

Article (refereed) - postprint

Qiao, Min; Ying, Guang-Guo; Singer, Andrew C.; Zhu, Yong-Guan. 2018. **Review of antibiotic resistance in China and its environment**. *Environment International*, 110. 160-172. <u>https://doi.org/10.1016/j.envint.2017.10.016</u>

© 2017 Elsevier Ltd

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This version available http://nora.nerc.ac.uk/id/eprint/518692/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

NOTICE: this is the author's version of a work that was accepted for publication in *Environment International*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Environment International*, 110. 160-172. https://doi.org/10.1016/j.envint.2017.10.016

www.elsevier.com/

Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

Review of Antibiotic Resistance in China and its Environment

Min Qiao^{1,2}, Guang-GuoYing³, Andrew C. Singer⁴, Yong-Guan Zhu^{1, 5*}

¹State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
² University of Chinese Academy of Sciences, Beijing 100049, China
³State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
⁴NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, United Kingdom
⁵Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

*Corresponding author E-mail address: ygzhu@rcees.ac.cn Tel.:+86 1062936940

Abstract

Antibiotic resistance is a global health crisis linked to increased, and often unrestricted, antibiotic use in humans and animals. As one of the world's largest producers and consumers of antibiotics, China is witness to some of the most acute symptoms of this crisis. Antibiotics and antibiotic resistance genes (ARGs) are widely distributed in surface water, sewage treatment plant effluent, soils and animal wastes. The emergence and increased prevalence of ARGs in the clinic/hospitals, especially carbapenem-resistant gram negative bacteria, has raised the concern of public health officials. It is important to understand the current state of antibiotic use in China and its relationship to ARG prevalence and diversity in the environment. Here we review these relationships and their relevance to antimicrobial resistance (AMR) trends witnessed in the clinical setting. This review highlights the issues of enrichment and dissemination of ARGs in the environment, and also future needs in mitigating the spread of antibiotic resistance in the environment, particularly under the 'planetary health' perspective, i.e., the systems that sustain or threaten human health.

Keywords: Antibiotics; Antibiotic resistance gene; Environment; Clinical setting; Planetary health

1. Introduction

Antibiotics are used for treatment or prevention of bacterial infection. Nearly all classes of antibiotic are based on the structure of antibiotics naturally found in environmental microorganisms; with many of the antibiotics in widespread use being synthetic derivatives of these natural structures (Demain 1999). Ever since penicillin was introduced into medical therapy in 1942, hundreds of other antibiotics have been isolated or synthesized for the treatment of human and animal infections. Antibiotics played a significant role in the increase in life expectancy witnessed in the second-half of the 20th century. Antibiotics transformed modern agriculture and livestock industries, the latter of which used antibiotics for prophylaxis, meta-prophylaxis, treatment for infection, and as a growth promoter to enhance feed efficiency in healthy livestock (Sarmah et al. 2006).

The overuse and misuse of antibiotics stimulated the more rapid emergence of antibiotic-resistant bacteria (ARB) and antibiotic resistant genes (ARGs), reducing their therapeutic potential against human and animal pathogens (Wright 2010). World Health Organization characterises antimicrobial resistance as a global public health crisis that must be managed with the utmost urgency (WHO 2015).

The problem is particularly acute in China because of its antibiotic prescribing practices, strong incentives for overprescribing, and the widespread use and misuse of sub-therapeutic doses of antibiotics in agriculture (Yezli and Li 2012). Multidrug resistance (MDR) bacteria, or 'superbugs', which are resistant to several different antibiotics have been reported in China and antibiotic-resistant bacteria (ARB) previously reported in China are now being seen to cause infections in other countries. For example, Liu et al reported the emergence of the first plasmid-mediated colistin resistance mechanism, *mcr-1*, in *Escherichia coli* from pigs, pork products, and humans in 2015. At the time, it stated the belief that the gene is "currently confined to China." However, since then, scientists have found the MCR-1 gene in countries all over the globe; additional colistin-resistance genes—MCR-2 and MCR-3—and

variants of those genes have also emerged and spread. The global AMR crisis has only recently been met by a substantial increase in the number of studies focusing on antibiotic resistance in the environment, aiming towards bridging the many knowledge gaps (Singer et al. 2016). Here we aim to consolidate this recentlyacquired knowledge base on antibiotics and ARGs in the Chinese environment with the intention of informing evidence-based strategies towards mitigating AMR in the environment, a poorly acknowledged goal at the national and international level (Singer 2017).

2. Use and abuse of antibiotics in China

China is one of the world's largest producers and consumers of antibiotics, widely used for disease treatment in humans and livestocks, and as prophylaxis and growth promoters for the latter. A recent study showed that 92,700 tonnes of antibiotic (inclusive of 36 antibiotics), were consumed in China in 2013; 48% of which were consumed by humans, with the remaining by animals (Zhang et al. 2015c). Approximately 46% of the antibiotics were ultimately released into rivers through sewage effluent with the remaining to land through manure and sludge land spreading (Zhang et al. 2015c). These usage estimates exceed usage in the UK and much of northern Europe (normalised by the defined daily dose), by a factor of 6.

Approximately 50% of hospital outpatients in China are reported to use antibiotics. Of these outpatients prescribed antibiotics, 74.0% were prescribed one antibiotic, and 25.3% prescribed two or more antibiotics (Yin et al. 2013). The prescription of antibiotics accounts for around half of all drugs prescribed by hospitals, compared with just 10 percent in hospitals in high-income countries (RFA 2015). Cephalexin, amoxicillin, ofloxacin, tetracycline, and norfloxacin were the top 5 antibiotics used for human in 2013 in China (Zhang et al. 2015c). The excessive use of antibiotics is particularly more problematic in lower-level hospitals and less developed western China (Yin et al. 2013). About 75% of patients with seasonal influenza are estimated to be prescribed antibiotics, and the rate of antibiotic

prescription for inpatients is 80% (Li 2014) which is much higher than the World Health Organization recommended maximum level of 30%. This over prescription may be because the drug sales occupy a significant part of hospital revenues (Currie et al. 2014). Antibiotic prescription in a total of 48 primary health care facilities in China showed that the most frequently prescribed antibiotics were cephalosporins (28%), fluoroquinolones (15.7%), penicillins (13.9%), imidazoles (12.6%) and macrolides (7.3%)(Wang et al. 2014c). The prescribing patterns of antibiotics are not effectively controlled in China until the human medical system reform initiated by the Ministry of Health of China in 2011 (Bao et al. 2015). Xiao et al. reported that the percentage of hospitalised patients who were prescribed antibiotics fell by 10% in just one year, from 68% in 2011 to 58% by the end of 2012. It also dropped10% in outpatients in the same time period, from 25% to 15% (Xiao and Li 2013). Sun et al reported a significant reduction in overall inpatient antibiotic consumption in Chinese public general tertiary hospitals after the interventions (Sun et al. 2015).

