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Abstract. Skilful hydrological forecasts at sub-seasonal
to seasonal lead times would be extremely beneficial
for decision-making in water resources management, hy-
dropower operations, and agriculture, especially during
drought conditions. Ensemble streamflow prediction (ESP)
is a well-established method for generating an ensemble of
streamflow forecasts in the absence of skilful future meteo-
rological predictions, instead using initial hydrologic condi-
tions (IHCs), such as soil moisture, groundwater, and snow,
as the source of skill. We benchmark when and where the
ESP method is skilful across a diverse sample of 314 catch-
ments in the UK and explore the relationship between catch-
ment storage and ESP skill. The GR4J hydrological model
was forced with historic climate sequences to produce a 51-
member ensemble of streamflow hindcasts. We evaluated
forecast skill seamlessly from lead times of 1 day to 12
months initialized at the first of each month over a 50-year
hindcast period from 1965 to 2015. Results showed ESP
was skilful against a climatology benchmark forecast in the
majority of catchments across all lead times up to a year
ahead, but the degree of skill was strongly conditional on
lead time, forecast initialization month, and individual catch-
ment location and storage properties. UK-wide mean ESP
skill decayed exponentially as a function of lead time with
continuous ranked probability skill scores across the year of
0.75, 0.20, and 0.11 for 1-day, 1-month, and 3-month lead
times, respectively. However, skill was not uniform across
all initialization months. For lead times up to 1 month, ESP
skill was higher than average when initialized in summer and
lower in winter months, whereas for longer seasonal and an-
nual lead times skill was higher when initialized in autumn

and winter months and lowest in spring. ESP was most skil-
ful in the south and east of the UK, where slower responding
catchments with higher soil moisture and groundwater stor-
age are mainly located; correlation between catchment base
flow index (BFI) and ESP skill was very strong (Spearman’s
rank correlation coefficient = 0.90 at 1-month lead time).
This was in contrast to the more highly responsive catch-
ments in the north and west which were generally not skilful
at seasonal lead times. Overall, this work provides scientific
justification for when and where use of such a relatively sim-
ple forecasting approach is appropriate in the UK. This study,
furthermore, creates a low cost benchmark against which po-
tential skill improvements from more sophisticated hydro-
meteorological ensemble prediction systems can be judged.

1 Introduction

Skilful hydrological forecasts at sub-seasonal to seasonal
lead times would provide a valuable tool for improved de-
cision making for wide range of sectors such as water re-
sources management (Anghileri et al., 2016), hydropower
operations (Hamlet et al., 2002), and agriculture (Letcher
et al., 2004), particularly in times of slow onset events
such as drought (Simpson et al., 2016). One of the earli-
est operational hydrological forecasting methods is ensem-
ble streamflow prediction (ESP). ESP was pioneered in the
US at the National Weather Service (NWS) during the 1970s
and 1980s as a means of providing ensemble forecasts of
streamflow for a variety of lead times from 1 day to sea-
sonal and beyond (Day, 1985; Twedt et al., 1977; originally
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stood for Extended Streamflow Prediction). Two years of se-
vere drought in California in 1976 and 1977 provided the
motivation for such hydrological forecasting developments
at the time (Wood et al., 2016b). In the UK, the 2010–
2012 drought in England and Wales provided the impetus
for the establishment of the first operational seasonal hy-
drological forecasting service, the Hydrological Outlook UK
(HOUK), which went live in June 2013 (Prudhomme et al.,
2017; forecasts available at: http://www.hydoutuk.net/). ESP
is used as one of three hydrological forecasting methods
in HOUK and also feeds into the Environment Agency’s
monthly “Water Situation Report for England” (operational
for groundwater levels in March 2012), providing forward
look ESP forecasts of streamflow for 29 catchments out
to a 12-month lead time (https://www.gov.uk/government/
collections/water-situation-reports-for-england).

In the traditional formulation of ESP, as used in this paper,
historical sequences of climate data (precipitation, potential
evapotranspiration, and/or temperature) at the time of fore-
cast are used to force hydrological models, providing a plau-
sible range of representations of the future streamflow states.
The source of ESP skill is therefore due to initial hydro-
logic conditions (IHCs) from antecedent stores of soil mois-
ture, groundwater, snowpack, and channel streamflow itself
(Wood et al., 2016a; Wood and Lettenmaier, 2008) which
can be detectable up to a year ahead (Staudinger and Seib-
ert, 2014), rather than from skilful atmospheric forecasts.
The original operational concept of the NWS ESP forecast-
ing system was that it was flexible, easy to use, and could
be run efficiently using simple conceptual hydrological mod-
els (Day, 1985). Traditional ESP, while simple, is still widely
used today in operational seasonal hydrological forecasting
(e.g. US NWS and HOUK) and as a low cost forecast against
which to benchmark potential skill improvements from more
sophisticated hydro-meteorological ensemble prediction sys-
tems (e.g. Arnal et al., 2017; Crochemore et al., 2017; Pap-
penberger et al., 2015; Thober et al., 2015; Wood et al.,
2005).

Several studies have established the skill of the ESP
method for catchments in particular regions based on care-
fully constructed hindcast experiments. For example, in the
western US, Franz et al. (2003) found ESP forecasts in
14 snow dominated catchments were, on average, skilful
(compared to benchmark climatology forecasts) with a lead
time up to 7 months, particularly when initialized early in
the spring snowmelt season. Wood and Lettenmaier (2008)
found that information about IHCs was more important than
climate information during the transition between wet and
dry seasons in two western US catchments up to a 5-month
lead time. For non-snow dominated catchments in the south-
east of the US, Li et al. (2009) showed that harnessing the
long memory of soil moisture and groundwater stores can
provide skilful ESP forecasts, as the impact of anomalous
dry or wet conditions can take weeks or months to dissipate.
Wang et al. (2011) found simple conceptual rainfall-runoff

models were able to reliably estimate conditional catchment
IHCs in two east Australian catchments, subsequently pro-
ducing ESP forecasts of comparable skill to the current op-
erational Bayesian Joint Probability statistical forecast sys-
tem (BJP, Wang et al., 2009) at 1- and 3-month lead times.
More recently, Singh (2016) assessed the potential for long-
range ESP forecasting for integrated water management in
four catchments (two rainfall dominated and two snowfall
dominated) on the South Island of New Zealand and found
ESP to be skilful out to a 3-month lead time, with great-
est improvements over climatology forecasts in summer. The
previous studies demonstrate that the traditional ESP method
is skilful at both short and long lead times in many regions
around the world and, given its relative ease of application
and low computational cost, remains a valuable ensemble hy-
drological forecasting approach. Although ESP is being used
operationally within the UK, its skill has not yet been in-
vestigated at the catchment scale within a rigorous hindcast
experiment and is therefore the focus of this paper.

