets: A profiling data set to identify the substructure of the ice and subglacial mate-
rial and an Amplitude-Versus-Angle (AVA) data set to identity the subsurface materials. Each data set was
processed differently.
2.3.1. Profiling
We recorded two crossing seismic profiles. The first was a 2010 m along-profile, Line 1, aligned parallel to the
ice flow (direction 262∘); the second a 1,348 m across-profile, Line 2, aligned transverse to ice flow (direction
325∘). We recorded twofold seismic data using a 300 m snow streamer consisting of 96 gimballed 30 Hz
geophones (vertical P wave sensors). The shot point (SP) spacing was either 150 m or 75 m. The seismic source
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Figure 1. (a) Map from a Formosat-2 image of Store Glacier with elevation contours in meters above sea level and (b) an inset map of Greenland for its location.
The star in Figure 1b marks the location of the survey area. (c) The survey area with two seismic profiles, Line 1 and Line 2, is shown in black. The black triangles
represent the shot locations. The red dot represents a borehole with an installed thermistor string and tilt meters.

for each shot was a 400 g dynamite charge placed in an ∼2 m deep borehole. As the surface comprised solid
ice, there was no loss of elastic energy due to firn compression or diving waves. Data were recorded on four
seismographs mounted on a Nansen sled that also towed the snow streamer. The streamer and sled were
manually hauled across the glacier surface, but maneuverability was limited, particularly through crevassed
fields. To increase the length of the seismic profiles, we recorded additional shots (SP 1 to 11), starting at 1,500
to 0 m offset, decreasing in 150 m increments, while the streamer was maintained in its initial starting position
at SP 11 (Figure 2). We then moved streamer and shot together, keeping an offset of 22 m between the two

Figure 2. Diagram of the recording setup for the along-profile, Line 1. The shot interval from SP 1 to SP 11 was 150 m
with a decreasing offset (1500–0 m) and keeping the streamer in starting position at SP 11. From SP 11 to SP 22 (shaded
area), the shot interval was 75 m with an offset of 22 m (so the streamer moved with each shot, the common offset
configuration). The streamer stayed in this end position while SP 23 to SP 26 with a shot interval of 150 m were
recorded. This way the profile could be extended in more difficult terrain and remained twofold.
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Table 1
Recording Geometry of Along-Profile Line 1

SP Offset (m) SP interval (m) Streamer position

1–11 1,500–0 150 SP 11

12–22 22 75 SP 12–SP 22

23–26 150–600 150 SP 22

and a shot spacing of 75 m until ice surface conditions became too demanding (shaded area, SP 12 to 22). The
offset operation was then repeated, maintaining the streamer in its final position and recording additional
shots in steps of 150 m increasing offset (SP 23 to 26). The position of each SP was surveyed to a horizontal and
vertical accuracy of 0.1 m using a Trimble R7 GPS postprocessed against correction data from Trimble NetRS
base station permanently deployed on solid bedrock adjacent the glacier front. A summary is given in Table 1.

As our data were twofold processing was done in the shot domain. We processed the profiling data sets using
land-based techniques but applied a few modifications caused by the specific setting (heavily crevassed ice
surface). We removed noisy traces and applied manual static corrections. We used spiking deconvolution to
compress the 10 ms long source wavelet and to suppress the ghost (arriving 1 to 2 ms after the primary
source wavelet). We applied spatial frequency filtering (FK) to remove crevasse-generated linear moveout
noise, band-pass filtering, stacking, and a poststack Kirchhoff migration. The strong vertical velocity inversions
at the ice base and lateral amplitude contrast caused by highly variable attenuation of the receivers causes
smiles in the migrated stacks which is why we show both the filtered stacks and migrated stacks are shown in
Figure 3. We refer to these as (migrated) profiles.
2.3.2. AVA Analysis
To identify media properties above and below reflection events, we collected an AVA data set, which allows
the angle of incidence dependency of a reflector to be analyzed. To preserve amplitude information as much
as possible in the AVA data set, we performed two necessary processing steps: spiking deconvolution and a
10–500 Hz band-pass filter to avoid aliasing. As ghost removal was not very effective we picked the very first
peak (or trough) of an event before arrival of the ghost. Reflectivity is governed by contrasts in P wave velocity
(Vp), S wave velocity (Vs), density (𝜌), and angle of incidence (𝜃), at the interface of two media (e.g., Booth et
al., 2016). The only variable at a specific site is 𝜃 and as such there is a characteristic dependency of reflection
coefficient R against 𝜃. In AVA analysis this dependency is investigated and used to identify both media at the
considered interface. The reflection coefficient R(𝜃) is quantified by Dow et al. (2013):

R(𝜃) =
A1(𝜃)

A0
r(𝜃)e𝛼r(𝜃), (1)

where A1(𝜃) is the amplitude of the primary reflection considered, A0 the source amplitude, r(𝜃) the traveled
distance of the primary wave, and 𝛼 the attenuation. To reconstruct R(𝜃) of a reflector of interest, we collected
the amplitude variation over a range of 𝜃. For proper AVA analysis coverage of the same reflection area is
needed. We simplified this technique by using three shots of along-profile Line 1 with an offset range from 3 to
900 m. This allowed tracking of reflectors at a continuous 𝜃 range of 0 to∼ 40∘ covering a reflection (Common
Midpoint or CMP) area of 450 m or 690 m when including the Fresnel zones (Figure 3a). By assuming the
physical properties do not change over this CMP area, we can use this data set for AVA analysis. An advantage
of this data set is that the streamer was fixed so that gimballed geophones could be coupled securely to the
ice surface and that the coupling remained constant throughout the AVA experiment. To account for the shot
to shot variability in the AVA data set, we equalized the amplitude of the top reflection at offset transitions
from one shot to the next.

2.4. The Reflection Coefficient at Normal Incidence
Collecting AVA data is labor intensive and only provides local information. Considerable information in addi-
tion to the AVA data can also be obtained by analyzing the polarity of the reflection coefficient at normal
incidence. The reflection coefficient at the boundary of two layered media at normal incidence is given by the
acoustic impedance (Z = 𝜌Vp) on either side of the reflector:

R =
Z2 − Z1

Z2 + Z1
=

𝜌2Vp2
− 𝜌1Vp1

𝜌2Vp2
+ 𝜌1Vp1

, (2)
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Figure 3. Seismic profiles for (a) the along-profile Line 1, (b) its migrated profile, (c) the across-profile Line 2, with an
(d) inset of a polarity reversal of R358, and (e) its migrated across-profile. The three identified events R280, R327, and
R358 are marked at the thermistor string location (white arrow at the top) (Figure 3a). The AVA reflection area is marked
on top of Figure 3a. In Figure 3c the three events are marked, and a polarity reversal is visible in the rectangular area and
inset (Figure 3d) where the englacial reflection almost attains the base.
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where subscripts 1 and 2 refer to upper and lower media. The polarity of R at normal incidence is thus deter-
mined by the contrast in magnitude of the acoustic impedance Z of both media. Most of the collected profiling
data were recorded with a fixed offset of 22 m making 𝜃 mostly close to normal incidence for the given ice
thickness and equation (2) sufficient to represent R.

