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Abstract: Responses of organisms to sub-lethal exposure of environmental stressors can be 

difficult to detect. We investigated phenotypic changes in the tissue of Caenorhabditis elegans via 

Raman spectroscopy, as well as survival and reproductive output when exposed to chronic low 

dose of exposure metals (copper, zinc or silver), an herbicide (diuron) and a pesticide 

(imidacloprid). Raman spectroscopy measures changes in phenotype by providing information 

about the molecular composition and relative abundance of biomolecules. Multivariate analysis 

was used to evaluate the significance of treatment phenotype segregation plots compared to 

controls. Dose-dependent responses were observed for copper, zinc, silver and diuron while 

imidacloprid exposure resulted in a small response over the tested concentrations. Concentration-

dependent shifts in nematode biomolecular phenotype were observed for copper. Despite having 

a dose–dependent reproductive response, silver, diuron and imidaclorprid had inconsistent 

biological phenotype patterns. In contrast, there was a clear stepwise change between low 

concentrations (0.00625 - 0.5 mg/L) and higher concentration (1 – 2mg/L) of ionic zinc. The 

findings demonstrate that measuring phenotypic responses via Raman spectroscopy can provide 

an insight into the biomolecular mechanisms of toxicity. Despite the lack of consistency between 

survival and Raman-measured phenotypic changes, the results supports the effectiveness of Raman 

spectroscopy and multivariate analysis to detect sub-lethal responses of chemicals on whole 

organisms and to identify toxic effect thresholds. This article is protected by copyright. All rights 

reserved  
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INTRODUCTION 

 The complex interaction between genotype and environment in organisms exposed to 

stress is manifested through altered biomolecule composition, physiological activity, behaviour 

or life-cycle endpoints [1–3]. Cellular phenotypic responses such as changes in gene expression, 

metabolite or protein production have the potential to be more sensitive indicators of stress than 

conventional organism-level measurements such as survival, growth or fecundity. In addition, 

due to the ability to identify specific genetic or biomolecular changes, measurements of the 

cellular phenotype have the potential to reveal the nature of the underlying mechanism of 

toxicity [4]. Hence, the studying of biochemical changes in response to chemical exposure can 

provide information to support the risk assessment of chemicals and emerging nanomaterials [5]. 

 A range of techniques are capable of measuring the cellular or organismal phenotype. 

Available methods include biochemical assays, transcriptomics, proteomics and biomolecular 

fingerprinting approaches. One such fingerprinting technique is Raman spectroscopy. Raman is a 

rapid, label-free vibrational spectroscopy that can be used to characterise and discriminate, an 

organisms’ response to biotic and abiotic factors [6–12], including chemical exposure [8,13]. 

Within Raman spectroscopy, molecules are identified based on their inelastic scattering of light 

by the vibrational modes of chemical bonds, facilitating phenotypic screening of whole 

biological samples [7,14]. Biomolecules such as nucleic acids, proteins, carbohydrates and lipids 

all have unique Raman vibrational modes which provide information about the bonding, 

structure and molecular symmetry [15]. The analysis can be applied to in vivo conditions without 

fixatives, stains or markers [16,17]. In confocal systems, this information can be obtained with 

micrometre-level resolutions which allows both qualitative and quantitative analysis [18]. 

Variations in Raman-derived biological phenotypes can reveal biochemical changes in response 



 
 

  
 A

cc
ep

te
d

 P
re

p
ri

n
t

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

 

This article is protected by copyright. All rights reserved 
 

to stimuli [19] by providing an insight into the overall chemical of a biological sample in a non-

destructive manner. 

 To investigate the value of Raman spectroscopy as a biochemical fingerprinting tool in 

ecotoxicological studies, biomolecular phenotypes were investigated in the nematode, 

Caenorhabditis elegans, a commonly used model species for mechanistic toxicity studies, 

exposed to chronic low-levels of inorganic (copper, zinc or silver) and organic (diuron or 

imidacloprid) chemicals. Parallel studies to effects on reproduction were also conducted to 

provide life-history comparisons to the observed biochemical changes. The compounds selected 

for study were chosen due to their prevalence and known persistence as environmental 

contaminants [20]. Further, the selected chemicals cover a range of different modes of action 

including non-essential and essential metals and pesticides with likely modes of action linked to 

putative electron transport disruption and effects on nerve function.  Our aim was ultimately to 

establish the nature of the common mode of action and specific shift in metabolic resources that 

are linked to reproductive toxic effects in exposed nematodes and to compare the sensitivity of 

Raman phenotyping with that of a classic life-cycle endpoint as measures of toxicological stress. 

