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1 Cleaning up nitrogen pollution may reduce future carbon sinks
2

3 Abstract

4 Biosphere carbon sinks are crucial for reducing atmospheric carbon dioxide (CO2) 

5 concentration to mitigate global warming, but are substantially affected by the input of 

6 reactive nitrogen (Nr). Although the effects of anthropogenic CO2 emission and nitrogen 

7 deposition (indicated by Nr emission to atmosphere) on carbon sink have been studied, 

8 it is unclear how their ratio (C/N) changes with economic development and how such 

9 change alters biosphere carbon sinks. Here, by compiling datasets for 132 countries we 

10 find that the C/N ratio continued to increase despite anthropogenic CO2 and Nr 

11 emissions to atmosphere both showing an asymmetric para-curve with economic 

12 growth. The inflection points of CO2 and Nr emissions are found at around $15,000 

13 gross domestic product per capita worldwide. Economic growth promotes the use of Nr 

14 and energy, while at the same time increases their use efficiencies, together resulting in 

15 occurrences of inflection points of CO2 and Nr emissions. Nr emissions increase slower 

16 but decrease faster than that of CO2 emissions before and after the inflection point, 

17 respectively. It implies that there will be relatively more anthropogenic CO2 emission 

18 but less N deposition with economic growth. This may limit biosphere carbon sink 

19 because of relative shortage of Nr. This finding should be integrated/included in global 

20 climate change modelling. Efforts, such as matching N deposition with carbon 

21 sequestration on regional scale, to manage CO2 and Nr emissions comprehensively to 

22 maintain a balance are critical.

23

24 Key words: Carbon sink, CO2 emission, Climate change, Economic development, 

25 Nitrogen deposition, Stoichiometry

26

27 1. Introduction

28 Emission of carbon dioxide (CO2) from human activities to the atmosphere is the 

29 most important driver of global warming, and the increase of atmospheric CO2 

30 concentration is responsible for ~64% of the radiative forcing from well-mixed 

31 greenhouse gases (Thompson et al., 2016). Hence, stabilizing and ultimately reducing 

32 the atmospheric CO2 concentrations is one of the principal mechanisms to mitigate 

33 anthropogenic climate change. Over half of current global anthropogenic CO2 emissions 
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34 are taken up by terrestrial ecosystems (30%) and oceans (25%), and the rest is 

35 accumulating in the atmosphere (Reay et al., 2008). Increasing CO2 absorption in both 

36 terrestrial ecosystems and oceans is therefore a critical topic for the United Nations 

37 Framework Convention on Climate Change (UNFCCC) to reduce CO2 accumulation in 

38 the atmosphere. External forces, such as human disturbances and climate change, could 

39 create a disequilibrium to alter global carbon (C) cycle (Luo and Weng, 2011). For 

40 instance, elevated CO2 concentrations can increase the C sink of natural ecosystems in 

41 many Free-Air CO2 Enrichment (FACE) experiments (Drake et al., 2011; Talhelm et 

42 al., 2014). However, these C sinks are often limited by the availability of nutrients such 

43 as nitrogen (N) and water (Hungate et al., 2003; Luo and Weng, 2011). Recent research 

44 showed that the rate of CO2 uptake in Amazonian rainforests have decreased due to 

45 deficiency in nutrients such as N (Corlett, 2014). This suggests that the relative 

46 abundance of N input to ecosystems compared to atmospheric CO2 concentration is 

47 crucial for the future increase in biosphere C sinks.

48 Economic drivers are crucial for determining future trends in CO2 emissions and 

49 reactive N (Nr) use/loss (Chow and Li, 2014; Zhang et al., 2015; Li et al., 2016). For 

50 example, emissions of CO2 and N oxides (NOx) are closely related to fossil fuel 

51 combustion driven by economic development (Fig. S1). To meet human demand for 

52 food and energy, over 100 Tg N yr-1 (mainly ammonia (NH3) and NOx) have been 

53 emitted to the atmosphere in 2010, and about 70% of the Nr emitted is deposited on land 

54 surface, with the remainder deposited onto oceans (Fowler et al., 2013). This large 

55 amount of man-made CO2 and Nr emissions substantially alters global C and N 

56 biogeochemical cycles through changing the C/N ratios (CO2 to Nr emission) on 

57 multiple scales (Erisman et al., 2011; Erisman et al., 2013). Elevated levels of N 

58 deposition have been found to increase C sinks in many terrestrial and oceanic 

59 ecosystems because of the removal of N shortage, as shown up in a reduced C/N ratio 

60 (Reay et al., 2008). Besides deposition, the input N can also be transferred to aquatic 

61 ecosystems through runoff from agriculture and human settlements, etc., which might 

62 increase the C sink in aquatic ecosystems (Erisman et al., 2011). However, these 

63 increased Nr fluxes have exceeded the “safe operating space” for global societal 

64 development, adversely affecting human health, ecosystems and the environment 

65 (Erisman et al., 2013; Steffen et al., 2015). Nr pollution is estimated to cost €70–320 

66 billion per year in the European Union (Sutton et al., 2011), and $81–441 billion per 

67 year in the United States (Sobota et al., 2015). Activities that improve N use efficiency 
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68 (NUE), i.e. to produce more food and energy with less Nr loss to the environment, have 

69 been proposed and implemented in many regions; these activities may increase the C/N 

70 ratio and affect C sinks in the biosphere (Chen et al., 2014; Lassaletta et al., 2014).

71 Environmental Kuznets Curves (EKC) have been widely applied to identify 

72 relationships between economic development and anthropogenic CO2 emission, as well 

73 as Nr pollution, especially Nr loss from cropland (Chow and Li, 2014; Zhang et al., 

74 2015; Li et al., 2016). However, little attention has been paid to changes in C and N 

75 stoichiometry of emissions to the atmosphere and its relevance for the global C sink, 

76 i.e., how climate change will be affected by changes in the C/N ratio of emissions under 

77 future economic development. Here, we analyzed global spatio-temporal changes in 

78 anthropogenic Nr inputs and losses, and CO2 emissions as a result of economic 

79 development, using a panel data model for 132 countries from 1961 to 2008 (Fig. 1). 

80 Using these long-term data, we attempted to understand how C/N ratios change with 

81 economic development, predict their effect on terrestrial C sink capacity preliminarily 

82 and analyze the socioeconomic mechanisms behind the changes of the C/N ratio. In this 

83 paper, the C/N ratios refer to the ratios of anthropogenic emissions of CO2 and Nr to 

84 atmosphere, including NH3 and NOx that is related to the N deposition to land surfaces. 

85 We put these in context with Nr losses and NUE in food and energy production, as well 

86 as related environmental issues.

