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Abstract 13 

In order to effectively manage natural resources at national scales national decision makers 14 

require data on the natural capital which supports the delivery of ecosystem services (ES). 15 

Key data sources used for the provision of national natural capital metrics include Satellite 16 

Remote Sensing (SRS), which provides information on land cover at an increasing range of 17 

resolutions, and field survey, which can provide very high resolution data on ecosystem 18 

components, but is constrained in its potential coverage by resource requirements.  19 

Here we combine spatially representative field data from a historic national survey of Great 20 

Britain (Countryside Survey (CS)) with concurrent low resolution SRS data land cover map 21 

within modelling frameworks to produce national natural capital metrics.  22 
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We present three examples of natural capital metrics; top soil carbon, headwater stream 23 

quality and nectar species plant richness which show how highly resolved, but spatially 24 

representative field data can be used to significantly enhance the potential of low resolution 25 

SRS land cover data for providing national spatial data on natural capital metrics which have 26 

been linked to ecosystem services (ES). We discuss the role of such metrics in evaluations of 27 

ecosystem service provision and areas of further development to improve their utility for 28 

stakeholders. 29 

Keywords: National natural capital metrics, satellite remote sensing, field survey, habitats, 30 

modelling, decision making. 31 

Introduction 32 

Even those individuals who rarely step out of the city are entirely reliant on nature to supply 33 

their fundamental needs, i.e. breathable air, food, water, energy and shelter. Scientists have 34 

been highlighting the threat that globally degrading ecosystems pose for the environmental 35 

and economic sustainability of human systems (Daily & Ehrlich 1992, Arrow 1995). This has 36 

resulted in the emergence of the term ‘natural capital’ (NC) which casts natural resources 37 

such as those described above into an economic term ‘capital’ in order to ensure that nature is 38 

valued alongside other forms of capital which contribute to wellbeing. NC underpins the 39 

provision of services to humans (Ecosystem Services (ES)). 40 

In the UK, the government set up an independent body, the Natural Capital Committee 41 

(NCC) in 2012, to advise the UK Government on how to value nature and to ensure 42 

England’s ‘natural wealth’ is managed efficiently and sustainably. Global interest in valuing 43 

NC is reflected by the large numbers of businesses signing up to the natural capital 44 

coalition’s natural capital protocol (Natural Capital Coalition 2016).  45 



 

3 
 

Projects like TEEB (TEEB 2010) have highlighted the importance of both measuring and 46 

monitoring Earth’s natural resources over time, in order to enable their effective and 47 

sustainable management. The importance of biodiversity in supporting the functioning of 48 

ecosystems has led to it being both a key target for monitoring and a political focus for action 49 

(Cardinale et al. 2012). For example, EU legislation to protect the environment focuses on 50 

improving the status of ecosystems and their biodiversity. Monitoring biodiversity alone fails 51 

to capture the multitude of ways in which nature supports human wellbeing, there is therefore 52 

a need to provide NC metrics which help us to link NC assets (such as species, ecological 53 

communities and freshwater) to each other and to the natural processes which underpin 54 

ecosystem functions and service production (Natural Capital Committee 2014; Maes et al. 55 

2012). All EU countries have thus been tasked with mapping ES at a country level (European 56 

Commission 2011) by 2014. Done well, this is a substantial and complex challenge for 57 

science and society, but will provide essential information for policy makers and actors 58 

seeking to manage resources effectively (Maes et al. 2012). A key part of the challenge is the 59 

collection and transformation of robust data on ecosystems into metrics at scales which can 60 

influence decision makers (Grêt-Regamey et al. 2014). There have been relatively few 61 

attempts to carry out ecosystem service mapping focused on national scales (TEEB 2010; 62 

Hedden-Dunkhorst et al. 2015) including; England (Dales et al. 2014); Spain (Ministerio de 63 

Agricultura, Alimentación y Medio Ambiente 2014); Luxemburg (Liquete & Kleeschulte 64 

2014 and Becerra-Jurado et al. 2015); Germany (Rabe et al. 2016). The work by Dales et al. 65 

(2014) in the UK focused on the use of proxy measures of land cover linked to look up tables 66 

associated with land cover types (Burkhard et al. 2009, 2012) to provide measures for ES 67 

provision. Other methods used in Spain, Luxembourg and Germany (Ministerio de 68 

Agricultura, Alimentación y Medio Ambiente 2014, Liquete & Kleeschulte 2014; Becerra-69 