MATERIALS AND METHODS 

Caenorhabditis elegans stock culture  

 Wild-type Bristol N2 nematodes obtained from the Caenorhabditis Genetics Centre 

(University of Minnesota, MN, USA) were grown in 90 mm petri dishes on nematode growth 

medium [21]. Worms were fed with Escherichia coli strain OP50 grown as a bacterial lawn as a 

food source during culturing and exposure experiments. Stock cultures were kept in the dark and 

incubated at 18°C. Nematodes were transferred to new plates on a weekly basis to maintain a 

healthy, synchronised population for use in all bioassays. 
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Media for chemical exposure  

 The choice of exposure media was based on a previous study [22] which developed and 

optimised a synthetic soil pore water (SSPW) for use in toxicity tests. This liquid media provides 

a closer approximation to natural soil solution conditions than alternative media.  Notably the 

SSPW has a lower ionic strength than other test solutions such as K-media and M9 buffer which 

is more representative of typical soil solution conditions for a typical circum-neutral agricultural 

mineral soil [22]. This means that SSPW provides a more realistic chemical bioavailability 

within the test system. The media contains varying concentrations of essential ionic compounds 

needed for growth by C. elegans [22]. Two 1 L batches were prepared and the solutions bubbled 

with air over night to equilibrate the dissolved CO2 with the atmosphere, stabilising pH at ~ 8.2 

prior to the start of exposure. 

Stock solutions for chemical exposure  

 Analytical grades of copper (II) chloride [CuCl2], copper (II) sulphate [CuSO4], 

imidacloprid [C9H10ClN5O2], zinc chloride [ZnCl2], silver nitrate [AgNO3] and diuron 

[C9H10Cl2N2O] (all purchased from Sigma-Aldrich, UK) were used for all experiments. Stock 

solutions were made by dissolving the following masses in 10 mL SSPW: copper chloride (2.54 

mg); copper sulphate (3.01 mg); zinc chloride (2.57 mg); silver chloride (2 mg); and 

imidacloprid (30 mg). All inorganic compounds and the neonicotinoid imidacloprid were highly 

soluble in SSPW alone. The highest concentrations of the chemical in each were prepared as a 

stock solution, with subsequent treatments made based on a dilution of this stock. Organic 

compounds with a low solubility in SSPW, in this case diuron, were prepared as initial stock 

solutions in acetone that were then used for dosing the main test treatments.  

Design of reproduction toxicity tests 
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 Concentration response relationships for each of the chemical were established through a 

set of toxicity test to measure effects on reproduction. The design of these studies used 

previously established EC20 values for imidaclorprid [23]; silver [24], diuron [22]; copper [25] 

and zinc (W. Tyne unpublished data) to aid selection of concentrations for the exposures that 

would be expected to cause effects of reproduction ranging from no effect at lower concentration 

to a substantive knock-down (intended >50%) at the highest tested concentrations. The final 

ranges (mg/L) used for these exposures were as follows: copper (0.01875, 0.0375, 0.075, 0.15, 

0.3, 0.6); zinc (0.0625, 0.125, 0.25, 0.5, 1, 2); silver (0.0078, 0.015, 0.031, 0.062, 0.125, 0.25); 

diuron (1.125, 2.25, 4.5, 9, 18, 36); and, imidacloprid (30, 15, 30, 60, 120, 240, 480). 

 The toxicity tests for each chemical were conducted in SSPW to establish the 

concentration response relationship for the effect of each chemical on nematode reproduction. 

The bioassays comprised short-term (72-hour) toxicity tests, each measured the range of 

chemical effects on C. elegans adult survival and reproduction. All exposures were conducted in 

SSPW without added fulvic acid as described by Tyne et al. (2013). The SSPW was seeded with 

E. coli OP50 at a concentration of 500 Formazin Attenuation Units (FAU) as a food source, this 

level being sufficient to provide sufficient food even if bacterial growth is limited by the 

chemical. As a result we can be confident the affects seen were associated with the effects of the 

chemical on the exposed nematode and not related to limitation of food supply. Each test was run 

in six well plates using a 2 mL exposure volume. 