87

88 2. Methods

89 2.1. Data sources

90 We compiled annual data on population and urbanization levels for 132 nations for 

91 the period of 1961–2008 from the FAOSTAT database (FAO, 2016) and GDP (gross 

92 domestic product, expressed in real 1990 international dollars, using purchasing power 

93 parity, PPP) from the Total Economy Database (GGDC, 2008). Data on cropland area, 

94 weighted yield of up to 275 crop types, and N and P fertilizer use were compiled from 

95 the FAOSTAT database. Per-capita fertilizer use and per-area fertilizer use were 

96 calculated as the annual N fertilizer use of a nation divided by the total population and 

97 cropland area, respectively. Cultivated biological N fixation (CBNF) was calculated for 

98 each nation based on the area of crop legumes, pasture and fodder legumes, and rice 

99 with N fixation rates of 115, 168 and 33 kg N ha-1 yr-1, respectively (Herridge et al., 

100 2008). 

101 Per-capita fossil fuel energy consumption values and CO2 emission from fossil fuel 
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102 use combustion and cement production in the nations from 1961 to 2008 were obtained 

103 from the World Development Indicators dataset of the World Bank 

104 (http://databank.worldbank.org/). CO2 emission per energy consumed (CO2E) was 

105 calculated from CO2 divided by the total fossil energy consumption of each nation. 

106 Total NOx emissions from fossil fuel combustion and NH3 emissions for the nations 

107 from 1970 to 2008 were collected from the Emission Database for Global Atmospheric 

108 Research (EDGAR, 2016). NOx emission per energy consumed (NOxE) was calculated 

109 from NOx divided by the total fossil energy consumption of each nation.

110

111 2.2. Inflection point in a country

112 A piecewise linear regression approach, which has been widely used in many 

113 previous studies (e.g., (Piao et al., 2011)), was applied to CO2 emission or Nr use/loss 

114 on per-capita GDP series for each nation from 1961 to 2008.

115 y = { 𝛽0 + 𝛽1𝑥 + 𝜀,              𝑥 ≤ 𝛼
𝛽0 + 𝛽1𝑥 + 𝛽2(𝑥 ‒ 𝛼) + 𝜀,   𝑥 > 𝛼�

116 where x is per-capita GDP; y is CO2 emission or Nr use/loss; α is the inflection point of 

117 per-capita GDP; and β0, β1, and β2 are regression coefficients; ε is the residual of the fit. 

118 The CO2 emission or Nr use/loss trend is β1 before the inflection point, and β1+ β2 after 

119 it. All coefficients were determined by least-squares linear regression. We also confined 

120 α to within the period 1965 to 2004 (1974 to 2004 for NOx) to avoid a linear regression 

121 in one period having too few data points. A probability level of P<0.05 was considered 

122 significant. To check whether there could be more than one inflection point, we plotted 

123 the data from each country into a line chart to make sure that the inflection point 

124 detected is corrected.

125

126 2.3. Panel cointegration analysis

127 We applied recently developed panel unit root and panel cointegration techniques 

128 (Li et al., 2016) to estimate the cointegration relationships between economic growth 

129 and C/N ratios (emission of CO2 to the emission of NH3-N+NOx-N) (Table S1 & S2). 

130 We performed panel cointegration analysis as follows: Step1, we computed the 

131 summary panel unit root test on the levels of the series, along with a summary of the 

132 results, using individual fixed effects or both fixed effects and trends as regressors, and 

133 automatic lag difference term and bandwidth selection (using the Schwarz criterion for 

134 the lag differences, and the Newey-West method and the Bartlett kernel for the 
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135 bandwidth). Most of the results indicated the presence of a unit root, since the Levin–

136 Lin–Chu (LLC), Breitung, Im–Pesaran–Shin (IPS), and Augmented Dickey–Fuller–

137 Fisher (ADF–Fisher) tests reject the null of a unit root. Step2, performing panel 

138 cointegration tests to determine whether per capita Nr use and loss, and their climatic 

139 effects had a cointegration relationship with socioeconomic development. We chose the 

140 deterministic trend specification according to the type of exogenous regressors and used 

141 the Schwarz criterion for the lag differences, and the Newey-West method and the 

142 Bartlett kernel for the bandwidth. Fisher/Johansen cointegration tests showed that the 

143 long-term cointegration relationship exists. Step3, Running the cointegration regression. 

144 After the panel unit root test and cointegration tests, we regressed per capita Nr use and 

145 loss, and their climatic effects on socioeconomic development. 

146

147 2.4. Panel data model

148 Considering multiple interactions, we built a panel model to quantify the effect of 

149 per-capita GDP on N input, and Nr and CO2 emissions. Classic empirical studies on 

150 EKC have been criticized because of concerns regarding statistical analyses of time 

151 series data that may be non-stationary. Therefore, we examined the stationarity of our 

152 data and used the ADF–Fisher test, which is the most frequently used method for the 

153 co-integration test in EKC empirical studies (SI text, Table S1 & S2). The panel model 

154 compiles data on both the temporal and spatial scales simultaneously (48 years for 132 

155 nations in this study, totaling 6,336 samples), also known as ‘time-series cross-sectional 

156 data’. The panel model can solve unobservable time-invariant regional differences and 

157 omitted variable problems. We tested the EKC for CO2, N input/emission on the global 

158 scale based on the pool data of 132 countries from 1961 to 2008 by using a panel model 

159 with the test of stationarity to eliminate spurious regression results. The panel model 

160 used in this study was constructed as follows: 

161 𝑌𝑖𝑡 = 𝑐 + 𝑃𝐺𝐷𝑃𝑖𝑡𝛽1 + 𝐷𝑢𝑚𝑚𝑦𝛽2 + 𝑃𝐺𝐷𝑃𝑖𝑡 × 𝐷𝑢𝑚𝑚𝑦𝛽3 + ∑
𝑗

𝐶𝑡𝑟𝑙𝑖𝑡𝑗𝛽𝑗 + 𝜇𝑖 + 𝜀𝑖𝑡

162 where  is the N input, and Nr and CO2 emission in year t in country i;  is the 𝑌𝑖𝑡 𝑃𝐺𝐷𝑃𝑖𝑡

163 annual per-capita GDP;  is a binary parameter (0, 1) introduced to test whether 𝐷𝑢𝑚𝑚𝑦

164 the inflection points of Nr fluxes and CO2 emission exist with growth of per-capita 

165 GDP. For N Fertilizer, the group dummy is 0 for per-capita GDP <$14,000 and 1 for 

166 GDP per capita $14,000; for NOx, NH3, and CO2, the critical per-capita GDP is 
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167 $15,000 for the group dummy.  is a group of control variables, including  𝐶𝑡𝑟𝑙𝑖𝑡𝑗

168 population, urbanization, etc., which may affect the N input, and Nr and CO2 emission; 

169  are the coefficients of these influencing factors;  is the intercept; the effect 𝛽1, 𝛽2…𝛽𝑗 𝑐

170 of per-capita GDP on the N input, and Nr and CO2 emission, calculated as ; ∂𝑌 ∂𝑝𝑙 = 𝛽1

171 , is the unobservable individual effect in country i such as the time invariant 𝜇𝑖

172 geographical situation; and  is random error. Contemporaneous correlation, 𝜀𝑖𝑡

173 heteroskedasticity and serial correlation are controlled to calculate asymptotically 

174 efficient parameters with a Prais-Winsten regression in Stata12 (Wooldridge, 2010).