3. Results

The seismic data (Figure 3) clearly show different seismic events each with individual characteristics. The data
contain various types of noise, related to the heavily crevassed surface and the summertime glacial conditions.
We distinguish coherent low-frequency noise with linear moveout, noisy channels, varying frequency content
in the traces caused by varying attenuation, and static variability between traces. The linear moveout noise is
crevasse generated, reflecting the direct wave caused by the source as the effect is absent on noise records (i.e.,
recordings without a detonated shot). Noisy channels are mainly caused by poor contact of the geophones
with the ice (e.g., some were occasionally hanging in crevasses) or picking up ambient noise such as running
melt water. Lateral changes in attenuation are most likely caused by (water-filled) crevasses through which
the source wavelet travels. This also caused varying travel times of reflections, leading to static variability
between channels. Despite the high noise level several strong reflections can be clearly identified from the
seismic profiles.

3.1. Identified Reflections
In both profiles we identify three important reflections, hereafter named R280, R327, and R358 after their Two
Way Traveltime (TWT) relative to the starting position of the streamer (CMP 870 at the along-profile). The
reflections characterize the englacial, basal, and subglacial conditions and distinguish four different media.

Reflection R280 is strongest in the central part of the along-profile from CMP 555 to CMP 1452 (Figure3a). The
reflection has bed conformity and long spatial wavelength variation in the flow direction but not across-flow.
The polarity of the top reflection is positive throughout the along-profile. The reflection lies at the top of an
∼20 ms long series that consists of more than one reflection and fades out around CMP 1560 on the western
side. At the across-profile R280 forms an almost symmetric apparent syncline or fold with a hingeline at CMP
500 (Figure 3c). In the migrated profile (Figure 3e) the hingeline cannot be tracked as it disappears in the
smiles of a deeper event. The polarity and wavelet of R280 is similar on both profiles: It consists of a 20 ms
long reflection series starting with small positive amplitude followed by a larger negative amplitude.

Reflection R327 is the uppermost reflection of a series of events, forming a seismically stratified sequence,
approximately 30 to 40 ms long (Figure 3a). It is most clearly visible in the central part of the along-profile
from CMP 685 to CMP 1297, where we recorded with a fixed offset. The reflection is discontinuous and varies
in strength along-flow. The reflection fades out at the start and end of the profile where the offsets are largest
(i.e., eastern side, CMP 421–CMP 685 especially between CMP 486 and CMP 583 and beyond CMP 1350 on
the western side). R327 can be tracked in the across-profile but only at the crosspoint area (Figure 3c). The
top of the stratification, R327, fades out on the southern side around CMP 165 and terminates sharply on the
northern side at CMP 382.

Reflection R358 is the deepest notable event recorded in the along-profile and is particularly pronounced at
larger offsets (Figure 3a, CMP 424–CMP 685). It appears smooth and horizontal except on the western side
beyond CMP 1250 (crossing) where it has a more pronounced topography. This reflection is stronger than
both R280 and R327 and mostly has a positive polarity. At larger offsets, that is, before CMP 685 and beyond
CMP 1452, the resolution disappears due to increased attenuation. At smaller offsets, however, stratification
is visible. At the central part of the along-profile, the reflection is not always continuous and it is difficult
to discern the polarity. In the across-profile R358 shows a more pronounced topography but generally dips
to the north. At the crossing at CMP 300 of the across-profile (Figures 3c and 3e), reflection R358 forms a
local depression. On the southern side the polarity of reflection coefficient R is positive but on the northern
side, around CMP 450, R becomes negative (Figure 3d). This part with a negative reflection coefficient (CMP
500–CMP 50) causes a strong smile in the migrated profile (Figure 3e).

Overall, the along-profile reflections are horizontal to subhorizontal and aligned parallel to each other
(Figure 3a), whereas the across-profile reflections show greater roughness at the scale of ∼100 m (Figures 3c
and 3e).

HOFSTEDE ET AL. SUBGLACIAL PATCHES OF STORE GLACIER 354



Journal of Geophysical Research: Earth Surface 10.1002/2017JF004297

Table 2
The RMS and Interval Velocities of Events R280, R327, and R358, Derived Using Dix’s Method

Event Vrms (m/s) Depth (m) Range Vrms (m/s) Range depth z (m) Vint (m/s) Range Vint (m/s)

R280 3,770 528 3,718–3,830 520–536 3,770 3,718–3,830

R327 3,737 611 3,707–3,767 606–616 3,511 2,762–4,075

R358 3,660 655 3,626–3,694 649–661 1,839 1,645–3,457

Note. The interval velocities are derived for the layer above the reflection mentioned. For uncertainties see section 3.2.

3.2. Velocity Analysis and TWT Conversions
For a velocity analysis we collected an additional large offset data set (0–900 m) on the along-profile at the
crosspoint (CMP 1201–CMP 1297). By using Dix’s method (Dix, 1955) over a wide range of offsets, we retrieved
the root-mean-square velocity (Vrms) and the interval velocity (Vint) of the media overlying the three identified
reflections. The resulting Vrms varied within 0.5–1.5%, depending on the considered offset interval. We pre-
scribe this variation as the uncertainty. A precondition of Dix’s method is that the reflections are horizontal,
which is approximately the case for the top two reflections, R280 and R327. Reflection R358 slopes ∼ 6∘ caus-
ing an overestimation of Vrms which we have corrected for (Dix, 1955). From Vrms we derived the depths z and
interval velocities Vint for the layer above the reflections R280, R327, and R358 (Table 2). The calculated Vint

represents the average value Vp for the whole depth interval considered between two reflections. Between 0
and 528 ± 8 m depth, Vint = 3770 ± 60 m/s, between 528 ± 8 m and 611 ± 5 m depth, Vint = 3511 ± 750 m/s,
and between 611 ± 5 and 655 ± 6 m depth, Vint = 1839 ± 1620 m/s.