 Modern animal husbandry often involves large and densely managed herds optimal conditions for the spread of infectious diseases. Antibiotic are routinely used in an effort to manage this disease risk (Holman and Chenier 2015). Livestock antibiotic use (52% of total antibiotic use) has been estimated at marginally higher than human use (48%), as a percentage of antibiotic use in 2013 (subset of 36 highest use antibiotics) (Zhang et al. 2015c). Consumption of veterinary antibiotics increased from 46% in 2007 to 52% in 2013, totaling approximately 84,240 tonnes. Amoxicillin, florfenicol, lincomycin, penicillin and enrofloxacin are the majority veterinary antibiotics consumed at a rate >4000 tonnes in China (Van Boeckel et al. 2015; Zhang et al. 2015c). It has been estimated that the share of global antibiotic consumption in food animal production for China will increase from 23% in 2010 to 30% in 2030 (Van Boeckel et al. 2015).

For therapeutic usage, animals are typically treated with antibiotics for a period of 3 to 7 days and then treated for another 3 or 4 days at prophylactic dosages (Wei and Zhong 2011). Nontherapeutic use of antibiotics is the major contributor to usage (Collignon and Voss 2015). Sub-therapeutic, in-feed antibiotics have been

investigated for livestock production since the late-1940's, only seven years after the mass production of penicillin (Stokstad and Jukes 1950) and four years after the discovery of chlortetracycline (Moore et al. 1946). Its use as a growth promoter increased year on year, despite the recognition that such a practice selected for resistance in the animals, farmers and veterinarians (Dibner and Richards 2005; Marshall and Levy 2011).

 The use of antibiotics in animal feeds has been regulated since 1989 in China (Wang et al. 2008). Antibiotics may be added to feed at concentrations between 2.5 and 125 mg/kg of feed to improve growth for an undefined duration (weeks to months), depending on the type and size of the animal and the type of antibiotic (Marshall and Levy 2011). Therefore, the nontherapeutic use of antibiotics might have played a larger role in the evolution and dissemination of multiple antibiotic resistance than did therapeutic use since it usually involved long-term, continuous exposure in a very large number of animals (McEwen and Fedorka-Cray 2002).

In general, antibiotics are poorly metabolised by humans and animals and as such are excreted as the active parent chemical in the faeces and urine, entering the environment through wastewater and manure. Antibiotic metabolites can also be bioactive, and even if they are not bioactive, they can often be transformed back into the parent compound or another bioactive substance. For example, the composition of excreted sulfonamides (SAs) may contain approximately 9-30% parent compounds, and between 5% and 60% acetylated conjugates. The metabolites, *N*4-acetylsulfapyridine and *N*4-acetylsulfamethazine can be converted back to the parent form (Bonvin et al. 2013; Garcia-Galan et al. 2012). Therefore, it is critical to know about the environmental fate of antibiotics and their metabolites, which invariably contribute to the increased prevalence and diversity of antibiotic resistance in China.

3. Antibiotics residues in the environment

Antibiotics enter into the environment via multiple pathways that include effluents from the disposal of human waste, waste from agricultural food animal

production and aquaculture, direct application to some plants, industrial effluents from pharmaceutical production, and agricultural run-off.

3.1 Antibiotics in sewage treatment plants (STPs)

Many studies have reported the detection of antibiotics in influent and effluent of STPs in China (Chang et al. 2008; Chang et al. 2010; Gao et al. 2012; Gulkowska et al. 2008; Hou et al. 2016; Hu et al. 2012; Jia et al. 2012; Leung et al. 2012; Li and Zhang 2011; Li et al. 2009; Li et al. 2013a; Peng et al. 2006; Shao et al. 2009; Sun et al. 2016; Wang et al. 2014a; Xu et al. 2015; Xu et al. 2007; Yan et al. 2014; Zhang et al. 2013; Zhang et al. 2015b; Zhou et al. 2013b). The frequently reported compounds include sulfadiazine, sulfamerazine, sulfamethazine, sulfamethoxazole, trimethoprim, tetracycline, oxytetracycline, ciprofloxacin, enrofloxacin, norfloxacin, ofloxacin, roxithromycin, and erythromycin-H₂O (Figure S1). The concentrations of these antibiotics in both influents and effluents ranged from a few ng/L to tens of μ g/L, reflecting incomplete removal in conventional STPs. Antibiotic removal efficiencies varied among different compounds and STPs. However, the reasons for the difference in removal efficiencies among these STPs remains largely unknown. Different physicochemical properties and daily loading of antibiotics, the types of treatment processes and operational conditions of individual STPs, even the rainwater input, can all affect the removal efficiencies. For example, cephalexin, as one of the most human consumed antibiotics, the removal efficiencies ranged between 9 and 100% (Gulkowska et al. 2008; Li and Zhang 2011; Li et al. 2009) in STPs of Hongkong. βlactams, like cephalexin and ampicillin, are easy to remove due to the ready hydrolysis of the β -lactam ring and the ubiquity of β -lactamases in wastewater. Despite the labile nature of some antibiotics, they can still be recovered from wastewater, suggestive of their pseudopersistence (i.e., the rate of loss closely matches the rate it enters the wastestream) (Leung et al. 2012). Another three highly human consumed antibiotics, ofloxacin, norfloxacin and tetracycline were also widely detected in STPs of China. The highest concentration of ofloxacin, norfloxacin and tetracycline were found in the STP of Hongkong (7900 ng/L, 5430 ng/L and 1510 ng/L in influent and 7780 ng/L, 3700 ng/L and 1420 ng/L in effluent, respectively)

(Leung et al. 2012). Although their removal efficiencies vary among STPs, the relatively higher removal rates of fluoroquinolones and tetracyclines (>70%) may because these more hydrophobic antibiotics experience substantial removal from wastewater as a result of partitioning to the solid (sludge) phase (Gulkowska et al. 2008; Li and Zhang 2011; Li et al. 2009; Peng et al. 2006; Xu et al. 2007). For many sulfonamides, sorption to sludge was found to be negligible, therefore removal by sorption to sludge is unlikely to be a primary removal mechanism for these compounds. Limited removal of macrolides, like erythromycin-H₂O, were reported in several STPs of China (Gulkowska et al. 2008; Leung et al. 2012; Li and Zhang 2011). It may because macrolides are mainly excreted in bile to faeces and the faecal materials are digested during biological treatment, consequently increasing the dissolved mass loads in effluent (Leung et al. 2012). The highest concentration of ofloxacin (7900 ng/L) and norfloxacin (5430 ng/L) detected in influent of STP in Hongkong was much higher than those reported in the USA (1000 ng/L) (Brown et al. 2006), Finland (960 ng/L) (Vieno et al. 2007) and Italy (980 ng/L) (Verlicchi et al. 2014). While the highest concentration of erythromycin-H₂O (4740 ng/L) was relatively lower than the maximum concentration detected in influent from United Kingdom (10025 ng/L) (Kasprzyk-Hordern et al. 2009). Sulfamethoxazole (SMX) is one of the most frequently detected antibiotic compound in STP. The mean concentration of SMX in STP influent (650 ng/L) in China was higher than that reported in Korea (120 ng/L) (Behera et al. 2011), but comparable to that in Germany (515 ng/L) (Rossmann et al. 2014) (Table S1).