175

176 2.5. Simulation of C sink changes

177 The Integrated BIosphere Simulator (IBIS) is used to simulate the C sink changes 

178 in 2050 globally (Lu et al., 2016). The basic parameterization of climate, including air 

179 temperature, precipitation, CO2 concentration, etc. follows storyline IPCC B1, under 

180 which the air temperature increase is assumed to remain below 2°C and CO2 

181 concentrations lower than 500 ppm in 2050 (Stocker et al., 2013). We included the 

182 effect of managing Nr into the simulation, considering a relatively lower N deposition 

183 with economic development in 2050. Considering the economic growth to 2050, a 20-

184 50% relative reduction of N deposition compared to that of CO2 emission is assumed to 

185 estimate the impact on the C sink, i.e., the net ecosystem productivity (NEP) changes. 

186 In fact, economic growth has complex effects on both the CO2 and Nr emissions 

187 and their impacts on the C sink on regional and global scale. Meanwhile, the spatial 

188 distribution of N deposition and N-saturation issue also affect the C sink. Therefore, to 

189 simplify the estimation we just assumed a 20-50% lower N deposition input to the IBIS 

190 model in this paper. Future work is needed to investigate the potential of C sink 

191 changes, and quantify these uncertainties in the context of changes in C sink capacity 

192 derived from C/N ratio.

193

194 3. Results

195 3.1. Changes of C/N ratio and their effect on C sink

196 C/N ratios of total emissions per capita significantly increase with the growth of 

197 per-capita GDP without an inflection point across all countries (Fig. 2, Table 1). Each 

198 1% increase in per-capita GDP resulted in a 0.47% increase of the C/N ratio of 

199 emissions. This suggests that the relative availability of N to terrestrial ecosystems and 
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200 oceans through N deposition will be reduced with economic development, relative to 

201 the increase in anthropogenic CO2 emissions. We estimate that global C sinks will be 

202 reduced by 5-10% under the IPCC B1 emissions scenario, when a 20-50% relative 

203 reduction of N deposition compared to that of CO2 emission is assumed (Fig. 3). This 

204 reduction of C sink capacity mainly occurs in sub-tropical areas in Eastern Asia and 

205 North America, where the hotspots of Nr emissions are in close proximity to natural 

206 forest ecosystems. This reduction is subject to large uncertainties due to variations in 

207 both temporal and spatial scales. 

208

209 3.2. Driving forces of C/N ratio change on global scale

210 To further assess the driving forces of C/N ratio changes, we analyzed how 

211 specifically CO2 emission, Nr emission and their sources were affected by economic 

212 development. Generally, per-capita anthropogenic CO2 emissions significantly increased 

213 with the growth of per-capita GDP before reaching an inflection point with an 

214 increasing rate of 0.57% per 1% increase of per-capita GDP (Table 1). Energy 

215 consumption increased with per-capita GDP, but leveled off when per-capita GDP 

216 reaches around $20,000 (Fig. 4). CO2E declined when per-capita GDP increased beyond 

217 $10,000, which suggests that energy use efficiency increases with economic 

218 development (Fig. 4). The changes in energy consumption and CO2E with the growth of 

219 per-capita GDP resulted in an inflection point for CO2 emissions at around $15,000. 

220 Nevertheless, CO2 emissions did not decline drastically after the inflection point but 

221 remained relatively stable (Fig. 2).

222 An inflection point was observed for per-capita NOx emissions from fossil fuel 

223 combustion in relation to the growth of per-capita GDP at around $15,000 (Fig. 2). 

224 Before the inflection point, a 0.31% increase of NOx emission per 1% increase of per-

225 capita GDP was found; while after the inflection point, a 0.99% decrease of NOx 

226 emission per 1% increase of per-capita GDP was found. Economic growth appeared to 

227 have a larger effect on the reduction of NOx emissions after the inflection points, when 

228 compared to that of CO2 emission (Table 1). Economic development significantly 

229 increased energy use, but reduced NOxE once per-capita GDP reached approximately 

230 $10,000 (Fig. 4). 

231 There was no significant effect of per-capita GDP on NH3 emission due to 

232 substantial variations in NH3 emissions across countries while per-capita GDP was 

233 lower than $5,000 (Table 1, Fig. 2). Although not significant, the inflection point test 
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234 was still positive, and the potential inflection point of NH3 emission was found with a 

235 per-capita GDP around $15,000 (Fig. 2d). Similar to that of NOx, the rate of increase in 

236 NH3 before the inflection point was lower while the rate of decrease after the inflection 

237 point was higher compared to that of CO2 emission (Table 1).

238 An asymmetric para-curve relationship of N fertilizer use with economic 

239 development was found at the global scale (Table 1). The inflection point of N fertilizer 

240 use was observed at a value of per-capita GDP of around $14,000 (SI text, Fig. 5), 

241 lower than the per-capita GDP for the inflection of NH3 emission (around $15,000) 

242 (Fig. 7). This suggests that it is harder to reduce NH3 emission than N fertilizer use with 

243 economic development. Substantial variations were seen in the maximum level of per-

244 capita and per-area N fertilizer use in different countries (Fig. 2). Countries with a large 

245 population density and PGDP (e.g., the Netherlands and Denmark) typically have 

246 intensive food production systems, high food production per land area and strict 

247 regulations on fertilizer use and Nr emission abatement (Table 1). 

248 Globally, cultivated biological N fixation (CBNF) played a subordinate role in food 

249 production compared to Nr input from mineral fertilizers during the period 1961-2008 

250 (Fig. 4). No inflection points were observed for CBNF with the growth of per-capita 

251 GDP (Table 1). Instead, per-capita CBNF decreased with the increase in per-capita 

252 GDP, although the ranges of per-capita CBNF varied widely among countries (Fig. 2b). 

253

254 3.3. Analysis of inflection points on national scale

255 To further understand the underlying mechanism of the changes in C/N ratios with 

256 economic development, we analyzed the inflection points of Nr use/loss on national 

257 scale. We classified the countries into two categories: Type 1 and Type 2, based on 

258 whether there is an inflection point. Generally, Type 1 countries were the relatively 

259 rich/developed, and Type 2 countries the relatively poor/developing (Fig. 8, Fig. 5; see 

260 SI for the list of countries). The inflection points of N fertilizer use in Type 1 countries 

261 occurred at an average per-capita GDP of $14,200 ± 800 for the period 1973 to 2003 

262 (average in 1986, Fig. 5). In contrast, the average per-capita GDP of Type 2 countries 

263 was only $4,300 in 2006-2008, far below the per-capita GDP identified as an inflection 

264 point at the global scale. For Type 1 countries, the per-capita N fertilizer use decreased 

265 by 39% while the crop yield and PFPN (partial factor productivity of N fertilizer = kg 

266 grain yield per kg N fertilizer input) increased by 27% and 53%, respectively, from the 

267 year when the inflection point occurred relative to the reference period 2006-2008 (Fig. 
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268 5). In contrast, the per-capita N fertilizer use and yield were still increasing in Type 2 

269 countries without an inflection point, but both significantly lower than those of Type 1 

270 countries, except that PFPN was higher than that in Type 1 countries. Higher PFPN in 

271 Type 2 countries suggests low N input/supply and thereby also low crop yield. Per-

272 capita GDP was positively related to crop yield (Fig. 4). The PFPN followed a U-shaped 

273 pattern in relation to growth in per-capita GDP and increased substantially beyond the 

274 inflection point (Fig. 4).