3.3. AVA Analysis
To physically characterize the different media above and below the three different reflections, we plotted R
against 𝜃 using equation (1). The AVA data consist of three shots with offset ranges from 3 to 300 m (shot 1),
303 to 600 m (shot 2), and 603 to 900 m (shot 3). To account for the shot to shot variability, we assumed a con-
tinuous transition in amplitude of reflection R280 at offset transitions from shot 1 to 2 and shot 2 to 3. This
resulted in two scalars, 1.31 and 1.41, by which we multiplied the source amplitude A0 of shots 2 and 3. The
direct path method described by Holland and Anandakrishnan (2009) to determine A0 was unsuitable as sur-
face crevasses affected the attenuation of the direct wave too much. Offsets below 38 m were unsuitable due
to source-induced noise, so the AVA data set covers an offset range from 38 to 900 m. The source-induced noise
(linear moveout) partly overlaps the considered reflections, making the amplitude determination uncertain.
We therefore focused the analysis on those parts without interfering noise which overly the reflections. The
uncertainty of the reflection coefficient R(𝜃) mainly consists of two parts: uncertainty in the picked amplitude
A1 of a reflection and uncertainty in the source amplitude A0. We approximated the uncertainty in A1 as the
mean noise level over a 5 ms time window preceding each reflection. The uncertainty of A0 we approximated
by using the multiple bounce method described by Holland and Anandakrishnan (2009) over several traces,
resulting in a value of A0 = 1,874 ± 330 mV. With an attenuation 𝛼 = 0.6 km−1 (explained in the discussion) we
calculated the reflection coefficients of the three reflections identified for angle ranges of 3–40∘ (Figure 4b).

The first arrivals from the uppermost reflection, R280, can be tracked from an offset of 138 to 900 m (Figure 4a).
The value of R is positive, generally increasing with increasing 𝜃 (Figure 4b). Its value begins at R = 0.01 at
𝜃 = 7∘, increasing steadily to R = 0.022 at 𝜃 = 40∘.

The amplitude of R327, which is positive and small, can be tracked reasonably to an offset of 360 m; thereafter
it is discontinuous (Figure 4a). The value of R varies between 0.01 and 0.03 (Figure 4b). At offsets larger than
370 m (𝜃 > 17∘), the first pick is unreliable. Between offset 488 m (𝜃 = 22∘) and 600 m (𝜃 = 26∘) the amplitude
is negative but because of the discontinuity, we cannot unambiguously assign it to R327.

Reflection R358 can be tracked from an offset of 100 to 900 m (Figure 4a). The amplitude is positive and
stronger then that of R280 and R327. At closer offsets the resolution is better but the reflection is discon-
tinuous. At larger offsets (440 to 900 m) the reflection is continuous but with less resolution. The value of R
generally increases with increasing 𝜃. It varies between 0.1 (𝜃 = 4∘) and 0.2 (𝜃 = 28∘), after which it decreases
to 0.1 at 𝜃 = 33∘ (Figure 4b).
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Figure 4. (a) The AVA data set with an offset range from 38 to 900 m used for the reconstruction of the reflection
coefficient R(𝜃). (b) Calculated reflection coefficients R(𝜃) of the three identified reflections with error bars. Green
diamonds represent englacial reflection, R280, red diamonds the top of the stratified material R327, and yellow
diamonds the strongest reflection R358. The solid lines and shaded areas represent the ranges of R(𝜃) of different
possible media contrasts encountered at the survey site.

4. Discussion

In July 2014 a thermistor string was installed at the onset of the seismic survey (i.e., CMP 870 of the
along-profile) using hot-water drilling (Figure 3a). In all seven boreholes drilled in 2014 and 2016, connection
to the subglacial hydrological system was confirmed by the rapid drainage of borehole water when the drill
stem reached a depth of 605–611 m below the surface Doyle et al. (2018). R327 at 611 ± 5 m depth can thus
accurately be interpreted to represent the ice-bed interface. Furthermore, we suggest that R280 at 528 ± 8 m
depth originates from an englacial reflector and R358 at 655 ± 6 m depth is caused by the interface between
the seismically stratified sequence and a hard base. From the temperature data (Figure 5) and a dominant fre-
quency of 85 Hz we calculated the one way attenuation 𝛼 = 0.6 km−1 for the entire ice column (Peters et al.,
2012). To identify the nature of the four media separated by the three identified reflectors and in particular
the nature of the subglacial conditions, we used three analyses as follows:

The first analysis comes from the polarity of the reflection coefficient R at normal incidence given by
equation (2). This condition is satisfied for the shots with a fixed 22 m offset (i.e., 1∘ < 𝜃 < 16∘), which includes
the majority of both profiles. Using the same values for 𝜌, Vp, and lithology as Christianson et al. (2014), we
calculated the acoustic impedance Z (Table 3) and R at normal incidence for the most likely media contrasts
(Table 4). The seismic velocities of cold and temperate ice were adjusted to the conditions of the survey area.
Depending on the porosity and water saturation, the P wave velocity of temperate ice can be as low as 3,470
m/s and up to 3,740 m/s (Kim et al., 2010).

From the thermistor string data we infer that the lowest meters of the ice column are probably at the pressure
melting point and thus temperate (Figure 5). Assuming we have temperate ice at the base, we interpret the
values of R derived in Table 4, the polarity, and amplitude of the ice-bed reflection as follows:

1. A negative polarity indicates the presence of water; the larger the magnitude, the more water is present.
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Figure 5. (a) Temperature-depth profile measured by thermistors installed in a borehole at the study site (see Figure 3a)
in July 2014 and (b) a close-up near the inferred ice-sediment interface. The red and dashed subvertical blue lines are
the Clausius-Clapeyron gradients for pure ice and air saturated water (Yair), and pure ice and pure water (Ypure),
respectively. Linear extrapolation of the basal temperature gradient (black dashed line) suggests the probable existence
of a thin (i.e., < 10 m) layer of temperate basal ice.

2. A positive reflection coefficient indicates a drier bed; the larger the amplitude, the larger the impedance
contrast to the underlying material (a harder, denser material) generally is.

3. As the basal ice is temperate, a weak positive polarity may indicate unconsolidated sediments.

The shaded media contrast areas of R(𝜃) can partly overlap (Figure 4b). Distinguishing, for example, between
dilatant till and unconsolidated sediments is not always possible. However, the polarity itself is a good
indicator of whether water is present in the subglacial material as water tends to reduce the acoustic
impedance.

The second analysis comes from the interval velocities, Vint, derived from the velocity analysis of the media
between the three reflectors R280, R327, and R358 and the surface. As the velocity data are collected in the
center of the survey area, we assume the derived velocities are representative for the whole survey area.
Though the accuracy of the derived RMS velocities is only 0.5–1.5%, this accuracy causes large uncertainties
in the interval velocities of the ice below the englacial reflection R280 and the stratified material. To identify
the different media, we will use the most likely single interval velocity value.

The third analysis comes from the angle-dependent reflection coefficient R(𝜃) of the three reflectors, R280,
R327, and R358.