3.2 Antibiotics in receiving aquatic environment

There exist large differences in antibiotic emission from both human and agricultural sources within each of the river basins of China (Zhang et al. 2015c). Pearl River basin, located in south China, has the highest emission densities, followed by the Haihe River basin, located in north China, and Taihu Lake and Qiantang River, located in east China. The megacities of Guangzhou and Shenzhen are located in Pearl River basin, while Beijing is located in the Haihe River basin. The east and west

China basins are separated by the "Hu Huanyong line" (i.e., a line that runs from Tengchong in the south to Aihui in the north), where the basins to the east of the line have 94% of the population of China, but only 43% of the land area. In general, the average emission densities of antibiotics followed the general population trends set by the "Hu Huanyong" line, with six times higher emission in the east and south, than in the west. This spatial trend is consistent with the antibiotic monitoring results for the surface water in China. Most studies reported the occurrence of antibiotics in the fast developing areas of China, such as Pearl River basin, however, little information is available in western China (Zhao et al. 2016).

A wide range of human and animal antibiotics have been detected in surface water and sediments of major Chinese rivers (Chen et al. 2013a; Chen and Zhou 2014; Jia et al. 2012; Li et al. 2014a; Luo et al. 2011; Tong et al. 2014; Xu et al. 2013; Xue et al. 2013; Yan et al. 2013; Yang et al. 2010; Yang et al. 2011; Zhang et al. 2012; Zheng et al. 2011; Zhou et al. 2011; Zhu et al. 2013a). The concentrations of antibiotics in surface water were found to range from below the detection limit (i.e., <10's ng/L) to the low µg/L (Figure S2). Among them, sulfamethoxazole, oxytetracycline, ciprofloxacin, norfloxacin, ofloxacin, clarithromycin, and erythromycin-H₂O were frequently detected in the aqueous phase of rivers with concentrations up to a few $\mu g/L$. A wide range of antibiotics at the upper end of environmental concentrations are typical of rivers routinely receiving urban wastewater discharge and animal waste. The concentrations of antibiotics in sediments ranged from below detection limits (i.e., <10's ng/g) to the low μ g/g (Figure S3). Zhou et al. reported relatively low concentrations for sulfonamides (maximum 22 ng/g) and macrolides (maximum 67 ng/g), but high concentrations for fluoroquinolones (maximum 5770 ng/g) and tetracyclines (maximum 653 ng/g) in the sediments of the Yellow River, Hai River and Liao River in northern China (Zhou et al. 2011). Yang et al. reported similar results in the Pearl River in the southern China (Yang et al. 2010). Antibiotics, like fluoroquinolones and tetracyclines, strongly adsorb to suspended particles and sediment (Kümmerer 2009), indicating sediment could be a reservoir of antibiotics in the environment. Extremely high concentrations

of antibiotics were found in Haihe River, especially for sulfonamides, the highest concentration of sulfachloropyridazine and sulfamethoxazole in tributaries of Haihe River was 37000 ng/L and 3900 ng/L, respectively (Luo et al. 2011). The highest concentrations of tetracyclines (oxytetracycline and tetracycline) and macrolides (erythromycin-H₂O and roxithromycin) were all above 1500 ng/L level in tributaries of Haihe River (Luo et al. 2011). Relatively high concentrations were also found in the Pearl River (Yang et al. 2011), indicating the effects of a high population density. Notwithstanding the high concentrations of antibiotics in surface waters in China are comparable to or slightly higher than those reported in USA (Arikan et al. 2008; Kim and Carlson 2007), France (Tuc Dinh et al. 2011), Germany (Christian et al. 2003), Finland (Vieno et al. 2007), Italy (Verlicchi et al. 2014) and Korea (Kim et al. 2007) (Table S1).

3.3 Antibiotics in livestock farm wastes

 The great boom in the number of concentrated animal feeding operations (CAFOs) for swine, poultry, and cattle production has driven demand for antibiotics. Antibiotics use in animal husbandry ends up in the manure, due to the combination of poor absorption and metabolism of the antibiotic in vivo. The total usage of antibiotics for animals was 84240 tonnes in China (Zhang et al. 2015c), with a large fraction of this held within the manure, which exceeds 2000 million tonnes for nearly all animals in 2011 in China (Zhu and Ma 2014). Hence, livestock manure is a major source of antibiotics, which enters through their application as fertilisers and soil enhancers in agricultural fields and as diffuse pollution in stormwater runoff from manure-amended fields.

Multiple classes of antibiotics have been recovered in the manure of swine, chicken and cattle (Hou et al. 2015; Hu et al. 2008b; Hu et al. 2010; Huang et al. 2013b; Ji et al. 2012; Li et al. 2013c; Li et al. 2012; Pan et al. 2011; Qiao et al. 2012; Zhang et al. 2015a; Zhao et al. 2010; Zhou et al. 2013a; Zhou et al. 2012; Zhou et al. 2013c). Fluoroquinolones (FQ), sulfonamides (SA) and tetracyclines (TC) were the most frequently detected antibiotics and exhibited a broad concentration range (Figure

S4). Zhao et al. (2010), recorded the maximum concentration of enrofloxacin in chicken litter ever reported in China, 1421 mg/kg. The authors also reported the highest ever recorded concentration of norfloxacin in chicken manure, 225 mg/kg (Zhao et al. 2010). Notably, the authors reported no appreciable sulfonamide antibiotic concentrations (less than 10 mg/kg) in any animal dung. Zhang (2015), reported oxytetracycline and chlortetracycline were the two most frequently recovered antibiotics in animal manures and the highest concentration was 417 mg/kg in chicken manure (Zhang et al. 2015a) and 764 mg/kg in swine manure (Pan et al. 2011), respectively. In general, tetracyclines and fluoroquinolones were detected with higher occurrence and higher concentrations than SAs; likely a result of the recalcitrance and high partitioning of TC and FQ in manure. The highest concentrations of veterinary antibiotics (enrofloxacin 1421 mg/kg and chlortetracycline 764 mg/kg) exceeded those reported from Turkey (enrofloxacin 0.06 mg/kg and chlortetracycline 0.38mg/kg) (Karci and Balcioglu 2009), Austria (enrofloxacin 8.3 mg/kg and chlortetracycline mg/kg)(Martinez-Carballo et al. 2007). Germany (chlortetracycline 50.8 mg/kg)(Holzel et al. 2010) and Canada (chlortetracycline 0.4 mg/kg)(Aust et al. 2008) (Table S1).