275 Similar to per capita N fertilizer use, per area N fertilizer use of Type 1 countries 

276 declined from 170 to 115 kg N ha-1 yr-1 from the year when inflection occurred to 2006-

277 2008, but was still much higher than the average value of 82 kg N ha-1 yr-1 in 2006-2008 

278 for Type 2 countries (Fig. 6). Nevertheless, among the Type 2 countries, six countries 

279 (Chile, China, Colombia, Costa Rica, Egypt, and Malaysia) used more than 200-400 kg 

280 N ha-1 yr-1. These six countries share no common natural conditions, geographic 

281 location or climatic conditions, but a significant share of the agricultural area is 

282 cultivated intensively for domestic consumption or export. Also, these countries had a 

283 per-capita GDP similar to the inflection per-capita GDP of the Type 1 countries, except 

284 for Egypt. Through a cluster analysis we found that these six countries were separated 

285 from Type 2 countries to form a new group of Type 3 countries based on the average 

286 value of per-capita GDP, N fertilizer use per area and crop yield from 2006 to 2008. 

287 Type 3 countries had a significantly higher per area N fertilizer use, lower PFPN and 

288 intermediate per-capita GDP compared to the other two groups of countries (Fig. 6). It 

289 suggests that, in the near future, the inflection points of N fertilizer use are more likely 

290 to occur in Type 3 countries than in the other Type 2 countries.

291 At national scale, inflection points of NOx emissions were found in 24 countries 

292 (Type 1 countries, see SI for the list) with an average per-capita GDP of $15,500 ± 500 

293 from 1973 to 1999 (average in 1988, Fig. 5). Although the NOx emissions of Type 1 

294 countries decreased from 13.4 to 8.6 kg N capita-1 yr-1 from the year of the inflection 

295 point to 2006-2008, they remained much higher than the NOx emissions of Type 2 

296 countries (3.6 kg N capita-1 yr-1). From the year of the inflection point to 2006-2008, 

297 per-capita energy consumption increased by 7% while NOxE decreased by 38% in Type 

298 1 countries, as their per-capita GDP increased by 47% (Fig. 5). This indicates a 

299 decoupling of NOx emissions and energy consumption. 

300 Furthermore, we found inflection points of NH3 emissions and phosphorus (P) 

301 fertilizer use in 20 countries, the majority of which also had inflection points for N 
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302 fertilizer use. The inflection year was indeed late for NH3 emissions but early for P 

303 fertilizer use compared to that of N fertilizer use (Fig. 7). Accordingly, the inflection 

304 point per-capita GDP was larger for NH3 emissions but smaller for P fertilizer use 

305 compared to that of N fertilizer use.

306

307 4. Discussion

308 4.1. C/N ratios of emissions

309 Natural terrestrial ecosystems such as forests, grasslands, wetlands and oceans are 

310 important C sinks (Ciais et al., 2010; Quéré et al., 2013). Nitrogen deposition plays a 

311 critical role in increasing C sequestration in natural ecosystems (Reay et al., 2008; Luo 

312 and Weng, 2011). Previous studies have suggested an over 2-fold increase in N 

313 deposition by the end of this century using either IPCC projections or the RCP approach 

314 (Ciais et al., 2013; Winiwarter et al., 2013). However, some models used by the IPCC 

315 and in some other studies have been criticized for their lack of constraint on terrestrial N 

316 balances (Houlton et al., 2015). This study provides an alternative perspective to 

317 understand the effects of Nr input on global C cycles through the relationships between 

318 economic development and CO2 and Nr emissions and the C/N ratios of the emissions.

319 The use of EKC to analyze the relationships between CO2 and Nr emissions has 

320 been tested in several studies (Zhang et al., 2015; Li et al., 2016). Our findings concur 

321 with previous findings suggesting that the EKCs of CO2 and Nr emissions indeed exist 

322 (Fig. 1). This indicates that continuing economic growth after inflection points can 

323 reduce CO2 emissions and Nr pollution through socioeconomic changes, such as better 

324 management and increased NUE. However, the reduction of Nr emissions after the 

325 inflection point is much larger than that of CO2. Therefore, if economic growth 

326 increases beyond about $15,000, the C/N ratio of the emissions rapidly grows. In 

327 comparison to managing Nr uses and losses, the reduction of CO2 emissions seems to be 

328 far more difficult as noted in our study. Emissions are tightly coupled with the energy 

329 supply methods and associated with economic growth (Liu et al., 2015). Reducing 

330 CO2E appears to be quite difficult unless large scale energy saving is introduced, or 

331 clean and renewable energy technologies such as solar, wind and hydropower 

332 generation are adopted widely (Liu et al., 2015). Therefore, per-capita CO2 emissions 

333 may not decrease significantly with economic development, unless energy efficiency 

334 increases, or sustainable energy sources replace fossil fuels to a large extent. This 

335 indicates that the per-unit-Nr emission will accompany a higher CO2 emission with 
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336 economic development in both rich and poor countries. The lifetime of Nr in the 

337 atmosphere is in the order of days to weeks and the majority of Nr emitted to the 

338 atmosphere will deposit on the land surface (Fowler et al., 2013; Liu et al., 2013), while 

339 the rest will end up in the oceans (Kim et al., 2014). The lifetime of CO2, however, is in 

340 the order of years to decades (Solomon et al., 2009). Therefore, the strong cumulative 

341 effect of CO2 compared to that of Nr in the atmosphere and biosphere will further 

342 increase C/N ratios and thereby may affect C sink capacities on a global scale.

343 Although the overall change in global C sink as function of N deposition depends 

344 on economic development, large variations across global regions occur, with hotspots of 

345 C sinks changing on both temporal and spatial scales. From the 1970s to the 1990s, 

346 inflection points for N uses and losses were found in Type 1 countries, mainly located 

347 in the Europe and North America, where the level of N deposition was the highest 

348 (Galloway et al., 2008; Townsend and Howarth, 2010). Significant C sinks were mostly 

349 located in Type 1 countries, probably because of the elevated N deposition as well as 

350 land use and land cover changes occurred during the last century (Luyssaert et al., 2010; 

351 Erisman et al., 2011; Pinder et al., 2012). After inflection points have been reached, N 

352 uses and losses were reduced by 20-40% in Type 1 countries (Fig. 5), which decreased 

353 C sinks in natural terrestrial systems in these regions recently (Piao et al., 2011). The 

354 hotspots of N deposition and C sinks have more recently switched from Type 1 

355 countries to Type 2 countries in East and South Asia (Galloway et al., 2008; Reay et al., 

356 2008), such as China, which appears to be close to reaching an inflection point on Nr 

357 use/losses (Fig. 8). Meanwhile, we can still identify many other Type 2 countries which 

358 would further increase their Nr uses and losses before reaching an inflection point, 

359 mainly in Africa and tropical regions, where soil N availability currently limits 

360 agricultural yields. Moreover, mining of soil N occurs in many low-input agricultural 

361 systems in Africa (Vitousek et al., 2009; Sutton et al., 2013). Our findings relate also to 

362 the discussions about the “4 per 1000” (4p1000) initiative, launched at the COP21 

363 conference in Paris (Van Groenigen et al., 2017). Nevertheless, we foresee future 

364 hotspots of N deposition to emerge, once Asian countries have passed their inflection 

365 points (Fig. 8).

