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Abstract 

Breakthrough curves (BTCs) observed during tracer tests in highly heterogeneous aquifers 

display strong tailing. Power laws are popular models for both the empirical fitting of these 

curves, and the prediction of transport using upscaling models based on best-fitted estimated 

parameters (e.g. the power law slope or exponent). The predictive capacity of power law based 

upscaling models can be however questioned due to the difficulties to link model parameters 

with the aquifers’ physical properties. This work analyzes two aspects that can limit the use of 

power laws as effective predictive tools: (a) the implication of statistical subsampling, which 

often render power law undistinguishable from other heavily tailed distributions, such as the 

logarithmic (LOG); (b) the difficulties to reconcile fitting parameters obtained from models 

with different formulations, such as the presence of a late-time cutoff in the power law model. 

Two rigorous and systematic stochastic analyses, one based on benchmark distributions and the 

other on BTCs obtained from transport simulations, are analyzed. It is found that a power law 

model without cutoff (PL) results in best-fitted exponents     ) falling in the range of typical 

experimental values reported in the literature            . The PL exponent tends to lower 

values as the tailing becomes heavier. Strong fluctuations occur when the number of samples is 

limited, due to the effects of subsampling. On the other hand, when the power law model 

embeds a cutoff (PLCO), the best-fitted exponent (   ) is insensitive to the degree of tailing 

and to the effects of subsampling and tends to a constant      . In the PLCO model, the 

cutoff rate     is the parameter that fully reproduces the persistence of the tailing and is shown 

to be inversely correlated to the LOG scale parameter (i.e. with the skewness of the 

distribution). The theoretical results are consistent with the fitting analysis of a tracer test 

performed during the MADE-5 experiment. It is shown that a simple mechanistic upscaling 
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model based on the PLCO formulation is able to predict the ensemble of BTCs from the 

stochastic transport simulations without the need of any fitted parameters. The model embeds 

the constant       and relies on a stratified description of the transport mechanisms to 

estimate  . The PL fails to reproduce the ensemble of BTCs at late time, while the LOG model 

provides consistent results as the PLCO model, however without a clear mechanistic link 

between physical properties and model parameters. It is concluded that, while all parametric 

models may work equally well (or equally wrong) for the empirical fitting of the experimental 

BTCs tails due to the effects of subsampling, for predictive purposes this is not true. A careful 

selection of the proper heavily tailed models and corresponding parameters is required to ensure 

physically-based transport predictions. 

 Keywords: upscaling; power law; tracer tests; tailing; anomalous transport; MADE site. 

1. Introduction 

Solute transport in advection-dominated highly heterogeneous aquifers typically results in a 

strongly non-symmetric shape of the breakthrough curves (BTCs). Strong late-time tailing is the 

result of large contrasts in flow velocity and of solute channeling along preferential paths (e.g. 

Bianchi and Pedretti, 2017; Fiori, 2014; Le Borgne et al., 2008; Willmann et al., 2008). Even 

though the BTC tails may account for only a few % of the total initial contaminant mass, the 

corresponding concentrations can still exceed an identified limit of water toxicity, generating a 

risk for humans and other sensible receptors exposed to such polluted groundwater. Therefore, 

modeling of solute transport in heterogeneous aquifer must be able to adequately represent and 

predict the persistence of concentrations in time.  

Because the non-symmetric shape of the BTCs complicates the interpretation of tracer tests by 

means of the classic Fickian interpretation of the transport processes, alternative non-Fickian 

approaches have been proposed in recent years to reproduce tailing (e.g. Benson et al., 2000; 

Berkowitz et al., 2006; Haggerty et al., 2000). These upscaling or “proxy” models (Fiori et al., 

2015) embed effective functions, such as memory functions (Carrera et al., 1998), whose 

parametric forms resemble that of the experimental curves (e.g. Haggerty et al., 2000), allowing 

the models to mimic the BTC tails. 
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Power law distributions seem to be the model of choice to describe BTC tailing for upscaling 

purposes (e.g. Becker and Shapiro, 2003; Dentz and Berkowitz, 2003; Dreuzy and Carrera, 

2016; Edery et al., 2014; Farrell and Reinhard, 1994; Fiori and Becker, 2015; Gouze et al., 

2008; Luo et al., 2007; Sanchez-Vila and Carrera, 2004; Willmann et al., 2008; Zhang et al., 

2013). Although a variety of other non-symmetric parametric statistical functions can be 

adopted for the same purpose (Haggerty et al. 2000), e.g. the logarithmic model (e.g. McKenna 

et al., 2001; Pedit and Miller, 1994), the popularity of power law models can be ascribed to the 

apparent linear behavior formed by the BTC tails when plotted in double-log scales (Figure 1). 

From model fitting of experimental tracer tests, the power law exponent or slope ( ) has been 

observed to vary between   1 and    5 when fitting experimental BTCs observed during 

tracer tests conducted in a variety of flow regimes and transport conditions in heterogeneous 

aquifers (e.g. Bianchi et al., 2011; BRGM, 1990; Hadermann and Heer, 1996; Haggerty et al., 

2000; Pedretti et al., 2013; Sanchez-Vila and Carrera, 2004; Willmann et al., 2008; Zhang et al., 

2013).  

The predictive ability of effective models has been questioned by several authors (e.g. Fiori et 

al., 2015; Neuman and Tartakovsky, 2009). A key problem relies in the lack of a solid link 

between mathematical parameters such as the power law exponents and the physical properties 

of the aquifers (e.g. Flach, 2012; Willmann et al., 2008; Zhang et al., 2013), for instance the 

spatial distribution of the hydraulic conductivity (K). Indeed, the mechanisms leading to power 

law tailing in the BTCs have been identified only in very limited circumstances. For instance, 

      is expected in the case of matrix diffusion (Hadermann and Heer, 1996), while Pedretti 

et al., (2013) found     for radially convergent transport. Fiori et al.  (2007) used a power-

law based approach to show that, for   fields with univariate power-law distributions of  

     , the expected scaling of a travel time distribution at late time is also a power-law 

function, with   linked to the slope of the     distribution. Zhang et al. (2014) showed that   

can be related to the statistical distribution of volumetric fractions of low permeable facies in 

alluvial aquifer systems consisting of series of mobile and immobile zones. For many other 

types of aquifers and transport conditions, however, a universal mechanistic model for the 

description of late time tailing of the BTC has still not been identified. As such, the exponents 

of the power law models used in upscaled transport models are generally empirical since their 
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estimation is based on fitting or calibration of the experimental data (i.e. ex post evaluation) 

rather than on a predictive analysis (i.e. ex ante evaluation). 

