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Analysis of variance in soil research9

Summary10

Sound design for experiments on soil is based on two fundamental principles: repli-11

cation and randomization. Replication enables investigators to detect and measure12

contrasts between treatments against the back-drop of natural variation. Random al-13

location of experimental treatments to units enables effects to be estimated without14

bias and hypotheses to be tested. For inferential tests of effects to be valid an analysis15

of variance (anova) of the experimental data must match exactly the experimental16

design. Completely randomized designs are usually inefficient. Blocking will usually17

increase precision, and its role must be recognized as a unique entry in an anova table.18

Factorial designs enable questions on two or more factors and their interactions to be19

answered simultaneously, and split-plot designs may enable investigators to combine20

factors that require disparate amounts of land for each treatment. Each such design21

has its unique correct anova; no other anova will do. One outcome of an anova is22
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a test of significance. If it turns out to be positive then the investigator may examine23

the contrasts between treatments to discover which themselves are significant. Those24

contrasts should have been ones in which the investigator was interested at the outset25

and which the experiment was designed to test. Post-hoc testing of all possible con-26

trasts is deprecated as unsound, though the procedures may guide an investigator to27

further experimentation. Examples of the designs with simulated data and programs28

in GenStat and R for the analyses of variance are provided as supplementary material.29

Highlights30

• Replication and randomization are essential for sound experimentation on vari-31

able soil.32

• Analyses of variance of data from experiments must match the experimental33

designs.34

• Experiments should be designed to answer pre-planned questions and test hy-35

potheses.36

• Efficiency can be gained by blocking and factorial combinations of treatments.37
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A little history38

In 1843 John Lawes, the then owner of the Rothamsted estate in Hertfordshire, Eng-39

land, and his newly appointed scientist, Henry Gilbert, planned their experiment on40

Broadbalk field to test and compare the responses of winter wheat to various combi-41

nations of fertilizers. The experimental treatments were applied to long narrow strips42

of land running the length of the field, which were divided in a perpendicular direction43

into sections. Lawes and Gilbert weighed the yields, and they sampled both the crop44

and the soil in every plot in every section so as to measure the off-take of nutrients and45

the nutrient status of the soil. A few years later they laid down similar experiments46

on spring barley (on Hoosfield, in 1852) and a meadow (Park Grass, in 1856), both47

of which are still running. They also meticulously recorded the weather. Rotham-48

sted Research (2006) has summarized the history and main findings of these long-term49

experiments in its guide.50

By the end of the First World War, during which Rothamsted began to receive51

money from the British government for its research, a huge body of data had accrued52

from these long-term experiments, and in 1919 R.A. Fisher was appointed to analyse53

the data and make sense of them.54

Fisher soon realized that without replication, which was the situation on Park Grass,55

he could not discover how variable was the response to any one treatment. The treat-56

ments on Broadbalk were replicated, but because the different plots for each treatment57

lay in a single strip he could not separate the effects of the treatments from the soil’s58

natural variation as expressed in differences between the strips. This natural variation59

and the treatment effects are said to be confounded. The treatments on the spring60

barley experiment were replicated on plots that were separated from one another but61

in a way that might be confounded with the natural variation in the field. So, again,62

it was not possible to estimate the effects of the fertilizers alone.63

Having recognized the serious shortcomings of those old trials, Fisher formalized and64

systematized what had, hitherto, been inconsistently and erratically applied elements65
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of experimental design. One was replication, present in some of the experiments but66

not all, and necessary to provide information on the variation in responses. The other67

was randomization, necessary to avoid the bias which could arise if treatment effects68

are confounded with sources of variation that are uncontrolled and might be unknown.69

Fisher devised the analysis of variance (anova) to separate the sources of variation in70

data from such experiments, to estimate quantitatively the effects of different treat-71

ments and to provide inferential tests to judge whether the observed differences could72

have arisen by chance rather than as results of the imposed treatments. Fisher also73

introduced blocking to remove effects such as trends across experiments. Trends of74

this kind do not introduce bias if the experimental design is randomized, but block-75

ing improves the sensitivity of the experiment to detect treatment effects against the76

background variation represented by the trends.77

Fisher’s principles of experimental design and the concomitant analysis of variance78

are as valid today as they were 90 years ago. They have been the foundation of79

agronomic practice ever since, and statisticians collaborate with agronomists to ensure80

that designs will produce data that can be analysed to answer the questions put at81

the outset. Numerous text books are available to guide practitioners; two that we82

can recommend unreservedly are the evergreen by Snedecor & Cochran (1989) and the83

more recent book by Mead et al. (2003). Cochran & Cox (1957) remains a standard84

text. You might like also to see the Statistical Checklists prepared by Jeffers (1978).85

Sadly, many of today’s soil scientists are working without the guidance or collabora-86

tion of statisticians. One consequence is that they often plan experiments and surveys87

that cannot or are unlikely to answer their questions; or having designed the experi-88

ments soundly they vitiate the potential of the experiments to answer the questions89

by improper sampling. Or they see opportunities to answer new questions that were90

not envisaged when the original experiments were planned, either by themselves or91

by other scientists, yet fail to appreciate the limitations inherent in the designs. A92

further consequence is that despite having designed their experiments and surveys well93

they analyse the data from them incorrectly. All too often they load their data into94
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a statistical package, press a few buttons on a menu without understanding, and copy95

the output into their scripts.96

We write in this critical vein from our experience as advisors to the journal’s editors97

in the last few years, and from the experience of the journal’s statistical advisory panel.98

It is no exaggeration to state that most of the papers on which the editors have sought99

advice have embodied one or more of the above failings. In the first set of circumstances100

we have felt obliged to judge the results of little worth and to advise the editors to reject101

the papers. To paraphrase one of R.A. Fisher’s remarks, it has been like conducting102

post-mortems only to say what the experiments died of. In some instances we have103

asked for further sampling. In the second we have seen that redemption is often possible104

by fresh and correct analysis of the data.105

In one short article we cannot describe all that investigators should do. Instead we106

focus on the specific matter, namely analyses of variance that follow from the designs,107

and in particular on the most frequent mismatches between design and analysis. At the108

best such mismatches lead to loss of information and so to waste of the effort required109

to do the experiment. At worst the inferences made from the analysis are unsafe and110

lead to bad decisions. We have already remarked on this in an editorial (Webster et111

al., 2016). In the comic opera The Mikado by W.S. Gilbert and Arthur Sullivan the112