366

367 4.2. Nitrogen related analysis

368 Many uncertainties and confounding factors still need to be addressed to further 

369 understand the effects of C/N ratios, because terrestrial C sinks show rather complex 
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370 responses to N availability. At sites with excessive Nr input, e.g. croplands and adjacent 

371 natural vegetation, the reduction of Nr input may in fact increase net primary 

372 productivity (NPP) and C sinks (Lu et al., 2016). This mainly occurs due to N saturation 

373 in ecosystems such as forests reducing plant growth and at times resulting in forest 

374 death with high N deposition rates (Sutton et al., 2011). This has been observed in 

375 Europe and Northeastern United States in areas suffering from high N deposition 

376 (Sutton et al., 2011). Similar effects have been noted in some regions in China and India 

377 with the highest N deposition rates currently (Lu et al., 2016). At the same time, the 

378 reduction of NOx and NH3 emissions may have positive impacts on C sinks, because 

379 NOx and NH3 are precursors for tropospheric ozone and particle matters (PM) pollution, 

380 which reduces plant productivity (Erisman et al., 2011). 

381 The reduction of N input and losses can also reduce the emission of N2O, which is 

382 the third most important greenhouse gas (GHG), although no significant correlation or 

383 inflection point of N2O emissions with economic development was detected in our 

384 analyses (Fig. S2). Compared to Nr inputs, N2O emission processes are more complex, 

385 with multiple emission sources affected by substrate availability and natural factors, 

386 such as soil redox potential and microbial processes (Davidson and Kanter, 2014; 

387 Sutton et al., 2014). This complexity is apparent from the large variations in N2O 

388 emissions at per-capita GDP lower than $5,000 (Fig. S2). Nevertheless, inflection points 

389 of N2O emissions were still found in many countries at a per-capita GDP of around 

390 $15,000. Under current levels of Nr uses and losses, the climatic effect of Nr is balanced 

391 with both warming and cooling effects (Erisman et al., 2011; Pinder et al., 2012). 

392 However, with further economic development, the reduction of Nr availability could 

393 limit the growth of C sinks. Reducing Nr input would be expected to reduce N2O 

394 emissions, but at least part of the climate benefit could be reduced by the negative 

395 impact on C sinks. This may shift the climate balance of Nr, reducing CO2 sequestration 

396 potential, thereby offsetting part of the climate change benefit of reducing Nr. The 

397 overall effects of the EKC of N input/loss and the increasing trend of C/N ratios with 

398 economic development on climate change are complex, and further research is 

399 warranted. 

400 Besides N losses through Nr emission to the air, a substantial proportion of N input 

401 is lost to water systems (Galloway et al., 2008). Although Nr released to water bodies 

402 may also increase C sinks in aquatic ecosystems such as wetlands or coastal ecosystems 

403 due to Nr-emission fueled primary production in aquatic systems, the majority of this 
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404 input Nr is denitrified (Schlesinger, 2009; Zhao et al., 2015). Once other forms of Nr are 

405 converted to nitrate, the denitrification process will likely reduce nitrate to N2 or N2O 

406 (Zhao et al., 2015). However, owing to the substantial variations of denitrification on 

407 spatiotemporal scales (Kulkarni et al., 2008), the effect of N leaching to water systems 

408 on the C sink has not, to our knowledge, been quantified. 

409 Next to N losses and inputs to air and water bodies, N input via N fertilizer and 

410 CBNF to cropland may also have impact on C sink. However, different with natural 

411 ecosystems, croplands are not typically regarded as major C sinks, but are rather 

412 regarded to be C neutral (Ciais et al., 2010; Quéré et al., 2013), depending also on crop 

413 rotation, soil cultivation and crop residue return to soil. Input of N into cropland 

414 commonly increases crop yield and crop residue production, and thereby may enhance 

415 C sequestration (Sun et al., 2010). However, excessive N input to cropland results in 

416 nitrate accumulation rather than C sequestration (Zhou et al., 2016). Residual nitrate in 

417 cropland soils may in part by used by the next crop, but often leaches to groundwater, 

418 and thus does not affect the capacity of C sinks (Zhou et al., 2016). Meanwhile, the 

419 EKC of N fertilizer use suggests that the N input to croplands can be reduced, while 

420 yield will increase, with economic development. This could reduce N accumulation in 

421 soils as well, and is consistent with recent findings on the EKCs of N surplus in 

422 cropland (Zhang et al., 2015). 

423

424 4.3. Policy implications

425 Integrated management of N and C is essential for sustainable development, 

426 environmental quality and climate change mitigation in the future (Maione et al., 2016). 

427 Firstly, the development and adoption of clean energy supply systems and improvement 

428 in energy use efficiency via advanced technologies and management is crucial to the 

429 reduction of both CO2 and Nr emissions to the atmosphere. We found that it is 

430 easier/faster to reduce Nr emission than CO2 emission, after the inflection point. A 

431 developed economy can benefit from the implementation of emission control 

432 technologies, such as selective catalytic reduction (SCR), to reduce the NOx emissions 

433 (Walters et al., 2015). It is also true for the reduction of NH3 emission through emission 

434 abatement technology, improved agricultural practices and management (Sutton et al., 

435 2011; Van Grinsven et al., 2013). It appears more difficult to reduce CO2 emissions, 

436 although improvements in fossil energy use efficiency, energy savings, and increased 

437 use of renewable energy help greatly (Liu et al., 2015). Increased energy use efficiency 
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438 and energy savings can also benefit the reduction of NOx and NH3 emissions (Gu et al., 

439 2015). Therefore, aligning technologies and policies related to clean energy supply and 

440 improving energy use efficiency is crucial (Omri, 2013; Sutton et al., 2014). This can 

441 reduce both CO2 and Nr emissions, benefit the balance of C/N ratio of these emissions, 

442 and thereby maximize C sink capacity. 

443 Secondly, integrated management of C and N at landscape and regional scales is 

444 vital. CO2 concentration is generally uniform at global scale with little spatial variation, 

445 but Nr emission and deposition vary a lot on at regional scale. Thus, managing the C 

446 sink should also be at regional scale to maximize the use Nr emission and deposition. 