Jurado et al. 2015; Rabe et al. 2016) also used satellite based land cover information to 70 

http://www.sciencedirect.com/science/article/pii/S1470160X16302916#bib0005
http://www.sciencedirect.com/science/article/pii/S1470160X16302916#bib0005
http://www.sciencedirect.com/science/article/pii/S1470160X16302916#bib0005
http://www.sciencedirect.com/science/article/pii/S1470160X16302916#bib0005
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provide information on the extent and locations of different habitat types. The use of habitat 71 

monitoring in this way has been identified as a potentially effective way of linking NC assets 72 

to service provision (Mace et al. 2015). However, work by Eigenbrod et al. (2010) has shown 73 

that attempts to provide measures/maps of NC relating to ES provision may suffer as a result 74 

of being based primarily on coarse proxy measures such as land cover. The difference 75 

between ‘habitat’ and ‘land cover’ may therefore be critical in the identification of methods 76 

and metrics which are appropriate for reporting on NC.  77 

Habitats provide a pragmatic link between efforts to conserve populations of individual 78 

species and more integrated approaches to landscape-level management (Bunce et al. 2013). 79 

As well as including species and ecological communities, habitats reflect interactions 80 

between these and their relationships with natural processes. In contrast, land cover is 81 

typically information derived from interpretation of spectral imagery from SRS for large 82 

areas, including national extents (Morton et al. 2011). The recent launch of the Sentinel 83 

satellites and huge steps in data capacity and processing are likely to increase the potential for 84 

SRS data to go beyond land cover to more detailed interpretation of habitats and improved 85 

NC monitoring (particularly at local to regional scales) in the future. However, given the 86 

difficulties encountered in defining habitats consistently (even in the field) (Bunce et al. 87 

2013), there will always be a role for field survey both for detailed  monitoring of habitats, as 88 

well as for monitoring (the majority of) species and sub-surface soil and water.  ‘Habitat 89 

monitoring’ as put forward by Mace et al. (2015), therefore implies the need to go further 90 

than merely providing information on land cover. 91 

The challenges of identifying possible methods for producing NC metrics (and other closely 92 

related variables) and the associated monitoring which would be required has been the focus 93 

of a number of publications, many of which are summarised in Pettorrini et al. 2016). 94 

Skidmore et al. (2015) advocate the benefits of using SRS, particularly for global scale, 95 
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cross-border monitoring of vegetation, but stress the importance of close working between 96 

ecologists and users of remote sensing in optimising the potential of such data. The GEO 97 

BON Ecosystem Service Working Group (Tallis et al. 2012) have produced a conceptual 98 

framework for monitoring trends in ES globally, which is based on numerical modelling 99 

combining SRS and field-based monitoring with national statistics data. Many of the 100 

concerns about the appropriateness of SRS metrics for ecosystem service (ES) supply or NC 101 

monitoring outlined in Pettorrini et al. (2016), relate to interpreting the complexity of 102 

relationships between potential measures and ES supply. This relates to a range of SRS 103 

metrics which go beyond land cover; including measures such as Net Primary Productivity 104 

(from NDVI data) and Land Surface Temperature and Equivalent Water Thickness (Pettorrini 105 

et al. 2016). Key concerns surround how SRS metrics can be linked to ES supply at 106 

appropriate scales. The challenge is to produce metrics at national scales which relate to SRS 107 

metrics but provide us with more useful information about the factors influencing those 108 

metrics and hence subsequent ES supply.  109 

The recognised need for robust NC metrics which can provide information on the factors 110 

influencing NC at national scales points to the need for aligned nationally representative field 111 

and SRS survey. Here we combine spatially representative field data from a historic national 112 

survey of Great Britain (Countryside Survey (CS)) with concurrent high resolution SRS land 113 

cover map data within modelling frameworks to produce national NC metrics which provide 114 

a ‘measure’ of nature at a national scale. We describe below the field survey design and 115 

aligned SRS product which enable this approach together with examples of modelling 116 

approaches which have been used for the production of metrics. The metrics demonstrate the 117 

potential breadth of metrics which a combined field/SRS approach can enable, and include 118 

metrics describing; water quality, bee nectar plant richness and soil carbon. Water quality in 119 

headwater streams is an important indicator of the provision of clean water for drinking, 120 
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household use and recreation. Bee nectar plant richness (here) indicates the resource available 121 

in the most extensive habitats across GB for wild bee populations which (aside from managed 122 

honeybee colonies), are the most important pollinators of crop monocultures (Klein et al. 123 