By definition, a forecast can only be considered skilful if
it is more accurate against observations than some simpler
and/or cheaper reference or benchmark forecast (Jolliffe and
Stephenson, 2003; Wilks, 2011). Pappenberger et al. (2015)
identified three classes of benchmark forecasts commonly
used in hydrological forecasting: (i) climatology, used for
seasonal forecasting, (ii) persistence, used for short range
forecasting, and (iii) simplified hydrology models, for testing
whether more complex models provide useful skill gains. We
define the process of benchmarking as establishing the skill
of a forecasting system (here ESP) against a simpler bench-
mark forecast across various lead times, forecast initializa-
tion months, and for a large sample of diverse catchments
within the study domain. Consequently, the aim of this paper
is to establish the skill of the traditional ESP method for fore-
casting streamflow in the UK at the catchment scale using
(streamflow) climatology as the benchmark forecast within a
rigorous 50-year hindcast study design. Three key research
questions emerge:

1. When is ESP skilful, in terms of a wide range of lead
times and forecast initialization months?

2. Where is ESP skilful, in terms of spatial distribution of
skilful forecasts both regionally and at the individual
catchment scale across the UK?

3. Why is ESP skilful, in terms of individual catchment
storage capacity?

Section 2 describes the hydroclimatic data used and the se-
lection of catchments, Sect. 3 outlines the methods leading
to the generation of ESP hindcasts. Results are presented in
Sect. 4 and discussed in Sect. 5, before key conclusions and
avenues for further work are offered in Sect. 6. Details about
how to access the ESP hindcast archive used in this study as
well as supplementary data and figures are given in the “Data
availability” section at the end of the article.
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Figure 1. Location of 314 gauging stations (red dots) and catchment boundaries (black lines) with upland areas (shaded in grey) and principal
aquifers (shaded in pale yellow). UK Hydroclimate Regions, derived from grouping smaller UK hydrometric areas, are shown inset.

2 Data

We selected a set of 314 catchments for our ESP evalua-
tion from the UK National River Flow Archive (NRFA; http:
//nrfa.ceh.ac.uk/), chosen to be representative of the range
of UK hydroclimatic conditions and ensuring good spatial
coverage (Fig. 1). These catchments include those used for
routinely assessing the current and future UK hydrological
status (e.g. National Hydrological Monitoring Programme,
2017) as well as 128 catchments that are part of the new ver-
sion of the UK Benchmark Network (UKBN2; Harrigan et
al., 2017) that can be considered relatively free from human

disturbances such as water abstractions, urbanization, and
reservoir impacts. Individual details of all 314 catchments
are given in the Supplement Table S1.

Observed catchment average daily mean streamflow Q

(m3 s−1), daily precipitation P (mm d−1), and daily po-
tential evapotranspiration ETp (mm d−1) were extracted for
each catchment and are needed for three tasks: (i) as in-
put to the hydrological model calibration (Q, P , and ETp;
Sect. 3.1); (ii) to generate historic climate sequences (P and
ETp, Sect. 3.2) used as forcing to the ESP method; and (iii) as
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forcing to the reference simulation (P and ETp; i.e. proxy ob-
servations in Sect. 3.3).
Q was retrieved from the NRFA over the longest possible

period of observed Q across the 314 stations, 32 water years
from 1983 to 2014 (water year from 1 October to 30 Septem-
ber referred to by the calendar year in which it ends). P
was retrieved from the 1 km gridded CEH-GEAR dataset
(Keller et al., 2015; Tanguy et al., 2016) between 1961 and
2015 for the UK. ETp according to Penman–Monteith for
FAO-defined well-watered grass was retrieved from the 1 km
gridded CHESS-PE dataset (Robinson et al., 2016, 2017)
between 1961 and 2015 for catchments in Great Britain.
CHESS-PE does not cover Northern Ireland, so an alterna-
tive 5 km ETp dataset for the UK based on the temperature-
based McGuinness–Bordne equation was used for these 10
catchments instead (Tanguy et al., 2017, 2018).

Catchment characteristics are summarized in Table 1 for
the UK and nine hydroclimate regions as shown in Fig. 1
inset. The nine UK Hydroclimate Regions were derived by
merging contiguous UK hydrometric areas (National River
Flow Archive, 2014) that reflect broad hydrological and cli-
matological similarity across the UK and are used for aiding
interpretation of results. The distribution of the 314 catch-
ments within the nine regions varies between 10 in North-
ern Ireland (NI) and 59 in Southern England (SE). Catch-
ment areas range from 4.4 to 9948 km2 with a median area
of 181 km2. There is a distinctive hydroclimatic gradient in
the UK with wetter more responsive upland catchments in
the north and west, and drier lowland catchments in the south
and east, many of which drain the principal Chalk and Lime-
stone aquifers. The slow flow contribution from groundwa-
ter and other delayed sources, such as lakes, snow, and soil
water storage, was characterized using the base flow index
(BFI; Gustard et al., 1992) obtained from UK NRFA meta-
data. BFI ranges between 0 and 1 with values ∼ 0.15–0.35
representative of more responsive rainfall-runoff regimes in
the north and west whereas many Chalk rivers in the south
east have a BFI≥ 0.9. Three regions (Severn-Trent (ST), An-
glian (ANG), and SE) have median runoff ratios (RR) < 0.5
meaning more precipitation is lost to evaporation than runoff
in the majority of these catchments. Less than 5 % of catch-
ments have a significant amount of snowfall, defined here
following Berghuijs et al. (2014) as catchments with a long-
term mean fraction of precipitation falling as snow F s > 0.15,
and are mainly situated in Eastern Scotland (ES). The range
of these hydroclimatic characteristics provide a large and di-
verse set of catchments to benchmark ESP skill.

3 Methods

3.1 Hydrological modelling

The first of four key methodological steps was to calibrate
and evaluate the GR4J (Génie Rural à 4 paramètres Jour-

nalier) model (Perrin et al., 2003) used for the generation
of streamflow series. It is a daily lumped catchment rainfall-
runoff model with a parsimonious structure consisting of
four free parameters that require calibration against stream-
flow observations using daily P and ETp as input. GR4J
has been shown to reliably simulate the hydrology of a di-
verse set of catchments (Perrin et al., 2003) including tempo-
ral transition between wet and dry periods (Broderick et al.,
2016), and for the generation of ESP forecasts (e.g. Pagano
et al., 2010). The GR4J structure includes a soil moisture
accounting reservoir (capacity controlled with parameter X1
[mm]), a water exchange function (rate controlled by param-
eter X2 [mm d−1]), and a non-linear routing store to repre-
sent baseflow (capacity determined by parameter X3 [mm]),
with rainfall-runoff time lags (set in days by parameter X4
[d]) controlled by two unit hydrographs.