 The tests for the inorganic compounds and imidacloprid used six concentrations and a 

media only control, while that for diuron used a standard control treatment and an additional 

carrier control to validate that there was no effect of the acetone used for chemical dosing on 

nematode reproduction. All exposure treatment used were prepared by dilution of the initial 
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stock solutions.  Six replicates were used for each treatment. Each replicate comprised three age 

synchronized adult N2 strain C. elegans maintained in appropriately dosed media contained 

within the individual well of a multi-well plate. After the initial addition of the worms to each 

well, all plates were incubated in constant dark at 18oC for 72 hours. At the end of this exposure 

period, 0.75 mL of 1% Bengal red was added to each well to stain the juveniles and eggs and the 

plates heated to 55oC for 30 minutes to kill all adult and juvenile worms. Numbers of adults and 

progeny were then counted optically for replicate wells. 

 Concentrations used for the toxicity test were also used for large volume exposure to 

generate a sample of sufficient biomass for use for Raman spectroscopy analysis. Matching of 

the test concentrations with the available concentration response data were used to provide 

information on the scale of expected effect to ensure that the phenotypic effects observed by 

Raman spectroscopy could be correctly interpreted. These exposures were also conducted in 

SSPW. Each exposures used a larger batch of nematodes to provide sufficient individuals for 

sampling. The same protocols was used in respect of test duration and test conditions as for the 

reproduction toxicity tests. Samples were prepared following exposure to replicate treatments for 

each chemical and also a matching SSPW only or solvent control. 

Freeze-drying samples  

 Nematode samples were isolated from the exposure solutions by centrifugation in 2 mL 

centrifuge tubes and washed in deionised water. The pelleted samples were then freeze dried for 

24 hours. Freeze drying has been shown to result in a rapid and consistent maintenance of 

sample biochemical variation and integrity [26][. The freeze dried nematode samples, containing 

approximately 100-200 nematodes per sample, were stored at -20oC prior to Raman 

spectroscopy. 
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Raman spectroscopy 

 A Raman microspectrometer (Horiba Scientific, UK) equipped with a 600-grooves/mm 

grating and a slit width of 100 µm. A 532 nm Nd:YAG laser focussed onto the sample through a 

×100, 0.9-NA Olympus objective. Spectra were acquired from the 300 to 1800 cm-1 wavenumber 

range with two 30-second exposures. Subsequent spectra collected by moving the laser in 

increments of 2 µm over an area 10 -12 µm to create an averaged spectra covering 5 points 

across the powdered nematode sample. A neutral density filter was used to reduce the laser 

power by 10% to 50% for chemical exposure studies depending on the exposure test, in response 

to signal strength and levels of fluorescence. Raman spectra were collected by moving the laser 

in increments of 2 µm over an area 20 x 20 µm to create averaged spectra covering 10 points 

across the freeze dried pellet. 

Data analysis 

 The data on offspring production from the reproduction tests were analysed for 

differences between treatments using one-way ANOVA level. Prior to being analysed, data sets 

were checked for homogeneity of variance and residuals checked to ensure that the data showed 

normality and independence. Where significant differences were found (p <0.05), Tukey’s test 

for multiple comparisons of means was used to determine between which treatments differences 

occurred. This allowed the lowest exposure concentration for each chemicals that resulted in 

rates of reproduction significantly lower than controls to be identified. This sensitivity for the 

reproduction test could then be later compared to the results of the Raman analysis to assess 

comparative sensitivity between the two approaches. In four of the five chemicals tested, the 

highest exposure concentration did not reduce reproduction to a value less than 50% of control 

values. For these chemical reliable EC50 values for effects on reproduction could not be 
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calculated. A reduction of greater than 50% was found for copper in the highest exposure level. 

For this metal, a reproductive EC50 could be calculated using a three parameter logistic model 

fitted using the drc package in the R software environment. 

 The spectra obtained by Raman analysis were initially concatenated to the 400 - 1800 cm-

1 range and baseline corrected, normalised and zeroed using LabSpec 6 software. Raw data was 

imported into Matlab R2011a (MathWorks, USA) and analysed using IRootLab algorithm for 

computational biology and vibrational microspectroscopy (http://trevisanj.github.io/irootlab/) 

within MATLAB [27,28]. Principal component analysis plus linear discriminant analysis (PCA-

LDA) is a cascading application that applies LDA to the resultant PCA factors and the quality of 

information produced is dependent on the amount of PCs employed [7]. PCA looks for the most 

significant trends in feature classification while LDA looks for significant trends in data 

classification [29]. LDA offers more discrimination as it maximises in-between class variance 

and within class variance [30]. After transformation to a different space the shape and location of 

the original data changes in PCA while LDA does not change location but provides class 

separation. The first PC explains the largest possible proportion of the variance in the data matrix 

while further PCs explain the largest possible proportion of the residual variance in the data 

matrix that is not explained by the higher order PCs [12]. The use of PCA-LDA computational 

approach converts each Raman spectrum into a single point from which nearness or segregation 

indicates spectral phenotypic similarity or differences between treatment-induced and control 

nematodes. The six most significantly increased peak heights were obtained from PCA-LDA 

loadings plot (Table 2). A PCA-LDA loadings plot averages the data for each treatment to 

produce the most significant wavenumbers attributed to induced spectral phenotypes. 
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RESULTS AND DISCUSSION 