2007). Soil C/organic matter storage is important for a wide range of regulating services 124 

including mitigation of flooding and climate change. We discuss the constraints and 125 

opportunities for the use and evolution of these methodologies and how they fit with policy 126 

requirements for information to assist with the effective management of NC for ecosystem 127 

service provision. 128 

 129 

Materials and Methods 130 

The dataset which we used to generate NC metrics was the GB Countryside Survey (CS). The 131 

survey structure (described below) is integral to its use for the provision of national NC 132 

metrics. 133 

Countryside Survey 134 

CS is a country-scale, long term national monitoring project which has taken place five times: 135 

in 1978, 1984, 1990, 2000 and 2007. The relevance of the survey to policy as a means of 136 

‘Accounting for Nature’ (Haines-Young et al. 2000) was recognised soon after the initial 137 

survey resulting in government support for all of the following surveys. The last three 138 

surveys incorporated both SRS and field survey data and in 2007 habitats in both parts of the 139 

survey were described according to UK Broad Habitat definitions (Jackson 2000). Both the 140 

field and SRS surveys map habitats on a common Ordnance Survey Mastermap framework. 141 

Field survey  142 
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The field survey was designed to provide national estimates of metrics relevant to natural 143 

resources (Norton et al. 2012), based on a randomly stratified sample of 1km squares (591 in 144 

2007). The stratification of GB into the Institute of Terrestrial Ecology (ITE) land classes 145 

which underlie CS, was based on soil, geology and climate variables (Figure 1) (Bunce et al. 146 

1996); each land class was sampled in relation to its extent. Within each of the sample 147 

squares complete habitat and landscape feature mapping and a set of integrated sampling 148 

protocols results in the collection of data representative of each of the ITE land classes for the 149 

extent and condition of habitats, landscape features, vegetation, soils and freshwater. 150 

Sampling protocols, detailed on countrysidesurvey.org.uk, include: vegetation plots 151 

associated with habitat and feature types, soil sampling in some plot types and sampling of 152 

headwater streams and ponds for macrophytes and invertebrate fauna. 153 

SRS survey  154 

Land Cover Map (LCM) 2007 is a map of GB habitats based primarily on combined summer 155 

and winter satellite data acquired by the Landsat-TM5, IRS-LISS3 and SPOT-4 AND SPOT-156 

5 sensors covering a 3 year period between 2005 and 2008 (Morton et al. 2011). Habitats 157 

were classified into individual parcels based on information from generalised digital 158 

cartography refined with image segments.  159 

 160 

Natural capital mapping approaches using field survey and LCM 161 

The basic premise underlying the approaches to developing NC metrics described here was 162 

that the representativeness of data collected in the field survey made it possible to extrapolate 163 

modelled results from the sampled 1km squares to the national scale using LCM2007 habitat 164 

information and other relevant national spatial data (e.g. digital terrain modelling, (DTM) 165 

weather data, deposition data etc.). LCM provided the national map of habitats; the field 166 
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survey provided nationally representative condition data from vegetation plots which describe 167 

habitats. Using data from LCM2007 and the field survey, alongside detailed spatially 168 

comprehensive covariate datasets (as detailed in Table 1, below), it was possible to use 169 

statistical model-based analysis to predict values for NC metrics (Norton et al. 2016; Henrys 170 

et al. 2015) at national scales. 171 

We produced data for three NC metrics (water quality, nectar plant richness and top soil 172 

carbon concentration) to demonstrate the potential breadth of NC data which can be provided 173 

by combining SRS and field datasets with statistical modelling approaches. For more details 174 

on the modelling approaches and more discussion on their efficacy in relation to each of the 175 

metrics below please see Norton et al. (2016) and Henrys et al. (2015) as referred to below. 176 

Details on field protocols associated with each of the metrics are available at 177 

www.countrysidesurvey.org.uk 178 

 179 

Water quality 180 

CS freshwater sampling was focused on providing a snapshot of the condition of headwater 181 

streams; the smaller tributaries that carry water from the upper reaches of a catchment to the 182 

main channel of the river. Headwaters occur in approximately 60% of the CS survey squares. 183 

In each CS square containing a headwater stream surveyors sampled macroinvertebrates 184 

using a kick sample method modified from Murray-Bligh (1999). Data for two survey years 185 

(1998 and 2007) were used in the water quality model. They include: a) an index for 186 

measuring the biological quality of rivers using selected recorded families of 187 

macroinvertebrates as biological indicators (Biological Monitoring Workers Party (BMWP) 188 

score) and b) an expected ‘reference’ macroinvertebrate community at a stream or river site 189 

calculated using specifically developed software - the River Prediction and Invertebrate 190 
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Classification System (RIVPACS). The predicted community (b), based on sampled 191 

attributes of the stream/river at each site, was then compared to the measured stream 192 

community (a) for each site to provide an observed/expected (o/e) ratio which for an un-193 

impacted site will be close to one. As degradation, associated with human impacts increases, 194 

the observed index value fails to meet expectations and the value of the ratio falls below one.  195 