Using power laws as empirical fitting tools is, however, not trivial and uncertain especially 

when the number of observations is limited, as the effects of subsampling can potentially 

confuse the interpretation of the results. Indeed, for small datasets, other skewed statistical 

distributions such as the exponential, Weibull, gamma, Zipf, or the lognormal distributions may 

resemble power laws when plotted in double log scales (Clauset et al., 2009; Goldstein et al., 

2004; Mitzenmacher, 2004). Sparseness of data especially toward the late times is not 

uncommon for BTCs observed in field conditions, due to the interruption of the monitoring 

after a certain experimental time (e.g. Haggerty et al., 2004) or because of limitations (e.g. 

detection limits) of the methods used to measure the concentrations. Some of the difficulties of 

finding a representative model for the description of the tailing in the BTC are illustrated in 

Figure 1. The formulation of all models used in this example are reported in Table 1, and 

presented in detail in next sections. 

In Figure 1a, a reference BTC is generated using the power law model without cutoff (PL) 

model as the memory function of the multi-rate mass transfer transport code STAMMT-L 

(Haggerty and Reeves, 2002), and then fitted using the lognormal model (LOG). In Figure 1b, 

the two models are inverted, i.e. the reference BTC is generated with a LOG memory function, 

while the best fitted curve is a PL model. The entry parameters for the reference distributions in 

the both left and right examples are physically based and in line with the compilation of results 

by Haggerty et al. (2000). Note how easily PL and LOG models can be misinterpreted as the 

correct models to describe the BTC tailing. The identification is further complicated by the fact 

that the tails of the LOG model follow apparent straight lines in log-log plots similar to the PL 

model. Indeed, it has been already demonstrated that a visual inspection to double log plots is 

insufficient to determine if a curve is actually power law distributed (e.g. Clauset et al., 2009). 

Among the existing mathematical tools to estimate the best fitting parameters, such as 

maximum likelihood estimators (MLEs) or regressive methods (e.g. Benson et al., 2001; 

Haggerty and Reeves, 2002; Kelly et al., 2017; Mehdinejadiani, 2017), it has been shown that 

MLEs provide more accurate and reliable results in presence of limited datasets (Clauset et al., 

2009) and should be therefore preferred.  
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Another potential difficulty of using power laws as empirical fitting tools stems from the 

misinterpretation of best fitting parameters when different power law formulations are adopted 

and compared. This is illustrated in Figure 1c, which shows the concentrations measured during 

a dipole flow tracer test (MADE-5 test) performed in the alluvial aquifer in Columbus, USA 

(Zheng et al., 2011). Details of the experiment are presented by Bianchi et al. (2011). Here, the 

experimental BTC is normalized using concentration peak and corresponding time, and plotted 

in double log scales to emphasize the power-law-like behavior of the late-time tail. Two power 

law models have been fitted to the experimental data to describe BTC tails, the power law 

model without cutoff (PL) and the power law model with exponential late-time cutoff (PLCO). 

While the PL model is probably the most adopted formulation for fitting purposes (e.g. 

Willmann et al., 2008; Zhang et al., 2013), the PLCO model has also been introduced to 

describe the very late arrival of extremely diluted concentrations and the sudden drop in the 

BTC tail at large time scales (e.g. (Bijeljic et al., 2011; Dentz et al., 2004; Wang and Cardenas, 

2017; Zhang et al., 2013). Fewer studies have applied the PLCO model compared to the PL 

model, probably because the PLCO requires calibration of two parameters (i.e. slope and cut-off 

rate) while the PL model needs just one (i.e. the slope). A notable difference in the estimated 

exponents for the two power law models is observed. When the PL is fitted to the data, the 

estimated exponent is         , while the corresponding value for the PLCO model is 

        , i.e. being significantly smaller than the one estimated without embedding the 

cutoff in the power law based formulations. 

It is therefore reasonable to ask the following questions. How different power laws are from 

other similar statistical models (e.g. the LOG model) and what is the consequence of choosing 

one or the other on the predictability of transport behavior? Is the difference in estimated slopes 

between PL and PLCO models in Figure 1c a specific result of the considered case study or a 

more general outcome? More importantly, does it matter to select a specific heavily tailed 

model for what concerns both representativeness (i.e. capacity of fitting a BTC) and 

predictability of transport? This work aims to answer to these questions by means of two 

stochastic analyses, one based on a combination of benchmark simulations and the other based 

on stochastic transport simulations in highly heterogeneous aquifers. The analysis is supported 

by a Supplementary Information (SI) online document, which reports additional analyses and 

details of the study not reported in the main manuscript.. 
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2. Theoretical analysis 

A theoretical analysis based on benchmark distributions is performed to assess in detail (a) the 

effect of subsampling on the accuracy and representativeness of power law models and on the 

robustness of their best-fitted parameters, and (b) the departure of PL and PLCO models to 

describe tailed distributions when used as fitting models. The testing methodology follows the 

well-established approaches described in Clauset et al (2009) and adopts a scenario-based 

Monte Carlo framework that follows three main steps. 

1. For each analyzed model (PL, PLCO, LOG), a set of specific reference parameters is 

selected and ensembles of 1000 vectors containing n independently and identically 

distributed pseudo-random values are generated with different sizes from       to 

     .  

2. Maximum likelihood estimation is performed to obtain best fitting parameters for each 

statistical model in order to explore the impact of subsampling on the estimations and 

the similarity among heavily tailed models.  

3. The ensemble of estimated parameters for each tested scenarios is analyzed and 

discussed.  

It is noted that, while Clauset et al (2009) already addressed some aspects analyzed in this work 

(in particular, the departure of a PL model from a LOG model), we extend that work by adding 

a full evaluation of the behavior of  the PLCO model, which to our best knowledge has not been 

reported yet in the literature. 