4.1. Interpretation of the Four Media at the Interfaces of R280, R327, and R358
Migration of both the along-profile (Figure 3b) and across-profile (Figure 3e) was difficult as they suffer from
smiles and a 3-D topography that is represented by 2-D profiles. We attribute the smiles to a strong veloc-
ity inversion at the ice-bed contact and to lateral variability in reflector amplitude. This amplitude variation
is most likely caused by water-filled surface crevasses causing reflections of the direct wave throughout the

Table 3
Interval Velocities, Densities, and Acoustic Impedance (Z) Ranges for Glacial and Subglacial Media

Lithology Vint range (m/s) 𝜌 range (kg/m3) Z range (× 1,000, kg/(m2 s))

Cold ice 3,770–3,840 917 3,460–3,520

Temperate ice 3,470–3,740 917–921 3,180–3,440

Lithified sediments/bedrock 3,000–6,200 2,200–2,800 6,600–1,1740

Consolidated sediments 2,000–2,600 1,600–1,900 3,200–4,940

Unconsolidated sediments 1,700–1,900 1,600–1,800 2,720–3,420

Dilatant till 1,600–1,800 1,600–1,800 2,560–3,240

Water 1,450–1,500 1,000–1,020 1,450–1,600
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Table 4
Ranges of R of Media Contrasts at Normal Incidence

Media contrast R range

Cold ice-lithified sediments/bedrock 0.304 to 0.667

Cold ice-consolidated sediments −0.047 to 0.176

Temperate ice-cons sediments −0.003 to 0.210

Temperate ice-unconsolidated sediments −0.084 to 0.030

Temperate ice-dilatant till −0.114 to 0.003

Temperate ice-water −0.379 to −0.335

Consolidated sediments-lithified sediments/bedrock 0.143 to 0.688

Unconsolidated sediments-lithified sediments/bedrock −0.033 to 0.729

shot records but also causing different attenuation depending on the travel paths of the seismic energy. Nev-
ertheless, we are sufficiently confident in the results of our seismic data analysis to provide the following
interpretation of the observed media properties and their stratigraphy.

Reflection R280 is an englacial reflector at 528 ± 8 m depth at the thermistor string location (CMP 870 of
the along-profile). It is part of a series of reflections, 20 ms long-equivalent to ∼38 m of ice. The series is
located at 528–566 m depth, well within the ice column and significantly above the confirmed ice-bed con-
tact at 605–611 m depth. It is similar in appearance to the englacial reflection Horgan et al. (2008) identified
at Jakobshavn Isbræ as the low-frequency arrival above which Holocene reflections appear, taking place
in the lower 10–15% of the ice column. Reflection R280 appears at 14% in the lower ice column and may
very well be the Holocene-Wisconsin transition which has been identified at this relative depth in this area
(Karlsson et al., 2013).

R280 has a weak but positive polarity on, both the along- and across-profiles. Similar to previous seismic sur-
veys undertaken in West Antarctica at Thwaites Glacier and Bindschadler Ice Stream (Horgan et al., 2011),
the englacial reflection has bed conformity and long spatial wavelength variation in flow direction and short
wavelength variation across-flow. We follow Horgan et al. (2011) in our reasoning that R280 is caused by a
change in COF. Seismic P waves travel 5% faster parallel to the c axis of an ice crystal then perpendicular to
it. When the ice crystals are randomly orientated, the bulk properties of ice are isotropic, but when the crys-
tals have a preferred orientation, the bulk properties of ice become anisotropic and can, when the change in
orientation is sudden, cause seismic reflections. Changes in Vp can be caused by a change in density, tempera-
ture, or crystal orientation. As R280 is within the ice column and up to∼80 m above the bed, intrusion of basal
debris is unlikely and the density of ice is constant. The temperature gradient is fairly constant here (Figure 5).
We hence conclude that the most likely cause of these englacial reflections is an abrupt change in COF.

Stress regimes have been identified as causes of changes in COF, most often at ice domes or divides (Alley,
1988; Budd & Jacka, 1989; DiPrinzio et al., 2005; Diez et al., 2014; Hofstede et al., 2013; Montagnat et al., 2014)
but more recently also at ice streams (Christianson et al., 2014; Horgan et al., 2008, 2011). As Alley (1988)
and Horgan et al. (2011) summarize, the stress regime at ice streams causes c axes to rotate under vertical
compression and bed parallel simple shear. This rotation leads to vertical clustering of c axes which in its turn
hardens against vertical compression but softens simple shear (Budd & Jacka, 1989)

As we identified one englacial reflection we assumed the simplest scenario, namely, that the overlying ice of
R280 is isotropic even though the stress regime at the survey area is complex where we can expect converging
and stretching ice flow and consequently anisotropic overlying ice (Harland et al., 2013). The values of R(𝜃)
fall within the green shaded area (Figure 4b), which represents the theoretical transition from isotropic ice
to a Vertical Transverse Isotropic (VTI) structure with a cone opening angle of 0 (upper limit) to 45∘ (lower
limit). Reflection R280 most likely marks the transition from isotropic to a (almost) VTI structure with a cone
opening angle up to 45∘. This anisotropic ice is vertically less compressible but horizontally twice more easily
deformable, having an enhancement factor of ∼2 for simple shear (Cuffey & Paterson, 2010; Thorsteinsson,
2000). The value of the enhancement factor may be affected by the assumption of overlying isotropic ice.

The interval velocity of the top 528 ± 8 m of ice is 3, 770±60 m/s (Table 2). While this is slow for cold isotropic
ice, the velocity is likely reduced by the presence of liquid water held within the ice matrix and crevasses.
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The interval velocity of the anisotropic ice below R280 is 3, 511 ± 750 m/s (Table 2). We assume the entire ice
column below R280 is anisotropic because there are no deeper reflections that show otherwise and because
VTI structures found in ice cores in Greenland are present over longer depth ranges whereby the cone angle
𝜃 typically increases with increasing depth (Gow et al., 1991; Gusmeroli et al., 2012; Thorsteinsson et al., 1999).

We interpret R327 as the ice-bed contact at 611 ± 5 m depth at the thermistor string location. It is the
top of a 45 m thick stratified sequence extending to R358 at 655 ± 6 m depth with an interval velocity
of 1, 839 ± 1, 620 m/s. Considering the interval velocity of 1, 839 ± 1, 620 m/s and the weakness of R327
that occasionally disappears in the central part of the along-profile (22 m offset, 1∘ < 𝜃 < 16∘), we interpret
the subglacial material as unconsolidated sediments. This interpretation was supported in 2016, when the
hot-water drilling team was able to penetrate, haltingly and over some hours, some tens of meters into this
sequence (Doyle et al., 2018). The reflection coefficient R(𝜃) (Figure 4b) can be tracked from an angle of 4 to
16∘ where it has a positive but weak polarity. The till can be interpreted as an unconsolidated sediment hav-
ing a positive reflection coefficient if overlain by temperate ice or if water is distributed widely in the pores of
the sediment throughout the sequence. The disappearance of R327 at the start and end of the along-profile
we attribute to a 𝜃 ⩾ 16∘ and thus a decreasing R(𝜃), a characteristic of a temperate ice-unconsolidated
sediment interface.