Boosted Regression Tree (BRT) (Elith et al. 2008) models in R (R Core Team, 2016) were 196 

used to identify explanatory variables that account for trends in the o/e BMWP scores at the 197 

1km2 scale. The models comprised the observed BMWP score (Box-Cox transformed, 198 

lambda 0.628) data as the response variable and 10 explanatory variables (Table 1, column 1) 199 

as the potential predictors. The best-fit models were determined by adjusting values of two 200 

model parameters (tree complexity and the learning rate) until model predictive deviance was 201 

minimized without data overfitting. The models were initially trained on a sub-set of the CS 202 

1km squares and tested on the remainder before being extended to the national scale at the 203 

1km2 scale. Model performance was evaluated based on the proportion of the deviance 204 

explained (pseudo R2), the Pearson correlation coefficient (c) and the root mean square error 205 

(RMSE) between fitted and observed data. Residuals were examined using histograms and 206 

Shapiro-Wilk tests to test whether predictions follow normal distributions and to confirm 207 

model assumptions were met. The 10 explanatory variables in both models were generated 208 

for all prediction areas.  209 

In order to produce predicted o/e BMWP values for the unmonitored sites, expected values 210 

for BMWP (predicted) were required and these were generated using the 45 ITE land classes 211 

as a base. The expected BMWP scores from the CS data (data derived from RIVPACS using 212 

real, sampled environmental attributes at each site) were averaged for each land class. This 213 

value was used as the predicted expected BMWP values for the randomly generated river 214 

sampling site in each unmonitored grid square. Predicted o/e values were calculated by 215 
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dividing the predicted observed (from BRTs) by the predicted expected (average scores for 216 

ITE land classes). Based on the fitted model a map of predicted water quality for each 1km 217 

square containing streams/rivers of Strahler order 1, 2 or 3 was produced together with a plot 218 

of RMSE. 219 

 220 

Bee nectar plant species 221 

In the field survey the presence of plant species was recorded in vegetation plots which 222 

sample habitats within the stratified random sample of squares across Great Britain. Mean 223 

counts of distinct bee nectar producing plant species (Carvell et al. 2006) were calculated for 224 

the 2*2m vegetation plots within each square. Generalised Additive Mixed Models 225 

(GAMM’s) (Lin et al. 1999) in MGCV package (Wood 2004) in R (R Core Team, 2016) 226 

were fitted to bee nectar plant species counts matched with explanatory variables, recorded at 227 

either plot or 1km square level (Table 1, column 2). Generalised Additive Mixed Models are 228 

an extension of the generalised linear model framework where complex error structures can 229 

be included to account for any dependence structure present in the data (similarly to mixed 230 

effects models) and non-linear smoothly varying relationships between response variables 231 

and covariates can also be incorporated (similarly to generalised additive models). These 232 

covariates were determined a-priori according to expert knowledge and scientific 233 

understanding informed by joint work on pollination (Baude et al. 2016). A Poisson error 234 

structure with log link function was assumed and a random component (square) was included 235 

in the model to account for replicate plots within squares (see Henrys et al. 2015). Having 236 

fitted the model, Moran’s I statistic was used to assess whether there was evidence of spatial 237 

auto-correlation in the residuals. In this case, fitting spatially explicit covariates, easting and 238 

northing, in the model to capture the large scale spatial variation was sufficient and no further 239 

spatial terms were required. Model selection was based on minimising Akaike information 240 
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criterion (AIC), whilst RMSE was also calculated to examine model fit. Based on the fitted 241 

model a map of predicted species counts and a map of RMSE were produced for GB. 242 

   243 

Top Soil Carbon 244 

Top soil carbon (C) (hereafter called soil C) was measured in five random vegetation plots in 245 

each 1km square in CS to a depth of 15cm (Norton et al. 2012, Reynolds et al. 2013). The co-246 

location of soil C measures with a range of other soil, vegetation and habitat measures 247 

provides a unique data source for a full integrated assessment of soil C status in GB. Carbon 248 

concentration was estimated based on loss-on-ignition for a total of 2614 cores across the 591 249 

squares surveyed in 2007 (Reynolds et al. 2013).  250 

 251 

Generalised additive mixed models (GAMMs), as described above, were fitted to topsoil C 252 

concentration matched with potential explanatory variables, recorded at either plot or 1km 253 

square level (Table 1, column 3). Rather than assume a specific distribution for the soil C 254 

concentrations, a bootstrapping procedure of resampling survey squares was adopted to 255 

robustly estimate the associated variance. The bootstrapping was run once the structure of the 256 

final model had been chosen. Once again model residuals were examined for evidence of 257 

spatial autocorrelation using Moran’s I statistic and model selection was made by AIC whilst 258 

also examining the RMSE for the fitted models. Having selected the final model structure, for 259 

each resample of the bootstrapping, a GAMM was fitted with random intercepts included, 260 

corresponding to unique squares. Predictions across GB were obtained for each fitted model 261 

and the mean value for each 1km grid cell was plotted together with the RMSE (Henrys et al. 262 

