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Abstract Relativistic electron microbursts are short-duration, high-energy precipitation events that
are an important loss mechanism for radiation belt particles. Previous work to estimate their atmospheric
impacts found no significant changes in atmospheric chemistry. Recent research on microbursts revealed
that both the fluxes and frequency of microbursts are much higher than previously thought. We test the
seasonal range of atmospheric impacts using this latest microburst information as input forcing to the
Sodankylä Ion and Neutral Chemistry model. A modeled 6 h microburst storm increased mesospheric HOx

by 15–25%/800–1,200% (summer/winter) and NOx by 1,500–2,250%/80–120%. Together, these drive
7–12%/12–20% upper mesospheric ozone losses, with a further 10–12% longer-term middle mesospheric
loss during winter. Our results suggest that existing electron precipitation proxies, which do not yet take
relativistic microburst energies into account, are likely missing a significant source of precipitation that
contributes to atmospheric ozone balance.

1. Introduction

In recent years, we have seen an increased interest in assessing the importance of solar variability in the form
of energetic particle precipitation on the Earth’s atmosphere (e.g., Andersson et al., 2014; Arsenovic et al.,
2016; Damiani et al., 2016; Seppälä et al., 2014). These particles, mainly electrons and protons, are of solar and
magnetospheric origin and are guided by the Earth’s magnetic field to the polar regions, where they ionize
the neutral atmosphere. This effect, known as energetic particle precipitation, or EPP, influences the chemical
balance of the atmosphere by increasing the production of a number of gases (so called odd hydrogen, HOx ,
and odd nitrogen, NOx) which take part in ozone loss (see the comprehensive review by Jackman & McPeters,
2004). Changes in the chemical balance can couple further to atmospheric dynamics providing a potential link
to regional variations in climate even up to solar cycle time scales (e.g., Arsenovic et al., 2016; Baumgaertner
et al., 2011; Semeniuk et al., 2011; Seppälä et al., 2009, 2013).

In order to include these effects in climate simulations, Matthes et al. (2017) have provided the first long-term
proxy for energetic electron precipitation (<1 MeV) levels building on work by van de Kamp et al. (2016).
Proxies like this rely on EPP observations organized by solar and geomagnetic activity levels as measured by
geomagnetic activity indices, such as the Ap index. While geomagnetic indices can capture the overall activity
levels reasonably well, they are not able to resolve precipitation at high time resolution. In reality there are
many different physical processes in near-Earth space that drive geomagnetic activity, and also precipitation
of energetic particles, into the atmosphere. The dynamical variability of all possible driving mechanisms is yet
to be taken into account, and the short but high-intensity events are not adequately captured when proxies
are created using average geomagnetic activity indices. One example of these types of events is relativistic
electron microbursts. Relativistic microbursts are short-duration (<1 s) bursts of precipitation of high-energy
(>1 MeV) electrons (Blake et al., 1996; Imhof et al., 1992). They occur primarily on the magnetic local time
morningside outside the plasmasphere in the L shell range 3–8 (Douma et al., 2017). L is a magnetic field line
parameter used to describe the relation of the magnetic latitude of the field line at the surface and its location
in near-Earth space (McIlwain, 1961). Here we calculated the L shells using the International Geomagnetic
Reference Field. Lorentzen et al. (2001) found that microbursts remained intense for ∼6 h during a period of
high geomagnetic activity. One precipitation period can be made up of many individual microbursts, with
localized impact, while the overall precipitation can have a large impact (Dietrich et al., 2010).
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The relativistic energies of the electron microbursts mean that the main impact of the precipitation will be
focused at mesospheric altitudes above about 50 km. Previously, Turunen et al. (2009) simulated the impact
of a single monoenergetic, 2 MeV electron microburst event on the atmosphere and found the impact to be
negligible. Since their study, research by, for example, Blum et al. (2015) and Douma et al. (2017) has shown
that (1) there can be many microburst events in close succession during periods of high geomagnetic activity,
(2) their fluxes are often much higher than the 100 el cm−2 sr−1 s−1 used by Turunen et al. (2009) (Borovsky,
2017), and (3) the electron energy spectrum is more accurately modeled as exponentially decreasing (with
increasing energy) than monoenergetic (Crew et al., 2016).

Here we use the newly available information on microburst electron precipitation characteristics to esti-
mate the seasonal range of impact on polar atmospheric HOx , NOx , and ozone and assess the importance of
relativistic electron microbursts on energetic particle precipitation-driven atmospheric ozone variability.