 There was significant effect of copper on offspring production (F=10.4, p <0.001). Post-

hoc comparison using Tukey’s test indicated that reproduction over the exposure was 

significantly lower (p <0.05) at the two highest copper concentrations tested of 0.6 and 1.2 mg/L 

compared to the controls (Fig. 1A). Based on this response, an EC50 of 0.465 (95% CIs 0-0.966) 

mg/L for the effects of copper and C. elegans reproduction was estimated. 

 The Raman spectroscopy analysis for copper (II) chloride exposure resulted in a 

concentration-dependent response in the nematode phenotype, as illustrated within a one-

dimensional PCA-LDA scatter plot (Figure 2A). This plot (and those for the other chemicals) 

shows the control biochemical fingerprint, as well as those obtained from the exposed 

nematodes. The highest concentrations of copper used for the population exposure elicited a 

phenotypic response that differed from that of the control at exposure concentrations as low as 

0.0375 mg/L. The results demonstrate the capacity of Raman spectroscopy to detect 

concentration-dependent phenotypic effects at concentrations up to 20 times lower than those 

eliciting a significant effect on reproduction. Raman analysis, thus, is able to provide a sensitive 

assessment of biochemical perturbation at low exposure concentrations. 

 The biochemical changes induced by the relatively low copper exposure concentrations 

may be related to key aspects of the known mechanisms of action of copper for eukaryotic 

organisms. Copper is an essential cellular component in many enzymes involved in respiration, 

iron transport and oxidative stress protection processes [31]. Excess copper can initiate the 

production of highly reactive oxygen species (ROS) such as hydroxyl radicals, superoxide anion, 

nitric oxide and hydrogen peroxide which could react with functional groups on biological 

molecules [32]. It has been proposed that copper exposure may result in stunted growth in 
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embryos and adult nematodes both as a result of such oxidative stress induced DNA damage, 

apoptosis and cell membrane effects [31]. Excess ROS has been shown to interact with a wide 

range of biomolecules [33], including the inactivation and denaturation of proteins [34] as well 

as damage to nucleic acids [35] and lipids [36]  Furthermore, copper has been shown to inhibit 

growth rate [37] as well as movement and feeding in a concentration-dependent manner [38] in 

C. elegans. 

 A vector plot to identify the possible biochemical changes indicated spectral shifts 

associated with copper exposure (Figure 2B). This analysis identified that Copper (II) chloride 

induced significantly higher peaks from carbohydrates (carbon-oxygen-carbon (COC) glycosidic 

linkage at 1051 cm-1) while reducing the amino acid phenylalanine (ring vibration peak at 991 

cm-1) [8,12]. In general, bonds associated with proteins (amide I at 1663 cm-1), protein and lipids 

(1462 cm-1) and lipids (1131 cm-1) were elevated while carbon-hydrogen (CH2) deformations 

(1293 cm-1) and lipids (amide III random stretching at 1223 cm-1) decreased. While difficult to 

fully establish a mode of action for copper, the observed biochemical changes indicate changes 

in major energy resources (carbohydrates and lipids) indicative of an effect on metabolism; 

reduced feeding, ROS induced injury or mitochondrial toxicity being possible causes. A peak 

1651 cm-1 (here assigned to C=C stretching mode in lipids) has previously been associated with 

oxidative stress in the yeast (Pichia pastoris). There is a known relationship between changes in 

species energy budget and effects of major life-cycle traits [39], with previous work linking 

changes in major metabolic pathways to phenotypic effects in nematodes exposed to chemicals 

with a range of mechanisms of action [40]. 

 Offspring production was significantly affected (F=6.04, p <0.001) by zinc exposure. 

Post-hoc analysis indicated that reproduction was significantly lower (p <0.05) in the three 
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highest tested concentrations of 1, 2 and 4 mg/L compared to both controls and the lowest tested 

concentrations of 0.0625 mg/L (Fig 1B). The overall pattern of effect indicates that while the top 

three concentration each resulted in significantly lower reproduction, the magnitude of the effect 

was not concentration dependent between these three treatments (each resulted in reproduction 

being reduced by between 49 - 58 % compared to controls. The precise cause of this response 

pattern are not immediately apparent, although concentration dependent speciation changes may 

be a possible cause. Because of this levelling of effect at the highest tested concentrations, a 

logistic model that described the data well could not be fitted although based on results it would 

be anticipated that the EC50 for zinc could be in the 2-8 mg/L range. 