2.1 Methodology 

Table 1 summarizes the key equations (Equations 1-11) defining the models adopted in this 

work and corresponding best estimators and log-likelihoods ( ). Equation 1 describes the 

probability density function (pdf) of the PL model (e.g. Bauke, 2007; Clauset et al., 2009; 

Goldstein et al., 2004; Mitzenmacher, 2004; Reed, 2001), where     is the slope or exponent,   

is the random variable,   is the probability density and    is the “early time truncation” setting 

the beginning of the tail (not to be confused with the late time truncation of the power law 

model with exponential cutoff, defined hereafter). Equation 2 describes the pdf of the power law 
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model with exponential cutoff (PLCO) (e.g. Clauset et al., 2009), where   is the Gamma 

function,     is the slope or exponent and   is the parameter setting the “late time truncation” 

or end of the PL regime, such that       . Equation 3 describes the pdf of the LOG model 

(e.g. Mitzenmacher, 2004), where   is the scale parameter and   is the shape parameter. Similar 

to the PL, this model requires only two fitting parameters. It is important to recall that in the 

LOG model   is the only parameter controlling the skewness, or degree of tailing, of the 

distribution (  does not control the shape of the distribution). The greater  , the more skewed 

the distribution and heavier the tail (e.g. Blackwood, 1992), while the distributions tends to a 

more symmetric distribution as     (e.g. Crow and Shimizu, 1988, p. 3). A LOG model can 

also embed an early time truncation   , such that the pdf takes the form of Equation 4  (Clauset 

et al., 2009). In all models, in the context of BTCs, the density p corresponds to the solute 

concentration [ML
-3

],   is the experimental time [T], and    [T] can coincide with the 

concentration peak (   ). The late-time cutoff   has units [T
-1

]. 

Ensembles of vectors containing pseudo-random values    (where        ) are generated 

with a standard and well-adopted transformation approach (Clauset et al., 2009 - App. D; Press 

et al., 1992). In the context of solute transport, each vector can represent the distribution of first-

passage times of solute particles at a control plane in the aquifer, from which a BTC can be 

estimated (e.g. Pedretti and Fernàndez-Garcia, 2013). Best-fitted parameters of the models 

fitting each vector are estimated using MLE methods. From Table 1, note that sometimes the 

best estimator of a parameter can be obtained analytically; when it is not possible, a numerical 

minimization of   is needed (in this work we used a least-square minimization approach). For 

the PL, the best estimator of the slope,     , can be obtained analytically minimizing Equation 

1, which is obtained by taking the derivative with respect to     and setting it to zero. On the 

other hand, for the PLCO, the estimated parameters (   
    ) need to be found numerically. For 

LOG model, the best estimated parameters       can be fully found analytically. For the 

truncated version of the LOG model, on the other hand, a numerical model is required to 

minimize the corresponding log-likelihood function (Equation 11), where          is the value 

of the cumulative probability function of the non-truncated LOG model at   .  

The MLEs for the PL, PLCO and truncated LOG models require defining the start of the tail of 

the distribution (  ). For BTCs, it is reasonable to assume that    corresponds to the time of the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9 

 

concentration peak. Therefore,    does not need to be fitted. If    is unknown, however, one 

option would to estimate it using a Kolmogorov-Smirnov (KS) test, minimizing the distance ( ) 

between the cumulative density function (CDF) of the empirical data,  , and the CDF of the 

estimated data,   . 

For a pair of statistical models, the normalized log-likelihood ratio,  , can be adopted to 

identify which between the two models best represents the data. The log-likelihood ratio    is 

defined as 

   
  

  
            (12) 

where    and    are the calculated log-likelihoods for the pair of models to be compared. A 

normalization is required to compare   values from distributions of different sizes, such that 

(Clauset et al. 2009) 

  
  

   
           (13) 

where    is the standard deviation of   . Two distributions are considered similar in terms of 

representativeness of the reference data when    , whereas   tending to large (positive or 

negative) numbers indicates a stronger affinity of the data towards one distribution. 

The goodness-of-fit (gof) test is performed to determine the statistical significance of  . The gof 

adopts the KS test, which compares the empirical CDF and an ensemble of     random 

vectors following the same distribution. The gof is the probability ( ) that the empirical CDF is 

larger than the CDF of the hypothesized distributions with a set of estimated parameters. As in 

work of Clauset et al. (2009), we set    1000 and a probability of 0.1 to define the threshold, 

below which the hypothesis that “the empirical data are PL distributed” is rejected. The more 

   , the more the differences between empirical data and model can be attributed to 

statistical fluctuation only.  
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2.2 Analysis 

2.2.1 PL distributed random numbers  

A first test was performed using the PL model as the reference model to generate random 

numbers. The distributions consider   =1 and      , which is similar to the minimum slopes 

for BTCs reported by Willmann et al. (2008). The ensemble of estimated parameters and 

statistics are shown in Figure 2 in the form of boxplots for different sample sizes. The top panel 

(a) shows the boxplots of the PL estimated    
 , the mid panels (b,c) show the PLCO estimated 

   
  and   , while the bottom panels (d,e) show the truncated LOG estimated      . The median 

of the distributions is hereafter indicated by a superscript      for a generic variable  , and 

corresponds to the red line in the box plots in all figures reported in this work.  

From Figure 2a, it can be observed that the estimated    
  converges to the reference value 

      for an increasing sample size. The MLE slopes become accurate for      , as the 

fluctuations of the first interquartile range are of the order of    
         when       , 

while dropping to    
        when      . Observing Figure 2b, the PLCO model 

provides very similar results for the estimated slope    
 . This behavior can be expected 

considering that the PLCO is a generalization of the PL model. Notably, for increasing  , the 

best estimates of the PLCO model are obtained for constant    
  and increasing   . In other 

words, for increasing sample size  , the late-time cutoff is estimated to be further away from the 

early time cutoff,     The median of the exponential cutoff value increases at a rate roughly 

close to             . This can be explained considering that, for the same set of parameters 

and due to the effects of subsampling, a distribution with larger   has higher chances to embed 

extreme values. As such, the tails tend to be more persistent and extended over a larger number 

of log cycles, as   increases. Therefore, λ can provide information regarding to the temporal 

extension (or persistence) of the tail of the distribution, which in the context of solute transport 

can be interpreted as the persistence of the late-time concentrations on the BTC.  