2. Materials and Methods

In order to describe the characteristic precipitation in these events, we utilize the relativistic microburst
data set derived from Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) Heavy Ion Large
Telescope (HILT), recently reported in Douma et al. (2017). We employ the O’Brien et al. (2003) algorithm which
was updated by Blum et al. (2015) to include the microburst intensity. Based on a long-time scale global aver-
age, we find that the best conjunction of high microburst occurrence and high microburst intensity is located
at L shell 4.43 and (56.11∘N, 311.95∘E), being SAMPEX observations mapped to 100 km altitude. This location
is in the region where SAMPEX HILT measures only the bounce loss cone (Dietrich et al., 2010). During highly
geomagnetically disturbed times (AE* > 300 nT) within 2∘ latitude and longitude of this location we calculate
an occurrence rate of 0.0513 microbursts per second (∼3 microbursts per minute) with a flux intensity mean
value of 1,733.5 cm−2 sr−1 s−1 and median value of 963 cm−2 sr−1 s−1 of >1.05 MeV electrons, that is, about
an order of magnitude larger than Turunen et al. (2009). Further, it is found that the average duration of these
microbursts is 0.1 s, in agreement with the value used by Rodger et al. (2007) and Turunen et al. (2009). The
above averages were calculated from the SAMPEX HILT solid state detector array row 4 data between 1996
and 2007 during high geomagnetic activity (AE* > 300 nT). To estimate the duration, we used the highest
available instrument resolution (100 ms for this row, see Douma et al., 2017). Note that higher occurrence
rates and intensities are observed (O’Brien et al., 2004), but we use the statistical averages to consider a more
“typical,” not extreme precipitation levels here.

The SAMPEX HILT intensity observations provide integral electron fluxes with energies >1.05 MeV. We con-
vert this integral intensity to a differential electron flux spectrum based on the modeling of whistler mode
chorus produced electron microbursts reported in Rodger et al. (2007). Here we use the modeled results for
the Southern Hemisphere. We find that the Rodger et al. (2007) modeling is well fit by a spectral relationship
combining (through multiplication) a power law and e-folding (i.e., exponentially decreasing) relationship for
energies <1 MeV and an e-folding only relationship for energies >1 MeV. A differential electron flux spectrum
is produced for both the mean and median fluxes, presented here in Figure 1. The figure also includes scaled
values of the Focused Investigations of Relativistic Electron Burst: Intensity, Range, and Dynamics (FIREBIRD)
L = 5.9 microburst flux observations from Crew et al. (2016). This shows that our differential electron flux spec-
trums are highly consistent with the energy dependence of the experimentally observed <1 MeV microburst
fluxes reported by Crew et al. (2016).

To assess the impact of the microburst precipitation, we used the 1-D Sodankylä Ion and Neutral Chemistry
(SIC) model. The latest version (corresponding to the one used in this study) of the model was recently
reported by Verronen et al. (2016). A detailed description of the SIC model is available from Verronen et al.
(2005) and Turunen et al. (2009). Our modeling location was set to (73∘S, 349∘E). This is the Southern
Hemisphere (SH) conjugate location for the SAMPEX observations discussed above and corresponds to L shell
of 4.43. We performed two sets of simulations, one for summer solstice conditions and one for winter solstice
conditions, to gain the full range of atmospheric responses to the electron precipitation. Background con-
ditions were set to the geomagnetically active year 2003, and no other source of particle precipitation was
included. For both seasons three simulations were made: “REF,” a background reference without microburst
electron precipitation; “mean flux” with microburst electron forcing based on the mean event precipitat-
ing flux as described above; and “median flux” with microburst electron forcing based on the median event
precipitating flux as described above. We take the previously mentioned Lorentzen et al. (2001) 6 h period
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Figure 1. Differential electron flux and energy spectrum for the mean
event (solid line) and median event (dashed line) precipitating microburst
flux. The red crosses show the scaled fluxes from FIREBIRD microburst
observations (Crew et al., 2016).

of microburst precipitation in our simulations, which is also consistent with
the time AE* is elevated above 300 nT during very large geomagnetic
storms. The microbursts take place in the first 6 h of the mean flux and
median flux simulations, after which the electron forcing is turned off and
no excess ionization is applied.

The SIC model is normally run at a temporal resolution of 5 min. As this
is much longer than the duration of the individual microbursts (0.1 s), we
need to account for this in the electron forcing. With the occurrence rate
of 3 microbursts per minute and each individual microburst having a dura-
tion of 0.1 s, we find that the fraction of the 5 min time step impacted by
the microbursts is 1/200. By using the ionization calculated for an individ-
ual microburst electron flux and spectrum (I

𝜇Burst) multiplied with this factor,
we can now apply the average ionization over the 5 min time step, that is,
Iaverage = 1∕200 × I

𝜇Burst. We note that the photochemical lifetimes of HOx

and NOx at mesospheric altitudes range from hours to days.