447 The land sharing theory suggests that integrating farmlands, urban lands and natural 

448 lands (e.g. forest, grassland) in the same region can benefit C sinks in natural 

449 ecosystems through the use of Nr emitted from nearby farmlands and urban lands 

450 (Phalan et al., 2011; Paustian et al., 2016). In some circumstances, land sharing can also 

451 be beneficial to the conservation of biodiversity, e.g. by using tree shelter belts to 

452 protect sensitive habitats from excess N deposition near intensive farming locations 

453 (Bealey et al., 2016). Thus, coupling Nr emission/deposition with C sequestration at 

454 regional scale can maximize the use of Nr emission to mitigate global warming. It is 

455 critical to determine how far Nr emissions can be transported to areas downwind of the 

456 sources. Integrated modelling of air pollution derived from Nr emissions and C 

457 emission/sequestration at regional scale will help address the triple challenges of food 

458 security, environmental degradation and climate change. 

459 Finally, N management in agriculture through precision farming and agro-

460 ecological practices can potentially reduce N inputs in high input systems, and thereby 

461 reduce N2O emissions and increase the agricultural C-sink potential. Agriculture is the 

462 largest source of N emission to natural terrestrial ecosystems, resulting in adverse 

463 effects on the environment and human health (Erisman et al., 2013). Besides the C sink 

464 goal, management of agricultural Nr use can increase crop yield and NUE in countries 

465 with economic development (Gu et al., 2015; Zhang et al., 2015). In addition to more 

466 stringent environmental regulations, improved agricultural production processes can 

467 shift yield responses to N input rate to produce more food with less N inputs (Chen et 

468 al., 2014; Lassaletta et al., 2014). This can benefit our society substantially through 

469 improved food security and environmental sustainability. The occurrences of inflection 

470 points as PGDP increases, suggests the potential to achieve a better management and 

471 use of N in agriculture, which also reduces N2O emissions and thereby contribute to the 
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472 mitigation of global warming. Although croplands have relatively low potential for C 

473 sequestration (Lam et al., 2013), measures such as minimum tillage, crop residue return, 

474 and perennial cropping still may increase the C sequestration in croplands. Future 

475 measures on promoting C sink need to take the N management into consideration to 

476 maximize both the N use and C sink while reducing their adverse effects on the 

477 environment and global climate warming (Van Groenigen et al., 2017).

478
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656 Table 1 Nonlinear effects of socioeconomic development on Nr input/loss, CO2 

657 emission and C/N ratio in the fixed effects panel model

Variables N Fertilizer NOx CBNF NH3 CO2 CO2/(NOx+NH3)

Per-capita GDP
0.630***

(0.185)

0.309***

(0.064)

-0.733***

(0.013)

0.043

(0.088)

0.571***

(0.084)

0.468***

(0.090)

Population
0.875***

(0.225)

0.126

(0.094)

-0.031***

(0.012)

-0.200

(0.115)

0.153

(0.147)

0.477***

(0.130)

Urbanization
-0.011

(0.009)

0.000

(0.004)
MC

0.011*

(0.005)

-0.001

(0.005)

0.000

(0.005)

Group dummy
2.547**

(0.864)

3.472***

(0.399)
NA

0.043

(0.064)

1.460***

(0.342)
NA

PGDP × dummy
-1.002***

(0.307)

-1.295***

(0.136)
NA

-0.358

(0.184)

-0.571***

(0.125)
NA

Intercept
-1.271***

(0.330)

0.291

(0.174)

3.222***

(0.030)

2.737***

(0.223)

0.394

(0.263)

3.395

(0.283)

N 5595 3842 4336 3347 3811 3347

R2-within 0.223 0.550 0.457 0.264 0.540 0.280

658 Note: all data of variables in this table have been transformed logarithmically, and all 

659 the variables have been tested for stationary to make sure all the panel data are balanced 

660 by using ADF-Fisher test in the analysis. Group dummy is a binary parameter (0, 1) 

661 introduced to test whether or not the inflection points of Nr fluxes/CO2 emissions exist 

662 with per capita GDP. Cluster-robust standard errors (cluster at country level) were used 

663 for estimations. ***P<0.001, **P<0.01, *P<0.05; NA, not applicable; MC, 

664 multicollinearity with per capita GDP; R2-within was estimated based on the group 

665 deviation method.

666
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668 Figure captions

669 Fig. 1. Conceptual models of Nr use/loss and CO2 emission with increasing level of 

670 economic development. (a) Conceptual models; (b) Evolution of the relationships 

671 among N inputs, N production and N use efficiency (NUE) with increasing economic 

672 development. (I), (II) and (III) refer to Type 1, 2 and 3 countries, respectively.

673

674 Fig. 2. Per-capita Nr use/loss, CO2 emission and C/N ratio in relation to per-capita 

675 GDP across 132 countries. (a) N fertilizer; (b) CBNF; (c) NOx emission from fossil 

676 fuel combustion; (d) NH3 emission; (e) CO2; (f) CO2/(NOx+NH3). CBNF, cultivated 

677 biological N fixation. Green data points represent Type 1 countries with an inflection 

678 point, and grey data points represent Type 2 countries without an inflection point. There 

679 was no inflection point for CBNF, and we applied the list of Type 1 countries of N 

680 fertilizer for CBNF due to the supplementary role of CBNF in food production 

681 compared to that of N fertilizer. See SI for the list of different types of countries.

682

683 Fig. 3. Spatial variation of global net ecosystem productivity (NEP) considering Nr 

684 deposition changes with economic development in 2050. The storyline used in this 

685 simulation is the IPCC B1 scenario.

686

687 Fig. 4. The potential explanation pathways of Nr uses and losses and CO2 emission 

688 across 132 countries. (a) Grain yield with per-capita GDP; (b) PFPN with GDP per 

689 capita; (c) CBNF with N fertilizer use; (d) energy use and GDP per capita; (e) NOxE 

690 with GDP per capita; (f) CO2E with GDP per capita. PFPN, partial factor productivity of 

691 N fertilizer = kg grain yield per kg N fertilizer; CO2E, CO2 emission per unit of energy 

692 supply; NOxE, NOx emission per unit of energy consumed. Green data points represent 

693 Type 1 countries with an inflection point, and grey data points represent Type 2 

694 countries without an inflection point. We applied the list of Type 1 countries of N 

695 fertilizer for yield, PFPN and CBNF, and we applied the list of Type 1 countries of NOx 

696 for energy, NOxE and CO2E. R2 is the determining factor of regression curve. P<0.001 

697 is for all the regression curves. See SI for the list of different types of countries.