Mikado himself demands that the punishment fit the crime. Here we demand that the113

analysis fit the design.114

Designs115

We describe in detail below the commonest and most straightforward designs, starting116

with the simplest, completely randomized schemes, introducing blocking, and progress-117

ing to factorial and then split-plot designs. We have provided examples of these designs118

with simulated data together with programs in GenStat and R for the correct anal-119

yses of variance and the output from those analyses in the zip file Supplementary120

material.zip.121

Completely randomized (CR) design122
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We begin with the simplest design. Suppose that investigators wish to compare the123

effects of several manurial treatments on some property of the soil, say the microbial124

biomass, which we shall denote z. They replicate their treatments and assign them to125

the experimental plots in a completely randomized and independent way. Let there126

be n1 treatments, each replicated n2 times, so that there are N = n1 × n2 plots, or127

units, of the design. Treatments are allocated to plots independently and at random.128

This means that the probability that the first plot in the experiment is allocated to the129

jth treatment is n2/N , equivalently 1/n1. Subsequently when nj replicates of the jth130

treatment remain to be assigned, the probability that any one of the Nu plots that have131

still to be assigned a treatment will ultimately receive treatment j is nj/Nu. Figure 1132

shows one outcome of such assignment in which n1 = 4 and n2 = 5.133

The files exp1.* in the Supplementary material contain data with this design and134

the programs for analysing them.135

The analysis of variance for this design appears in Table 1. Note that this presenta-136

tion of the analysis of variance, and that for subsequent designs, hold for the balanced137

case in which the numbers of replicates of the treatments are equal. The texts to which138

we have referred provide further information on analysis in the unbalanced case, but139

the topic is beyond the scope of the paper. The total mean square is T :140

T =
1

n1n2 − 1

n1∑
j=1

n2∑
i=1

(zi,j − z̄)2 , (1)

where zi,j is the measured response of the ith replicate of the jth treatment and z̄ is141

the mean response over all n1n2 plots. One can see that this quantity is a variance, the142

variance of the plot responses. The divisor of the sum of squares, n1n2 − 1, is called143

the degrees of freedom in Table 1. It can be regarded as the number of independent144

pieces of information about the variation of the plot responses provided by the data.145

There are n1n2 − 1 degrees of freedom rather than n1n2 because each plot response is146

compared to the overall mean estimated from all the data. Because147

n1∑
j=1

n2∑
i=1

(zi,j − z̄) = 0
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it follows that, when we know the values of n1n2− 1 differences in the summation, the148

last one is fixed and so provides no new information.149

The within-treatment mean square, W , is computed as150

W =
1

n1(n2 − 1)

n1∑
j=1

n2∑
i=1

(zi,j − z̄j)2 , (2)

where z̄j is the average response of all plots in the jth treatment. The value estimated151

by W is the variance of plot responses within the treatments (i.e. the variance about152

the treatment means). This quantity is σ2
W in Table 1. It has n1(n2 − 1) degrees of153

freedom in this simple balanced case because each of the n1 treatments contributes154

n2 − 1 degrees of freedom from the independent variations about the mean of its n2155

replicates, from which the treatment mean is estimated.156

The between-treatment mean square, called B in Table 1, is computed for this simple157

balanced case as158

B =
1

n1 − 1

n1∑
j=1

n2 (z̄j − z̄)2 . (3)

This is equivalent to the sum, over all plots, of the squared difference between the corre-159

sponding treatment mean and the overall mean, divided by the number of independent160

variations among the treatment means.161

The residual mean square in an analysis of variance is a direct estimate of a variance162

component. In general, however, mean squares estimate combinations of more than163

one variance component. Table 1 shows that B estimates σ2
W + n2σ

2
B . The quantity164

σ2
B is the variance among the treatment means. If there were no differences between165

the treatments then this quantity would be zero, and, as can be seen in the table, B166

and W would both estimate σ2
W, and the ratio F = B/W in the table would have167

an expected value of 1. We use the standard notation of the Roman letter s for an168

estimate of the underlying quantity σ, so by s2
W we denote the estimate of σ2

W provided169

by W in Table 1.170

Apart from separating the sources of variation in the experiment and providing171

quantitative values of the variances attributed to those sources, the analysis enables us172
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to draw inferences. If the responses in z to the treatments differ from one another then173

we should expect the ratio B/W to exceed 1. But B/W could exceed 1 purely through174

random variation; so how can we tell that we have a real effect of the treatments?175

We do so by putting forward the ‘null hypothesis’, often designated H0 in statistics176

textbooks. It is the hypothesis that there are no differences, and we consider the177

strength of evidence against it. That evidence is the magnitude of B/W in relation to178

the distribution of F if the null hypothesis were true. We can do so because, as a result179

of our design, B and W would be independent estimates of σ2
W if the null hypothesis180

were true. It follows from the independent random allocation of treatments to plots,181

and it appears in the anova table in the way that the n1n2−1 total degrees of freedom182

are partitioned into the between-treatment and within-treatment (residual) degrees of183

freedom.184

In these circumstances the variance ratio has the F distribution under the null185

hypothesis and the shape of the distribution that depends on the degrees of freedom for186

the numerator and denominator of the ratio. One can therefore compute the probability187

that an F ratio as large or larger than the value observed in the table would arise188

under the null hypothesis through random variation. The smaller is this probability,189

or P -value, the stronger is the experimental evidence that we should reject the null190

hypothesis and say that the treatments have produced different responses. It is now a191

short step to the common notion of statistical significance. It is conventional to take192

P = 0.05 as a threshold. If P exceeds 0.05 investigators accept the null hypothesis.193

Otherwise, with P ≤ 0.05 they declare that the observed differences are ‘significant’—194

and they decorate their tables of means with stars, which again we deprecate! One195

may choose some other value of P depending largely on how serious it would be to196

come to a false conclusion.197

Inference from the analysis of an experiment like that above is based on assumptions198

about the distribution of random quantities under the null hypothesis that are justified199

by that design, the way it was laid out in the field, glasshouse or laboratory and on200

the numbers of the degrees of freedom for the variance ratio. In this sense the analysis201
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(and anova table) match the design.202

Randomized complete block (RCB) design203

Where investigators know of or suspect trends in fertility, drainage or pollutants that204

might affect their results they typically replicate their treatments in blocks. In the205

simplest case each treatment is replicated once and only once in each block. The allo-206

cation of treatments within the blocks is done independently and at random. Figure 2207

shows one realization of a RCB design for four treatments and five blocks, and so the208

same total number of replicates as the completely randomized case in Figure 1. The209

blocks are separated by the dotted lines; notice that in each block there is one plot210

for each of the n1 treatments. The blocks in this figure are laid out as rows across the211

experimental layout and so would be suitable if a trend in soil properties was known212

or suspected to occur from the top to the bottom of the site.213

The files exp2.* in the Supplementary material contain data with this design and214

the programs for analysing them.215

The analysis of variance for this design, still with n1 treatments each replicated216

once in each of n2 blocks, appears in Table 2. Here σ2
W and σ2

B are the underlying217

variances for plots and treatments as before. There is an additional line in the table218

for the between-block mean square with n2 − 1 degrees of freedom; σ2
A is the variance219

between blocks. The total degrees of freedom and the treatment degrees of freedom220

are unchanged from Table 1, but there are n2 − 1 fewer residual degrees of freedom.221