Reflector R358 has a positive polarity throughout the along-profile. It is notably stronger than R327 and
R280. The reflection coefficient R(𝜃) is positive throughout the angle interval from 0 to 40∘ (Figure 4b)
with a value of R(𝜃) = 0.1 at 4∘ to R(𝜃) = 0.2 at 28∘. The values fall well within the R(𝜃) interval of an
unconsolidated-consolidated sediment interface (yellow shaded area) and are interpreted as such. This
interpretation is confirmed by the increasing trend of R(𝜃) with increasing 𝜃 that is a characteristic of an
unconsolidated-consolidated sediment interface. The reflection coefficient has a maximum around 28∘, which
seems unusual as the theoretically derived graph has a maximum at 40∘, but this maximum is formed by the
largest possible contrast of Vp, Vs, and 𝜌. It is more likely that the contrast of Vp, Vs, and 𝜌 are less than the
maximum contrast, as the stratified material between R327 and R358 is more consolidated with depth and
probably have increasing values for Vp, Vs, and 𝜌 with increasing depth.

4.2. Glaciological Implications of COF and Unconsolidated Basal Sediment
From the structure of the three events discussed in the results and the identification of the four media of the
seismic profiles (Figure 3), we now discuss the glaciological implications.

In the along-profile we identified 80 m of anisotropic ice below R280 and ∼45 m of unconsolidated till below
R327, both of which are more easily deformable than the upper 530 m of cold, stiff, isotropic ice and have
important implications for ice flow. Doyle et al. (Doyle et al., 2018) reported that at CMP 870, 63–71% of the
observed surface velocity of 592 m/a takes place as basal sliding or as deformation in the subglacial sediments
and that the remaining 29–37% is explained by ice deformation which predominantly occurs in the lower-
most 80 m of the ice column. Based on the current understanding of subglacial tills, we consider a Coulomb
plastic rheology to be the most likely (Bougamont et al., 2014; Clarke et al., 2005), suggesting that the sub-
glacial deformation will likely be concentrated at its top near the ice base and not distributed over the depth
of the basal till layer. The observed increased consolidation with depth in the till layer is most likely an attribute
of the till layer’s own overburden pressure. While the effective pressure at the base is likely to be very small,
a hydrostatic equilibrium would mean that effective pressure increases linearly with depth according to the
difference between till density and the density of water contained in its pores

At the across-profile R280 forms an apparent syncline or fold. If R280 is the Holocene-Wisconsin transition as
our data suggest, it would be an isochrone. The consequence is that at the deepest point of the syncline at
CMP 500, that is, the older anisotropic ice, has disappeared. We hypothesize that the apparent syncline formed
because ice flow in the drainage basin generally converges and that basal melting has caused the anisotropic
ice to be lost. At the same time the unconsolidated till clearly terminates in the northerly direction at CMP 382
in the across-profile beyond which R358 becomes the ice-bed contact. This means that at the syncline’s hinge
point, reflection R358 is the ice-bed contact. We interpret its negative polarity to be caused by the presence of
a large amount of subglacial water, which most likely is exclusively present at the ice-bed interface because ice
at this location is in direct contact with the consolidated (R358) sediment observed below the till layer when
the latter is present. We therefore conclude that ice must be sliding over a bed consisting of consolidated
sediments at the syncline’s hinge point at CMP 500.
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Both profiles display different characteristics in bed stratigraphy. The along-profile (Figures 3a and 3b)
shows less spatial variation and a more consistent top to bottom stratigraphy, whereas the across-profile
(Figures 3c–3e) shows greater spatial variability in both the presence of anisotropic ice and the subglacial
deposits. Considering the patchy character of the ice-bed contact in the across-profile, we can expect different
types of ice and sediment deformation in different areas.

In order to quantify the deformation of subglacial till the along-profile would require a flow law for subglacial
sediments, for example, a Coulomb-type plastic flow. For parts of the across-profile, where our analysis indi-
cates the presence of consolidated sediments and subglacial water, a more traditional Weertman-type flow
law would seem equally appropriate. The subglacial water content most likely varies over time and influences
both a Coulomb type of till deformation and Weertman sliding, so preferably both flow laws should be able
to take time-varying subglacial water pressures into account.

Ryser et al. (2014) observed and modeled the complex ice dynamics in along-flow direction caused by sub-
glacial patches with varying basal slipperiness over time and space. Overlying colder and stiffer ice would
enhance horizontal stress transfer between patches. They concluded that the ice dynamics in the ablation
area was a result of an integrated response to the locally and time-varying ice-bed conditions. Our results
reveal subglacial patches of different basal slipperiness of similar dimensions, overlain by colder stiffer ice. We
infer that the distribution of subglacial water varies spatially with water partly present in the unconsolidated
till layer and partly present in a basal water system at the ice-bed interface and almost certainly variable over
time as the bed of Store Glacier accommodates a large amount of surface water during summer.

Our observations indicate that realistic modeling of ice dynamics in this region can be based on either a
Coulomb-type plastic flow for till or a Weertman-type sliding law or equivalent. The advantage of the former
is that basal traction can evolve from changes in the storage of water in the till layer (Bougamont et al., 2014).
The advantage of the latter is that basal traction can evolve according to the configuration of a basal water
system, which can be either be distributed or channelized. At the moment it is difficult to tell which model
offers the best advantage, given that both till and basal water systems are likely to exert direct influence on
ice flow.

5. Conclusions

In two profiles, parallel and transverse to the ice flow, we identified three seismic events separating four differ-
ent media within and beneath Store Glacier. From the derived interval velocities and the reflection coefficients
we interpreted the four different media to be (1) an upper ∼530 m thick layer of isotropic ice; (2) an ∼80 m
thick layer of anisotropic ice, most likely having a VTI structure; (3) an∼45 m thick layer of unconsolidated and
acoustically stratified till; and (4) a harder base consisting of consolidated sediments.