3.4 Antibiotics in soil

Antibiotics can be introduced into soil through irrigation with reclaimed water, sludge and manure land application to crops or landfill, and the use of livestock wastes as soil fertilisers. The concentration of antibiotics varies greatly across soils of different origins, typically in the mid- to high- µg antibiotic per kg soil (Chen et al. 2014; Hou et al. 2015; Hu et al. 2010; Huang et al. 2013b; Ji et al. 2012; Li et al. 2014c; Qiao et al. 2012; Wang et al. 2014b; Wu et al. 2013; Wu et al. 2010; Zhou et al. 2013a; Zhou et al. 2012; Zhou et al. 2013c) (Figure S5). Higher concentrations of antibiotics were detected in soils adjacent to feedlots. For example, the maximum chlortetracycline concentration (12.9 mg/kg) was found in soil near the effluent discharge from a swine farm (Zhou et al. 2013a). Oxytetracycline was found with the highest concentration of 4.24 mg/kg in an agricultural field adjacent to a swine farm

(Ji et al. 2012). Sulfadiazine and sulfamethoxazole from sulfonamide (SA) groups were also found with the highest concentration of 2.45 mg/kg and 2.41mg/kg in soils adjacent to a poultry farm (Ji et al. 2012). Antibiotic residues in organic vegetable production are of particular concern since 'organic' sources of fertiliser (e.g., manure) is often preferred over chemical fertilisers for building soil organic matter (Xie et al. 2016). Higher residues of FQs have been reported in an important vegetable-growing region in Shandong province, China, with the maximum ciprofloxacin and ofloxacin concentration of 0.652 mg/kg (Li et al. 2013b) and 0.288 mg/kg (Li et al. 2014c), respectively. Accumulations of antibiotics were also found in soils irrigated with either reclaimed water (Fang et al. 2015) or wastewater (Li et al. 2014c), but the concentrations were lower as compared to soils sampled around feedlots. The concentration of oxytetracycline in Chinese soils were similar to those in Turkey (20-510 ng/g) (Karci and Balcioglu 2009), but lower than those in UK (322-1691 ng/g) (Kay et al. 2004). Concentrations of sulfonamide in Chinese soils were comparable with many other countries (Aust et al. 2008; Garcia-Galan et al. 2013; Ok et al. 2011; Shelver et al. 2010; Watanabe et al. 2010) (Table S1).

4. Antibiotic resistance in the environment and its potential health

impacts

ARGs are a natural component of all environments (e.g., soil, water, microbiomes). However, their increased prevalence as a result of human activities has led to their characterisation as an emerging environmental contaminant (Pruden et al. 2006). The ARG burden in the environment has serious implications for human health owing to the potential transfer of ARGs from environmental bacteria to human pathogens, thereby impairing the efficacy of antibiotic treatment and compromising public health. The frequent detected ARGs and their abundance levels in different environmental media of China are listed in Table S2.

4.1 ARGs in sewage treatment plants (STPs)

STPs contribute to a reduction in the load of antibiotics and pathogenic

microorganisms into the receiving water body, however, this might not translate into a significant reduction in overall risk, as the ratio of ARGs to total bacteria in STP effluent can increase during treatment as could the frequency of recovering multi-drug resistance (Czekalski et al. 2012). STPs are a highly favourable environment for the selection of ARB or the horizontal gene transfer and propagation of ARGs because of high microbial density, high nutrient content and sub-inhibitory concentrations of antibiotics, biocides and metals.

Based on culture-dependent methods, 109 lactose-fermenting *Enterobacteriaceae* (LFE) strains, important human pathogens, were isolated from the activated sludge of the STP in Hong Kong and tetracycline-resistant LFE accounted for 32% of the total 109 LFE strains (Zhang et al. 2009a). Huang et al. investigated the antibiotic tolerance of total heterotrophic bacteria and the concentration distribution of bacterial resistance to six different antibiotics in the secondary effluent of the STP in Beijing. The average percentages of chloramphenicol-, penicillin-, cephalothin-, ampicillin-, rifampicin- tetracycline-resistant heterotrophic bacteria in the effluents were: 69%, 63%, 55%, 47%, 11% and 2.6% respectively. Above six ARB species were widely distributed in four types of enterobacteria (*Aeromonas, Enterobacter, Escherichia or Shigella*, and *Klebsiella*) from the secondary effluent (Huang et al. 2012).

DNA-based techniques, like PCR and quantitative real-time PCR, are increasingly used to detect and quantify resistance genes in environmental samples in addition to culture-based methods. Tetracycline (*tet*) and sulfonamide (*sul*) ARGs are commonly detected because of the widespread use of the corresponding antibiotics and their persistence in the environment. Mobile elements, such as integrons and transposons, were also included in many studies because of their significant contribution to the horizontal transfer of ARGs among bacterial species. The integrase gene (*intI*1), belonging to class 1 integrons, was proposed to serve as a proxy of pollution for resistant bacteria and other anthropogenic pollutants because of its rapid response to diverse environmental pressures (Gillings et al. 2015). Among the tetracycline resistance genes, three efflux pump genes (*tet*A, *tet*C and *tet*G), four ribosomal protection proteins gene (*tet*M, *tet*O, *tet*Q and *tet*W) and one enzymatic

modification gene (tetX) seem to be the most common tet genes in the STPs of China (Chen and Zhang 2013a; Du et al. 2014; Wen et al. 2016; Zhang et al. 2009a). Sulfonamide-resistance genes: sull and sullI were detected at high frequency across China STPs. The ARG concentrations in STPs varied significantly across a range of STPs; normalized by sample volumes, the concentrations of *tet* genes ranged from 10^2 to 10^{10} copies/mL (Chen and Zhang 2013a; Du et al. 2014; Li et al. 2016c; Pu et al. 2009; Wen et al. 2016; Zhang et al. 2009a). The maximum concentration of tet gene in influent was found in a STP in Zhejiang province, in the east of China, 10^{11.17} copies/mL (Li et al. 2016c). The concentrations of ARGs in effluent samples (from 10¹ to 10⁷ copies/mL) can decrease by 0.3 to 3 orders of magnitude (Chen and Zhang 2013a; Du et al. 2014; Li et al. 2016c; Mao et al. 2015; Pu et al. 2009; Wen et al. 2016; Zhang et al. 2009a). Compared to influent and effluent samples, sludge samples had higher ARG abundance (from 10^7 to 10^{11} copies/g) and diversity (Chen and Zhang 2013a; Du et al. 2014; Li et al. 2016c; Mao et al. 2015; Pu et al. 2009; Wen et al. 2016; Zhang et al. 2009a; Zhang and Zhang 2011). TetA and tetC, with a broad host range, were often detected with high concentrations (Huang et al. 2015a; Zhang et al. 2009a). Horizontal co-transfer of tetA and class I integrons have been observed among some species like *Aeromonas* in fish farms (Schmidt et al. 2001). A positive correlation between efflux pump gene (tetA, tetG) and intl1 was also observed in some STPs, indicating the role of class I integrons in efflux pump genes (Chen and Zhang 2013b; Huang et al. 2015b). In general, the abundance of *sul* was higher than that of *tet*, likely because *sul* is often associated with class I integrons. Based on the normalized concentration of ARGs (relative to the total 16S rRNA gene copy number), higher total loads of ARGs was observed in pharmaceutical STPs (10⁻⁴-10⁰ copies/copy 16SrRNA gene) than in municipal STPs (10-9-10-1 copies/copy 16SrRNA gene) (Huang et al. 2015a; Li et al. 2016a; Liu et al. 2012; Xu et al. 2015; Zhai et al. 2016).