This follows from simple arithmetic, but it also indicates that the random allocation222

of treatments to plots is more constrained in the RCB design than in the CR design223

(once one plot in block k has been assigned to the jth treatment we know that no other224

plot in the block will receive it). For this reason there is somewhat less information in225

the residual mean square than in the CR design with the same number of plots and226

treatments.227

Where does the between-block variance come from? It is natural variation in the228

experimental environment which appears as between-block rather than within-block229
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variation. If blocking were not undertaken then this variation would be part of the230

residual variance, σ2
W. This means that, if the between-block variance is large, then we231

reduce the residual variance and so should increase the variance ratio B/W , making232

the experiment and analysis more sensitive for comparing the differences between the233

treatments. This is why blocking, appropriately planned, should be advantageous.234

Snedecor & Cochran (1989) provide formulae for calculating the efficiency of blocking.235

At its simplest they calculate it as the ratio of the residual variances:236

Efficiency = s2
CR/s

2
RB , (4)

where s2
CR is the residual variance on the assumption that the design was completely237

randomized (CR) while s2
RB is the residual variance of the RCB design. You can find238

further detail of the calculation on pages 263 and 264 of Snedecor & Cochran (1989).239

An efficient blocking design is evidently one in which the differences between the240

blocks are larger than the variation within the blocks. In practice one might achieve this241

by keeping the blocks compact, although in a field where there is a strong trend in the242

soil or environment in one direction rectangular blocks with the long side perpendicular243

to the direction of the trend would be preferred. It is important to pay attention to the244

structure of the blocks, because, as above, there is a small penalty for blocking from245

the reduced residual degrees of freedom, and this will be worth paying only if there are246

real differences between the blocks.247

The variance ratio A/W appears in Table 2, and one could use it to test the null248

hypothesis that the between-block variance, σ2
A, is zero. That would be of interest249

only in that it shows whether the blocking is better than random assignment of plots250

to blocks. Sometimes, however, the scientist, having found that the evidence for a251

difference among the blocks is weak, ignores the blocking and reports an analysis of252

variance appropriate for a CR design. Such an analysis does not fit the design. The253

scientist might try to justify that analysis because the blocks have been shown not254

to differ, but that misses the point. What the correct analysis shows us, and shows255

explicitly in the anova table, is how the actual allocation of treatments to plots was256
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undertaken; it shows that in the RCB case we have (n1 − 1) × (n2 − 1) degrees of257

freedom, not n1(n2 − 1). In short, the correct analysis reports the reduction, albeit258

small, in information about the residual variance that follows from the constraints of259

blocking. The extra n2 residual degrees of freedom in the analysis as if the design were260

completely randomized means that, other things being equal, a given variance ratio261

appears to offer stronger evidence against the null hypothesis. This inference would be262

unsafe, however, because the quoted degrees of freedom would not describe the actual263

randomization. In practice this would mean that the variance ratio for a treatment264

effect would be compared with the wrong distribution of the F statistic. The analysis265

would not fit the design.266

The Austrian philosopher Ludwig Wittgenstein was once impressed by an account267

of a trial that took place following a car accident in Paris. During the trial, models268

were used to represent the positions of the vehicles involved at the time of the collision269

(Kenny, 2005). Inspired by this, he developed his picture theory by which a logical270

proposition is equivalent to a picture of a state of affairs in the world. Such a proposition271

may take different forms. It may, for example, be spoken, written or drawn. Let us272

apply the idea in the present context to the design of field experiments.273

Consider an experiment that has been done according to an RCB design. The design274

could be illustrated with a diagram such as Figure 2. More often in scientific papers the275

designs are described in words in Methods sections. The equivalent to Figure 2 would276

be ‘The n1 treatments were allocated independently and at random within each of n2277

blocks.’ Our contention is that the correct analysis of variance table for the experiment,278

as shown in Table 2, is one more way in which we may express the same proposition.279

The partition of the sum of squares between rows of the table represents the sources of280

variation that the experimental design uniquely induces, and the numbers of degrees281

of freedom show how many blocks and replicates were used as surely as does Figure 2282

or the verbal statement.283

That is one reason why this journal asks its authors to provide full anova tables.284

The request is sometimes misinterpreted as a request for a table of only a set of variance285
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ratios and corresponding P -values; but that is not what is required. The journal286

requires a table like Tables 1 or 2 shown here, because such a table represents the287

design definitively. When assessing an experiment both the reviewers and, ultimately,288

readers must be able to see that the experiment as described in the methods section289

accords with the anova reported in the results.290

Factorial designs291

When an investigator is interested in the effects of several factors it is much more292

efficient to include them in a single experiment than in a series of separate experiments,293

one for each factor. This was recognized by Fisher (1926) who wrote:294

No aphorism is more frequently repeated in connection with field trials, than295

that we must ask Nature few questions, or, ideally, one question, at a time.296

The writer is convinced that this view is wholly mistaken. Nature, he sug-297

gests, will best respond to a logical and carefully thought out questionnaire;298

indeed, if we ask her a single question, she will often refuse to answer until299

some other topic has been discussed.300

Yates (1937) set out the principles of factorial designs in his Technical Communication301

35, which became the guiding text for fertilizer trials for many years. More recently302

Carmer & Walker (1982) have urged investigators to take this course.303

To illustrate the principles of the design and corresponding analysis we take a simple304

example with three factors, the major plant nutrients, nitrogen (N), phosphorus (P)305

and potassium (K). Factors are each applied at two or more ‘levels’; in this example306

we assume that the nutrient is either applied or not (two levels). There are therefore307

23 = 8 combinations of factor levels; these are our treatments. The treatments must308

be replicated between units (plots in this case) according to a suitable design, and309

analysed in accordance with that design. One might use CR or RCB designs as in the310

examples already discussed.311

Let us assume that there are, as before, n2 replicates arranged in a CR design. We312

could analyse the data as set out in Table 1 with 8− 1 = 7 degrees of freedom for the313
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treatments. This analysis would be quite correct, but it would not be very informative.314

If we found that the treatments were significantly different then how should we interpret315

this finding in terms of all our three factors? The factorial design allows us to do this.316