These three seismic events could be tracked throughout both profiles but with changing stratigraphy and
structure. The along-profile contains subhorizontal reflectors with little topography and little spatial varia-
tion, whereas the across-profile has considerable topography and spatial variation. The across-profile contains
dipping englacial reflections and an absence of the oldest anisotropic ice at the hinge of the syncline-like
structural fold. We hypothesize that the syncline formed in response to converging ice flow and that the old-
est ice at the bottom of the hinge lines axial plane was lost due to basal melting. We also found a phase shift
from positive to negative polarity which we interpret as a change from water stored preferential in the pore
spaces of a relatively thick subglacial till layer to water contained largely at the ice-bed interface where till is
absent and ice is underlain by a consolidated and more compact sediment. These observations suggest that
we can expect two different types of ice and sediment deformation within less than a kilometer of each other:
a Coulomb type of plastic flow where the unconsolidated till below the ice is present and a Weertman type of
sliding where consolidated sediments and subglacial water are present. We do not know whether free water
at the basal interface requires till to be absent as found here, or whether the latter is a coincidence. We con-
clude by stating that these type of bed properties and their spatial variations seem to be common in Western
Greenland (e.g., Ryser et al., 2014). But direct observations from the bed are of advantage to decide for the
optimal basal parameterization in numerical ice flow models and whether those should include till as well as
basal water systems.

Our observations imply that realistic modeling of ice dynamics in this region require a combination of both
a Coulomb-type plastic flow for till and a Weertman-type sliding law or equivalent. How such a hybrid
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parameterization could be implemented under transient subglacial drainage and ice flow dynamics at typical
higher-order ice sheet model grid resolutions (1–10 km) remains a major outstanding challenge for accurate
forecasting of Greenland’s fast-flowing outlet glaciers.

References
Alley, R. B. (1988). Fabrics in polar ice sheets: Development and prediction. Science, 240(4851), 493–495. https://doi.org/

10.1126/science.240.4851.493
Alley, R. B., Blankenship, D. D., Bentley, C. R., & Rooney, S. T. (1986). Deformation of till beneath ice stream B, West Antarctica. Nature,

322(6074), 57–59. https://doi.org/10.1038/322057a0
Anandakrishnan, S. (2003). Dilatant till layer near the onset of streaming flow of Ice Stream C, West Antarctica, determined by AVO

(amplitude vs offset) analysis. Annals of Glaciology, 36, 283–286. https://doi.org/10.3189/172756403781816329
Anandakrishnan, S., Blankenship, D., Alley, R., & Stoffa, P. (1998). Influence of subglacial geology on the position of a West Antarctic ice

stream from seismic observations. Nature, 394, 62–65. https://doi.org/10.1038/27889
Bevan, S., Luckman, A., & Murray, T. (2012). Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other

major Greenland outlet glaciers. The Cryosphere, 6, 923–937. https://doi.org/10.5194/tc-6-923-2012
Blankenship, D. D., Bentley, C. R., Rooney, S. T., & Alley, R. B. (1986). Seismic measurements reveal a saturated porous layer beneath an active

Antarctic ice stream. Nature, 322(6074), 54–57. https://doi.org/10.1038/322054a0
Booth, A. D., Emir, E., & Diez, A. (2016). Approximations to seismic AVA responses: Validity and potential in glaciological applications.

Geophysics, 81(1), 1–11. https://doi.org/10.1190/GEO2015-0187.1
Bougamont, M., Christoffersen, P., Hubbard, A., Fitzpatrick, A., Doyle, S. H., & Carter, S. P. (2014). Sensitive response of the Greenland Ice

Sheet to surface melt drainage over a soft bed. Nature Communications, 5, 5052. https://doi.org/10.1038/ncomms6052
Budd, W. F., & Jacka, T. H. (1989). A review of ice rheology for ice sheet modelling. Cold Regions Science and Technology, 16, 107–144.

https://doi.org/10.1016/0165-232X(89)90014-1
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes, M.,… Patton, H. (2014). Ice-ocean interaction and calving front

morphology at two west Greenland tidewater outlet glaciers. The Cryosphere, 8, 1457–1468. https://doi.org/10.5194/tc-8-1457-2014
Christianson, K., Peters, L. E., Alley, R. B., Anandakrishnan, S., Jacobel, R. W., Riverman, K. L.,… Keisling, B. A. (2014). Dilatant till facilitates

ice-stream flow in northeast Greenland. Earth and Planetary Science Letters, 401, 57–69. https://doi.org/10.1016/j.epsl.2014.05.060
Clarke, G. K. C., L’homme, N., & Marshall, S. J. (2005). Tracer transport in the Greenland ice sheet: Three-dimensional isotopic stratigraphy.

Quaternary Science Reviews, 24(1–2), 155–171. https://doi.org/10.1016/j.quascirev.2004.08.021
Csatho, B., Schenk, A., van der Veen, C., Babonis, G., Duncan, K., Rezvanbehbahani, S.,… van Angelen, J. (2014). Laser altimetry

reveals complex pattern of Greenland Ice Sheet dynamics. Proceedings of the National Academy of Sciences, 111, 18,478–18,483.
https://doi.org/10.1073/pnas

Cuffey, K., & Paterson, W. (2010). The physics of glaciers, fourth edition (4th ed.). Burlington: Elsevier. https://doi.org/
10.3189/002214311798843412

Diez, A., Eisen, O., Weikusat, I., Eichler, J., Hofstede, C., Bohleber, P.,… Polom, U. (2014). Influence of ice crystal anisotropy on seismic velocity
analysis. Annals of Glaciology, 55(67), 97–106. https://doi.org/10.3189/2014AoG67A002

DiPrinzio, C. L., Wilen, L. A., Alley, R. B., Fitzpatrick, J. J., Spencer, M. K., & Gow, A. J. (2005). Fabric and texture at Siple Dome, Antarctica.
Journal of Glaciology, 51(171), 281–290. https://doi.org/10.3189/172756505781829359

Dix, C. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126
Dow, C., Hubbard, A., Booth, A., Doyle, S., Gusmeroli, A., & Kulessa, B. (2013). Seismic evidence of mechanically weak sediments underlying

Russell Glacier, West Greenland. Annals of Glaciology, 54, 135–141. https://doi.org/10.3189/2013AoG64A032
Doyle, S. H., Hubbard, B., Christoffersen, P., Young, T. J., Hofstede, C., Bougamont, M.,…Hubbard, A. (2018). Physical conditions of fast

glacier flow: 1. Measurements from boreholes drilled to the bed of Store Glacier, West Greenland. Journal of Geophysical Research:
Earth Surface, 123. https://doi.org/10.1002/2017JF004529

Dowdeswell, J., Hogan, K., Cofaigh, C., Fugelli, E., Evans, J., & Noormets, R. (2014). Late Quaternary ice flow in a West Greenland fjord and
cross-shelf trough system: Submarine landforms from Rink Isbrae to Uummannaq shelf and slope. Quaternary Science Reviews, 92,
292–309. https://doi.org/10.1016/j.quascirev.2013.09.007