 Zinc plays a critical role in cellular growth, metabolism and differentiation; many 

enzymes are zinc metalloproteinases, and in addition zinc acts as an antioxidant agent [41,42]. 

Furthermore, zinc is essential for gene transcription, and deficiency results in several biological 

problems such as retarded growth and reduced mobility [42]. However, C. elegans has a system 

that promotes homeostasis in the organism and stepping beyond the capacity of this mechanism 

could well be the cause of the sudden shift in phenotype [43]. Despite the systems to maintain 

zinc homeostasis, changes in metabolic phenotype were found. The phenotypic changes found at 

the higher zinc exposure concentration suggests that the homeostatic capacity is exceeded and 

that nematodes are undergoing metabolic stress. The result is that zinc exposure ultimately 

compromises biological function, cellular integrity and life history characteristics [42–44]. 

Raman spectroscopy initially showed no shift in biochemical profile at lower zinc concentration 

(0.0625 mg/L to 0.5 mg/L). However, exposure to 1 and 2 mg/L zinc invoked a significant 

change in measured phenotype (Figure 3A). In nematodes exposed at these concentrations, 

higher peaks for polysaccharides (carbonyl group (C=O) vibrations at 1046 cm-1) and significant 
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decreases in proteins (nitrogen-hydrogen (NH) stretch in amide II peptide bonds at 1481 and 

1237 cm-1) were found compared to controls and lower tested concentrations (Figure 3B). 

Comparing the sensitivity of changes in reproduction to that of Raman fingerprinting indicates 

that effects can be detected using both approaches at the same test concentrations, with the 

thresholds for observed effects occurring in the 1 mg/L. Hence for zinc, while providing 

additional information on the nature of biochemical changes, the use of Raman spectroscopy 

does not provide any increase in sensitivity to detect adverse effects when compared to 

traditional reproduction effect assessment. 

 There was a significant effect (F=3.68, p <0.01) of silver on C. elegans offspring 

production. Within the clear concentration-dependent response, reproduction was significantly 

reduced (p <0.05) at the highest tested concentration of 0.25 mg/L compared to controls (Fig. 

1C). Observation of an effect of silver exposure in the low mg/L range is consistent with the 

results of previous toxicity studies [45]. In a previous study, also conducted with C. elegans in 

the same SSPW as used in this study, a reproductive EC50 for ionic silver was established at 0.28 

mg/L [22]. In the current study, exposure to this concentration elicited only an average 25% 

reduction in reproduction. This lower level effect at the previous EC50, indicates slightly lower 

sensitivity in this test compared to previous results. Starting age of the nematodes used for 

testing and slight difference in food quality could be possible causes for this moderate scale 

variation in sensitivity between this study and the previous published work. 

 The Raman phenotypes of nematodes exposed to silver show no consistent pattern in the 

segregation of the score plots and no obvious dose-response indicating a similar spectral profile 

between control and exposed treatment (Figure 4A). This suggests that Raman phenotyping may 

provide a less sensitive initial indication of toxicological effect than reproductive measurement. 



 
 

  
 A

cc
ep

te
d

 P
re

p
ri

n
t

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

 

This article is protected by copyright. All rights reserved 
 

This is perhaps surprising, since silver is well known to be toxic to many organisms [45]. Apart 

from a consistent decrease in proteins (amino group (NH2) deformations in amide II peptide 

bonds at 1581 cm-1) there was a high degree of variability in the phenotype at each concentration 

(Figure 4B). Silver exposure can cause multi-biological defects in organisms such as impaired 

ion regulation due to inhibition of Na+,K+-ATPase, impaired nervous system (hippocampus 

development) and reduced egg production and viability in aquatic animals [45]. Increased 

concentrations of silver which cause significant multi-biological defects which are transferrable 

to progeny [45] which could explain the inconsistency in Raman phenotype observed. However, 

while these mechanisms of action may be relevant to exposure with C. elegans, the results from 

the Raman phenotypic suggest that such effects do not result in major changes in organism 

biochemistry that can be detected using this analysis method. 