Observing Figure 2d and Figure 2e, the LOG model generates a very erratic distribution of 

estimated parameters. This is particularly true for small  , where large fluctuations around the 

median values are noted. As   increases, the median values stabilize around strongly negative 
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mean values (          ) and high standard deviation (        ). Although it is not 

straightforward to provide a quantitative explanation for these specific estimated values, we 

note that a LOG model with very high standard deviation tends to converge towards a power 

law model (this is formally proved in the next section, in the context of LOG distributed random 

numbers). Another important aspect to note is that       increases as   increases. This behavior 

is inversely proportional to that of       estimated using PLCO (Figure 2c). As in the case of  , 

this is explained considering that the probability of occurrence of large random number 

increases as n increases. This means that not only the skewness of distribution (controlled by   

in the LOG model) is a function on  , but also that   can provide information about both 

persistence and skewness of the tails.  

For each pair of tested distributions, the corresponding ensembles of resulting statistical 

parameters R and p-values are provided in Figure 3. At the top, Figure 3a and Figure 3b 

compare the PL versus LOG normalized ratio. It can be noted that the median of the log-

likelihood ratio is always close to        , independently from  . This result confirms (e.g. 

Bauke, 2007; Clauset et al., 2009; Fiori et al., 2007; Goldstein et al., 2004; Haggerty et al., 

2000; Mitzenmacher, 2004) that, even if the random numbers are generated using a PL model, it 

is very difficult to distinguish a PL model from a LOG model when fitting empirical datasets. In 

the context of solute transport modeling, it means that even if the mechanisms controlling the 

late-time concentrations are PL distributed, it is virtually impossible to discern a PL or LOG 

based mechanism building up the BTC tails only on the basis of an empirical curve-fitting 

exercise. This issue is further corroborated from the analysis of the  -values, which measure the 

statistical significance of R. For the pair PL-LOG models, the threshold  =0.1 is often 

exceeded, while the median value has an inconsistent behavior with  . This suggests that   

cannot statistically discriminate which model is more representative of the reference data. 

Similar observations can be drawn observing the other pairs of distributions PLCO-LOG 

(Figure 3c and Figure 3d) and PLCO-PL (Figure 3e and Figure 3f). In summary, this analysis 

suggests that, when the reference data are PL distributed, any fitting model can equally well 

describe the data. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 

 

2.2.2 PLCO distributed random numbers  

Two tests using PLCO as reference model were performed. The first test, described hereafter, is 

inspired on the PLCO best-fitted parameters from the MADE-5 dataset (Figure 1c) and embeds 

  =1,     1.2 and λ = 10
-3

. The corresponding estimated parameters using the PL, PLCO and 

LOG models are reported in Figure 4. The second test embeds a more persistent tail (       ) 

and is reported in the SI (Text S1), as it provides qualitatively similar conclusions as the first 

test.  

In both tests it was found that the ensemble median PLCO parameters have been correctly 

identified for large datasets, as the fluctuations of the estimated slope      around the median 

reduce as   increases consistently with the behavior of      estimated for the PL distributed 

random numbers (Section 2.2.1; Figure 2a). For     the fluctuations tend to become small 

(statistical errors of the order of            ) for number of samples      . Recalling that   

represents the data forming the curves tailing,       means that a large amount of values is 

needed at late time in order to reduce the statistical errors during the fitting analysis. This may 

become an issue for practical applications, given that experimental data are typically limited in 

time, while for numerical simulations more computationally demanding simulations (e.g. more 

particles in Lagrangian simulations) may be needed to make accurate estimations of the PLCO 

values. 

When the PL model is used to fit the PLCO dataset (Figure 4c), the estimated      also tends to 

converge to a unique value as for    
 . However, note that      converges to a wrong value 

close to         , i.e. to a higher slope than the reference one. This departure in estimated 

slopes between fitted PL and reference PLCO models was also found when these models were 

fitted to the MADE-5 site data (Figure 1c). The LOG-estimated parameters (Figure 4e and 

Figure 4f) also tend to converge to a unique set of parameters as n increases, with      and 

    . The latter value is consistent with the expected shape of heavily tailed BTCs, as 

reported for instance by Haggerty et al. (2000). Very low fluctuations around the median are 

also observed for the LOG best-fitted parameters as   increases.  

In Figure 5a, the log-likelihood ratio between the PLCO and LOG models tends to large 

positive values as   increases, rightly suggesting that the PLCO model is a more capable than 
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the LOG model to describe the PLCO distributed reference data. This might seem a foregone 

conclusion, but it is recalled that when the reference data were generated according to a PL 

distribution, all models were found to be equally valid descriptions according to their respective 

R values (end of Section 2.2.1). In Figure 5b, it can also be observed that for increasing   the 

 =0.1 threshold is never exceeded, reflecting the fact that   is a statistically reliable metric to 

distinguish between the two distributions. The comparison between PLCO and PL models 

(Figure 5c and Figure 5d) also shows that the PL model is not particularly effective in 

representing PLCO data as shown by the behavior of R (Figure 5e), which tends to very 

negative values as   increases. Note also that the results further suggest that a LOG model 

outperforms the PL model to statistically describe the distribution of the data. The validity of 

this result is corroborated by the   value (Figure 5f), which does not exceed the  =0.1 

threshold, except for small   values.  

The results from the PLCO distributed data highlights two important points worth discussing. 