In addition to the *tet* and *sul* genes, the occurrence of other ARGs including quinolone (*qnr*), macrolide resistance gene (*erm*) and multidrug-resistant New Delhi metallo- β -lactamase genes (NDM-1) have also been reported in the effluent and

dewatered waste sludge in STPs of northern China (Luo et al. 2014; Mao et al. 2015). In recent years, high-throughput sequencing-based metagenomic analysis has been applied to simultaneously investigate the broad-spectrum profiles and fate of ARGs in STPs, yielding a significantly higher diversity of ARGs than could be demonstrated by qPCR alone. For example, a total of 271 ARGs subtypes belonging to 18 ARGs types were identified in a typical full-scale STP in Hong Kong (Yang et al. 2014). Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion sludge and activated sludge (Yang et al. 2014). Seasonal and geographical distribution of antibiotic resistome from Chinese urban sewage were also characterised based on metagenomic analysis. The demographic "Hu Huanyong line" separated the regional ARG burden into two main regions, suggesting human activities might be the major driver of antibiotic resistance burden distribution (Su et al. 2017).

Extensive studies have illustrated the change in abundance of typical ARGs and intI1 in STPs of China (Chen and Zhang 2013a; Du et al. 2014; Ju et al. 2016; Li et al. 2016c; Mao et al. 2015; Pu et al. 2009; Wen et al. 2016). The removal efficiency varied among different ARGs and different treatment processes. For example, selected tet genes were significantly reduced by almost 2 to 3 orders of magnitude (Chen and Zhang 2013b) which exceeds the removal efficiency observed for six ARGs (0.3-2.7) (Wen et al. 2016). However, tet genes (1.2-2.7) were found to be more readily lost in STP treatment than *sul* genes (<1) (Wen et al. 2016). Measuring removal of ARGs from the STP influent by sampling the effluent is complicated by the fact that ARGs accumulate in the sludge which has another disposal route into the environment (Zhang and Zhang 2011). It has been reported that the total load of ARGs discharged through dewatered sludge was 7 to 308 fold higher than that in the raw influents and 16 to 638 fold higher than that in the final effluents (Wang et al. 2015). ARGs have also been shown to proliferate through biological treatment stages (Du et al. 2014; Luo et al. 2014; Pu et al. 2009; Zhang et al. 2009a), such as conventional activated sludge, due to microbial growth. Therefore, more advanced technologies such as Advanced Oxidation Processes (AOPs) which have been recommended to improve the removal of ARGs in STP (Chen and Zhang 2013a;

Zhang et al. 2016b).

4.2 ARGs in receiving aquatic environment

Discharges from STPs, antibiotic production plants, livestock farms and aquaculture contribute to the ARBs and ARGs reported in aquatic environment. However, it is largely unknown the extent to which each one contributes to the ARGs/ARBs recovered in any particular location (Singer et al. 2016)

Many studies focused on antibiotic resistance within Escherichia coli in the aquatic environment owing to its relevance to environmental standards and human health. For example, E. coli resistant to one or more antibiotics among nine antibiotics was screened from Wenyu River Basin in Beijing, China, with mean frequency of 48.7±8.7% of 388 isolates in summer and 47±6% of 236 isolates in winter. The highest proportion of resistance appeared for sulfonamides, tetracycline, and ampicillin (Hu et al. 2008a). E. coli isolates from several rivers in Southern China, including Minjiang River, (Chen et al. 2011a) Dongjiang River (Su et al. 2012) and Jiulongjiang River (Ou et al. 2015), were screened for susceptibility to a range of antibiotics, and MDR. MDR was also found in strains of E. coli isolated from Taihu Lake based on culture-dependent approaches (Zhang et al. 2015e). Through a combination of culture-dependent approaches and qualitative PCR methods, tetracycline, sulfonamide, fluoroquinolone, ampicillin, extended-spectrum betalactamase-producing bacteria, chloramphenicol-resistant bacteria and associated ARGs were detected in fresh and marine water in China (Dang et al. 2008; Li et al. 2010; Sun et al. 2012; Tao et al. 2010; Zou et al. 2012), supporting the hypothesis that human activities contributed to the dispersal and maintenance of antibiotic resistance in the aquatic environment in China.

Among the detected ARGs, *tet* and *sul* are the most common resistance genes quantified by qPCR. For example, two sulfonamide ARGs (*sul*I and *sul*II) and seven tetracycline ARGs (*tet*A, *tet*C, *tet*G, *tet*X, *tet*O, *tet*Q and *tet*M) were quantified in 20 water samples collected in the Beijiang River, South China (Ling et al. 2013) The levels of *sul*I were higher than *sul*II (p < 0.05), with the mean values of (1.41 ± 1.12)

× 10^{-2} and $(1.58 \pm 1.71) \times 10^{-3}$ copies/16S rDNA, respectively. Among *tet* genes, *tet*C had the highest concentration, ranging from 8.30 × 10^{-2} to 13.20 copies/16S rDNA (Ling et al. 2013). Jiang et al. also quantified two sulfonamide ARGs (*sul*I and *sul*II), eight tetracycline ARGs (*tet*A, *tet*B, *tet*C, *tet*G, *tetX*, *tet*O, *tet*Q and *tet*M) and one β -lactam ARG (TEM) in the Huangpu River, Shanghai, China (Jiang et al. 2013). The average concentrations of ranged from 3.66 × 10^1 copies/mL (*tet*B) to 1.62×10^5 copies/mL (*sul*II). Lake water samples from the northern part of Taihu Lake contained a significant number of *tet*A (10^4 – 10^5 copies/ml) *tet*C (10^5 copies/ml) genes and class 1 integron (10^3 copies/ml) (Zhang et al. 2009b). The absolute abundance of ARGs (*sul*I, *sul*II, *tet*A, *tet*B, *tet*E, *tet*W, *tet*M and *tet*Z) in the urban rivers in Beijing, China, ranged from 7.0×10^1 to 5.9×10^6 copies/mL in surface water, and from 4.2×10^2 to 2.0×10^8 copies/g in the sediment (Xu et al. 2016). A positive correlation was observed between *int*1 and *sul*I genes in many studies (Chen et al. 2015; Lin et al. 2015; Luo et al. 2010; Na et al. 2014), confirming that the class 1 integron plays an important role in the proliferation of the *sul*I gene.

As compared to water samples, sediment samples can contain higher concentrations of ARGs. For instance, Luo *et al* showed that *sul*I and *sul*II concentrations in sediments were 120 to 2000 times higher than those in water collected from the Haihe River in China (Luo et al. 2010). Similar results were also found in samples from the Northern Yellow Sea where the *sul*I and *sul*II concentrations in sediments were 10³ times higher than those in water, indicating sediment was an important reservoir of some ARGs (Na et al. 2014). On a volumetric basis, the Taihu lake sediments contained higher concentrations of intI1, *tet*A and *tet*C genes by four to five orders of magnitude than the overlying water samples. While copy numbers normalized to DNA mass from sediment samples were similar to those from water samples, which highlights the question of the most informative measure of ARG abundance (Zhang et al. 2009b). In this particular case, it might be that differences in the microbial diversity between the sediment and the overlying freshwater or the differential extractability of DNA from the two matrices impacts the comparisons. Tetracycline, sulfonamide, and macrolide resistance genes, as well as

integrons in the sediments were also detected at a catchment scale (Dongjiang River basin of South China), and *sul*II was the most abundant resistance gene, with the concentration of 10^8 copies/g (Su et al. 2014a).