We can partition the sum of squares due to differences among the treatments into what317

are called main effects and interactions. There are three main effects in our example,318

the differences between treatments with contrasting levels of N is one such, and the319

other main effects are due to P and K. If these effects simply add to one another then320

all of the treatment sum of squares will be accounted for by the sums of squares for321

the three main effects. If, in contrast, the difference between plots that receive N and322

those that receive none is not the same on plots that receive K and those that receive323

no K then the factors K and N are said to interact. One can see that there are three324

such interactions in our example: N �P, N �K and P �K. To complicate matters further,325

if the N �K interaction differs between plots that receive P and those that receive none,326

then there is a three-way interaction N �K �P. Note that we could express the same327

three-way interaction in terms of an effect of, for example, the level of N on the P �K328

interactions, so there is just one three-way interaction in a factorial experiment with329

three factors. We use this ‘dot’ convention to indicate interactions as established by330

Wilkinson & Rogers (1973).331

Table 3 sets out the anova for our example. Note that each main effect has a332

single degree of freedom; this is because there are two levels of each factor, and so333

the main effect consists of just the difference between the responses to these levels.334

In general a factor with U1 levels has U1 − 1 degrees of freedom for its main effect.335

Similarly the two-way interactions each have one degree of freedom, in general two336

factors with U1 and U2 levels have an interaction with (U1 − 1) × (U2 − 1) degrees of337

freedom. Equally the three-way interaction has 1 degree of freedom in our example.338

In the general case where the third factor has U3 levels, the three-way interaction has339

(U1 − 1) × (U2 − 1) × (U3 − 1) degrees of freedom. The reader will note that in our340

example the sum of the degrees of freedom for the main effects and interactions is 7,341

the same as the treatment degrees of freedom. The treatment degrees of freedom are342
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partitioned between main effects and interactions as is the treatment sum of squares.343

The quantity σ2
W in Table 3 is the underlying variance among the plots receiving the344

same combination of treatments, and σ2
N, σ2

P, ... , σ2
NPK are the variances attributed to345

the nutrients and their combinations. The F ratio for any one entry is346

F =
mean square for the treatments

residual mean square
. (5)

The standard error of any of the treatment means is347

SEtreatment =
√

residual mean square/n2 . (6)

Where the investigator goes from there depends very much on the outcome of the348

analysis. If it turns out that the interactions, especially the threefold interaction of349

N, P and K, are non-significant and only the main effects of the three nutrients are350

significant, the investigator may choose to focus on the main effects, i.e. on the means351

of plots receiving each of the N, P and K averaged over all combinations that include352

them. Their standard error is353

SEmain effect =
√

residual mean square/4n2 . (7)

The quantity 4 appears in the denominator because, in the example, n2 replicates of354

four treatments contribute to the estimate of the mean response for each level of one355

of the factors.356

We cannot consider here all the possible outcomes and their consequences; rather357

we must leave readers to pursue them elsewhere. Again we recommend Snedecor &358

Cochran (1989).359

We include this account of factorial designs and analysis because all too often in360

papers submitted to the journal the analysis does not match the design. Some authors,361

having undertaken an experiment according to a factorial design, proceed to analyse362

it in a series of one-way analyses for each of the main effects. This is bad practice for363

two reasons. If all the data from the experiment are analysed in this way then the364
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influence of those main effects not considered in a particular analysis will inflate its365

residual mean square. Further, when there is a substantial interaction between factors366

the main effect may be small or negligible, even though the factor is an important367

one. This is our interpretation of what Fisher mean by saying that nature ‘may refuse368

to answer’ a particular question ‘until some other topic has been discussed.’ If the369

design is factorial then the analysis should be so as well, otherwise it is very likely that370

substantial information will be lost.371

Split plots372

Split-plot designs are common in agricultural experimentation. There are two general373

circumstances in which they are used. The first is a factorial experiment in which one374

of the factors can be replicated only between fairly large plots for logistical reasons.375

A typical example is where one of the factors is an irrigation or drainage treatment.376

Large plots are needed for these, but it would not be feasible to replicate such plots377

in factorial combination with several fertilizer treatment as above. The experiment378

would require too large an area to manage. The solution is to replicate the irrigation379

factor between appropriate large plots (main plots in the jargon), and then to divide380

each main plot into sub-plots, one sub-plot for each level or combination of levels of381

the remaining factors which are allocated to sub-plots at random.382

Let us suppose that the four manurial treatments of Figure 1 (M1, M2, M3, M4)383

are to be combined in an experiment in which there are three irrigation treatments (I1,384

I2, I3)—say no irrigation, irrigation when the soil has dried to half its available water385

capacity, and irrigation at regular intervals regardless of the water deficit. Figure 3386

shows a possible layout on the ground with the irrigation treatment replicated between387

main plots in the blocks, and the manurial treatments replicated between sub-plots388

within each main plot.389

How would the data from this experiment be analysed? There are twelve treatments390

(combinations of the four levels of the manure factor and the three levels of the irri-391

gation factor). The treatments are replicated in four blocks. One might think that392
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Table 4 would partition the degrees of freedom for the anova; the design is after all393

a factorial one. An analysis with that structure would be wrong, however; the table394

does not match the design. To see this reflect on the basic units of the experiments,395

the sub-plots; there are twelve of them in each block. The anova structure in Table 4396

implies that there are no constraints on the randomization of the twelve treatments397

between sub-plots within each block, but that is not the case. If we are told that a398

plot in the top left corner of a block has treatment I3-M4 we can know, first, that all399

plots in the same main plot receive level I3 of the irrigation factor, and, second, that400

no other subplot in the main plot receives level M4 of the manure treatment. In short,401

Table 4 fails to show that the levels of the irrigation factor were allocated to the main402

plots while the levels of the manure factor were hen allocated to sub-plots within the403

main plots.404

Table 5 sets out the correct analysis for this experiment with the three levels of the405

irrigation factor randomly allocated between main plots in each of four blocks, and the406

four levels of the manure factor randomly allocated to the sub-plots within each main407

plot.408

The files exp3.* in the Supplementary material contain data with this design and409

the programs for analysing them.410

Notice how the F ratios are calculated in Table 5. The denominator for the irrigation411

F ratio is the main-plot error mean square. That for the manures and the interaction412

between the irrigation and manures is the sub-plot error mean square. In such a413

design the sub-plot error variance is smaller than the main-plot error variance. These414

variances follow through to different standard errors for the means. In this example the415

manurial treatments are compared more sensitively than the irrigation treatments. If416

the data from this experiment were mistakenly analysed as in Table 4 then one would417

underestimate the main-plot error variance and overestimate the sub-plot variance.418