GR4J was calibrated using the open source “airGR” pack-
age v1.0.2 in R (Coron et al., 2016, 2017) with the inbuilt
calibration optimization algorithm based on a steepest de-
scent local search procedure and default parameter ranges.
The modified Kling–Gupta efficiency (KGEmod; Gupta et al.,
2009; Kling et al., 2012) applied to root squared transformed
flows KGEmod[sqrt] was used as the objective function for
automatic fitting, thus placing weight on mid-range flows,
rather than high or low flows. This was decided given ESP
forecasts are made across the year during both dry and wet
conditions. A split sample test (Klemeš, 1986) was used by
dividing the 32-year complete period (CP; water years 1983–
2014) of available streamflow observations into two equal
16-year segments for calibration and evaluation: period 1
(P1; water years 1983–1998) and period 2 (P2; water years
1999–2014). Three calibrated GR4J parameter sets were cre-
ated for each catchment using data from P1, P2, and CP,
thus allowing testing of parameter stability between P1 and
P2. Model performance against streamflow observations was
evaluated using KGEmod[sqrt], the Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970), and percent bias (PBIAS;
Gupta et al., 1999) to assess water balance errors.

The UK-wide median (5th and 95th percentile)
KGEmod[sqrt] is 0.94 (0.83, 0.97) for calibration (CP)
and for evaluation 0.92 (0.80, 0.96) and 0.92 (0.78, 0.96)
for P1 and P2, respectively (Table 2). Median PBIAS
across all catchments over CP is low, −0.1 % (−3.7, 0.7 %).
Overall, GR4J performs well against streamflow observa-
tions and parameter sets remain stable across P1 and P2
with comparable performance to Crochemore et al. (2017)
and Poncelet et al. (2017) using GR6J for catchments
across France, Germany, and Austria. For completeness
and comparison with other works, the NSE was calculated
as it is the most universally used metric. Spatial maps
and summary statistics for KGEmod[sqrt] and NSE are
provided in Fig. S1 in the Supplement and, notwithstanding
differences in study design, results for GR4J are on par with
other large sample catchment modelling studies in the UK
(e.g. Crooks et al., 2009, using the probability distributed
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Table 1. Summary statistics of eight catchment characteristics for the UK and nine hydroclimate regions shown in Fig. 1. The median across
n catchments within each region is given with the 5th and 95th percentile ranges in parentheses. Area, median elevation, and base flow index
(BFI) were retrieved from the UK NRFA. Mean annual Q, P , and ETP were calculated over water years 1983–2014 using data in Sect. 2.
RR is the runoff ratio and F s

∗ is the long term (water years 1983–2014) mean fraction of precipitation that has fallen as snow.

Region n Area
(km2)

Median
elevation
(m a.s.l.)

BFI
(–)

Mean annual
Q

(mm yr−1)

Mean annual
P

(mm yr−1)

Mean annual
ETp
(mm yr−1)

RR
Q/P

(–)

F s
(–)

UK 314 181
(27, 1844)

179
(60, 437)

0.5
(0.27, 0.89)

595
(162, 1839)

1031
(648, 2202)

504
(400, 542)

0.59
(0.24, 0.87)

0.03
(0.01, 0.14)

WS 35 229
(64, 1745)

268
(146, 468)

0.33
(0.20, 0.61)

1115
(554, 2847)

1460
(998, 3145)

428
(391, 476)

0.74
(0.58, 0.90)

0.06
(0.03, 0.12)

ES 43 289
(70, 2759)

303
(100, 596)

0.51
(0.34, 0.67)

693
(338, 1498)

1040
(783, 1970)

432
(387, 481)

0.63
(0.44, 0.84)

0.09
(0.06, 0.21)

NEE 30 344
(11, 1910)

264
(88, 449)

0.43
(0.26, 0.82)

559
(344, 1054)

1037
(757, 1462)

486
(455, 516)

0.57
(0.44, 0.83)

0.07
(0.04, 0.09)

ST 25 198
(48, 6345)

145
(87, 312)

0.56
(0.41, 0.79)

392
(209, 844)

858
(670, 1311)

511
(493, 528)

0.46
(0.31, 0.68)

0.03
(0.02, 0.05)

ANG 33 99
(23, 1540)

80
(33, 132)

0.56
(0.25, 0.88)

183
(128, 254)

655
(600, 716)

535
(528, 551)

0.27
(0.21, 0.36)

0.03
(0.03, 0.04)

SE 59 134
(18, 1091)

105
(43, 178)

0.64
(0.23, 0.96)

356
(146, 568)

856
(654, 1033)

529
(520, 541)

0.42
(0.20, 0.64)

0.02
(0.01, 0.03)

SWESW 47 174
(29, 915)

207
(77, 377)

0.51
(0.37, 0.67)

979
(507, 1549)

1372
(1002, 1971)

519
(495, 537)

0.69
(0.51, 0.83)

0.01
(0.00, 0.03)

NWENW 32 112
(30, 1094)

210
(108, 360)

0.35
(0.27, 0.58)

1154
(390, 2102)

1529
(884, 2429)

478
(457, 514)

0.75
(0.44, 0.91)

0.04
(0.02, 0.05)

NI 10 230
(68, 1235)

140
(90, 172)

0.38
(0.33, 0.50)

688
(533, 1206)

1111
(917, 1565)

475
(466, 488)

0.63
(0.57, 0.77)

0.01
(0.00, 0.02)

∗ F s calculated using the CemaNeige snow-accounting module (Valéry et al., 2014) within the airGR package (Coron et al., 2016, 2017) applied to the GR4J model (Perrin et al., 2003).

model (PDM; Moore, 2007) for 120 catchments). All
streamflow simulations (proxy observations, and benchmark
and ESP forecasts) were generated using model parameter
sets calibrated over CP and with KGEmod[sqrt] as objective
function; median and ranges of calibrated parameter values
for GR4J X1, . . . , X4 across the UK and nine hydroclimate
regions are given in Table 2 and for individual catchments in
Table S1 along with respective performance metrics.

3.2 Generation of ESP hindcasts from historic climate
data

In step 2, initial hydrologic conditions (IHCs) were estimated
for each catchment and forecast initialization date by forc-
ing the calibrated GR4J model with 4 years of observed P
and ETp previous to the forecast initialization date, over the
1961–2015 period, thus the first usable forecast date after
model spin up is 1 January 1965. Secondly, a 51-member
ensemble m of streamflow hindcasts was generated for each
forecast initialization date (first of each month) by forcing
GR4J with 51 historic climate sequences (P and ETp pairs)
extracted from 1961 to 2015 out to a 12-month lead time at
a daily time step. Each of the 51 generated hindcast time se-

ries were then temporally aggregated to provide a forecast
of mean streamflow over seamless lead times of 1 day to 12
months, resulting in 365 lead times per forecast (leap days
were removed). Following convention in the HOUK, lead
time (LT) in this paper refers to the streamflow (expressed
as mean daily streamflow) over the period from the forecast
initialization date to n days (or months) ahead in time. So
a January ESP forecast with 1-month lead time is the mean
daily streamflow from 1 January to the end of January and
a January forecast with 2-month lead time is the mean daily
streamflow from 1 January to the end of February.