2015); no cell was mapped if it did not contain at least a 50 % cover of one of the broad 263 

habitats sampled by CS).  264 

 265 
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Results 266 

Sampled field survey data, LCM habitat information and a range of national spatial covariates 267 

were used in different statistical modelling approaches to produce mappable national NC 268 

metrics.  269 

Water quality 270 

The models that showed the best explanatory power indicated that the 10 predictor variables 271 

shown in Table 1, column 1 were significant predictors of o/e BMWP. Percentage of woody 272 

cover and degree of topographical slope were the most influential drivers of observed BMWP 273 

values at the 1km2 scale. The predicted o/e BMWP values at the national scale showed a 274 

strong south-east/north-west pattern with higher water quality in western and northern areas 275 

(where land use is less intensive) and lower water quality in the more arable eastern and 276 

southern areas of England (Figure 1a). Model fit (RMSE) is mapped in Figure 2a.  277 

Bee nectar plant species 278 

Explanatory variables influencing bee nectar plant richness included locational, habitat and 279 

weather variables, alongside N deposition (which negatively impacted on species richness) 280 

(Table 1, column 2). As for water quality, the results showed a strong south-east/north-west 281 

pattern, but in contrast show higher NC (numbers of bee nectar producing plant species) in 282 

the more continental lowlands of the south-east compared to lower measures in the wetter, 283 

uplands of the north-west (Figure 1b). Model fit (RMSE) is mapped in Figure 2b.  284 

Top soil carbon 285 

Figure 1c shows high soil C in the upland peaty soils in the north and west, low C on the 286 

predominantly arable soils of the east of England and the far-east of Scotland and 287 

intermediate levels for the more grass-dominated landscapes of the west of GB. As with bee 288 

nectar plant richness, explanatory variables include both locational, habitat and weather 289 

variables (Table 1, column 3) but with sulphur deposition as a positive indicator due to 290 
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slowing of organic matter decomposition in response to the high rates of acidic deposition 291 

experienced in many parts of GB. Model fit (RMSE) is mapped in Figure 2c. 292 

Overview 293 

High level comparisons of the natural capital metrics at national scales indicate that soil 294 

carbon and water quality show broadly similar patterns, so where one is high, so is the other. 295 

In contrast, bee nectar plant species is more often low where soil carbon and water quality are 296 

high. 297 

 298 

Discussion 299 

This work aimed to build on and refine existing approaches for mapping NC at national 300 

scales in GB and to highlight the value of integrated field and SRS monitoring data. The 301 

value of CS data (field and SRS) in relation to the rising agenda of ES both in the UK and 302 

across Europe (Braat & de Groot 2012) was apparent as we planned for the last survey, and 303 

soon after the survey, CS was used to produce a number of publications relating to ES 304 

provision (Norton et al. 2011; Robinson et al. 2011; Maskell et al. 2013; Henrys et al. 2014; 305 

Norton et al. 2015). The CS legacy of continuing relevance to policy (begun in the 1986 306 

survey) was also reflected in the extensive use of CS in the UK National Ecosystem 307 

Assessment (NEA) (2011).  308 

The ongoing challenge of detailing how ecosystem service provision depends on NC assets is 309 

an important one which provides challenges at multiple scales (Maes et al. 2012, 2013; 310 

Martínez-Harms & Balvanera, 2012; Schägner et al. 2013; Grêt-Regamey et al. 2014). For 311 

policy makers, data on NC, how it is changing over time and what that means for the 312 

provision of ES is vital for making resource decisions at national scales (Balvanera et al. 313 

2001; Braat & de Groot 2012).  Several of the publications regarding the use of CS data for 314 

ecosystem service assessments (Norton et al. 2011; Henrys et al. 2014; Norton et al. 2015) 315 
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acknowledged that CS data is only part of the equation, the part that relates to NC rather than 316 

to the services provided. Evaluation of ES provision at national scales from the NC measured 317 

in CS requires a complex process of linking NC assets to multiple ES provision through 318 

available evidence (Braat & de Groot 2012; Maes et al. 2013, Shägner et al. 2013). This 319 

process is currently underway as part of continuing work on the development of appropriate 320 

metrics (see ‘Next steps’, below).  321 

The particular challenge in this study was to provide national measures of NC which can 322 

improve on basic land cover proxies, such as those used in Dales et al. (2014). The modelled 323 

data produced here are better able to characterise NC at national scales because they include 324 

condition information on NC as well as an indication of the variables which influence both 325 

presence and condition. CS provides a unique opportunity to produce these metrics because 326 

of its national spatially representative design and integrated monitoring approaches (including 327 