 The exposures to diuron used acetone as a carrier to enable dissolution of the chemicals 

in the artificial soil pore water. We tested for the effects of acetone only exposure on C. elegans 

Raman-derived phenotype. The PCA-LDA one-dimensional LD1 scatter plots showed a high 

degree of overlap between acetone carrier and control nematodes, indeed the spectral profiles 

almost completely overlap between the treatments (Figure 5A). Therefore, we concluded from 

this study, that acetone exposure has no significant effect on Raman phenotype. However, even 

though there is no obvious phenotypic effect of carrier exposure on nematodes, all treatment 

comparisons were made to the solvent control to avoid the possibility that there is any solvent 

contribution in the measured phenotype under exposure to diuron. 

 The exposure with diuron had a significant effect (F=11.64, p <0.001) on nematode 

reproduction. Exposure to diuron at a concentration of 9 mg/L and higher produced significantly 

fewer juveniles (p <0.05) when compared to level of production found in the control treatment 
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(Fig. 1D). A reliable three parameter logistic model could not be fitted to the data. However, the 

fact that reproduction was reduced by 52% at the highest tested concentrations of 36 mg/L, 

suggests that the EC50 would be close to this highest tested concentration. 

 The Raman phenotype for diuron exposure showed a shift in the means of all exposed 

nematodes from the control phenotype, regardless of the dose (Figure 6A). However, within this 

phenotypic change, a more detailed concentration related phenotypic structure was not observed 

across the lower exposure concentrations. Significant further difference was only seen when 

nematodes were exposed to the highest test concentration of 36 mg/L. This pattern of effect, 

points to an all or nothing effect of diuron exposure on the Raman phenotype at lower 

concentration exposure, with a further threshold passed as concentrations near the reproduction 

EC50 are reached. However, the fact that effects on Raman phenotype were observed at 1.125 

mg/L, a concentration 8 times lower than those causing a significant effect on reproduction. 

 All treatments consistently increased vibrations assigned to some protein peaks (carbonyl 

group (C=O) of amide I at 1674 cm-1, nitrogen-hydrogen (NH) stretch in amide II peptide bonds 

at 1481 cm-1 and amide III random stretching at 1251 cm-1) (Figure 6B). Conversely, all 

treatments resulted in decreased protein using the peak at 1432 cm-1 and carbohydrates (carbon-

carbon (C-C) skeletal or carbon-oxygen-hydrogen (C-O-H) deformations at 1042 cm-1). 

Furthermore, a peak assignable to nucleic acids (oxygen-phosphate-oxygen (OPO) symmetrical 

stretching at 746 cm-1) was substantially reduced. 

 Diuron is a highly toxic phenylurea herbicide that acts by inhibiting electron transport 

chain in photosystem II [23,46]. Caernohabditis elegans exhibit age-specific sensitivity which 

does not compromise reproductive endpoints but life history traits like survival and longevity. 

The mode of action of diuron in C. elegans could be similar to plants, which depends on the 
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generation of ROS that causes disruption of the mitochondrial electron transport chain with 

resulting effects on overall metabolism and energy budget. Additionally elevated ROS may also 

cause peroxidative destruction of pigments, nucleic acids, proteins and lipids [47]. Finally it is 

known that diuron can act as an androgen inhibitor through interacting with the aryl hydrocarbon 

receptor [46]. 

 There was no significant effect of imidacloprid exposure on C. elegans reproduction, 

even at the highest tested concentration of 480 mg/L. At the highest tested concentrations there 

was some indication of a possible small effect resulting from exposure. Any concentration 

response was, however, small, with the maximum effect size being a 22% reduction compared to 

controls at the highest tested concentration. This suggests that this treatment may correspond to 

an approximate EC20 and that the EC50 could be expect to be considerably higher. This 

assessment of the effect of C. elegans reproduction is consistent with the previous study of 

Gomez-Eyles et al. [23] who found both a shallow concentration response relationship and EC50 

in excess of the highest tested concentration (519 mg/L) in a test conducted to assess 

neonicotinoid pesticide effects on nematodes in a agar based exposure. These results suggest that 

although imidacloprid may have a relatively high potency towards some invertebrate species 

including insects and annelids, this neonicotinoid shows a much lower potency for C. elegans. 

 The Raman phenotypes of C. elegans exposed to imidacloprid were similar compared to 

the control with no obvious concentration-dependent response seen for nematodes exposed to 

this compound with high overlap of control and exposed nematode spectra (Figure 7A). The 

reduction in polysaccharides (carbonyl group (C=O) vibration at 1044 cm-1) represented the 

largest change for any peak for all treatments (Figure 7B). There was also minor decrease in 

proteins (amino group (NH2) deformations in amide II peptide linkage at 1585 cm-1) and protein 
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and lipids (carbon-hydrogen (CH2) deformation at 1434 cm-1). All concentrations consistently 

increased peaks assigned to proteins (carbonyl group (C=O) vibrations of amide I at 1672 cm-1, 

nitrogen-hydrogen (NH) deformation in amide II peptide bond at 1478 cm-1 and amide III 

random vibrations at 1238 cm-1) and lipids (carbon-hydrogen (CH2) deformations at 1478 cm-1). 