Although it is not possible to create a hindcast experi-
ment under exactly the same conditions experienced in op-
erational mode, effort was made to ensure historic climate
sequences did not artificially inflate skill (see Robertson
et al., 2016) by using leave-three-years-out cross-validation
(L3OCV) whereby the 12-month forecast window and the
two succeeding years were not used as climate forcings. This
was done to account for persistence from known large-scale
climate–streamflow teleconnections such as the North At-
lantic Oscillation with influences lasting from several sea-
sons to years (Dunstone et al., 2016). Because this climate
information could be an advantage, but is not available in
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Table 2. Summary statistics of GR4J calibrated parameters and performance metrics for the UK and nine hydroclimate regions shown in
Fig. 1. The median across n catchments within each region is given with the 5th and 95th percentile ranges in parentheses. Calibration (Cal)
was over the complete period (CP; water years 1983–2014) and evaluation (Eval) for both period 1 (P1; water years 1983–1998) and period
2 (P2; 1999–2014).

Region n GR4J X1
(mm)

GR4J X2
(mm d−1)

GR4J X3
(mm)

GR4J X4
(d)

Cal (CP)
KGEmod[sqrt]
(–)

Eval (P1)
KGEmod[sqrt]
(–)

Eval (P2)
KGEmod[sqrt]
(–)

Cal (CP)
PBIAS
(%)

UK 314 250
(78, 955)

−0.1
(−4.2, 0.8)

40
(12, 380)

1.3
(1.0, 2.6)

0.94
(0.83, 0.97)

0.92
(0.80, 0.96)

0.92
(0.78, 0.96)

−0.1
(−3.7, 0.7)

WS 35 130
(46, 438)

0.0
(−0.6, 0.6)

27
(14, 130)

1.2
(1.1, 2.1)

0.93
(0.83, 0.96)

0.92
(0.82, 0.95)

0.91
(0.81, 0.95)

0.1
(−2.2, 1.2)

ES 43 296
(112, 523)

0.0
(−0.7, 0.8)

43
(18, 104)

1.2
(1.1, 1.8)

0.90
(0.74, 0.94)

0.88
(0.74, 0.94)

0.88
(0.71, 0.94)

−0.5
(−2.2, 0.4)

NEE 30 277
(79, 499)

0.0
(−1.1, 0.7)

24
(12, 109)

1.3
(1.1, 2.3)

0.92
(0.87, 0.95)

0.91
(0.83, 0.94)

0.90
(0.78, 0.93)

−0.2
(−7.1, 0.4)

ST 25 345
(142, 1169)

−0.5
(−1.0, 0.5)

44
(18, 153)

1.4
(1.1, 2.7)

0.96
(0.88, 0.97)

0.93
(0.83, 0.96)

0.92
(0.80, 0.96)

0.2
(−1.6, 0.7)

ANG 33 286
(128, 773)

−0.8
(−4.5, −0.1)

28
(5, 371)

1.5
(1.2, 2.7)

0.92
(0.86, 0.95)

0.88
(0.82, 0.94)

0.88
(0.81, 0.94)

−0.2
(−8.7, 1.4)

SE 59 411
(160, 1877)

−0.7
(−17.2, 1.0)

77
(6, 703)

1.4
(1.0, 9.5)

0.95
(0.88, 0.97)

0.92
(0.82, 0.96)

0.92
(0.8, 0.96)

−0.1
(−5.0, 0.4)

SWESW 47 205
(83, 459)

0.1
(−1.0, 0.9)

81
(29, 182)

1.2
(0.9, 2.0)

0.97
(0.94, 0.97)

0.94
(0.86, 0.97)

0.94
(0.85, 0.96)

−0.3
(−1.2, 0.3)

NWENW 32 141
(60, 480)

0.2
(−0.6, 0.8)

36
(19, 134)

1.2
(1.1, 1.8)

0.95
(0.93, 0.97)

0.95
(0.88, 0.96)

0.94
(0.87, 0.96)

0.0
(−0.5, 0.4)

NI 10 146
(70, 244)

0.2
(−0.1, 0.3)

23
(16, 37)

1.4
(1.1, 1.9)

0.93
(0.91, 0.96)

0.93
(0.86, 0.95)

0.93
(0.86, 0.95)

−0.1
(−1.0, 0.9)

operational forecasting, it was not used in the hindcast ex-
periment. Using the first forecast on 1 January 1965 as an ex-
ample, 51 sequences of P and ETp pairs of length 365 days
(from 1 January to 31 December) were extracted from ob-
served P and ETp records between 1961 and 2015, but not
for 1965, 1966, or 1967. To keep a 51-member ensemble
across all hindcast years, forecasts made in 2013 and 2014
did not have enough data for L3OCV so in these cases cli-
mate sequences from 1961, and 1961 and 1962, respectively,
were instead removed. The skill of ESP was evaluated over a
50-year hindcast period N between 1965 and 2015 for each
of 12 initialization months i (January to December) and all
365 LTs. In total, 600 hindcasts were generated (N × i) with
51 ensemble members each at 365 LTs across 314 catch-
ments resulting in over 3.5× 109 forecast values of stream-
flow in the ESP hindcast archive.

3.3 Creation of proxy streamflow observation series

In step 3, a proxy streamflow observation series was pro-
duced by forcing the calibrated GR4J model with observed
P and ETp over 1961–2015 with a 4-year model spin-up. A
4-year model spin up ensures model states are appropriately
stabilized, especially important for slower responding catch-

ments (e.g. in Southern England and Anglian regions). The
proxy observation series, the best estimate of streamflow ob-
servations given current model and observed meteorological
data, is used to evaluate ESP forecasts against. It is common
to use this approach instead of using direct streamflow ob-
servations as it has the advantage of isolating loss of skill to
IHCs rather than from model errors and biases (e.g. Alfieri
et al., 2014; Pappenberger et al., 2015; Wood et al., 2016a;
Yossef et al., 2013).