3. Results

The ionization rates for the mean and median flux microbursts (I
𝜇Burst) are

shown in Figure 2. Due to the energies of these precipitating electrons,
the enhanced ionization from the microbursts is focused on the meso-

sphere and lower thermosphere, with the highest ionization rates between about 60 km and 90 km.
The change in the background atmosphere from summer to winter has an effect on the ionization rate alti-
tude profile, and the peak height of the ionization is about 5 km higher during summer than during winter.
There is also a clear difference between the mean and median precipitating fluxes, with higher ionization rates
for the mean fluxes.

Figure 3 presents the change in HOx , NOx , and ozone for SH summer solstice. Figure 3 (top row) corresponds
to the mean flux precipitation (blue lines in Figure 2), and Figure 3 (bottom row) corresponds to the median
flux precipitation (red lines in Figure 2). All results here and after this are presented as percent change from
the REF simulation. The change in atmospheric chemistry closely follows the shape of the ionization rate pro-
files (see Figure 3 of Turunen, 2009, for impact altitudes of different energies). The largest impact is focused
between about 75 km and 85 km, reflecting the peak of the ionization profile. The short lived HOx increases
by up to 15% when median flux is applied, and up to 25% when mean flux is applied. From now on, instead
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Figure 2. Atmospheric ionization rates at midnight for summer (red) and
winter (blue). Solid lines correspond to the mean precipitating flux and
dashed lines to the median flux as in Figure 1.

of giving the median and mean flux responses separately, we will report
them together, for example, for HOx above as 15–25% with the first value
corresponding to the median flux response and the second value cor-
responding to the mean flux response. After the first 6 h of simulation
the microburst forcing stops and HOx rapidly recovers to background lev-
els. The NOx enhancements are focused at the same altitude region but
are much higher in magnitude (1,500–2,250%) and persist longer, with
500–750% increases remaining by the end of the day. Our analysis of the
individual chemical reactions for these simulations confirms that under
the summer conditions and at high mesospheric altitudes, the ozone
response is largely dominated by HOx-driven ozone loss. The largest ozone
impacts occur around the local minimum in mesospheric ozone profile,
at about 80 km altitude. These range from −10 to −18% and have largely
recovered within 3 h of the precipitation ending, consistent with the
HOx recovery.

The SH winter solstice responses are presented in Figure 4. Unlike sum-
mer, the changes in all constituents are spread over a wider range of
altitudes and, due to polar night conditions in our SH winter solstice loca-
tion, last much longer. Due to the longer lasting effects, these simulations
were extended to 48 h (summer simulations were restricted to 24 h).
The HOx responses are much larger than during summer, as expected
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Figure 3. Summer: change in (left column) HOx , (middle column) NOx , and (right column) O3 for the (top row) mean flux simulation and (bottom row) median
flux simulation. All values are presented as percent change from the REF simulation. Time on the x axis is local time from the start of the simulation. The
microbursts take place in the first 6 h.

(Seppälä et al., 2015), and range from 800% to 1,200%. At the end of the 48 h period HOx remains elevated
but <50%. While the microburst precipitation enhances HOx between 55 and 80 km, by the end of the 6 h
microburst storm period the peak increases are toward the bottom end of this altitude range, at around
65 km. On the other hand, the NOx enhancements of 80–120% peak around 70 km, closer to the ionization
rate maximum. The lack of photodissociation loss processes in the polar winter enable the long-lived NOx

enhancements, with only marginal reduction after 2 days. As discussed in previous work (see Seppälä et al.,
2015), we note that although the percent change values seem to have a large discrepancy between summer
and winter, these are driven by seasonal variations in the background atmosphere and the absolute increases
are comparable for both seasons (NOx : 106 –107 mol cm−3, HOx : 105 –106 mol cm−3).

The largest ozone losses (−25 to −35%) take place in the first 12 h and are focused at altitudes of 75–80 km.
In this region the main source of ozone loss is the reaction H + O3 → OH + O2 which forms a HOx-driven
catalytic cycle together with OH + O → H + O2. Below 75 km the brief 2 h window of sunlight around noon at
the high mesospheric altitudes activates the effective ozone loss (see Verronen et al., 2005), leading to >10%
ozone reduction which persists beyond the simulation period. Detailed examination reveals that there are
two distinct ozone loss regions, one above and one below ∼70 km. Above 70 km the loss is driven by HOx

and at ∼36 h we start to see recovery of the ozone as the HOx enhancements deplete. Below 70 km the ozone
loss is largely dominated by NOx and remains depleted at ∼10% level beyond the 48 h simulation period. We
examine this more closely in Figure 5 which shows the change in ozone in the upper mesospheric column at
75–82 km and the middle mesospheric column at 63–70 km.