In an experiment like the one above the treatments, say, manurial and irrigation,419

are laid out in split-plot designs from the start. While such experiments are not420

always correctly analysed in papers submitted to the journal, problems more often arise421
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when split-plots are introduced into experiments later on. Consider an original RCB422

experiment with four treatments like that above. Let us suppose that the treatments423

are four different kinds of manure and that the investigator planned to compare rates of424

respiration in the soil between these treatments. Having seen the results he or she then425

introduces a second factor, the soil water potential. Two soil cores are taken from each426

plot of the original experiment and equilibrated at one of two soil water potentials, and427

then the respiration rate of each is measured. The plots in such an experiment are not428

physically split, and authors are sometimes puzzled when we tell them that they have429

split-plot designs. They need to recognize that in such a situation the experiment has430

a split-plot design with manures replicated between main plots and the cores extracted431

from each main plot serve as sub-plots between which the levels of the water-potential432

factor are randomized. This should be reflected in an anova table like Table 5. Too433

often we receive papers in which such experiments are analysed as if they had simple434

RCB factorial designs.435

Sampling within experimental plots436

One can rarely measure soil properties of whole plots; almost always the most one can437

do is to sample the soil and measure the properties of interest on the samples. If one438

were to take one sample, whether as a single core or a bulked sample from several cores,439

one would analyse the measurements as above according to the design; i.e. completely440

randomized or blocked.441

However, one might well measure the property on each of several cores from each442

plot. This would provide information on the variation within the plots, and one could443

elaborate the analysis of variance accordingly. Suppose that one takes n3 cores of soil444

from each and every plot, as illustrated in Figure 4 in which there are n1 = 4 treatments445

replicated n2 = 5 times in a completely randomized arrangement, and n3 = 3 cores446

per plot. The correct analysis of variance for this design is set out in Table 6. The447

quantities σ2
W and σ2

B are the underlying variances between plots within treatments448

and between treatment means respectively, and σ2
C is the variance among cores within449
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plots. This table is comparable to one for a split-plot design with cores as the sub-450

plots. The difference is that no factor is replicated randomly at the core level. The451

replication is simply to improve estimates of the plot means. Nonetheless, the between-452

treatment mean square must be compared with the correct residual, the between-plots453

within-treatments mean square, because the treatments are randomized at the plot454

level.455

The standard error of a plot mean is SEplot =
√
C/n3, where C is the variance456

between cores within plots. If we denote the estimated variance between plots within457

treatments by s2
W we obtain the standard error per treatment mean as458

SEtreatment =

√
C

n3n2

+
s2

W

n2

. (8)

If the replicates were arranged in blocks then there would be a corresponding addi-459

tional entry for blocks in the analysis.460

Pseudo replication461

In the previous example, with the anova as in Table 6, the experimenter recognizes462

that treatments are replicated and randomized at the plot level, even though measure-463

ments are made on n3 cores in each plot. If, incorrectly, the experimenter treated this464

design as one with n3×n2 independent replicates of each treatment, it would be a case465

of what statisticians call ‘pseudo replication’. We introduce the topic of pseudo repli-466

cation here because many authors of the papers we see commit it either inadvertently467

or knowingly without appreciating its inferential consequences. We distinguish three468

situations.469

1. The investigator misguidedly regards all n2 × n3 observations on each treatment470

as the units of the design and for a CR design analyses the data as in Table 1.471

He or she then tests the treatment mean against a residual mean square with472

n1×n2×n3−n1 degrees of freedom. This comprises a form of pseudo replication473

because the replicates within plots are not true replicates of the experimental474

treatments. Fortunately no serious damage is done; once alerted to the mistake475
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the investigator can re-analyse the data correctly according to Table 6.476

2. A similar situation arises when a scientist takes either a single core from each plot477

or bulks multiple cores from each and then splits them into several sub-samples478

for measurement in the laboratory. These replicate measurements cannot be479

regarded as independent units in the design. They are pseudo replicates. They480

may be averaged and analysed as in Table 1, or they may be analysed as individual481

values as in Table 6. In latter case the variance σ2
C represents the variance due482

to sub-sampling of a single core or composite sample, rather than within-plot483

variance.484

3. Most serious of all is when an investigator takes multiple cores of soil from an485

experiment which itself has few replicates, perhaps only one, and believes that486

treating the numerous cores as units will compensate for lack of replication of the487

main plots and analyses the data according to Table 1. The correct analysis is that488

exemplified in Table 6. With few true replicates of the treatments, however, the489

experiment is unlikely to be sufficiently sensitive to reveal any but the biggest and490

most obvious differences. Here the shortcoming is in the design; the experiment491

should have been planned with more replication in the field and more resources492

allocated to its execution.493

The situation arises more often in surveys where investigators want to know494

how the soil differs from one cultural practice or environment to another. The495

main difficulty here is in finding sufficient replicates of each kind of practice or496

environment, especially if access and travel between them are time-consuming and497

expensive. What usually happens is that the investigator replicates observations498

at the few sites that can be reached, often only one of each kind.499

Mean values for the sites actually sampled might be estimated precisely, but500

differences between practices or environments would not be. If the latter are not501

replicated, perhaps because replication was impossible, then the investigator can502

say at the end only by how much the sites themselves differ from one another; any503
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inference about the populations they represent cannot be based on the statistics.504

Repeated measurements505

The last couple of decades have seen increasing interest in the behaviour of soil over506

time. Soil scientists have monitored the soil and planned experiments with installa-507

tions such as static chambers in which to collect gaseous emissions—see, for example,508

González-Méndez et al. (2015) and their repeated measurements of the associated509

redox potentials from electrodes buried in the soil (González-Méndez et al., 2017),510

lysimeters in which to monitor leachates passing through the soil, laboratory reactors511

in which to organic matter is mineralized (e.g. Coban et al., 2016) and microcosms512

in which to measure the responses of bacteria to imposed treatments over time. The513

scientists quite properly design their experiments by assigning their treatments to the514

units, whether chambers, electrodes, lysimeters, reactors or microcosms, with replica-515

tion and randomization. Then at intervals they make their measurements on every516

unit. This is especially easy when the measurement is non-invasive, for example by517

spectrometers. It is also feasible to do so by repeated sub-sampling soil from micro-518

cosms or field plots. (The soil in long-term experimental plots at Rothamsted has been519

sampled at intervals over the years since they were first established.)520

If measurements are made on only two occasions then an appropriate analysis of the521

data depends on the specific objectives of the experiment. If the variable of interest522

is the difference between the two observations (e.g. the change in a soil property523

between the start of a growing season and the end) then the difference may be computed524

directly for each experimental unit and, being replicated at the level of these units,525

may be analysed in a straightforward way. If the two observations on each unit are to526

be analysed together then we have a split-plot design with the chambers, electrodes,527

lysimeters or microcosms as replicated main plots and the two occasions as sub-plots528

within the main plots. One can analyse the data quite correctly as set out in Table 5.529