 Imidacloprid is an acetylcholine simulator that acts by inhibiting the nicotinic 

acetylcholine receptor without being sensitive to the action of acetyl cholinesterase which could 

result in over stimulation of cholinergic synapses [48]. Caenorhabditis elegans behaviours such 

as egg-laying, locomotion, feeding and mating are significantly compromised as they are linked 

directly or indirectly to cholinergic transmission [49]. Based on this mode of action the greater 

amount of imidacloprid could lead to paralysis of the nervous system that directly affects other 

cellular processes. Chronic exposure was found to up-regulate nicotinic acetylcholine receptor 

(AChR) without changing the sensitivity of the binding site [50]. However, although there is 

good reason to believe that the mechanisms of action through binding to the nicotinic 

acetylcholine receptors are likely to be relevant to effects in C. elegans, since previous work has 

established the presence of member sub-unit proteins of this receptor in this species [51,52]. 

However if these is binding of imidacloprid to this receptor, this does not result in significant 

biochemical change that can be detected by Raman analysis. 

CONCLUSIONS 

 The results of this study demonstrate the ability of Raman microspectroscopy to 

discriminate changes in cellular biochemical phenotypic in C. elegans exposed to inorganic and 

organic toxic stressors. Raman microspectroscopy provides a non-invasive and label-free method 

to detect these responses, coupled with PCA-LDA analysis to generate visualisation of 

treatment-induced effects. However, although it is possible to identify changes in Raman 
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fingerprint in exposure to some chemicals, notably copper and diuron, this is not always the case. 

For example, in the exposure conducted with the neonicotinoid insecticide imidacloprid a change 

in Raman detected biochemical phenotypes was not observed In terms of relative sensitivity 

compared to a traditional life-cycle endpoint such as reproduction, there were two chemicals, 

copper and diuron, for which the Raman approach was able to identify changes in biochemical 

phenotype at concentrations. The effects seen on Raman detected biochemical phenotypes under 

copper exposure may be related to the fact that tested concentration elicited a greater toxic effect 

on reproduction that any other chemical. However, for diuron the 52% knock-down observed 

was consistent with those for other chemicals (e.g. ~50% knock down by zinc at the three highest 

tested concentrations. Hence, it is unlikely that it is the magnitude of effect alone that is the 

cause of the effects on biochemical phenotypes observed for these two chemicals, especially as 

effects were also seen at lower exposure concentrations for both chemicals.  

 In both cases effects on biochemistry were observed at concentrations an order of 

magnitude greater or lower than those causing a significant effect on reproduction. Both copper 

and diuron are known to have the potential to interact with the mitochondria, through direct 

interaction or excess ROS production. As the major cellular organelle responsible for 

endogenous metabolism, toxic effects on mitochondrial function may be expected to have major 

the potential to cause significant changes in biochemical phenotype. This may be in contrast to 

chemical with a non-metabolic mechanisms of action, such as the neurotoxin imidacloprid, for 

which more specific biochemical measurements of receptor interactions may be a better 

approach through which to identify biomarkers of low concentration exposure than whole 

organism biochemical analysis. 
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 Raman spectroscopy can provide a broad fingerprint of an organisms’ biomolecular 

composition, with peaks assignable to many of the major chemical components of the cell. As 

we have shown, exposure to chemical stress can result in widespread changes in phenotype, 

including responses in chemical bonds associated with proteins, lipids, carbohydrates, and 

nucleic acids. Because of this, data provided by Raman spectroscopy has the potential to act as a 

hypothesis generator for further, more mechanistic studies on biochemical responses to stress.  In 

addition, to further develop the application of Raman spectroscopy in ecotoxicology, there are a 

number of possible adaptation and refinements that could be made to optimise the use of this 

approach for biochemical based effect assessment. For example, in the present study, we chose 

to conduct data collection on a homogenous powder generated from whole nematodes. As a 

result, it is impossible to discriminate phenotypic changes that occur in limited cell types or 

regions of the nematodes. However, Raman microspectrometers are capable of micron-scale 

mapping, and this has previously been applied to generate spatially resolved chemical maps of 

nematodes [12]. Future work could use Raman mapping to identify tissues or cells in nematodes 

that exhibit higher stress in response to chemical exposure. This ability to identify biochemical 

changes in specific tissue types could provide a means to identify those specific changes in 

metabolism phenotype that may be associated with particular mechanisms of action, including 

neurotoxicity, that are linked to effects of particular biochemical or biochemical pathways and 

target cell types or organs. 