The upper mesospheric column in Figure 5 corresponds to the region dominated by the short-term
HOx-driven ozone loss, and the middle mesospheric column to the region dominated by the long-term
NOx-driven ozone loss during winter. During summer the total ozone amount is a balance of the loss driven
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Figure 4. As in Figure 3 but during winter. Note that the time period here is 48 h.
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Figure 5. Change in ozone in the 75–82 km column during the first 24 h
for summer (red) and winter (dark blue), and in the 63–70 km column for
winter (light blue). For individual altitudes, see Figures 3 and 4. Solid lines
correspond to the mean precipitating flux and dashed lines to the median
flux as in Figures 1 and 2. The microbursts take place in the first 6 h as
indicated by the grey horizontal bar. The solar illumination conditions at
75 km altitude (star = night, circle = day) are marked for the summer/
winter cases with corresponding colors (red/blue) at the bottom of
the figure.

by the microburst forcing and production from photolysis (sunlight). As
a balance of these two the ozone loss maximizes near the end of the
microburst forcing period, reaching values of −7 to −12%. As the forcing
ends, ozone rapidly recovers and returns to background levels within 4 h.
During winter we observe an ozone enhancement in the upper mesosphere
in the first 2 h of the simulation. This is a result of enhanced production
of atomic oxygen which rapidly reacts to form ozone. Within 2 h this addi-
tional production is overtaken by the HOx-driven loss that results in 12–20%
reduction in the column ozone. The brief sunlit hours at the upper meso-
spheric altitudes (Verronen et al., 2005) start the ozone recovery by boosting
production. By the end of the 24 h period, the ozone column has recovered
to within−5 to−10% of the unperturbed levels and is showing a clear trend
toward background levels. In the middle mesosphere, below 70 km, where
ozone responses were limited to wintertime, the impact is −2 to −5% ini-
tially, but this increases to −10 to −12% following activation of the catalytic
loss cycles by sunlight. While ozone above 70 km starts to recover by the
following day, in the middle mesosphere region ozone remains reduced at
the 10% level at the end of the 48 h simulation period and shows no clear
recovery trend.

4. Conclusions

Based on the available information, Turunen et al. (2009) found microbursts
to have a negligible impact on atmospheric chemical balance. Since this
study, new results presented by Blum et al. (2015) have shown that the
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microburst fluxes of Turunen et al. (2009) were underestimated by at least an order of magnitude. We now also
know that high geomagnetic activity levels will likely lead to many repeated microbursts, while previously,
only an isolated precipitation burst was considered (Turunen et al., 2009).

Using this new information, we carried out a set of simulations to investigate the effects of relativistic elec-
tron microbursts on atmospheric chemistry. To assess the seasonal variation of the atmospheric effects, which
are known to strongly depend on solar illumination, we examined the impacts for both summer and winter
solstice conditions. A storm of microbursts occurring over a 6 h time period, consistent with a large geo-
magnetic storm, will reduce the upper mesospheric ozone column by 7–12% during summer conditions.
This ozone loss is short lived, and the HOx and NOx produced by the microburst precipitation both rapidly
recover to background levels. However, during winter when photochemical loss is limited by lack of sun-
light, the upper mesospheric ozone column is initially reduced by 12–20%. As the upper mesospheric column
starts to recover, a delayed 10–12% ozone loss, lasting beyond the 48 h simulation period, dominates the
middle mesosphere (63–70 km). Our results show that the atmospheric impact is a balance of the ioniz-
ing electron precipitation and the prevailing sunlight conditions (see also Verronen et al., 2005). We applied
a constant occurrence rate of 3 microbursts per minute in our simulations. In reality this rate is not con-
stant. However, variations in this rate would not impact the longer-term change in ozone, which appears
well after the microburst forcing has ended and is largely controlled by the enhanced long-lived NOx and
sunlight conditions.

Relativistic microbursts typically include energies higher than the<1 MeV electrons included in the EPP proxy
of van de Kamp et al. (2016) and Matthes et al. (2017). In terms of atmosphere response, this energy difference
means that the higher-energy microburst electrons impact lower atmospheric altitudes. As a result, the peak
impact from microbursts (Figure 2) takes place about 10 km lower in the atmosphere than the van de Kamp
et al. (2016, Figure 9) EPP proxy. Microbursts are an important loss mechanism for particles from the radiation
belts, and they occur as part of geomagnetic activity. The results presented here suggest that the existing
EPP proxies, which do not yet take relativistic microburst energies into account, are likely missing a significant
source of EPP contributing to atmospheric ozone balance.
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