In situations when observations are repeated on the same units, and they are made530

on more than two occasions, one must take into account possible correlations between531
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the repeated measurements on any one unit. These correlations might depend on the532

interval in time between the observations, which the simple split-plot analysis can-533

not accommodate. The successive measurements on any one installation cannot be534

regarded as independent. For the purpose of the statistical analysis the chambers,535

electrodes, lysimeters or microcosms are the units. The data comprise repeated mea-536

surements on those units, and special techniques that take into account the possible537

correlations, are required to analyse them. The techniques often go under name of538

‘longitudinal analysis’.539

There is no single correct way of analysing repeated measurements, and we cannot540

delve into the detail of any of them. Webster & Payne (2002), in this journal, reviewed541

several options. They described in detail one in which the order of correlations were542

estimated first by an antedependence analysis, as devised by Kenward (1987), and the543

results of which were then incorporated into an analysis of differences between treat-544

ments by residual maximum likelihood (reml). Other options in which the variations545

in time are modelled as autoregressive processes are available—see again Coban et al.546

(2016).547

In whatever way data of repeated measurements are analysed that way must honour548

the design. If you wish to investigate processes in the soil over time with fixed instal-549

lations such as static chambers or lysimeters or in the laboratory with microcosms550

then plan your experiments in consultation with a professional statistician and know551

in advance how you will analyse the data. Of course, you should always know how552

you will analyse data from any experiment you plan, and for the more straightforward553

cases you can find recipes in textbooks.554

Inferences and comparisons555

Orthogonal contrasts556

Obtaining a statistically significant result from an anova, one say for which P < 0.05,557

is never the end of an investigation. On its own it is of limited interest. Far more558

important are the differences between the means: which of the differences contributed559
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to the result? And are they the ones about which the investigator wanted to know560

when the experiment was designed?561

Consider an experiment in which a scientist wants to compare the effects of organic562

additions to the soil on the respiration rate. The materials to be added are barley563

straw, wheat straw, cattle slurry and pig slurry. In addition to these four treatments564

there is a fifth treatment, a control where nothing is added. When this experiment is565

complete the anova table will include a treatment mean square with four degrees of566

freedom. This mean square may be compared with the residual mean square to test567

the null hypothesis that there are no differences in response to the different treatments.568

Let us suppose that the P -value is so small that the null hypothesis is rejected. Now,569

which differences contributed to the result? Did the respiration caused by the addition570

of straw differ from that caused by the addition of slurry? Did the kind of straw affect571

the result? How did the additions of these organic materials affect the respiration rate572

in relation to the control? These are the pre-planned questions that the scientist might573

reasonably have had in mind when the experiment was designed, and the design should574

have been such as to answer those questions and test the hypotheses underlying them575

by the appropriate analysis.576

Why pre-planned questions? With five different treatments there are ten different577

comparisons that can be made between pairs of treatments, and there are more com-578

parisons between combinations of treatments. One might test a comparison between579

the means of two treatments with a t test. The standard error for the difference be-580

tween two treatment means is
√

2W/n2, so the test is easy to do. Indeed, for the simple581

balanced case with n2 replicates per treatment one may compute the least significant582

difference for comparison between any pair: LSD = t
√

2W/n2. With so many possi-583

ble comparisons it is likely that some will appear ‘significant’ purely through random584

variation, and with the human eye and brain well-adapted to pick out large differences585

in tables of means, any inference out of these multiple comparisons is unlikely to be586

safe. Lark (2017) and Webster (2007) have discussed this matter in greater depth. The587

meaning of the P -value for a null hypothesis holds when the comparison is planned at588
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the outset; it does not hold for examination of differences after one has inspected a589

table of means and noted ones that look interesting.590

Pre-planned questions can be expressed conveniently as a set of orthogonal contrasts.591

A contrast is a comparison between two treatments, or two groups of treatments. In592

the example above one contrast might be between soils receiving cattle manure and593

those receiving pig manure. If we consider the treatments in order:594

Control; Pig Manure; Cattle Manure; Barley Straw; Wheat Straw,595

then the contrast mentioned can be expressed by a vector of coefficients596

c1 = [0,−1, 1, 0, 0] .

This contrast is a comparison between the two manures. There are zero entries that597

correspond to treatments not in the contrast, and the difference in sign expresses the598

fact that we are interested in the difference between the two manure treatments.599

Another contrast one could consider is between the control and all the treatments600

with additions to the soil. This would be expressed by the coefficients601

c2 = [4,−1,−1,−1,−1] .

Note that the mean for the control has a coefficient of 4, balancing the −1 entry for602

each of the treatments with an organic amendment, and the coefficients therefore sum603

to zero, as in the previous example.604

We have yet to explain what we mean by an orthogonal contrast. Consider the605

two examples given. Neither of these contrasts contributes in any way to the other.606

That is because the second contrast is between the control and all the treatments with607

an amendment, whereas the first is a contrast between two treatments in the latter608

group. If I know that the first contrast is large it tells us nothing about the second.609

Mathematically this is expressed by the fact that the inner product of the two contrast610

vectors, the sum of the products of their corresponding elements, is zero611

c1 · c2 = 0 ,

23



as can easily be verified.612

We can specify two more contrasts, c3 and c4, such that the full set are mutually613

orthogonal. These are614

c3 = [0, 0, 0,−1, 1] ,

and615

c4 = [0,−1,−1, 1, 1] .