3.4 Evaluation of ESP skill

In step 4, forecast skill is presented as a skill score, which
is the improvement over the benchmark forecast using some
measure of accuracy A, given generically by Wilks (2011) in
Eq. (1):

skill score=
Afc−Abench

Aperf−Abench
, (1)

where Afc is the accuracy measure of the hydrological fore-
casting system Qfc (here ESP) against observations Qobs∗

(here ∗proxy observations); Abench is the accuracy measure
of the benchmark forecast Qbench against Qobs∗ , and Aperf
is the value of A in the case of a perfect forecast (typically
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1 or 0 depending on metric). For each forecast made over
the hindcast period the probabilistic skill of the full ESP 51-
member ensemble forecastQfc was evaluated against a prob-
abilistic climatology benchmark forecastQbench.Qbench was
calculated as the full sample climatological distribution of
proxy streamflow observations over 1965–2015 for the fore-
cast period. Similar to the historic climate forcing sequences
in Sect. 3.2, the probabilistic climatology benchmark fore-
cast was also created using L3OCV to account for persis-
tence known to occur for several years in streamflow, partic-
ularly during drought (Wilby et al., 2015). In testing, we per-
formed the skill evaluation with and without cross-validation
of ESP forecasts and streamflow climatology benchmark
forecasts. It was found that cross-validation was important,
as in some cases failing to cross-validate ESP forecasts in-
flated skill scores whereas failing to cross-validate clima-
tological benchmark forecasts deflated skill scores (i.e. the
benchmark forecast was advantaged thereby disadvantag-
ing ESP forecasts); in some cases skill scores were advan-
taged/disadvantaged by ±15 %.

The continuous ranked probability score (CRPS) (Hers-
bach, 2000) accuracy measure A, and corresponding skill
score (CRPSS), was used for evaluating the probabilistic skill
of ESP. The CRPS penalizes biased forecasts and those with
low sharpness (Wilks, 2011). The Ferro et al. (2008) en-
semble size correction for CRPS was applied to account for
differences between the number of members in Qfc (period
1961–2015→L3OCV→ n= 51) andQbench (period 1965–
2015→L3OCV→ n= 47), as done in evaluation of hydro-
logical ensemble forecasting elsewhere (e.g. Crochemore et
al., 2017). Calculation of skill scores was undertaken using
the open source “easyVerification” package v0.4.2 in R (Me-
teoSwiss, 2017).

The CRPS is one of the most recommended scores for
evaluation of overall hydrological ensemble forecast perfor-
mance (Pappenberger et al., 2015). However, several com-
monly used metrics were also calculated for evaluation
of deterministic ESP performance (using the ESP ensem-
ble mean): Pearson correlation coefficient (Cor.), the mean
squared error skill score (MSESS), and the deterministic
equivalent to CRPSS, the mean absolute error skill score
(MAESS). The pattern of results in terms of where and when
ESP is most/least skilful was found to be independent of cho-
sen metric, with virtually identical results between proba-
bilistic (using CRPSS) and deterministic (using MAESS) re-
sults (see Fig. S2), and so for brevity the remainder of paper
is based on CRPSS only. A skill score of 1 indicates a perfect
forecast, a skill score > 0 shows the ESP forecast is more skil-
ful than the benchmark, a skill score= 0 shows ESP is only
as accurate as the benchmark, and a skill score< 0 warns that
ESP is inferior to the benchmark forecast. The CRPSS was
applied to the 314 catchments for the 12 initialization months
and 365 lead times for each year over the 50-year hindcast
period.

4 Results

Results are presented in the following order: First, ESP skill
is shown for all 365 lead times (LT), then by forecast initial-
ization month for a sample of eight representative LTs com-
monly used in operational hydrological forecasting (i.e. short
(1 and 3 days), extended (1 and 2 weeks), monthly (1 month),
seasonal (3 and 6 months), and annual (12 months)). Second,
the spatial distribution of ESP skill is shown, both averaged
across the UK and each of the nine hydroclimate regions,
then for individual catchments to explore sub-region hetero-
geneity. Third, the relationship between catchment storage
and ESP skill is assessed.

Reducing accuracy of a forecast to a numeric skill met-
ric value is abstract and difficult to interpret. Throughout
the results and discussion sections skill score values are as-
signed qualitative descriptions according to degree of skill
based on the CRPSS: very high [0.75, 1]; high [0.5, 0.75);
moderate [0.25, 0.5); low (0, 0.25); no skill= 0, and negative
skill < 0; CRPSS values which are near zero, defined between
±0.05, are regarded as “neutrally skilful” (after Bennett et
al., 2017). Five example 1965–2015 hindcast time series with
skills ranging from very high to negative skill are visualized
in Fig. 2 and act as a graphical reference in the remainder of
the paper to aid interpretation of skill.

4.1 Timing of ESP skill

4.1.1 Lead time

UK-wide mean ESP skill across all catchments and initial-
ization months decays exponentially as a function of lead
time (Fig. 3). Mean CRPSS values from short (1-day) to
extended (2-week) lead times range from 0.75 to 0.30, and
across monthly, seasonal (3-month), and annual lead times
from 0.20, 0.11, to 0.04, respectively. There is large spread
around mean skill scores for any lead time, depicted by
the semi-transparent 5th and 95th percentile bands across
the 314 catchments in Fig. 3. For example, at a 2-week
lead time CRPSS values are bound between 0.11 and 0.71,
and for monthly lead times between 0.06 and 0.59. Skill
scores for the deterministic ESP ensemble mean (measured
by MAESS) are virtually the same as those for probabilistic
forecasts (measured by CRPSS) for all lead times and regions
(see Fig. S2c and d).

4.1.2 Initialization month

ESP skill varies depending on forecast initialization month
(IM) and the time of year, with highest and lowest skill con-
ditional on lead time. Figure 4 shows skill scores for initial-
ization months January to December for short and extended
lead times (LTs) as summarized by boxplots across all catch-
ments. Skill scores for these four sample LTs (1-day, 3-day,
1-week, and 2-week) are highest in summer months (June,
July, and August) with August the most skilful forecast IM
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Figure 2. Five example 1965–2015 hindcast time series in which skill metrics range from very high (a) to negative skill (e). The red line is
the 51-member ESP ensemble mean, black line the proxy observed streamflow (also known as a perfect forecast), semi-transparent blue dots
show the ensemble spread for each hindcast year, and the dashed horizontal black line shows mean proxy observed streamflow (analogous to
a deterministic climatology benchmark forecast, although not cross-validated here as was done in calculation of skill scores (i.e. simply the
same value repeated each year)).

on average, whereas skill is lower for winter months (De-
cember, January, and February) with January the least skil-
ful forecast IM. Skill scores across IMs for the four sam-
ple monthly to annual LTs are shown in Fig. 5. Skill is also
highest for the 1-month forecasts when initialized in August,
however for 3-month, 6-month, and 12-month LTs, forecast
skill is generally higher for autumn (September, October, and
November) and winter IMs, with October the most skilful
on average. All four monthly, seasonal, and annual LTs have
lowest skill scores when initialized in spring months, partic-
ularly April, which in the UK is a transition month between
winter months with lowest soil moisture deficits (SMDs) and
warmer summer months with highest SMDs.