The first point is that, while the PLCO model is a good approximation of PL distributed data (as 

discussed in Section 2.3.1), the opposite is not true. The PL model does not reproduce the 

reference slope when the data are PLCO distributed. The reason is associated to the effects of 

the truncation in the PLCO model, which limits the extension of the tails to a finite value, while 

the tails of the PL model extends endlessly. A cutoff is always expected during solute transport 

tracer tests due to the finite nature of the injected tracer mass. Therefore, one should opt to a 

PLCO formulation rather than a PL formulation when using power laws to reproduce BTC 

tailing for the interpretation of tracer tests. , although the effects of subsampling may create a 

significant uncertainty in the statistical assessment. To support the importance of the cutoff on 

the power law model selection, it is also recalled that the moments of the PL model are by 

definition infinite, while the truncation generates finite moments to the PLCO model. The LOG 

model is also characterized by finite moments, explaining why the LOG model outperforms the 

PL model when describing PLCO random datasets. The second point is that a suite of models 

need to be considered and tested to identify which one best describes the reference dataset (i.e. 

the BTC). Comparing only two models is not enough for this purpose, even if the   and   

values indicate that one model dominates over the other (as in the case of LOG over the PL).  
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2.2.3 LOG distributed data  

Three final tests were run to evaluate the theoretical behavior of MLE best-fitted PL and PLCO 

parameters from random data generated using the LOG model. Two tests were performed with 

an identical methodology as for the analysis of PL and PLCO distributed data. Using different 

reference LOG parameters, the results (SI, Text S2-S3) show consistency with the previous 

analyses in what concerns the effects of the statistical subsampling and estimated best fitted 

parameters. In particular, these tests remark once again the existence of a correlation between 

the PLCO exponential cutoff rate   and the LOG shape parameter  , and that the power law 

slopes is observed to be less clearly correlated to the distribution tailing. 

The third test was performed with a slightly different approach than the previous tests. Rather 

than focusing on the effect of subsampling, the third test focuses on the behavior of PL and 

PLCO best fitting parameters as a response to a systematic increment in the degree of tailing in 

the LOG distribution. To this end, all individual random distributions are obtained imposing 

    and setting n      , while increasing the shape parameters from     to    . This 

range is in line with the variability of LOG shape parameters estimated from the analysis of 

experimental tracer tests reported by Haggerty et al. (2000). 

The results of the third test are reported in Figure 6. The results plotted in panel (a) confirm that 

the effects of subsampling are negligible, while panel (b) shows that as the tailing (i.e.,    

increases, the estimated      tend to drop from    
      to a minimum asymptotic value 

   
      . The range of estimated PL exponents is remarkably close to the range of variability 

of experimental slopes reported in the literature (e.g. Haggerty et al., 2000; Pedretti and Fiori, 

2013; Willmann et al., 2008; Zhang et al., 2013), and similar to the slope found from the 

interpretation of the MADE-5 tracer test using the PL (Figure 1c). The asymptotic behavior of 

the PL slopes observed in our theoretical analysis is also consistent with the behavior of the PL 

slopes estimated from the analysis of transport in heterogeneous permeable fields with different 

connectivity by Willmann et al. (2008). Another significant result is that the minimum PL slope 

value    
       is not dissimilar from the minimum values estimated for the BTCs simulated 

by Zhang et al. (2013).  
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The PLCO model generates a constant best fitted    
      independently from degree of 

tailing of the reference distribution (Figure 6c). This value is similar to the one  found for the 

best fitted PLCO model of the MADE-5 data (Figure 1c), and lower than the minimum slopes 

reported in the literature by Willmann et al. (2008) and Zhang et al. (2013). The fact that the 

slope is closer to the unit is more consistent with the expected power law scaling of a LOG 

model for increasing higher skewness. Indeed, from the log-transformation of the terms of 

Equation (3) one obtains (e.g. Mitzenmacher, 2004) 

            {        
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]}         √    
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Rearranging (14), it turns out that  
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    )         √    
  

        (15) 

such that, for large  , the solution can be approximated as  

                           (16) 

where   is a constant. Equation (16) shows that LOG distribution with increasingly higher 

skewness can be approximated by a power law model with exponent    .  Thus, the fact that 

the estimated PLCO slopes (       ) are closer to the unit than the estimated PL slopes 

(       ) supports the higher validity of PLCO models as fitting tools compared to the PL 

model.  

The results in Figure 6d remark the existence of a clear inverse correlation between LOG   and 

PLCO  . This last result is a further proof for the use of   as a metric to describe the persistence 

of tailing and the skewness of the distribution. This important property is adopted in the 

following section to provide an alternative approach for using power-law based upscaling 

models as predictive tools, relying on   as the key predictive variable instead of  .  

3. Fitting transport in highly heterogeneous media 

The analyses presented in this section focus on assessing the use of the PL, PLCO, and LOG 

models as empirical tools to describe BTCs tailing. A stochastic numerical analysis simulating 
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transport in a highly heterogeneous alluvial systems is adopted to obtain reference BTCs with 

heavy tailing. Since for this type of aquifers and transport conditions it is not possible to assume 

a priori a parametric function form of the BTC tails, the use of MLE-based statistics can 

provide insights regarding (a) which among the tested parametric models provide the most 

representative description of the data, (b) the implication of the subsampling on the parametric 

inference, and (c) the resulting power law slopes estimated using PL and PLCO models. 

3.1 Reference BTCs 

The reference BTCs are obtained from new numerical simulations of flow and transport in one 

of the aquifer scenarios previously considered by Bianchi and Pedretti (2017). This scenario is 

based on the heterogeneity of the Lawrence Livermore National Laboratory alluvial aquifer 

described in several publications (e.g. LaBolle and Fogg, 2001; Zhang et al., 2013). Transport 

simulations in this work differ from those reported in Bianchi and Pedretti (2017) exclusively in 

terms of number of particles (  ) used to run the Lagrangian transport simulations and of the 

distance between injection and observation plane. However, the numerical setup is left 

unchanged and the reader is referred to the previous work for a detailed description.  

The simulations reproduce 3D conservative tracer tests in   =100 realizations of the 

distribution of 5 hydrofacies generated using the Markov-chain / transition probability 

algorithm T-PROGS (Carle and Fogg, 1997). The hydrofacies with highest hydraulic 

conductivity ( ) is characterized by  =5.184 m/day and account for 18% of the aquifer 

volume. The total variance of the system is       
 = 24.9, i.e. a much higher heterogeneity for 

instance than the MADE site where       
 <6 (Bohling et al., 2016), since it is representative of 

an aquifer system with multimodal K distribution (e.g. Zhang et al., 2013). The high   

hydrofacies have mean lengths equal to 10m, 50m and 1.3m in in x, y, and z directions, 

respectively; the mean flow is parallel to   in these simulations. In each simulation, flow is 

resolved using a finite difference code (Harbaugh et al., 2000), while transport is resolved using 

random walk particle tracking (Salamon et al., 2006). For all the hydrofacies, the model 

consider local isotropic dispersivity of 0.01 m, local effective diffusion of               and 

constant effective porosity of 0.1. The injection of the tracer mass, discretized into    particles 

of equal mass, takes place as a pulse along a fully penetrating passive borehole using a flux-
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averaged injection scheme. The simulations are run using different sets of    (up to 10
6
) in 

order to test the effects of statistical subsampling (analogously to   used in the theoretical tests). 