The contrast c3 is between wheat straw and barley straw, and the contrast c4 is between616

straw and manure. The reader can check that any pair of contrasts drawn from the set617

{c1, c2, c3, c4} is orthogonal.618

Note that there are four orthogonal contrasts in this set, which is complete: no619

additional contrast could be found that is orthogonal to all in this set of four. The620

number of orthogonal contrasts among a set of treatments is equal to the treatment621

degrees of freedom. In fact, the orthogonal contrasts can be put into the anova table,622

one line each, in place of the treatment effects. The treatment sum of squares is623

partitioned between the contrasts exactly, and each has one degree of freedom. Each624

contrast can be tested by the ratio of its mean square to the appropriate residual mean625

square in the design. Note also that orthogonal contrasts can be used in the analysis626

of a factorial experiment, in which case contrasts can be examined between groups of627

levels of each factor, and the interaction sum of squares may also be partitioned into628

corresponding components, each with one degree of freedom.629

The use of orthogonal contrasts is much to be commended. It requires experimenters630

to think in advance about their hypotheses, to express them in terms of contrasts and631

so to embed them in the experimental design. By pre-specifying the orthogonal sets of632

contrasts experimenters ensure that the P -values they use to test their hypotheses can633

be interpreted validly.634

Often investigators notice, at the end of an experiment, contrasts of interest that635

they had not expected and for which their design did not cater. Should they apply636

tests for them? The short answer is ‘no’; the only safe way to test the hypothesis637
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implied by such a contrast is to design a new experiment for the purpose.638

Several methods have been proposed to test all comparisons post-hoc. They include639

Scheffés critical difference, the Newman–Keuls test, Tukey’s ‘honest significant differ-640

ence’ and Duncan’s multiple range test. The idea underlying them is that by setting641

the critical limit of P according to the total number of possible comparisons one can642

identify which specific contrasts can be regarded as significant. Numerous papers sub-643

mitted to the journal contain results of these methods to test all comparisons between644

treatment means, and authors then express the results by littering bar charts or ta-645

bles of treatment means with letters such that all means with the letter ‘a’ appended646

cannot be regarded as significantly different, and so on. This is poor practice. It is647

of the essence of experimental science to advance hypotheses and to test them; that is648

the scientist’s responsibility. It cannot be delegated to an algorithm. Furthermore, the649

practice wastes the statistical power of a well-designed experiment which is only fully650

exploited by the proper analysis of a set of orthogonal preplanned contrasts. That is651

why, with the backing of two of the most experienced statistical analysts of the last652

century—Nelder (1971) and Finney (1988)—and the allegorical exposition by Carmer653

& Walker (1982), this journal eschews routine multiple comparisons from tests.654

Nevertheless, these tests can have merit if they are used in what we might call655

the ‘wash-up’ phase of the experimental analysis after the primary hypotheses have656

been tested. They may be used legitimately to ‘screen’ differences and help investi-657

gators to decide whether further research is warranted and to design new experiments658

accordingly.659

In summary, good scientific practice identifies a set of hypotheses that can be ex-660

pressed as particular pre-planned contrasts between the mean responses of treatments661

or groups of treatments. This is part of the experimental design. The analysis fits662

the design when the anova table includes the specific orthogonal contrasts as single663

lines, with one degree of freedom for each mean square, to be tested against the correct664

residual mean square given constraints on randomization of the treatments between665

units. If other contrasts catch the experimenter’s eye then some of the ‘post-hoc’ tests666
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listed above might be invoked to screen them.667

Some thoughts on sampling668

In this paper we have focused on the designs of experiments and the analyses of variance669

for inference from data obtained according to those designs. Similar considerations670

apply to sampling to estimate, for example, the mean values of soil properties within671

regions of interest. We have described suitable designs elsewhere (Webster & Lark,672

2013), and we cannot go into detail here. Readers can find the general principles in the673

classic text by Cochran (1977) and their application to spatial sampling in de Gruijter674

et al. (2006).675

In sampling, as with experiments, the principle that the analysis should fit the676

design still holds good. In the context of sampling our objective is estimation, and677

an estimate should be accompanied by a confidence interval to indicate its precision.678

There are standard methods to compute such confidence intervals, but the method that679

is used must accord with the sampling design if it is to be safe. For example, most soil680

scientists would recognize the procedure of computing the sample variance, s2, from a681

set of N observations and then calculating the standard error of the sample mean as682

s√
N

. (9)

One can compute the confidence interval for the sample mean by multiplying the683

standard error by the value of Student’s t for which the distribution function with684

n− 1 degrees of freedom takes an appropriate value (e.g. 0.975 for the 95% confidence685

interval). This simple analysis is appropriate, however, only when the N samples have686

been collected independently and completely at random (also known as simple random687

sampling). Without the independence, which independent random sampling ensures,688

the computation of the standard error in Equation (9) is wrong.689

Too often the journal receives papers in which the analysis of sample data does not fit690

the design. Most commonly that is because the authors use Equation (9) to compute691

the standard error of a sample mean based on N samples which were not collected692
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independently and at random, either because the sampling was not randomized (sample693

sites may have been selected purposively to cover a range of soil variation) or because694

the samples were collected according to a systematic design (a grid or transect). In the695

latter, once the positions of one or two sampling sites have been chosen the positions696

of all the others in the designs are determined by the interval of the grid or transect.697

One may compute a correct standard error for an estimated mean where sampling698

has been done systematically on several transects provided the starting points of the699

transects are chosen at random (de Gruijter et al., 2006) and the analysis fits the700

design appropriately. Alternatively, model-based estimation may be used (Lark &701

Cullis, 2004).702

Other sampling designs may be appropriate. Stratified random sampling is directly703

analogous to the RCB experimental design discussed above. The domain of interest704

is divided into strata, which one hopes are less variable internally than the domain as705

a whole. The estimates are likely to be more precise than those from simple random706

sampling because the estimation variances are based on the variances within the strata707

rather than on that of the whole domain. Each stratum is sampled independently708

and at random, the stratum sample means are combined to obtain an estimate of the709

domain mean, and the stratum variances are similarly combined to obtain a variance710

of the estimated mean. If stratification has been used in the sampling design then it711

must be accounted for in the analysis.712

Departures from assumptions713

We have stressed throughout that the correct analysis of variance fits the design; no714

other will do. The conclusions that you may draw from such analyses, however, are715

based on the assumption that the effects of the various factors (treatments and blocks716

and their combinations) are additive, that the residuals are normally and independently717

distributed, and that the variances are homogeneous. Small departures from these ideal718

conditions are unlikely to affect your conclusions—the analysis of variance is robust in719

this respect. Large ones, on the other hand, might. Testing for serious departures and720
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the transformations required to make data conform to the assumptions are substantial721

subjects in their own right, and we cannot deal with them here. Instead we refer you722

to Chapter 15, pages 273–296, in Snedecor & Cochran (1989), and Chapter 8, pages723

159–181, in Mead et al. (2003).724

Epilogue725

This paper is not a comprehensive account of the design and analysis of experiments;726

it was never our intention that it should be. Rather, we have wanted to stress the727

importance of sound experimental designs, of doing experiments according to those728

designs and then subsequently analysing the data that accrue likewise. Readers can729

find details of the designs we mention in the texts we have cited; those texts should730

cover their requirements.731

Sound inferences about the effects of treatments on the soil demand that treatments732

are replicated and assigned to experimental units at random. The natural variability733

of the soil is substantial, and many replicates might be needed to reveal the effects734

of the treatments against this back-drop of natural variation. One can often reduce735

the amount of replication, and increase the efficiency of an investigation, by blocking.736