SRS). In recent years SRS has received a great deal of attention for its potential to monitor 328 

aspects of NC, in particular, biodiversity (Petrou et al. 2015; Pettorelli et al. 2015).  The 329 

sheer volume of papers supporting this possibility indicate a need to both emphasise the value 330 

of the innovative technologies which make remote earth observation possible and to validate 331 

the research approaches which explore those technologies.  332 

In contrast, field survey, though widely acknowledged as absolutely fundamental to the 333 

effective use of SRS data (Gillespie et al. 2008; Xie et al. 2008) suffers from being a long 334 

established and apparently resource intensive activity. Recently SRS and field survey 335 

combined have been shown to provide an effective method for monitoring relevant to NC and 336 

ES at ‘local’ scales (Martínez-Harms et al. 2016; Lawley et al. 2016). In Australia, a similar 337 

approach has been used to characterise habitat condition using field based reference data, but 338 

lack of representative field data at national scales there resulted in the use of synthetic data 339 

(Harwood et al. 2016). Inevitably, scale is an issue for country level sampling and GB is a 340 
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small country in comparison with Australia. However, size does not preclude the adoption of 341 

parsimonious but effective sampling approaches, to enable the production of national NC 342 

metrics. Approaches using standardised protocols, (like the GB Countryside Survey), have 343 

been identified as particularly important for biodiversity rich countries where there is an 344 

urgent need to monitor ecosystems and anthropogenic impacts upon them (Stephenson et al. 345 

2017). Key criteria to enable this include: 1) an underlying stratification of the landscape at a 346 

national scale based on (relatively) static biophysical variables, 2) statistically robust sample 347 

sizes of randomly located sampling units within the stratification, 3) concurrent field and SRS 348 

surveys and 4) commonality of habitat definitions across field and SRS data.   349 

Whilst the concept of ‘Natural Capital’ was not extant in 1978 when CS began, the survey 350 

was designed to measure the state and condition of GB across multiple ecosystem 351 

components and this ‘enlightened’ approach is now proving to be highly relevant to the 352 

modern concept of assessing natural capital. The NC metrics presented here are viewed as the 353 

most robust available at a national scale for England, whilst also covering Scotland and 354 

Wales. User friendly versions of the three metrics reported here and a wider set of metrics, 355 

developed using these approaches for the government’s adviser for the natural environment in 356 

England (Natural England), appear in documented form on a publicly accessible website 357 

(Natural England 2016). This policy use acknowledges the value of data that goes beyond 358 

quantifying the spatial distribution of land cover types to provide a better understanding of 359 

the condition of the resource and the factors known to impact on it. This, in turn, will enable 360 

better links to be made between the land cover and ecosystem service provision. It should be 361 

noted that CS is a ‘snapshot’ survey, which, whilst providing valuable data on some elements 362 

of NC may not be appropriate for all natural capital measures pertinent to ES provision, for 363 

example, the soil carbon or land extent on which crop or animal production (provisioning 364 

services) depend are recorded in CS but the resulting provision of ‘food’ is better sourced 365 
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from other data sources. The process of identifying which NC data can best inform on ES 366 

delivery remains ongoing both for CS and more broadly (see ‘Next steps’, below) and will 367 

help to ensure that CS data is used as fully as possible. 368 

 369 

Combining data from both spatially representative highly resolved field survey, high 370 

resolution national coverage SRS and other national spatial datasets overcomes issues of 371 

imprecision from using SRS data alone (Rhodes et al. 2015). Whilst imprecision of SRS may 372 

be overcome by using different forms of SRS (such as light detection and ranging (LiDAR) 373 

and digital cameras mounted on unmanned aerial vehicles (UAV’s) for recording presence of 374 

some features (e.g. streams, hedges, individual trees) these may be currently impractical at 375 

national scales in terms of data processing requirements and/or visibility of particular 376 

features. Similarly, whilst the potential use of SRS for habitat condition measures has been 377 

highlighted (Petrou et al. 2015; Pettorelli et al. 2015), its use is constrained by the scale of 378 

observations and the requirement for field survey validation. For the metrics reported here, 379 

field mapped habitat information and field sampled vegetation, soil and water are currently 380 

essential.  381 

 382 

The modelling approaches used to produce metrics represent particular points in time and 383 

identify potential environmental drivers and the variables which relate to the field measures, 384 

using correlative approaches. They do not identify the causal pathway between drivers of 385 

change and measured variables but rather provide predictions of NC metrics at a national 386 

scale (Henrys at al. 2015). The quality of the predictions is reliant on the availability of 387 

national data of sufficient spatial extent and quantity to provide a good fit between modelled 388 