The resistance genotype and mechanisms recovered by metagenomics in the sediments from the highly human-impacted Pearl River Estuary (PRE) and the relatively pristine deep South China Sea (SCS) were more diverse and the ARG abundance was much higher in the polluted PRE sediments than in the relatively pristine SCS sediments (Chen et al. 2013a). In comparison, the three most abundant ARGs in the PRE sediments were related to commonly used antibiotics including sulfonamides, fluoroquinolones, and aminoglycosides, indicating the significant anthropogenic impact on the dissemination of ARGs in this region (Chen et al. 2013a). Culture-based methods and high-throughput qPCR quantified, the abundance of MDR bacteria and ARGs in water samples collected from an urban stream and source of Jiulongjiang River, China. The total abundance of ARGs in urban samples (ranging from 9.72×10^{10} to 1.03×10^{11} copies/L) was over two orders of magnitude higher than that in pristine samples $(7.18 \times 10^8 \text{ copies/L})$ (Ouyang et al. 2015). ARGs were also profiled in sediments from 18 estuaries over 4,000 km of coastal China (Zhu et al. 2017). The high abundance and enrichment of diverse ARGs and MGEs further demonstrated the contribution of anthropogenic activities to the emergence and dissemination of ARGs (Ouyang et al. 2015; Zhu et al. 2017).

4.3 ARGs in livestock farm wastes

Livestock manure has routinely been shown to be an important reservoir of resistant bacteria (Bibbal et al. 2007; Enne et al. 2008; Schwaiger et al. 2009), antibiotic resistance genes (Binh et al. 2010; Duriez and Topp 2007; Heuer et al. 2008) and transferable plasmids carrying ARGs (Binh et al. 2008; Heuer et al. 2009). Livestock waste has been shown to be a hotspot of antibiotic residues that can affect the gut microbiota of animals and perpetuate the increased prevalence of antibiotic resistance in bacteria in manure (Langford et al. 2003; Looft et al. 2012; Witte 2000).

In China, the most frequently reported studies on animal manures are on swine, chicken and cattle which are the major food-producing animals. Resistant bacteria

isolated from these animals have largely been reported based on the culture-dependent assays. For example, Yang et al. (Yang et al. 2004) analysed the antimicrobial susceptibility of E. coli isolates from pig and chicken farms in Beijing and Heibei Province, China in 2000 and found that most E. coli isolates were resistant to multiple classes of antimicrobials. Isolates displayed resistance to tetracycline (98%), sulfamethoxazole (84%), ampicillin (79%), streptomycin (77%), and trimethoprimsulfamethoxazole (76%). Fluoroquinolones resistance in E. coli ranged from 64% for levofloxacin, 79% for ciprofloxacin, and 95% for difloxacin. Meanwhile, class 1 integrons were also identified in 19% (17) of isolates from swine and 47% (42) of isolates from chickens. Similar findings have been reported for E. coli isolates from cattle, swine and chicken farms in Shandong Province, Eastern China, where 52% of chicken isolates, 25% of swine isolates and 30% of cattle isolates were resistant to 12, 10 and 1 antimicrobial agents, respectively. The percentage of class 1 gene cassettepositive isolates in dairy cattle, swine and chicken farm was 5%, 20% and 42%, respectively. Resistance rates of chicken farm isolates were highest (Lu et al. 2010b). In addition to the intensively farmed animals, a total of 129 E. coli and 84 Enterococcus isolates from free-ranging pigs also showed resistance to a variety of antibiotics in Tibet, indicating AMR bacteria in China is widespread (Li et al. 2014b).

Tetracycline and sulfonamide resistance genes and the class 1 integrase gene were widely reported in livestock manures. Ji et al. quantified eight ARGs (*tet*B (P), *tet*M, *tet*O, *tet*W, *sul*I, *sul*III and *sul*A) in manure samples from representative swine, poultry and cattle feedlots in Shanghai, China (Ji et al. 2012). All ARGs tested were detected in the collected samples except *tet*B(P). The relative abundance of sulfonamide and tetracycline resistance genes ranged from approximately 10^{-5} to 10^{-2} , and 10^{-6} to 10^{-3} , respectively. Overall, sulfonamide ARGs were more abundant than tetracycline ARGs and only a weak positive correlation was found between ARGs and their corresponding antibiotics except for *sul*II (Ji et al. 2012). Cheng et al. investigated the abundance and diversity of ten *tet* genes (*tet*A, *tet*B, *tet*C, *tet*G, *tet*L, *tet*M, *tet*O, *tet*Q, *tet*W, and *tet*X), two *sul* genes (*sul*I and *sul*II), and class 1 integron (*intJ*1) in eight livestock farms in Hangzhou, eastern China. No significant difference

was found in the abundance of the *tet* and *sul* genes among similar farm types with varying scales (P >0.05). tetQ had the highest relative abundance in all manure samples (the average abundance was $7.12 \times 10^{-2} \pm 2.99 \times 10^{-2}$ ARG copies/16S rRNA copies), followed by three ribosomal protection protein (RPP) genes (tetM, tetW, and tetO), with tetC having the least relative abundance in their study (Cheng et al. 2013). tet and sul genes were widely reported in animal manure from many other cities of China (Cheng et al. 2016; Wang et al. 2016a; Zhang et al. 2015d). Quinolone-, macrolide-, aminoglycoside-, and MDR-genes were also analysed in concentrated livestock feedlots of China (Mu et al. 2015; Wang et al. 2016b). With the development of culture-independent methods, including high- capacity q-PCR and metagenomics, hundreds of resistance genes and multiple samples can be detected simultaneously. For example, Zhu et al. used high-capacity qPCR with 313 validated primer sets, which target 244 ARGs from all major classes of ARGs, to assess types and concentrations of ARGs at three stages from manure processing to land disposal at three large-scale swine farms. 149 unique resistance genes were detected and 63 ARGs were enriched from 192-fold (median) up to 28,000-fold (maximum) as compared with their respective antibiotic-free manure or soil control. The potential for horizontal transfer of ARGs was implicated by the enrichment of transposases-the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure (Zhu et al. 2013b). Li et al. used a metagenomic approach to investigate the wide-spectrum profiles of ARGs and their co-occurrence pattern in a range of environmental samples. ARG abundances were consistent with the levels of anthropogenic impacts on these environments (Li et al. 2015).

4.4 ARGs in Soil

The soil is one of the largest and most diverse microbial habitats on earth and a natural habitat for the Actinomycete genus *Streptomyces*, whose species account for the majority of mass-produced antibiotics of natural origin. Soil microbiota represent an ancient evolutionary origin for antibiotic resistance (D'Costa et al. 2011; Forsberg et al. 2012). The transfer of environmentally-derived antibiotic resistance genes into

clinical pathogens has been a long argued aetiology of clinical ARGs (Benveniste and Davies 1973). However, the high antibiotic residues caused by human activities significantly accelerates the selection and expansion of the bacterial resistome in the soil (Graham et al. 2016).