Supplemental Data—The Supplemental Data are available on the Wiley Online Library at DOI: 

10.1002/etc.xxxx. 

Acknowledgment—The authors than J. Trevisan for designing the computational framework used 

in this study. 
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Data availability—All data used in this study are available in the Supplemental Data.  
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Figure 1. Responses of reproduction as total offspring rate over 72 h to exposure to the a range of 

concentrations of (A) copper, (B) zinc, (C) silver, (D) diuron, (E) imidacloprid. 

Figure 2. The projected computational results and analysis for copper (II) chloride (A) One-

dimensional PCA-LDA scatter plot indicating the segregation of scores following nematode 

exposure (mg/L) to copper chloride. The enlarged symbol in middle indicates the mean score 

value. (B) Copper chloride cluster vectors plot showing significant peaks that increased after 

exposure. In all cluster vectors plots, the control is set as the origin. 

Figure 3. The projected computational results and analysis for zinc chloride (A) One-

dimensional PCA-LDA scatter plot indicating the segregation of scores following nematode 

exposure to zinc chloride. The enlarged symbols in the middle of each plot represent the mean 

value. (B) Zinc chloride cluster vectors plot showing significant peaks that increased in intensity 

after exposure. In all cluster vectors plots, the control is set as the origin. 

Figure 4. The projected computational results and analysis for silver nitrate (A) One-dimensional 

PCA-LDA scatter plot indicating the segregation of scores following nematode exposure (mg /L) 

to silver nitrate. The enlarged symbols in the middle of each plot represent the mean value. (B) 

Silver nitrate cluster vectors showing significant peaks that increased after exposure. In all 

cluster vectors plots, the control is set as the origin. 

Figure 5. The projected computational results and analysis for acetone carrier (A) One 

dimensional PCA–LDA scatter plot of carrier compared to the baseline control to examine the 

effects of acetone on nematode spectral phenotypes. The enlarged symbols in the middle of each 

plot represent the mean value. (B) Carrier cluster vectors plot showing the most significant 

wavenumbers, control was set as origin. 
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Figure 6. The projected computational results and analysis for diuron (A) One-dimensional 

PCA–LDA scatter plot for Diuron. The enlarged symbols in the middle of each plot represent the 

mean value. The enlarged symbols in the middle of each plot represent the mean value. (B) 

Diuron cluster vectors showing significant peaks that increased after exposure. In all cluster 

vectors plots, the control is set as the origin. 

Figure 7. The projected computational results and analysis for imidacloprid (A) One-dimensional 

PCA–LDA scatter plot for imidacloprid. The enlarged symbols in the middle of each plot 

represent the mean value. In all cluster vectors plots, the control is set as the origin. (B) 

Imidacloprid cluster vectors plot showing significant peaks that increased after exposure. 
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Table 1 Prepared molar concentrations of stock solutions and the volume (ml) of each stock 

added to 1 litre of distilled water to prepare synthetic soil pore water (SSPW). 

 

  

Component Stock concentration (M) Volume (ml) / L SSPW 

NaHCO3 0.1 40 

KNO3 0.1 10 

Ca(NO3)2  0.1  12.5 

MgSO4 0.1 5 

Na2HPO4 0.1 0.01 

HNO3 0.1 10 

Iron standard 0.0179 (1 g/l) 0.559 

Aluminium standard 0.037 (1 g/l) 0.27 



 
 

  
 A

cc
ep

te
d

 P
re

p
ri

n
t

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

 

This article is protected by copyright. All rights reserved 
 

Table 2 Summary of the averaged PCA-LDA loadings showing the six significant 

wavenumbers (cm-1) induced consistently by the different treatments concentration. 

Ranked order 

of contributing 

Raman peaks 

Copper 

chloride 

Copper 

sulphate 

Silver 

nitrate 

Zinc 

chloride Diuron Imidacloprid 

1 754 783 783 783 781 746 

2 991 995 1080 1044 991 1124 

3 1049 1051 1331 1090  1042 1249 

4 1460 1223 1434 1481  1223 1479  

5 1663 1467  1481  1691 1479  1583 

6 1772 1771 1654 1769 1669 1663 
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