NC metrics and the factors impacting on them. The use of statistical modelling approaches 389 

means that models can be produced with associated information on model fit to data as 390 
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shown in figure 2 a-c (see also Henrys et al. 2015) which is valuable for those wishing to use 391 

them for land use decision making. In all cases, where predicted values are high, RMSE 392 

 is also high. In the examples provided here it is notable that the water quality predictions are 393 

heavily influenced by the ITE Land Classes, causing rather distinct border lines blue western 394 

part vs. northern and eastern areas. The approaches taken here (and resulting models) will 395 

continue to evolve in response to; 1) improved data on explanatory variables including the 396 

availability, resolution and processing capacity relating to RS data, and 2) the use of other 397 

national NC datasets.  398 

 399 

Next steps for NC mapping 400 

 Whilst the national NC metrics shown here and used in aligned approaches (see Baude et al. 401 

2016) provide a valuable proof of concept and an improvement on previous approaches 402 

(Dales et al. 2014), research is continuing to explore the wider potential of the field and SRS 403 

elements of the CS dataset in relation to NC mapping. This reflects ongoing work across the 404 

spectrum of how NC information may be used in decision making (Ruijs & van Egmond 405 

2017). Particular challenges include interpreting change in NC metrics over time. Field 406 

survey data has been widely used to investigate change in a wider range of ecological 407 

measures across the period of the survey (1978-2007) (Norton et al. 2012) in large part due to 408 

consistency of methodologies. In contrast, land cover maps have been in step with the 409 

technologies and data availabilities of their time. This has severely hampered the ability to 410 

interpret where differences (1990-1998-2007) are due to changing habitats and where they 411 

are due changing methodologies. Assessments of change in NC metrics using the approaches 412 

outlined in this paper may be constrained by this issue, (although it will be possible to assess 413 

the uncertainties associated with land cover mapping issues). Clearly, continued consistency 414 

of methodologies for both field survey and land cover mapping in an integrated monitoring 415 
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approach are essential to enable continued assessment of change in NC metrics in the future. 416 

It is to be hoped that with the advent of much more regular and consistent Sentinel data, 417 

problems of SRS data inconsistency will become less of an issue. 418 

 419 

 Another area of research in terms of the applicability of such approaches includes an 420 

exploration of how to scale NC metrics, in particular, down to local levels. Whilst national 421 

scale metrics are relevant to national policy makers, those making decisions about 422 

management require data for their local patch. A number of studies show the relevance of 423 

integrated SRS/field survey monitoring approaches at a range of scales (Martínez-Harms et 424 

al. 2016 Lawley et al. 2016; Rabe et al. 2016). In an ideal world, the adoption of common 425 

approaches for monitoring across all scales, including habitat definitions, field sampling 426 

protocols (for both volunteer and professional surveys) and a common mapping framework, 427 

would facilitate co-ordinated monitoring across both local and national scales (Stephenson et 428 

al. 2017). Further research is investigating; a) how NC metrics are affected by the use of 429 

regional habitat information in place of LCM2007 and b) how data from citizen science (in 430 

particular species recording) can be integrated with professional survey effectively.  431 

 432 

Naidoo et al. (2008) highlight the importance of moving beyond simplistic assessments of 433 

single ES to understanding synergies and trade-offs in their delivery. These examples indicate 434 

the potential for considering how different metrics relate to one another across space. 435 

Integrated analysis of NC metrics, to investigate the relationships between NC metrics at a 436 

single location, is an obvious next step forward for this research, especially given the co-437 

location of multiple ecological measures in the field survey. Previous research has explored 438 

the interactions between ecological measures taken in CS squares (see Maskell et al. 2013) in 439 

the light of understanding the multiple roles of different elements of NC in metrics relevant to 440 
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different ES. The analysis carried out by Maskell focused on CS squares only and did not 441 

take into account the covariates influencing NC metrics. Future analysis will need to consider 442 

how covariates impact differently on separate metrics and on how metrics interact with one 443 

another, for example, relationships between biodiversity metrics on land and soil/water. 444 

 445 

Further challenges, which are the focus of current research, concern defining the relationships 446 

between NC metrics and ecosystem service production (Maes et al. 2012, Braat & de Groot 447 