In China, manure and/or manure-based compost application as fertiliser is one of the main pathways for antibiotics release into agricultural soils. Many studies reported a noticeable increase in ARGs diversity and abundance in soils that received longterm applications of livestock manure (Chen et al. 2016; Cheng et al. 2016; Ji et al. 2012; Mu et al. 2015; Wang et al. 2014d; Wu et al. 2010; Zhang et al. 2015d; Zhou et al. 2017). Sulfonamide and tetracycline resistance genes have frequently been detected in manure or composted manure-amended soils (Cheng et al. 2016; Ji et al. 2012; Peng et al. 2015; Wang et al. 2014d; Wu et al. 2010; Zhang et al. 2015d; Zhou et al. 2017). Extended-spectrum beta-lactamase (ESBL)-producing E. coli have also been detected from a pig farm in the rural regions of Tai'an, China and the ESBLproducing isolates from compost, treated soil, and manure showed high overlaps in terms of resistance phenotypes, ESBL genes, plasmid replicon type, and genomic backbone characterization, which implies the dissemination of ARB and ARGs of animal origins to soil after treated with animal manure (Gao et al. 2015). The dissipation of plasmid-mediated quinolone resistance (PMQR) genes in arable soil were slowed down by introducing (fluoro) quinolones (FQNs)-containing manure as reported in a soil microcosm experiment (Xiong et al. 2015). Based on the functional metagenomic approach, Su et al. identified multiple ARGs, with the majority of ARGs recovered from manure-amended soil. The results suggest manure amendment increases the diversity of ARGs in soil bacteria (Su et al. 2014b). Fang et al. investigated the diversity and abundance of ARGs, human pathogenic bacteria (HPB), and HPB carrying ARGs in chicken manures and greenhouse soils. The highest relative abundance was tetracycline resistance genes (manures) and multidrug resistance genes (greenhouse soils). A positive correlation was also observed between the levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in manures and greenhouse soils (Fang et al. 2015).

Irrigation water quality is another important factor in stimulating ARGs in soil besides manure application. Chen et al. collected non-irrigated and wastewaterirrigated soils from five wastewater irrigation areas in Beijing and Tianjin, China and analysed the abundances of antibiotic-resistant bacteria and thirteen tet and three sul resistance genes. No significant difference in antibiotic resistance bacteria was observed between irrigated and non-irrigated soils. However, the concentrations of antibiotics and abundances of ARGs were significantly greater in irrigated soils, indicating the potential role of quality of water on the occurrence of antibiotics and resistance genes in the soils (Chen et al. 2014). Wang et al. used high-capacity gPCR to show enrichment of ARGs in urban park soils as a result of reclaimed water irrigation. A total of 147 ARGs encoding for resistance to a broad-spectrum of antibiotics were detected among all park soil samples. Aminoglycoside and betalactam were the two most dominant types of ARGs, and antibiotic deactivation and efflux pump were the two most dominant detoxification mechanisms. Four transposase genes were also detected and were positively correlated with ARGs and transposase abundances, indicating the potential facilitation of ARGs transfer (Wang et al. 2014b).

 As antibiotics can migrate to deeper soil layers, an abundance of ARGs with increasing soil depths was observed in some studies (Tang et al. 2015). Selection for ARGs in soils amended with antibiotics free manure was previously reported, a likely result of the co-selective pressure provided by heavy metals that can also be present in manure at high levels (Lin et al. 2016). Therefore, considering the various soil types, climatic regions, and cultivation conditions of China, more field studies should be conducted to identify the relative contribution of each of the factors that influence the fate of ARGs.

Significant positive correlations between ARGs and corresponding antibiotics or a different class of antibiotics were found in multiple environmental media in China (Cheng et al. 2016; Huang et al. 2013a; Luo et al. 2010; Su et al. 2014a; Wang et al. 2016a; Wu et al. 2010; Zhu et al. 2013b). While weak or no correlation was also reported in many studies (Ji et al. 2012; Pei et al. 2006; Wang et al. 2016a; Wang et

al. 2016b). The inconsistencies in the correlations between antibiotics and ARGs can be attributed to several factors. First, ARGs and antibiotics have different environmental fate and transport mechanisms. The environmental degradation of antibiotics and the physicochemical parameters of environmental media, e.g. total organic matter, may affect the correlation analysis results (Wang et al. 2016b). ARGs could have been primarily selected by past activities and microbial populations may retain resistance genes long after their initial exposure, which could contribute to the lack of direct correlation (Hall and Colegrave 2008). Additionally, co-selection and cross-selection effects could also disrupt the correlations (Wardwell et al. 2009). Many ARGs are often found on the same plasmid or mobile genetic elements which results in the correlations found among resistance to different antibiotics. Heavy metals can exert a co-selection pressure for antibiotic resistance also because both the antibiotics and heavy metal resistance genes are commonly found to be encoded on mobile genetic elements together (Berg et al. 2010). Therefore, further studies should be carried out to illustrate the exact reasons of the correlations.

5. Antibiotic resistance in the clinical environment

Antibiotics are among the most commonly prescribed drugs used in human medicine, enabling antibiotic resistance to emerge as the serious public health crisis that it has become (Li et al. 2016b; Zeng et al. 2017). The growth rate of resistance in China is much higher than that of other countries, averaging 22% in 6 years (1994–2000) compared with 6% for the USA (1999–2002) (Zhang et al. 2006). Excessive and often unnecessary use of antibiotics is considered to be the major driving force towards increased antibiotic resistance in clinic settings. Additionally, the frequent use of broad-spectrum antibiotics and the frequent change of antibiotics can contribute to the antibiotic resistance, especially the multi-drug resistance strains (Ding et al. 2008).

In 2004, the Chinese Ministry of Health (MOH) National Antibacterial Resistance Investigation Net (Mohnarin) was established—a nationwide antimicrobial resistant surveillance network. Initially, seventeen tertiary hospitals located in 15

different cities throughout China participated in the network (Xiao et al. 2008). Mohnarin has gradually expanded to more than one thousand member hospitals and in 2014, the network became the China Antimicrobial Resistance Surveillance System (CARSS). To date, CARSS remains the only government-leading surveillance network in China and it includes 1412 member hospitals from 31 provincial-level administrative units, representing the widest coverage in China. In the CARSS 2015 report, it demonstrated the presence of severe bacterial resistance in China. A total of 2,400,786 strains of culturable bacteria in samples (sputum, blood, urine, stool, etc.) from outpatients and inpatients were detected in the surveillance program from October 2014 to September 2015, including 695,066 Gram-positive bacteria (28.9%) and 1,705,720 Gram-negative bacteria (71.1%). The five most frequently detected Gram-positive strains are: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus. faecalis, Streptococcus pneumoniae and Enterococcus faecium, E. coli, Klebsiella pneumoniae, Psuedomonas aeruginosa, Acinetobacter baumannii and Enterobacter cloacae are the five most frequently detected Gram-negative bacteria five gram-negative bacteria. The resistance rates of methicillin-resistant Staphylococci, erythrocin-insensitive S. pneumoniae, cephalosporin-resistant Enterobacteriaceae, fluoroquinolone-resistant E. coli and carbapenems-resistant A. baumannii were all more than 50% in the CARSS 2015 report. Of growing concern is the increase in resistance to imipenem reported in A. baumannii and K. pneumoniae between 2012 and 2015 (CARSS et al. 2016). Another nation-wide surveillance system, CHINET, was organised in 2005 by Fudan University. It analysed the temporal trend of bacterial resistance in samples (sputum, urine, blood, cerebrospinal fluid, stool, etc) from outpatients and inpatients in 19 hospitals between 2005 and 2014 (two hospitals dropped out in 2012) (Hu et al. 2016a). Most of the hospitals included are the largest in each province or city, representing 14 provinces or cities. During the study period, the number of bacterial isolates ranged between 22,774 and 84,572 annually. The resistance of E. coli and K. pneumoniae to amikacin, ciprofloxacin, piperacillin/tazobactam and cefoperazone/sulbactam decreased with time, while the resistance increased for cefotaxime. Carbapenem resistance among K.