698

699 Fig. 5. Comparisons of N fertilizer and NOx and their related factors for Type 1 

700 and Type 2 counties. (a) Per area N fertilizer (Fertilizer/A), per capita N fertilizer 

701 (Fertilizer/P), cropland yield (Yield), crop production per N fertilizer (PFPN) and PGDP 
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702 (per-capita GDP); (b) Per capita NOx emissions via fossil fuel combustion (NOx), per 

703 capita energy consumption (Energy), NOx emission per energy consumption (NOxE), 

704 and per-capita GDP; (c)-(d) changes of Type 1 countries from inflection year to 2006-

705 2008. Type1_Inflection represents the countries in the year when inflection occurred, 

706 Type1_Current represents the current status (average value from 2006 to 2008) of Type 

707 1 countries, and Type2_Current represents the current status (average value of 2006 to 

708 2008) of Type 2 countries. See SI for the list of different types of countries.

709

710 Fig. 6. Cluster analysis for Type 1, 2 and 3 countries. (a) Cluster analysis based on 

711 per-capita GDP, fertilizer per hectare and yield; (b) quantitative comparisons of the 

712 three types in (a). The list of countries for the cluster analysis can be found in SI. 

713 Although Type 3 countries are transition countries between Type 1 and Type 2 

714 countries in terms of economic development and Nr use, the much higher Fertilizer/A 

715 and lower PFPN of Type 3 countries compared to the other two types of countries 

716 suggest serious Nr pollution in Type 3 countries. Units: Fertilizer/P (kg N capita-1 yr-1), 

717 Fertilizer/A (10 kg N ha-1 yr-1), Yield (100 kg rice milled equivalent ha-1 yr-1), PFPN (g 

718 rice milled equivalent g-1 N fertilizer), PGDP ($1,000 capita-1 yr-1). See SI for the list of 

719 different types of countries.

720

721 Fig. 7. Comparisons of the inflection points on N fertilizer use, NH3 emissions and 

722 P fertilizer use in Type 1 countries. (a) The year (+1900) and per-capita GDP (×100 

723 capita-1 yr-1) of the inflection points on N fertilizer use (kg N capita-1 yr-1), NH3 

724 emissions (kg NH3 capita-1 yr-1) and P fertilizer use (kg P2O5 capita-1 yr-1), and changes 

725 from the inflection year to the present (average data from 2006 to 2008); (b) 

726 Relationships between N fertilizer and NH3 emissions and P fertilizer use in the 

727 inflection point year. See SI for the list of Type 1 countries.

728

729 Fig. 8. Typical illustrative examples for both Type 1 and Type 2 countries on the 

730 relationships of N fertilizer use and NOx emission with per-capita GDP. The open 

731 circles in each panel are the calculated N fertilizer use or NOx emissions in a particular 

732 year between 1961 and 2008 as a function of per-capita GDP. The solid lines are the 

733 regression curves except the one for China that is moved average. (a) Inflection of N 

734 fertilizer. (b) No inflection point for N fertilizer use; (c) Inflection point for NOx 

735 emissions. (d) No inflection point for NOx emissions.
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1 Supplementary Information
2
3 SM text 
4 Inflection points hypothesis
5 To increase food production, N fertilizer and legume cultivation are used to maximize N 
6 input to agricultural lands (Fig. S1). In order to supply energy, the burning of fossil fuel 
7 inevitably increases NOx and CO2 emissions to the atmosphere (Sutton et al., 2013). Zhang et 
8 al. (Zhang et al., 2015) showed that the N loss from cropland follows a bell-shaped 
9 relationship with economic growth. Here we expand this relationship to anthropogenic Nr 

10 creation. On the one hand, greater income increases demand for more food and energy 
11 consumption, which in turn increases the Nr input to agricultural lands as nutrient for plant 
12 growth, and the emission of NOx and CO2 to the atmosphere through fossil fuel combustion 
13 (Tilman et al., 2011). On the other hand, a higher income is often accompanied by a societal 
14 demand for improved environmental quality, such as clean water and air, and the mitigation 
15 of climate change (Zhang et al., 2015). Consequently, governments may impose regulatory 
16 policies or offer subsidies and incentives to reduce local/regional N pollution and mitigate 
17 global warming by increasing resource use efficiencies and C sinks. 
18 Therefore, we hypothesize that Nr creation, loss and CO2 emissions follow a pattern 
19 similar to an environmental Kuznets curve (EKC): Nr creation and loss (NH3, NOx, and N2O), 
20 and CO2 emissions increase with income growth and the quest for food and energy at the 
21 early stages of economic development, but then decrease with further income growth at a 
22 more affluent stage (Fig. S2). Future climate change is tightly linked with CO2 emissions and 
23 changes in C sinks that are dependent on N supply to the ecosystems through N deposition 
24 (Hungate et al., 2003). Thus, the ratio of CO2 emissions to Nr emissions, including NH3 and 
25 NOx, to the atmosphere is crucial for the future climate change. Although both CO2 and Nr 
26 emissions may follow the EKC with economic development, CO2 emission is more tightly 
27 coupled with the energy supply by fossil fuel combustion. Therefore, we hypothesized that 
28 the C:N ratio (emissions of CO2 to NH3 and NOx) would continue to increase with the 
29 economic growth, compromising the potential increase of C sinks under future elevated CO2 
30 concentration. 
31
32 References:
33 Hungate, B.A., Dukes, J.S., Shaw, M.R., Luo, Y., Field, C.B., 2003. Nitrogen and climate 
34 change. Science 302, 1512-1513.
35 Sutton, M.A., Reis, S., Riddick, S.N., Dragosits, U., Nemitz, E., Theobald, M.R., Tang, Y.S., 
36 Braban, C.F., Vieno, M., Dore, A.J., Mitchell, R.F., Wanless, S., Daunt, F., Fowler, D., 
37 Blackall, T.D., Milford, C., Flechard, C.R., Loubet, B., Massad, R., Cellier, P., Personne, 
38 E., Coheur, P.F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C., Skjoth, C.A., 
39 Geels, C., Hertel, O., Wichink Kruit, R.J., Pinder, R.W., Bash, J.O., Walker, J.T., 
40 Simpson, D., Horvath, L., Misselbrook, T.H., Bleeker, A., Dentener, F., de Vries, W., 
41 2013. Towards a climate-dependent paradigm of ammonia emission and deposition. 
42 Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20130166.
43 Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable 
44 intensification of agriculture. Proceedings of the National Academy of Sciences 108, 
45 20260-20264.
46 Zhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P., Shen, Y., 2015. 
47 Managing nitrogen for sustainable development. Nature 528, 51-59.
48
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49 Table S1 Testing for Stationary in unbalanced panel data
Fisher-ADF Test: drift term includedH0: all Panels contain unit roots Modified inverse chi-squared Statistic p-value

Ln(N Fertilizer) 48.3663 0.0000
Ln(NOx) 21.4483 0.0000
Ln(NH3) 33.1388 0.0000
Ln(CO2) 23.3914 0.0000
Ln(CO2/(NOx+NH3)) 28.3823 0.0000
Ln(GDP per capita) 21.7810 0.0000
Ln(Population) 79.0207 0.0000
Urbanization 99.4736 0.0000
Ln(Yield) 43.5265 0.0000
Ln(Energy) 32.0228 0.0000