Whether a completely randomized design is used, or a randomized complete block737

design, the design must be accounted for in the analysis, and it should be made explicit738

by the full anova table. If your paper does not contain such a table then readers cannot739

be sure that you have analysed your data in a way that fits the design and is valid740

therefore.741

More complex experimental designs might be needed for practical reasons. We have742

given the example of split plots, but others include designs with incomplete blocks743

and designs in which certain interactions are deliberately confounded and so cannot744

be estimated. In all cases the experimental design constrains the analysis, and the745

degrees of freedom in the anova table, and the residual mean square against which an746

effect is tested, must accord with the design as described. The same holds for repeated747

measures on the same experimental units, and for experiments when replicated samples748
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from within the basic experimental units are analysed separately.749

Finally, we have stressed that scientists have the responsibility to propose hypotheses750

and to design experiments accordingly. By pre-planning particular comparisons scien-751

tists embed their hypotheses in those designs. Their analyses partition the treatment752

sums of squares into components corresponding to the orthogonal contrasts.753

Soil scientists nowadays use some of the most advanced techniques from nuclear754

magnetic resonance to shallow geophysics, and we like to think that they take advice755

from specialists beforehand. They should do the same when they apply statistical756

methods. Modern software provides a wide range of readily available tools for statistical757

analysis. But when misused by investigators who lack proper understanding they lead758

to flawed inferences, and those can have damaging consequences if they lead in turn to759

bad decisions by farmers, environmental managers, statutory authorities and agencies760

responsible for public health.761

We encourage soil scientists to think hard about how they design their experiments762

and then analyse the data. We encourage educators in soil science to ensure that statis-763

tics, taught by specialists, has an essential place in curricula at both undergraduate764

and postgraduate level. Finally, we urge soil scientists to consult statisticians when765

they plan their experiments, and not go along to them at the end and ask them how766

to analyse their data. Neither you nor we want Fisher to look down and pronounce yet767

another post-mortem on your experiment.768

Supplementary material769

As mentioned above, we have provided examples of CR, RCB and split-plot designs770

with simulated data together with programs in GenStat and R for the correct anal-771

yses of variance and the output from those analyses in the zip file Supplementary772

material.zip. This file can be down-loaded for immediate use. Alternatively, you773

may obtain it from us directly.774
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Table 1 Analysis of variance for n1 treatments replicated n2 times in a completely829

randomized (CR) design830

Degrees Mean Parameters F
Source of freedom squares estimated ratio

Between treatments n1 − 1 B σ2
W + n2σ

2
B B/W

Within treatments (residual) n1(n2 − 1) W σ2
W

Total n1n2 − 1 T

831
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Table 2 Analysis of variance for n1 treatments replicated n2 times in a randomized832

complete block (RCB) design833

834

Degrees Mean Parameters F
Source of freedom squares estimated ratio

Blocks n2 − 1 A σ2
W + n2σ

2
A A/W

Between treatments n1 − 1 B σ2
W + n2σ

2
B B/W

Within treatments (residual) (n1 − 1)× (n2 − 1) W σ2
W

Total n1n2 − 1 T

835
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Table 3 Three-way analysis of variance for three factors, N, P and K, each at two836

levels replicated n2 times in a CR design837

Degrees Parameters estimated F
Source of freedom by mean squares ratio

Between treatments 7 σ2
W + n2σ

2
B

N 1 σ2
W + n2σ

2
N

P 1 σ2
W + n2σ

2
P

K 1 σ2
W + n2σ

2
K

N �P 1 σ2
W + n2σ

2
NP

N �K 1 σ2
W + n2σ

2
NK

P �K 1 σ2
W + n2σ

2
PK

N �P �K 1 σ2
W + n2σ

2
NPK

Within treatments (residual) 8× (n2 − 1) σ2
W

Total 8× n2 − 1 σ2
T

838
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Table 4 Incorrect partial analysis of variance table for the factorial experiment with839

manure and irrigation factors illustrated in Figure 3.840

Degrees of freedom
Source

Between blocks 3

Between treatments 11

Manure 3
Irrigation 2
Manure×Irrigation 6

Residual 33

Total 47

841
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Table 5 Analysis of variance for the split plot experiment with three levels of the842

irrigation factor replicated between main plots within blocks, and four levels of the843

manure factor replicated between sub-plots within each main plot.844

Degrees Mean F
Source of freedom squares ratio

Main plots

Block 3 BB BB/WMP

Irrigation 2 BI BI/WMP

Main plot error 6 WMP

Sub-plots

Manures 3 BM BM/WSP

Irrigation × manures 6 BIM BIM/WSP

Sub-plot error 27 WSP

Total 47 T

845

The subscripts are B for block, I for irrigation, M for manures, MP for main plot, SP846

for sub-plot, and MPE and SPE denote the main-plot and sub-plot errors.847
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Table 6 Analysis of variance for n1 treatments replicated n2 times on plots in a com-848

plete randomized block design with n3 measurements per plot849

850

Degrees Mean Paramaters F
Source of freedom squares estimated ratio

Between treatments n1 − 1 B σ2
C + n3σ

2
W + n2n3σ

2
B B/W

Between plots within treatments n1(n2 − 1) W σ2
C + n3σ

2
W

Between cores within plots n1n2(n3 − 1) C σ2
C

Total n1n2n3 − 1 T

851
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Figure captions852

1. An example lay-out of a completely randomized balanced experimental design in853

which five replicates of each of four manurial treatments, M1, M2, M3 and M4,854

are independently and randomly allocated to plots.855

2. An example lay-out of a randomized blocked experimental design in which the856

plots are grouped in blocks of four (separated by the dotted lines) and one repli-857

cate of each of four manurial treatments, M1, M2, M3 and M4, is independently858

and randomly allocated to a plot within each block. There are five blocks in859

total, separated by dotted lines in the Figure.860

3. An example layout of a split plot design with blocks. Three main plots are in861

each block, and one replicate of each of three levels of an irrigation factor, I1,862

I2 and I3, is independently and randomly allocated to a main plot within each863

block. The three levels of the irrigation factor are distinguished in this figure by864

dark grey, light grey or white shading. Within each main plot are four sub plots865

and one replicate of each of four manurial treatments, M1, M2, M3 and M4, is866

independently and randomly allocated to a sub plot within each main plot.867

4. An example lay-out of the same completely randomized balanced experimental868

design exemplified in Figure 1 with sites for collection of three soil cores (black869

discs) independently and randomly located within each plot.870
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