2012). This is particularly important for shaping future monitoring if it is to be used as part of 448 

ecosystem service assessment. Future monitoring approaches may need to balance the 449 

continuity of field and SRS measures against their relevance to national measures of NC 450 

relevant to ES delivery. This will rely on continued research, including interdisciplinary 451 

approaches, to identify the links between NC measures and ecosystem service delivery.  452 

 453 

Conclusions 454 

Policy makers and resource managers require evidence to support decision making around the 455 

management of natural capital. This need for evidence is a huge challenge for ecological 456 

science; we still have much to understand about how NC underpins ES delivery and, as ever, 457 

we have limited resources with which to monitor state and change. This work shows the 458 

potential for combining highly resolved multi-ecosystem component field data which samples 459 

representatively at a country level with high resolution whole-country SRS data to produce 460 

spatially explicit NC metrics. These data (alongside additional metrics) have been 461 

commissioned in an accessible form by the government’s adviser for the natural environment 462 

in England who are keen to improve on previous approaches focused on land cover alone 463 

(Dales et al. 2016). Many of the next steps reflect the requirements of these stakeholders, in 464 

particular their recognition of what may be needed by more locally based resource managers 465 
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and the need for assessing change in NC. Finally, this work emphasises the value of well-466 

designed long term monitoring and the importance of ensuring its continuing support for 467 

effective NC management.  468 

 469 
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Figure and table legend 654 

Table 1 Model variables (response variable in grey) for the three natural capital models. 655 

Figure 1.a) Predicted observed/expected Biological Monitoring Working Party  (o/e BMWP) 656 

scores for all squares containing  headwater streams (Strahler order 1-3) in GB (across the 657 

1998/2007 surveys). Higher scores (blue colours) indicate higher water quality, areas with no 658 

colour do not contain headwater streams, (previously published in Norton et al. (2016)) b) 659 

Predicted counts of bee nectar producing plant species for 1km squares across GB. Higher 660 

scores (dark blue colours) indicate higher numbers of species, c) Predicted Carbon 661 

Concentration g/kg in topsoil 0-15 cm across GB. Higher scores (dark blue colours) indicate 662 

higher carbon concentrations. Images created in ArcGIS version 10. 663 

Figure 2 a) Root Mean Square Error (RMSE 664 
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Table 1  675 

1 2 3 

Biological Monitoring 

Working Party (BMWP) 

invertebrate taxa score – 

observed/expected+ 

Bee nectar plant richness  Topsoil (15cm) Carbon 

concentration 

1) % Arable, 2) % Improved 

Grassland, 3) % Urban in 

1km square from LCM 

1) Broad Habitat from LCM 1) Broad Habitat from LCM 

4) % woody cover along the 

stream within a 1km square 

(LCM) 

2) Mean annual temperature 2) Growing degree days++ 

5) Slope+++ - over a 1km 

length centred on the 

sampling site i.e. from a 

point 500 m upstream to a 

point 500m downstream 

3) Mean monthly rainfall 3) Rainfall intensity++++ 

 

6) Altitude of sampling 

site+++ 

4) Altitude 4) Soil texture 

7) Strahler stream order (1,2 

or 3) +++++ 

5) Nitrogen deposition* 5) SO4 deposition* 

 8) Easting and 9) Northing 6) Easting, and 7) Northing 6) Easting, and 7) Northing 

10) Survey year   

 676 
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+ (Box-Cox transformed, lambda 0.628) 677 

++ Annual average growing degree days (day by day sum of the mean number of degrees by 678 

which the air temperature is more than 5.5 °C); obtained from the Met Office (2014) 679 

averaged for the six preceding years to each survey year. 680 

+++ Data obtained from PANORAMA data (a gridded Digital Terrain Model (DTM) with 50m 681 

post-spacing.  682 

++++ Rainfall intensity (mm day-1 on days of rain ≥ 1 mm) for each 5 km grid square in the 683 

UK; obtained from the Met Office (2014) averaged for the six preceding years to each survey 684 

year. 685 

+++++ Data obtained from the Intelligent River Network (IRN) for GB, 686 

https://data.gov.uk/dataset/ceh-digital-river-network-of-great-britain-1-50000 687 

*Deposition data for each 5 km grid square in the UK was obtained from interpolated 688 

estimates calculated by the Fine Resolution Atmospheric Multi-pollutant Exchange 689 

(FRAME) model developed at CEH22. Due to data limitations the deposition values 690 

associated with the 1978, 1998 and 2007 surveys are from 1987, 1997 and 2005 respectively. 691 

Values (kg ha-1 yr-1) for each 1km square were based on deposition estimates for the 692 

dominant broad habitat in each square.  693 
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Figure 1. 698 
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Figure 2 717 
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