Enderlin, E., Howat, I., Jeong, S., Noh, M. J., van Angelen, J., & Van den Broeke, M. (2014). An improved mass budget for the Greenland ice
sheet. Geophysical Research Letters, 41, 866–871. https://doi.org/10.1002/2013GL059010

Fürst, J., Goelzer, H., & Huybrechts, P. (2015). Ice-dynamic projections of the Greenland Ice Sheet in response to atmospheric and oceanic
warming. The Cryosphere, 9, 1039–1062. https://doi.org/10.5194/tc-9-1039-2015

Gow, A. J., Meese, D. A., Alley, R. B., Fitzpatrick, J. J., Anandakrishnan, S., Woods, G. A., & Elder, B. C. (1991). Physical and structural
properties of the Greenland Ice Sheet project 2 ice cores: A review. Journal of Geophysical Research, 102(C12), 26,583–26,599.
https://doi.org/10.1029/97JC00165

Gusmeroli, A., Pettit, E. C., Kennedy, J. H., & Ritz, C. (2012). The crystal fabric of ice from full-waveform borehole sonic logging. Journal of
Geophysical Research, 117, F03021. https://doi.org/10.1029/2012JF002343

Hanna, E., Navarro, F., Pattyn, F., Domingues, C., Fettweis, X., Ivins, E.,… Zwally, J. (2013). Ice-sheet mass balance and climate change. Nature,
498, 51–59. https://doi.org/10.1038/nature12238

Harland, S. R., Kendall, J. M., Stuart, G., Lloyd, G. E., Baird, A. F., Smith, A.,… Brisbourne, A. M. (2013). Deformation in Rutford Ice Stream,
West Antarctica: Measuring shear-wave anisotropy from icequakes. Annals of Glaciology, 54, 105–114. https://doi.org/10.3189/
2013AoG64A033

Hofstede, C., Eisen, O., Jansen, D., Kristoffersen, Y., Lambrecht, A., & Mayer, C. (2013). Investigating englacial reflections with
vibro- and explosive-seismics surveys at Halvfarryggen ice dome, Antarctica. Annals of Glaciology, 54(64), 189–200.
https://doi.org/10.3189/2013AoG64A064

Hogan, K., Dowdeswell, J., & Cofaigh, C. (2012). Glacimarine sedimentary processes and depositional environments in an embayment fed
by West Greenland ice streams. Marine Geology, 311, 1–16. https://doi.org/10.1016/j.margeo.2012.04.006

Holland, C., & Anandakrishnan, S. (2009). Subglacial seismic reflection strategies when source amplitude and medium attenuation are
poorly known. Journal of Glaciology, 55, 931–937. https://doi.org/10.3189/002214309790152528

Horgan, H., Anandakrishnan, S., Alley, R. B., Burkett, P. G., & Peters, L. (2011). Englacial seismic reflectivity: Imaging crystal-orientation fabric
in West Antarctica. Journal of Glaciology, 57(204), 639–650. https://doi.org/10.3189/002214311797409686

Acknowledgments
This research was funded by
the UK National Environment
Research Council (NERC) grants
NE/K006126/1 and NE/K005871/1.
We kindly thank Johannes Bondzio,
Thomas Kleiner, and Pascal
Bohleber for the preparations
of this survey. We kindly thank Ann
Andreasen and the Children’s Home
in Uummannaq for their generous
hospitality and providing us with
an excellent roof over our heads in
Uummannaq. We also thank Carlos
Martín for advice concerning the
enhancement factor of the anisotropic
ice and Emma Smith who tirelessly
helped to improve the manuscript.
We want to thank the three reviewers
for their excellent suggestions and
remarks helping to improve this
manuscript. Alun Hubbard gratefully
acknowledges support from the BBC’s
Operation Iceberg for the deployment
of the GPS reference station and a
Professorial Fellowship from the Centre
for Arctic Gas Hydrate, Environment
and Climate, funded by the Research
Council of Norway through its Centres
of Excellence (grant 223259). We thank
the tireless crew and skipper of S/V
Gambo for logistical support. The data
sets presented in this paper will be
made available prior to publication at
https://doi.org/10.1594/PANGAEA.884529.

HOFSTEDE ET AL. SUBGLACIAL PATCHES OF STORE GLACIER 361

https://doi.org/10.1126/science.240.4851.493
https://doi.org/10.1126/science.240.4851.493
https://doi.org/10.1038/322057a0
https://doi.org/10.3189/172756403781816329
https://doi.org/10.1038/27889
https://doi.org/10.5194/tc-6-923-2012
https://doi.org/10.1038/322054a0
https://doi.org/10.1190/GEO2015-0187.1
https://doi.org/10.1038/ncomms6052
https://doi.org/10.1016/0165-232X(89)90014-1
https://doi.org/10.5194/tc-8-1457-2014
https://doi.org/10.1016/j.epsl.2014.05.060
https://doi.org/10.1016/j.quascirev.2004.08.021
https://doi.org/10.1073/pnas
https://doi.org/10.3189/002214311798843412
https://doi.org/10.3189/002214311798843412
https://doi.org/10.3189/2014AoG67A002
https://doi.org/10.3189/172756505781829359
https://doi.org/10.1190/1.1438126
https://doi.org/10.3189/2013AoG64A032
https://doi.org/10.1002/2017JF004529
https://doi.org/10.1016/j.quascirev.2013.09.007
https://doi.org/10.1002/2013GL059010
https://doi.org/10.5194/tc-9-1039-2015
https://doi.org/10.1029/97JC00165
https://doi.org/10.1029/2012JF002343
https://doi.org/10.1038/nature12238
https://doi.org/10.3189/2013AoG64A033
https://doi.org/10.3189/2013AoG64A033
https://doi.org/10.3189/2013AoG64A064
https://doi.org/10.1016/j.margeo.2012.04.006
https://doi.org/10.3189/002214309790152528
https://doi.org/10.3189/002214311797409686
https://doi.org/10.1594/PANGAEA.884529


Journal of Geophysical Research: Earth Surface 10.1002/2017JF004297

Horgan, H. J., Anandakrishnan, S., Alley, R. B., Peters, L. E., Tsoflias, G. P., Voigt, D. E., & Winberry, J. P. (2008). Complex fabric development
revealed by englacial seismic reflectivity: Jakobshavn Isbræ, Greenland. Geophysical Research Letters, 35, L10501. https://doi.org/
10.1029/2008GL033712

Howat, I. M., Box, J. E., Yushin, A., Herrington, A., & McFadden, E. M. (2010). Seasonal variability in the dynamics of marine-terminating outlet
glaciers in Greenland. Journal of Glaciology, 56(198), 601–613. https://doi.org/10.3189/002214310793146232

Intergovernmental Panel on Climate Change (2013). Climate change 2013: The physical science basis. Contribution of Working
Group I to the IPCC Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. F. Stocker, et al. (Eds.),
(Vol. AR5). Cambridge UK and New York: Cambridge University Press.