The resulting BTCs are measured from the ensemble of first passage times crossing a vertical 

plane located at a distance      m downgradient of the injection line. The cumulative 

distribution functions (cdfs) of particles arrival times are then transformed into area-normalized 

BTCs using the approach described in Pedretti and Fernàndez-Garcia (2013).  

For illustrative purposes, the ensemble of BTCs obtained from the numerical simulations using 

the maximum number of particles is reported in the SI (Text S4). It can be observed that the 

BTCs are significantly right skewed, with peaks located between t=10
2 

d and t=10
3
 d  from the 

beginning of the simulations and tailing persistent over a few log cycles, with cutoffs between 

t=10
4
 d and t=10

6 
d. This strongly non-symmetric behavior is due to the combination of an 

extremely high variance (      
    ) and the spatial organization of the hydrofacies resulting 

in a low relative geoentropy,   = 0.32 (Bianchi and Pedretti, 2017). As shown in Bianchi and 

Pedretti (2017), the resulting BTCs are more skewed than for instance those simulated, for 

similar transport conditions, assuming that the aquifer heterogeneity is similar to that of MADE 

site according to the analysis of Bianchi and Zheng (2016). 

The temporal scale of the early times and of the exponential cutoff in the simulated BTCs is 

quite variable among the realizations, as illustrated by the small inset in Figure S7 (SI) which 

depicts two BTCs randomly drawn from the ensemble. A normalization is done such that the 

cdfs of arrival times are normalized by the concentration peak time (    . The corresponding 

pdfs recalculated after this normalization are shown in Figure S8 (SI). It can be observed that 

the curves now collapse and, on a visual inspection, a “power-law-like” behavior with a clearly 

identified exponential cutoff is now observed at a normalized time (       ) between   10
3 

and   10
4
. The adopted normalization intrinsically implies that the beginning of the tails,   , 

corresponds to    .  

3.2 Parametric estimation of BTC tailing and analysis 

MLE-based estimators are applied to obtain the best fitting parameters from the normalized 

BTCs. The results are shown in Figure 7. The best-fitted PL slope      (Figure 7a) was found to 
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fluctuate between          and       , being quite insensitive to the number of particles. 

For the largest dataset (      ) the median value results in     
        , while the median 

values for the estimated slopes of the PLCO model (Figure 7b) are equal to a value     
    

    . The range of the cutoff rates varies between         and         (Figure 7c), which 

indicates that the cutoff lies somewhere between 2 and 4 time-normalized log cycles after the 

BTC peak (    , as one can also see in Figure S8 (SI). The range of estimated PLCO 

parameters is insensitive to the number of particles used in the simulations. The behavior of the 

estimated LOG parameters (Figure 7d and Figure 7e) is also consistent with the results of the 

theoretical analysis. In particular, the median value for the shape parameter is           , in 

line with the results illustrated in Figure 6 for the corresponding best fitted power law slopes. 

The analysis of R and p-values suggests that both LOG and PLCO models largely outperform 

PL (results not reported). Comparing the PLCO/ LOG log-likelihood ratio (Figure 7f and Figure 

7g) it was found that R tends towards positive values, suggesting that the PLCO model is 

statistically more representative than the LOG model. This result gains relevance as    

increases and it is well supported by the p-values, which are always below the threshold for 

         

Analyzing the behavior of estimated parameters of the reference BTCs from the numerical 

simulations, several analogies emerge with the results presented in Section 2. The     
         

is in line with the slopes reported by Zhang et al. (2013), who analyzed similar transport 

conditions, with the minimum    
  obtained from the analysis of heavily-tailed distributed 

benchmark random numbers (Section 2), and with the estimated PL slope for the BTC observed 

during MADE-5 experiment (Figure 1c). The     
         found for the PLCO model also in 

line the theoretical results presented in Section 2 and the analysis of the MADE-5 data, and 

again tending to     expected from skewed distribution represented by LOG models. The 

results cast some doubts however on the validity of the PL formulation to describe the tails, 

primarily because the   tests (supported the  -values) suggest that the PLCO is much more 

valid model than the PL. Moreover, the fact that estimated PL slope is substantially different 

than the slope of the PLCO model generates also doubt on the actual reliability of     
       . 

The fact that the PLCO model outperforms the LOG model suggests that the transport 

mechanisms forming the BTC tails can indeed generate a power law like behavior on the tail. 
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However, for predictive upscaling purposes, the cutoff associated with the finite injected mass 

should not be ignored when using power laws, as shown in the following Section. 

4. Predicting transport in highly heterogeneous media 

From the analyses presented so far, it was found that: 

 Transport simulations showed that BTC tailing may be better described using a power law 

model with cutoff (PLCO) than using the power law without cutoff (PL) or a LOG model.  

 When fitting distributions with increasing tailing (Section 2.2.3), the best-fitted power law 

exponent of the PLCO model tends to a constant unit value insensitive to the degree of 

tailing. In particular, a power law behavior with     is expected for highly skewed 

distributions, as such those described by LOG distributions with large σ. Experimental 

results from tracer tests in highly heterogeneous systems (e.g. Haggerty et al., 2000) confirm 

the empirical estimation of large   in these systems. 

 A power law value close to the unit has been found from both the stochastic simulations 

performed in extremely heterogeneous system and from the analysis of a tracer test at the 

MADE-site, which is characterized by a relative milder degree of heterogeneity. 

 The lateral persistence of the tailing is fully simulated by the PLCO cutoff rates  , which 

determine the characteristic time (   ) at which the power law regime drops. Being 

correlated to      is also a metric for the skewness of the distribution.  