The decay in skill with LT as shown in Fig. 3 also occurs
across all initialization months (Figs. 4 and 5). Whilst mean
ESP skill tends towards zero for longer LTs, there are many
catchments with much higher than average skill scores. For
example, for 1-month LT ESP forecasts initialized in August
the average UK-wide ESP skill is moderate (CRPSS= 0.30),
but 36 catchments have high skill (CRPSS≥ 0.5), and a

CRPSS as high as 0.91 is achieved for the Lambourn at Shaw
in Southern England.

4.2 Spatial distribution of ESP skill

4.2.1 UK hydroclimate regions

Figure 6 shows a heatmap of mean ESP skill across initial-
ization months for the UK and for nine hydroclimate regions
using the CRPSS metric. The same patterns are found for
Cor., MSESS, and MAESS (Fig. S2). ESP skill has a promi-
nent spatial pattern across the UK consistent over shorter and
longer LTs. Least skilful UK regions are Western Scotland
(WS), North-west England & North Wales (NWENW), and
Northern Ireland (NI), whereas Severn-Trent (ST), Anglian
(ANG), and Southern England (SE) are most skilful. Using
a 1-week LT as an example, ESP is over twice as skilful in
SE (CRPSS= 0.57) than in WS (CRPSS= 0.25). All regions
are, on average, skilful out to 1-month LT, but by 3-month LT
WS, NWENW, and NI are only neutrally skilful; at LTs up
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Figure 3. UK-wide mean ESP CRPSS values across all 314 catch-
ments and 12 forecast initialization months for all 365 lead times
(LTs) with short and extended lead times also shown inset for read-
ability. The range of skill scores across catchments at each LT is
shown by the semi-transparent 5th and 95th percentile band. Ver-
tical lines represent eight commonly used operational forecasting
LTs from short (1 and 3 days), extended (1 and 2 weeks), monthly
(1 month), seasonal (3 and 6 months), to annual (12 months).

to 6 and 12 months ST, ANG, and SE are the only regions to
remain skilful, as a whole.

4.2.2 Catchment scale

There is considerable sub-region heterogeneity when skill
scores for individual forecasts at the catchment scale are ex-
amined. CRPSS values are mapped in Fig. 7 for all 314 catch-
ment locations for a sample of four LTs (ranging from ex-
tended to annual) and three initialization months (January,
April, and August). Although WS is considered a low skill
region overall at a 1-week LT in Fig. 6 (i.e. CRPSS= 0.248),
moderate to high skill ESP forecasts can be made for some
catchments at different times of the year. For example, Au-
gust 1-week LT forecasts (Fig. 7c) in WS are moderately
skilful (CRPSS≥ 0.25) for over 80 % of the 35 catchments
or even highly skilful (CRPSS≥ 0.5) for 20 % of catchments.
In all regions, almost all individual catchments are more skil-
ful than the benchmark climatological forecast for up to ex-
tended LTs (i.e. Fig. 7a–c).

Sub-region heterogeneity is much more apparent for
monthly, seasonal, and annual LTs (Fig. 7d–l). As in Fig. 6,
skill decays at different rates depending on region and lead
time, but also initialization month. However, the finer spatial
information in Fig. 7 shows that skill decays towards zero at
vastly different rates for individual catchments even within

Figure 4. UK-wide ESP skill scores across 314 catchments for each
of the 12 forecast initialization months for four short and extended
lead times. Boxplots summarize CRPSS values with the blue line
representing the median, and boxes the interquartile range (IQR);
whiskers extend to the most extreme data point, which is no more
than 1.5 times the IQR from the box, and grey circles are outliers
beyond this range.

Figure 5. As in Fig. 4 but for the four monthly, seasonal, and annual
lead times.
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Figure 6. Mean ESP skill across all 12 forecast initialization months for the UK and for each of the nine hydroclimate regions ordered from
least to most skilful (horizontal axis) at eight sample lead times (vertical axis). Skill is given by the CRPSS with darker and lighter shades
showing higher and lower skill, respectively; mean skill score values are shown within each cell.

the same region. For example, despite low average skill
of January 12-month LT forecasts in SE (CRPSS= 0.14),
nearly 20 % of catchments have moderate skill. In April,
when UK-wide forecasts at longer LTs are least skilful (i.e.
Fig. 5), skilful forecasts can still be made at monthly and
seasonal LTs for the majority of catchments in ST, ANG,
and SE (Fig. 7e and h). Sub-region heterogeneity is per-
haps most prominent for the Thames basin in SE. The April
3-month LT forecast for the Thames at Kingston has low
skill (CRPSS= 0.22, size= 9948 km2), but two of its sub-
catchments have contrasting skills; the Lambourn at Shaw is
highly skilful (CRPSS= 0.65, size= 234 km2) whereas the
forecast made for the Mole at Kinnersley Manor has effec-
tively no skill (CRPSS= 0.02, size= 142 km2).

4.3 Relationship between catchment storage and ESP
skill

The relationship between the two calibrated GR4J catchment
storage parameters, X1 (soil moisture store capacity [mm])
and X3 (groundwater store capacity [mm]), BFI, and ESP
skill (CRPSS) for n= 314 individual catchments is shown
in the scatterplot matrix in Fig. 8 using the non-parametric
Spearman’s rank correlation coefficient ρ. It is difficult to
link X1 and X3 specifically to soil moisture and groundwa-
ter storage capacity, respectively, as GR4J is not a physically
based hydrological model. However, their sum (X1+X3)

can be considered an estimate of total catchment storage
(excluding water in the river channel and snowpack). To-
tal catchment storage (X1+X3) is strongly positively (non-
linearly) correlated with BFI (ρ = 0.87); catchments with
high BFIs tend to have much higher than average catchment
storage capacity. The BFI is also very strongly positively
correlated with ESP skill (ρ = 0.90). The 1-month LT fore-
cast skill (based on CRPSS) averaged across all 12 initializa-
tion months is used to demonstrate this, but similar results
are found over the range of lead times, individual initial-
ization months, and skill metrics (not shown). Forecasts in
the most responsive catchments (BFI≤ 0.35, 20 % of catch-
ments) have on average low skill (CRPSS= 0.08) whereas
the slowest responding catchments (BFI≥ 0.9, 5 % of catch-
ments) have high skill (CRPSS= 0.66).

5 Discussion

Overall, the ESP method is found to be skilful when bench-
marked against climatology in the UK, but the degree of skill
is dependent on lead time, initialization month, and individ-
ual catchment location and storage properties.
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Figure 7. ESP skill for individual forecasts made at each of the 314 catchment locations for four sample lead times (columns) and three
initialization months (rows). Larger and smaller circles represent higher and lower skill from CRPSS, respectively, with blue circles when
ESP is more skilful than benchmark climatology and red when ESP is less skilful. Grey circles represent neutrally skilful forecasts (i.e.
CRPSS values between ±0.05).