Joughin, I., Alley, R. B., & Holland, D. (2012). Ice-sheet response to oceanic forcing. Science, 338, 1172–1176. https://doi.org/
10.1126/science.1226481

Karlsson, N. B., Dahl-Jensen, D., Gogineni, S. P., & Paden, J. (2013). Tracing the depth of the Holocene ice in North Greenland from radio-echo
sounding data. Annals of Glaciology, 54(64), 44–50. https://doi.org/10.3189/2013AoG64A057

Kim, K. Y., Lee, J., Hong, M. H., Hong, J. K., Jin, Y. K., & Shon, H. (2010). Seismic and radar investigations of Fourcade Glacier on King George
Island, Antarctica. Polar Research, 29, 298–310. https://doi.org/10.1111/j.1751-8369.2010.00174.x

Montagnat, M., Azuma, N., Dahl-Jensen, D., Eichler, J., Fujita, S., Gillet-Chaulet, F.,…Weikusat, I. (2014). Fabric along the NEEM ice core,
Greenland, and its comparison with GRIP and NGRIP ice cores. The Cryosphere, 8, 1129–1138. https://doi.org/10.5194/tc-8-1129-2014

Peters, L. E., Anandakrishnan, S., Alley, R. B., & Voigt, D. E. (2012). Seismic attenuation in glacial ice: A proxy for englacial temperature.
Journal of Geophysical Research, 117, F02008. https://doi.org/10.1029/2011JF002201

Rignot, E., & Mouginot, J. (2012). Ice flow in Greenland for the International Polar Year 2008–2009. Geophysical Research Letters, 39, L11501.
https://doi.org/10.1029/2012GL051634

Ryser, C., Luethi, M., Andrews, L., Catania, G., Funk, M., Hawley, R.,…Neumann, T. (2014). Caterpillar-like ice motion in the ablation zone of
the Greenland ice sheet. Journal of Geophysical Research: Earth Surface, 119, 2258–2271. https://doi.org/10.1002/2013JF003067

Shepherd, A., Ivins, E., Geruo, A., Barletta, V., Bentley, M., Bettadpur, S.,… Zwally, H. (2012). A reconciled estimate of ice-sheet mass balance.
Science, 338, 1183–1189. https://doi.org/10.1126/science.1228102

Smith, A., & Murray, T. (2008). Bedform topography and basal conditions beneath a fast-flowing West Antarctic ice stream. Quaternary
Science Reviews, 28, 584–596. https://doi.org/10.1016/j.quascirev.2008.05.010

Smith, A., Murray, T., Nicholls, K., Makinson, K., Adalgeirsdottir, G., Behar, A., & Vaughan, D. (2007). Rapid erosion, drumlin formation, and
changing hydrology beneath an Antarctic ice stream. Geology, 35(2), 127–130. https://doi.org/10.1130/G23036A.1

Smith, A., Jordan, T., Ferraccioli, F., & Bingham, R. (2013). Influence of subglacial conditions on ice stream dynamics: Seismic and
potential field data from Pine Island Glacier, West Antarctica. Journal of Geophysical Research: Solid Earth, 118, 1471–1482.
https://doi.org/10.1029/2012JB009582

Thorsteinsson, T. (2000). Anisotropy of ice Ih: Development of fabric and effects of anisotropy on deformation (PhD thesis). University of
Washington.

Thorsteinsson, T., Waddington, E. D., Taylor, K. C., Alley, R. B., & Blankenship, D. D. (1999). Strain-rate enhancement at dye 3, Greenland.
Journal of Glaciology, 45(150), 338–345. https://doi.org/10.1017/S0022143000001830

Todd, J., & Christoffersen, P. (2014). Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting
by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland. The Cryosphere, 8, 2353–2363.
https://doi.org/10.5194/tc-8-2353-2014

Vallelonga, P., Christianson, K., Alley, R. B., Anandakrishnan, S., Christian, J. E. M., Dahl-Jensen, D.,…Winstrup, M. (2014). Initial results
from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). The Cryosphere, 8, 1275–1287.
https://doi.org/10.5194/tc-8-1275-2014

van de Wal, R. S. W., Smeets, C. J. P. P., Boot, W., Stoffelen, M., van Kampen, R., Doyle, S. H.,…Hubbard, A. L. (2015). Self-regulation of ice flow
varies across the ablation area in south-west Greenland. The Cryosphere, 9, 603–611. https://doi.org/10.5194/tc-9-603-2015

Van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J.,…Wouters, B. (2009). Partitioning recent Greenland
mass loss. Science, 326, 984–986. https://doi.org/10.1126/science.1178176

Van den Broeke, M., Enderlin, E., Howat, I., Munneke, P. K., Noël, B., van de Berg, W. J.,…Wouters, B. (2016). On the recent contribution of
the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946. https://doi.org/10.5194/tc-10-1933-2016

Walter, F., Chaput, J., & Luethi, M. (2014). Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet
dynamics. Geology, 42, 487–490. https://doi.org/10.1130/G35492.1

Winberry, J. P., Anandakrishnan, S., Alley, R. B., Douglas, A. W., & Pratt, M. J. (2014). Tidal pacing, skipped slips and the slowdown of Whillans
Ice Stream, Antarctica. Journal of Hydrometeorology, 60(222), 795–807. https://doi.org/10.3189/2014JoG14J038

HOFSTEDE ET AL. SUBGLACIAL PATCHES OF STORE GLACIER 362

https://doi.org/10.1029/2008GL033712
https://doi.org/10.1029/2008GL033712
https://doi.org/10.3189/002214310793146232
https://doi.org/10.1126/science.1226481
https://doi.org/10.1126/science.1226481
https://doi.org/10.3189/2013AoG64A057
https://doi.org/10.1111/j.1751-8369.2010.00174.x
https://doi.org/10.5194/tc-8-1129-2014
https://doi.org/10.1029/2011JF002201
https://doi.org/10.1029/2012GL051634
https://doi.org/10.1002/2013JF003067
https://doi.org/10.1126/science.1228102
https://doi.org/10.1016/j.quascirev.2008.05.010
https://doi.org/10.1130/G23036A.1
https://doi.org/10.1029/2012JB009582
https://doi.org/10.1017/S0022143000001830
https://doi.org/10.5194/tc-8-2353-2014
https://doi.org/10.5194/tc-8-1275-2014
https://doi.org/10.5194/tc-9-603-2015
https://doi.org/10.1126/science.1178176
https://doi.org/10.5194/tc-10-1933-2016
https://doi.org/10.1130/G35492.1
https://doi.org/10.3189/2014JoG14J038

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