Based on these evidences, it is hereby explored if solute transport can be predicted by invoking 

a PLCO model embedding a universally valid       and assuming the cutoff rate ( ) as the 

critical parameter controlling transport. To support this hypothesis, a simple mechanistic PLCO-

based model is formulated and used to make a prediction of the ensemble of BTCs obtained 

from the stochastic transport simulation presented in Section 3. The prediction is free of fitting 

parameters, as   can be estimated assuming purely advective stratified transport, as follows. 

In the highly heterogeneous simulations presented in this work, the distance of plume migration 

is comparable to the characteristic scales of the aquifer heterogeneity. Under these conditions, a 

stratified model is a reasonable approximation to describe the solute plume behavior (e.g. Dentz 

and Carrera, 2007; Gelhar et al., 1979; Pedretti and Fiori, 2013). Using a similar conceptual 
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model as the one adopted by Pedretti et al. (2013) to describe the formation of tailing under 

radial convergent transport, a BTC can be seen as the convolution of multiple “sub BTCs” 

formed by pools of particles characterized by similar travel times. The pool of fastest particles 

forms the early time segment of the BTC, while the pool of slowest particles form the late time 

tail of the BTC. Figure S9 (SI) describes the evolution in space (parallel to the mean aquifer 

gradient) of the Lagrangian velocities of two particles. One particle (in blue) is representative of 

the Lagrangian velocities of the fastest particles (  ), while the other (in red) is representative of 

the slowest particles (  ). For short travel distances (L<100m, i.e. less than two times the mean 

facies lengths along the mean aquifer gradient), these velocities are very different and fluctuate 

over several order of magnitude. The control plane used to calculate the BTC in this work is 

located exactly at L=100m. For larger travel distances (L>100m), the velocities become 

comparable, as the particles transition from slow- to fast-flow paths and subsequently tend to 

remain within these. In a perfectly stratified media, the time delay (  ) between the fastest and 

the slowest pools of particles arriving at the control plane can be calculated as  

     
 

  
 

 

  
            (17) 

where    and    are respectively the maximum and minimum Lagrangian velocities at the 

injection line . Recalling that in the PLCO model the cutoff rate ( ) was found to be 

proportional to the persistence the tail, it is possible to express the cutoff rate as the inverse of 

the time delay, i.e.  

     
   

  
 .           (18) 

Since the BTCs in our numerical experiment are obtained from stochastic simulations,    is a 

random variable, as the maximum difference in transport rates randomly varies depending on 

the realization-specific transport conditions. An ensemble average of      can be then calculated 

from the harmonic mean    ) of the    values from the each realization of the   field. For the 

numerical experiment in this study, this calculation results in   =0.0017.  

The resulting BTCs generated using PLCO models embedding   =0.0017 and different     are 

shown in Figure 8a, along which the ensemble mean of the numerical BTCs is reported as a 
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thick black line. The PLCO based model embedding       (red dotted line), hypothesized to 

be predictive of the ensemble, agrees reasonably well with the ensemble and when compared 

with the model embedding the         (close to the best fitting    
            Not only the 

initial part of the tail is reproduced fairly well, but the cutoff rate is also nicely matched. A 

sensitivity around the slope indicates that the models embedding increasingly higher     tends 

to diverge from the reference dataset. In particular, the model embedding         (close to 

the best fitted slope from the PL model) is able to reproduce the initial part of the tail but 

underestimates the concentrations as time elapses. Thus, the PLCO-based stratified model 

works well exclusively when the power law slope tends to the unit, as hypothesized. A different 

slope is not predictive, including that estimated from the PL model, even when the cutoff rate 

has been correctly identified. It is remarked that the applicability of this simple model is limited 

to transport scales for which   can be directly related to the conditions at the source. The 

approximation may no longer hold for larger transport distances, i.e. when the plumes diverges 

from a stratified behavior. 

For comparison purposes, the results from the predictions using the PL (Figure 8b) and LOG 

(Figure 8c) models are also reported. The PL model fits the reference curves only when it 

embeds the best-fitted         and until   
   . All models embedding         overestimate 

the reference curves, while all models embedding         largely underestimate the reference 

curve. This result confirms that the proper use of power laws for predictive purposes is strongly 

model dependent, and in particular that the PL model is suboptimal for predictive purposes 

compared to the PLCO model. The only parameter feeding the PL model (   ) does not have a 

direct link with the physical properties of the aquifer, contrarily for instance to the cutoff rates 

in the PLCO model, which can be linked to the different velocities at the source (provided the 

stratified approximation holds). 

The ensemble of BTCs tend to be reproduced by the LOG model when the scale parameters are 

comprised between      . These values are in line with the best fitted values described 

above and also consistent with the relationship between   and   identified in Figure 6, as 

            when      . This also means that   does not necessarily has to be very 

large to predict transport in highly heterogeneous systems. Notice also that for a few log cycles 

(up to        all curves embedding     match the power-law like portion of the ensemble 
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BTC. This agrees with the observations by Haggerty et al. (2000). They acknowledged, 

however, that “the lognormal density function with larger   cannot provide a true power law 

BTC but hold the PL slope relatively constant over a long time”. Contrarily to  , however, it 

seems more difficult to provide a mechanistic justification for a specific value of   to be used to 

predict the curves. Finding a physical explanation for   is currently under investigation. 

Summary and conclusion 

Despite the development of effective models able to reproduce transport at late time (e.g. fitting 

BTCs tailing), the predictive capability of these tools is limited by the use of empirically-based 

model parameterizations and the lack of a link between physical and mathematical parameters. 

The limitations become particularly important when these models embed formulations (e.g. 

memory functions) with functional forms following power law distributions. This study 

systematically addressed the issues affecting the use of power-law like as empirical models for 

solute transport modeling, contending that these difficulties are intrinsic in the specific 

formulation of the adopted model. We found the following key results: 

 The best-fitted power-law slope ( ) is strongly model dependent, requiring attention in 

its selection for predictive purposes. The use of a power law model without cutoff (PL) 

as fitting model generates best-fitted slopes decreasing from to     3-4 for more 

symmetric reference distributions to an asymptotic minimum value close to     1.5 for 

heavily tailed reference distributions. The minimum estimated values are in line with the 

minimum values reported in the literature for transport in strongly heterogeneous 

systems generating preferential flow and solute transport channeling (e.g. Willmann et 

al., 2008; Zhang et al., 2013).  