50
51
52 Table S2 Panel cointegration analysis for the C/N ratio with PGDP

Coefficient Std. Error t-Statistic Prob. 
Constant 4.8278 0.0053 917.7913 0.0000
LnPGDP 0.3288 0.0920 3.5733 0.0004
(LnPGDP)2 1.0602 0.2951 3.5922 0.0003

53 Note, all data of variables in this table have been transformed logarithmically.
54
55

56

Human demand
Food, goods, energy
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CBNF

NOx-FF

Nr creation
Products supply

Food, goods, energy

Nr losses
NH3, NOx & N2O emission

Nr to Water
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development

Policy & Technology

Human demand
Environment

NUE

57 Fig. S1 Framework of the economic driving changes on Nr use and loss. Solid lines 
58 represent the drivers that may increase the amount or level of the objectives such as N 
59 fertilizer; dashed lines represent the regulations that may decrease the amount or level of the 
60 objectives such as N losses. The interactions among these two sets of variables would finally 
61 result in the emergences of inflection points for Nr use and loss with economic development.
62
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63
64

65
66 Fig. S2 Per capita N2O emission in relation to GDP per capita across 132 countries. 
67 Green data points represent Type 1 countries with an inflection point, and grey data points 
68 represent Type 2 countries without an inflection point. 
69
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70 Country list with Nr inflection points
71
72 For per capita N fertilizer use

Type 1 
countries 

Australia, Austria, Belgium, Denmark, Finland, France, Germany, Greece, 
Ireland, Israel, Italy, Japan, Mexico, The Netherlands, New Zealand, Norway, 
Portugal, South Korea, Spain, Sweden, Switzerland, The United Kingdom, The 
United States

Type 2 
countries 

Afghanistan, Albania, Algeria, Angola, Argentina, Bahrain, Bangladesh, Benin, 
Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia, 
Cameroon, Canada, Cape Verde, Central African Republic, Chad, Chile, China, 
Colombia, Comoro Islands, Congo, Democratic Republic of Congo, Costa Rica, 
Côte d'Ivoire, Cuba, Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador, 
Equatorial Guinea, Gabon, Gambia, Ghana, Guatemala, Guinea, Guinea Bissau, 
Haïti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Jamaica, Jordan, Kenya, 
Kuwait, Laos, Lebanon, Lesotho, Liberia, Libya, Madagascar, Malawi, Malaysia, 
Mali, Mauritania, Mauritius, Mongolia, Morocco, Mozambique, Myanmar, 
Namibia, Nepal, Nicaragua, Niger, Nigeria, North Korea, Oman, Pakistan, 
Panama, Paraguay, Peru, The Philippines, Poland, Qatar, Romania, Rwanda, São 
Tomé and Principe, Saudi Arabia, Senegal, Seychelles, Sierra Leone, Singapore, 
Somalia, South Africa, Sri Lanka, Sudan, Swaziland, Syria, Tanzania, Thailand, 
Togo, Trinidad and Tobago, Tunisia, Turkey, Uganda, United Arab Emirates, 
Uruguay, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe

73 Type 1 countries have an inflection point, while Type 2 countries have not. 
74
75 For per capita NOx emission from fossil fuel combustion

Type 1 
countries

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 
Greece, Ireland, Israel, Italy, Japan, The Netherlands, New Zealand, Norway, 
Portugal, Singapore, South Korea, Spain, Sweden, Switzerland, The United 
Kingdom, The United States

Type 2 
countries

Afghanistan, Albania, Algeria, Angola, Argentina, Bahrain, Bangladesh, Benin, 
Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia, 
Cameroon, Cape Verde, Central African Republic, Chad, Chile, China, 
Colombia, Comoro Islands, Congo, Democratic Republic of Congo, Costa Rica, 
Côte d'Ivoire, Cuba, Djibouti, Dominican Republic, Ecuador, Egypt, El 
Salvador, Equatorial Guinea, Gabon, Gambia, Ghana, Guatemala, Guinea, 
Guinea Bissau, Haïti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Jamaica, 
Jordan, Kenya, Kuwait, Laos, Lebanon, Lesotho, Liberia, Libya, Madagascar, 
Malawi, Malaysia, Mali, Mauritania, Mauritius, Mexico, Mongolia, Morocco, 
Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Niger, Nigeria, North 
Korea, Oman, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Qatar, 
Romania, Rwanda, São Tomé and Principe, Saudi Arabia, Senegal, Seychelles, 
Sierra Leone, Somalia, South Africa, Sri Lanka, Sudan, Swaziland, Syria, 
Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, Uganda, 
United Arab Emirates, Uruguay, Venezuela, Vietnam, Yemen, Zambia, 
Zimbabwe

76
77
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78 Cluster analysis based on per-capita GDP, N fertilizer use per hectare cropland, and 
79 crop yield

Type 1 
countries

Mauritius, Portugal, Greece, Israel, South Korea, Spain, Italy, Germany, France, 
Japan, Belgium, The United Kingdom, Austria, Finland, The Netherlands, 
Sweden, Switzerland, Denmark, Australia, Canada, Norway, Ireland, The United 
States

Type 2 
countries

Burundi, Niger, Togo, Guinea, Malawi, Madagascar, Tanzania, Zambia, 
Afghanistan, Zimbabwe, Rwanda, Uganda, Iraq, Gambia, Mongolia, Burkina 
Faso, Kenya, Bangladesh, Côte d'Ivoire, Nepal, Mali, North Korea, Cameroon, 
Benin, Sudan, Senegal, Nigeria, Angola, Ghana, Nicaragua, Mozambique, 
Democratic Republic of Congo, Pakistan, Honduras, Cambodia, Yemen, India, 
Vietnam, Philippines, Bolivia, El Salvador, Libya, Myanmar, Paraguay, 
Morocco, Algeria, Cuba, Gabon, Jamaica, Ecuador, Albania, Lebanon, 
Indonesia, Dominican Republic, Guatemala, Namibia, Romania, Sri Lanka, 
South Africa, Peru, Jordan, Tunisia, Brazil, Panama, Iran, Mexico, Turkey, 
Syria, Saudi Arabia, Bulgaria, Thailand, Uruguay, Hungary, Poland, Venezuela, 
Argentina

Type 3 
countries Egypt, Colombia, China, Costa Rica, Malaysia, Chile

80 Type 3 countries are similar to Type 2 countries, but are close to an inflection point.
81
82 Inflection point analysis for ammonia (NH3) emission and phosphorus (P) fertilizer use

Countries with 
inflection points 
for NH3 emissions

Austria, Belgium, Denmark, Finland, France, Germany, Greece, 
Ireland, Israel, Italy, Japan, Mexico, The Netherlands, Norway, 
Portugal, Spain, Sweden, Switzerland, The United Kingdom, The 
United States

Countries with 
inflection points 
for P fertilizer use

Australia, Austria, Belgium, Canada, Denmark, Finland, France, 
Germany, Greece, Hungary, Israel, Italy, Japan, Mexico, The 
Netherlands, Norway, Sweden, Switzerland, The United Kingdom, The 
United States 

83
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