5.1 When is ESP skilful?

UK-wide ESP forecasts for short lead times (out to 3
days) are on average highly skilful (CRPSS≥ 0.5) and for
extended lead times (out to 2 weeks) moderately skilful
(CRPSS≥ 0.25). Mean ESP skill decays exponentially with
increasing lead time so skill is on average much lower for
monthly, seasonal, and annual lead times, as expected. How-
ever, the magnitude of skill is not uniform across the 12 fore-
cast initialization months. ESP skill for short, extended, and
monthly lead times is higher than average when initialized in
summer months and lower than average for winter months.
Svensson (2016) also found higher skill across the UK when
initialized in summer (highest also for August forecasts at
a 1-month lead time) using the statistical persistence fore-
casting method. This is consistent with Li et al. (2009) and
Shukla and Lettenmaier (2011), who found soil moisture ini-
tial hydrologic conditions (IHCs) contributed to greater skill
for forecasts initialized in the warmer summer season than
the cold winter season in the south-east of the US, up to
a 1-month lead time; this was said to be due to drier ini-
tial soil moisture states in summertime. Similarly, Staudinger
and Seibert (2014) found drier initial soil moisture was con-
nected to longer persistence in all seasons except winter in
Switzerland. Soil moisture deficits (SMDs) are also highest
in summer in the UK, peaking in July, and lowest in win-

ter (based on UK Met Office MORECS dataset (Hough and
Jones, 1997) over 1961–2015). This could help explain why
up to 1-month LT hydrological forecasts initialized in sum-
mer months using IHCs alone (e.g. ESP) are more skilful
than if initialized in winter in the UK. Higher summer ESP
forecast skill could be capitalized upon operationally given
seasonal climate predictability over northern Europe is noto-
riously challenging for summer rainfall (e.g. Weisheimer and
Palmer, 2014).

In contrast, ESP skill at seasonal to annual lead times is
generally higher than average when initialized in winter and
autumn months, and lowest in April. However, these higher
skills occur in catchments with higher BFIs, suggesting that
perhaps groundwater from large slowly responding aquifers
is the source of ESP skill at these longer lead times. This is
supported by Wood and Lettenmaier (2008), who found that
baseflow dominates hydrological persistence in winter in the
Rio Grande River in the US. Staudinger and Seibert (2014)
also found for simulations initialized in winter, wetter initial
conditions lead to longer persistence, although they note it
was difficult to separate the relative influences from snow and
aquifer memory. Lower longer-range skill for forecasts ini-
tialized in spring months was also found by Svensson (2016)
for a 3-month LT based on statistical streamflow persistence
forecasts. However, there are limited seasonal hydrological
hindcast studies for the UK that have also assessed skill at
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Figure 8. Scatterplot matrix between catchment storage capacity
(X1 soil moisture store capacity [mm]+X3 groundwater store ca-
pacity [mm]), BFI, and ESP skill (CRPSS) with n= 314 using the
non-parametric Spearman’s rank correlation coefficient ρ. Skill is
the 1-month CRPSS skill score magnitude averaged across all 12
initialization months. Catchment storage capacity (X1+X3) was
re-expressed by taking the natural log, as raw values are heavily
positively skewed.

longer than 3-month lead times to compare results. Spring in
the UK is characterized as a transition season between lowest
(winter) and highest (summer) SMDs, in which groundwater
recharge no longer occurs and baseflow begins its recession.
Factors that might contribute to lower skilled forecasts ini-
tialized in spring, and indeed to differences in skill across all
initialization months, include: potentially higher variability
in IHC storage states, changing variability in rainfall across
the forecast window (e.g. from late spring to early autumn),
and differences in model performance for different months
over the year due to the global calibration of GR4J. Given
the answer is likely a combination of many of these factors,
among others, further work should endeavour to attribute dif-
ferences in skill during different times of the year, but this is
outside the scope of this paper.

5.2 Where is ESP skilful?

The skill of ESP is also not uniformly distributed in space.
Least skilful hydroclimate regions within the UK are situated
in the north and west (WS, NWENW, and NI) whereas the
most skilful are situated in the south and east (ST, ANG, and
SE) across all lead times studied. This prominent spatial pat-
tern was also noted, among others, by Svensson et al. (2015)
and Svensson (2016) using statistical persistence forecasting

and Bell et al. (2017) using a gridded national-scale hydro-
logical model. These space–time patterns are also apparent
in skill maps of individual catchments (i.e. Fig. 7), although
there is marked sub-region heterogeneity, as demonstrated
using the Thames basin: the slow responding Lambourn
at Shaw sub-basin (BFI= 0.97) was highly skilful whereas
the fast responding Mole at Kinnersley Manor catchment
(BFI= 0.39) had virtually no ESP skill.

5.3 Why is ESP skilful?

The most skilful ESP regions of the UK are also those that
are underlain by the UK’s principal aquifers (Fig. 1). Catch-
ments with larger calibrated soil moisture and groundwater
storage capacity parameters in GR4J (i.e. X1 and X3) are
also situated in ST, ANG, and SE, and tend to have a higher
base flow index (BFI) (Table 2). The BFI is therefore broadly
interpreted here as an integrated index of catchment stor-
age capacity and is inferred to be responsible for modulating
ESP skill – catchments with higher storage are more skilful
with skill decaying at a much slower rate as lead time in-
creases, compared to catchments with low storage capacity.
For example, forecasts for the Lambourn remains on average
moderately skilful (i.e. CRPSS≥ 0.25) until a lead time of
306 days, but the Mole drops below the moderately skilful
threshold at a lead time of just 10 days.

These findings are consistent with the current physical
understanding of sources of ESP skill in non-snow domi-
nated catchments in the literature. Water storage within the
soil introduces a memory effect whereby anomalously dry or
wet conditions can take weeks or months to be “forgotten”
(Ghannam et al., 2016; Li et al., 2009), and the slow trans-
formation of precipitation to streamflow in catchments with
highly permeable aquifers in the south east of the UK leads
to temporal streamflow dependence for up to a season ahead,
and longer (Chiverton et al., 2015). Although it is encourag-
ing that GR4J storage parameter values (X1 and X3) appear
to show some physical realism, a note of caution is needed
as GR4J is not a physically based hydrological model, nor
is it guaranteed that these results are directly transferable to
any lumped catchment hydrological model. It has also been
noted that the BFI in the UK is influenced by many other
factors such as lake and snow storage (Parry et al., 2016),
therefore a more detailed examination of the physical hydro-
geological controls on catchment BFI, such as in Bloomfield
et al. (2009) for the Thames, is needed at a national scale.