 Using the power law model with cutoff (PLCO) to fit the same datasets results in a 

constant slope     1 independently from the degree of tailing of the reference 

distributions. A unit slope is consistent with the expected scaling of LOG models when 

  1, which have been frequently reported from the interpretation of tracer tests (e.g. 

Haggerty et al., 2000). A large σ means very highly skewed distributions, which is 

expected for transport in highly heterogeneous systems with strong connectivity, 

organized structures and low geoentropy (Bianchi and Pedretti, 2017). In the PLCO 
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model, the degree of tailing and more precisely the tailing persistence (i.e. the continuity 

of late-time concentrations in the BTCs) is well reproduced by the cutoff rate  , which 

sets the inverse of the characteristic time defining the end of PL regime on the 

distributions. More symmetric distributions are characterized by   1, while more 

skewed distributions are characterized by   0. 

 Subsampling may limit dramatically the ability to differentiate a power law model from 

another heavily-tailed distribution when fitting experimental BTCs. It was shown 

quantitatively that, for instance, even if the mechanisms controlling the late-time 

concentrations are PL distributed, it is virtually impossible to discern a power law based 

mechanism building up the BTC tails from LOG based mechanism. Moreover, the range 

of estimated parameter may fluctuate significantly, suggesting that in presence of limited 

datasets (e.g. those coming from field experiments), care must be taken when fitting 

empirical datasets. 

 It has been shown and discussed that a simple PLCO model embedding non-fitted 

parameters was able to reproduce reasonably well the ensemble of BTCs generated via 

Lagrangian transport in highly heterogeneous stochastic alluvial aquifers. The model 

relies on a stratified-based approximation, such that   can be calculated from the 

harmonic mean of the maximum differences in Lagrangian velocities at the source for 

each realization. The inverse of the estimated value agrees with the expected scaling of 

the tails at late time. The PLCO embeds also a non-fitted      , which is consistent 

with the expected power law like behavior of a LOG model with   1. On the other 

hand, PL models deviated significantly from the reference curves, while it was difficult 

to link LOG parameters to any physical parameter describing the aquifer heterogeneity.  

In summary, the following two general conclusions were achieved: 

1. For what concerns representing tailing, any model may work equally well (or equally 

wrong) for empirical curve-fitting purposes. Unless a large number of samples is 

available, such as in the case of numerical simulations, the effect of statistical 

subsampling may strongly affect the experimental datasets, invalidating the 

identification of a specific model from a statistical perspective.  
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2. For what concerns predicting tailing, on the other hand, not all models work equally 

well. The selection of a specific heavily-tailed parametric model becomes fundamental 

to make right predictions. In particular, the correct model needs to be invoked in order to 

link physical and mathematical parameters and generate reliable predictions. 
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Figures 

 

Figure 1 (a-b) Examples of heavily tailed BTCs analytically generated and numerically fitted 

using the code STAMMT-L (Haggerty and Reeves, 2002). In (a), the analytical curve adopts a 

PL distribution of mass transfer times with     =2, while the fitted curve is obtained using a 

LOG distribution of mass transfer rates. In (b), the reference curve adopts a LOG model with 

scaling factor  =3, while the fitted curve is obtained using a PL model. (c) Experimental results 

from a convergent flow tracer test (MADE-5), and best-fitted power law models with or without 

exponential cutoff (respectively, PL and PLCO). Concentration peak and corresponding time 

are used as normalization variables.
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Figure 2 Boxplots representing the statistical distributions of MLE-fitted parameters from 1000 

realizations of n random numbers generated using a PL model with       and     .  
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Figure 3 Boxplots representing the statistical distributions of log-likelihood ratio (R) and p-

values from 1000 realizations of n random numbers generated using a PL model with       

and     . 
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Figure 4 Boxplots representing the statistical distributions of MLE-fitted parameters from 1000 

realizations of n random numbers generated using a PLCO model with        ,  =10
-3

 and 

    . 
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Figure 5 Boxplots representing the statistical distributions of log-likelihood ratio (R) and p-

values from 1000 realizations of n random numbers generated using a PLCO model with 

       ,  =10
-3

 and     . 
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Figure 6 Comparison of estimated parameters fitting LOG distributed random numbers with 

increasing    Note that the slope of PL, the power-law model without cutoff    
    converges 

to a minimum value close to        , while the slope of PLCO, the power-law model with 

cutoff    
    is a constant. In the PLCO, the tailing is measured by the cutoff rate  . 
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Figure 7 (a-e) Estimated parameters for the different tested models; (f,g) R and p-values 

comparing the PLCO and LOG models.  
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Figure 8 (a) Predictions made by PLCO model embedding variable slopes     and a cutoff rate 

   estimated from the ensemble of maximum difference in Lagrangian velocities at the source. 

(b) Predictions made by a PL embedding variable slopes    . (c) Predictions made by a LOG 

model with     and variable    The black thick line represents the reference ensemble curve.  
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Table 1 Summary of mathematical expressions (and corresponding number of equation, “Eq”) used in the manuscript. For the definition of all 

variables we refer to the text.  

Model 

name 

Probability density function (p) 

Estimated parameters 

Eq. 

Log-Likelihood ( ) 

Solution for parameter estimation 

Eq. 

Power-law 

without 

cutoff 

(PL) 

                     
      

 

1. early-time cutoff,    

2. power-law slope,     

1 
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;    : numerical minimization 

5 
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Power-law 

with cutoff 

(PLCO) 

                       
        

            
 

1. early-time cutoff time,    

2. power-law slope,     

3. late-time cutoff rate,   

2 
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  ∑  

 

   

 

all parameters need to be estimated numerically 
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Lognormal 
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1. mean or location,   

2. standard deviation or shape,   
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Truncated 

lognormal 

(LOGT) 
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1. early-time cutoff time    

2. mean or location,   

3. standard deviation or shape,   
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all parameters need to be estimated numerically 
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