The ESP method was originally developed and tested in
the snow dominated catchments of the western US with
particular strength in forecasting spring snow melt driven
streamflow (e.g. Franz et al., 2003; Wood and Lettenmaier,
2008). Because the source of ESP is from IHCs, and because
individual catchments will have different relative contribu-
tions of IHC sources (e.g. snow, soil moisture, and ground-
water), ESP skill must be assessed using a large sample of
diverse catchment types and sizes for each region it is be-
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ing applied in (e.g. Yossef et al., 2013). The present study
adds to the broader international literature on benchmark-
ing ESP skill in non-snow dominated catchments. In par-
ticular, results show that IHCs in catchments with large soil
moisture and groundwater storage provide skill up to a year
ahead. It must however be acknowledged that the UK is not
completely snow-free. Just under 5 % of catchments stud-
ied have a significant snow contribution (i.e. F s > 0.15) lo-
cated mainly in upland areas of Eastern Scotland (ES) (see
Fig. 1). In the present experimental set-up, snow accumu-
lation and melt processes were not represented within the
GR4J model. This would explain why ES has the lowest
GR4J model performance for the reference simulation of all
regions (Table 2). In addition, the worst performing forecast
in the entire ESP hindcast archive is the 3-month LT April
forecast for the Dee at Park with a negative CRPSS=−0.12
(see Fig. 2e). In this instance both the ESP forecast and the
proxy streamflow observations (or perfect model) which the
forecast was evaluated against was not a good enough repre-
sentation of reality.

ESP in its traditional form as used here provides the lower
limit of streamflow forecasting skill in the absence of skilful
atmospheric forecasts (Pagano et al., 2010) or improved hy-
drological process representation (e.g. snow). As such, ESP
assumes near total uncertainty about future rainfall; when
there is limited to no influence of IHCs on streamflow pre-
diction (e.g. highly responsive catchments), the ESP ensem-
ble mean and spread defaults to climatology (see Fig. 2d).
Given the known influence of the NAO on rainfall and there-
fore streamflow in the UK, particularly in the north and
west for winter (e.g. Svensson et al., 2015), there is poten-
tial for an NAO-conditioned ESP method to be developed.
This would involve sub-sampling historic climate sequences
used to force ESP based on years most similar to NAO con-
ditions at the time of forecast. Beckers et al. (2016) devel-
oped an ENSO-conditioned ESP method for three test sites
in the US Pacific Northwest and found skill improvements
in the order of 5–10 %; the study also presented the added
value of including a weather resampling technique to account
for the unavoidable reduction in ensemble size. Overall, low
ESP forecast performance and sharpness in highly respon-
sive catchments in the north and west would be expected to
improve with the incorporation of information that reduces
rainfall forcing uncertainty at all lead times but particularly
seasonal, whether from ensemble sub-sampling or inclusion
of skilful atmospheric forecasts.

6 Conclusions

Ensemble streamflow prediction (ESP) has a rich history in-
ternationally as a low cost and efficient ensemble hydrolog-
ical forecasting system used operationally across a range of
lead times. The ESP method using simple lumped conceptual
hydrological models is currently one of three methods used

within the operational Hydrological Outlook UK (HOUK)
seasonal hydrological forecasting service and also feeds into
the Environment Agency’s monthly “Water Situation Report
for England”. However, the skill of ESP at the catchment
scale under a rigorous hindcast experiment for a large sample
of diverse catchments across the UK had not previously been
investigated.

We conclude that ESP is skilful against a climatology
benchmark forecast in the majority of catchments across
all lead times up to a year ahead, but the degree of skill
is strongly conditional on lead time, forecast initialization
month, and individual catchment location and storage prop-
erties. In summary:

– ESP skill decayed exponentially with increasing lead
time but catchments with larger storage capacity de-
cayed at a much slower rate, resulting in the possibility
of low to moderate skill forecasts based on initial hydro-
logic conditions (IHCs) alone even at a 12-month lead
time for some catchments.

– For short (1–3 days), extended (1–2 weeks), and
monthly forecasts, skill was highest when initialized in
summer months and lowest in winter months.

– For seasonal (3–6 months) to annual forecasts, skill was
highest when initialized in winter and autumn months,
but only for catchments with high storage capacity (i.e.
high base flow index). Longer range forecast skill was
lowest when initialized in spring, particularly April,
which is likely due to the complex interplay of hy-
drological and climatological processes involved during
the transition from lower winter to higher summer soil
moisture deficit conditions and needs to be explored fur-
ther.

– ESP is most skilful in the south and east of the UK,
where slower responding catchments with higher stor-
age are mainly located. This is in contrast to the more
highly responsive catchments in the north and west
which are generally not skilful at seasonal lead times.
However, substantial sub-region heterogeneity was ob-
served and skilful ESP forecasts are still possible at the
individual catchment scale despite when the region as a
whole has low skill.

We show that simple lumped conceptual rainfall-runoff mod-
els (here using GR4J) are able to be used to produce skil-
ful ESP forecasts at short to annual lead times in the UK.
This hindcast experiment provides scientific justification for
when (lead time and initialization month) and where (region
and catchment types) use of such a relatively simple fore-
casting approach is appropriate. Currently, ESP is only used
operationally in the UK at seasonal and annual lead times
in England and Wales. This skill evaluation has shown that
much higher skills are possible for short (1–3 days) and ex-
tended (1–2 weeks) lead times in all regions across the UK
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and opens the potential for applying ESP as a low cost and
efficient catchment-scale ensemble hydrological forecasting
system in a wider context.

Finally, most ensemble hydrological forecasting systems
are benchmarked against an arguably too simplistic clima-
tology benchmark forecast which is not particularly chal-
lenging to beat. Pappenberger et al. (2015) calls this “naïve
skill” and argues that a forecasting system can only be clas-
sified as having “real skill” when it performs better than a
“tough to beat” lower cost benchmark forecast system. The
ESP hindcast archive derived and presented in this study pro-
vides such a “tough to beat” simplified hydrology model
benchmark in which the potential value of improvements
from more sophisticated forms of ESP (e.g. incorporation
of snow processes, sub-sampling historic climate) or more
complex and expensive hydro-meteorological ensemble fore-
casting systems can be judged. When and where ESP cannot
provide skilful streamflow forecasts provides an opportunity
to benchmark the degree to which recent improvements in
seasonal prediction of UK regional rainfall (e.g. Baker et al.,
2017) leads to improvements over using IHCs alone (i.e. our
ESP method), and is the focus of future work.

Data availability. The ESP hindcast archive (∼ 60 GB) and the
“UK Hydroclimate Regions” shapefile can be requested from the
Centre for Ecology & Hydrology (CEH), Wallingford, UK. Supple-
ment Table S1 includes metadata for all 314 catchments as well as
data used to generate Table 1 and 2, and Fig. 8 for others to explore.

The Supplement related to this article is available
online at https://doi.org/10.5194/hess-22-2023-2018-
supplement.
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