pneumoniae and *A. baumannii* isolates both increased significantly between 2005 and 2014. In the latest CHINET 2015 report, it collected a total of 88,778 clinical isolates from similar samples (sputum, urine, blood, cerebrospinal fluid, stool, etc.) in 18 general hospitals and two children's hospitals. Gram-negative organisms and Grampositive cocci accounted for 70 % and 30 %, respectively. The prevalence of carbapenem-resistant *K. pneumoniae* and *A. baumannii* continues to increase on 2014 levels, similar to that which was reported in the CARSS report (Hu et al. 2016b). The carbapenem family of antibiotics is the last resort for most Gram-negative bacterial infections. Therefore, infections due to carbapenem-resistant strains become an increasingly serious threat to patients in clinics.

There are also several provincial surveillance systems, such as in Beijing, Zhejiang, and Guangzhou. And a number of studies have shown the emergence of antibiotic-resistant bacterial strains, including multi-drug resistance of bacteria, in Chinese hospitals during the past decades (Chen et al. 2013b; Dai et al. 2014; Liang et al. 2015; Song et al. 2014; Tang et al. 2016; Xia et al. 2012). However, the current survey system mainly focuses on urban hospitals and does not include the county or rural medical institutions. For example, in the CARSS 2015 report, 76.2% of the member hospitals are tertiary hospitals and 23.8% are secondary hospitals. Taking into account different socioeconomic development, prescription behaviour, etc., it is apparent that antibiotic resistance varies geographically in China. Only a few studies reported resistance prevalence in county medical institutes (Xiao et al. 2015).

In general, the survey systems are based on culture-depended methods to detect the antibiotic resistance in clinics, while isolated studies have characterised antimicrobial resistance using molecular biology approaches (Cui et al. 2015; Yang et al. 2015; Zhang et al. 2016a). The most common resistance mechanism of carbapenem is the production of carbapenemases, including enzymes of Ambler classes A, D and B [metallo- β -lactamases (MBLs)], with the corresponding genes often being associated with mobile genetic elements. New Delhi MBL 1 (NDM-1), a new type of MBL, was first reported in *A. baumannii* isolates in four different provinces in China (Chen et al. 2011b). Later, PCR based detection of carbapenem

resistance associated gene(bla_{NDM-1}) unveiled high incidence and sporadic spread of bla_{NDM-1}-positive Enterobacteriaceae in many provinces of China (Hu et al. 2013; Liu et al. 2013; Qin et al. 2014; Sun et al. 2014). Jia et al. detected the β-lactam, aminoglycoside, tetracycline, macrolide, glycopeptide resistance genes and the efflux pump genes in 100 multiple-drug resistant enterococcal isolates from a university hospital in China and indicated that the emergence of these antibiotic resistance genes was the main cause of the resistance of enterococci to antimicrobial agents (Jia et al. 2014). High throughput assays such as microarray technology were also applied to determine multiple tetracycline and β -lactam resistance genes from the sputum, urine, blood, bile, liquor puris, and cerebrospinal fluid samples obtained from Chinese hospitals (Lu et al. 2010a). With the emergence and spread of new mechanisms of resistance, infectious diseases are becoming more difficult to treat in China.

6. Prospective and Mitigation strategies

Numerous studies have detected ARB and ARG in a variety of environmental media in China and the increasing prevalence of antibiotic resistance in the environment has attracted greater attention from academia and government. Antibiotic overuse and misuse is likely the most important reason for the observed increased prevalence in environmental and clinical antimicrobial resistance. Therefore, the first and most important measure would be reducing unnecessary use of antibiotics to tackle this problem at the source.

For clinical use of antibiotics, although China has released a series of regulations and strategies to reduce the rate of antibiotic prescriptions during the last decades, inappropriate prescription continues in China, especially in the primary care settings in rural areas. Financial incentives are considered to be the main driver of this overprescription in China. The Chinese government has recently launched reforms to address these drivers. For example, on April 8, 2017, Beijing started a landmark reform drive that will separate drug sales from medical treatment at public hospitals. This separation is intended to stop over-prescription and help medical practitioners provide more appropriate treatment. Since public hospitals provide over 90% of the

country's inpatient services and more than 50% of outpatient services, it is imperative that greater efforts are needed to pursue health system reform for public hospitals to alter the inappropriate finance incentives.

At least as many antibiotics are used in agriculture than in humans in China, and even some last-line drugs for humans are being used in agriculture. Colistin, for example, has been banned as a growth stimulator in agriculture on Nov1, 2016 and the ban took effect on April 1, 2017. The experiences exemplified by the reduction in antibiotic use in Denmark and The Netherlands in pig farming can provide instructive case studies on the effects of reduced antibiotic use in animal food production (Aarestrup et al. 2001; Dierikx et al. 2016). The World Health Organization has found that the Danish ban reduced human health risk without significantly harming animal health or farmers' incomes (WHO 2003). Antibiotic sales to Dutch livestock farms decreased by 56% without any reduction in production or profits from 2007 to 2012 (McKenna 2014). Therefore, alternative strategies for the control of bacterial infections, such as optimise the living conditions of livestock, are required to reduce antibiotic consumption in food animals in China.

Secondly, a systematic surveillance network should be established that includes regular, continuous measurement of antibiotic utilisation and the patterns of antibiotic resistance from the clinic and agriculture, at a local and national level. Surveillance was recognised as the first step to understanding the current state and progression of resistance over time. Although there are some existing surveillance programs for ARBs in China, they are not inclusive of the primary care settings. Continuous surveillance of antibiotic resistance can contribute to disease diagnosis, treatment and policy making. Reliance on sales data for antibiotic surveillance can tell an incomplete story; hence a nationwide surveillance program is needed to quantify antibiotic prescriptions from all sources i.e., pharmacies, clinics, hospitals. Unlike human use antibiotics, some veterinary antibiotics can be purchased directly by food animal producers. Thus, it's difficult to quantify accurately veterinary antibiotic use. A robust antibiotic surveillance system can facilitate the enforcement of the restriction on the use of antibiotics in animals that are important for human use. It can also

monitor the association between antibiotic use and resistance, as well as inform intervention in much the same way that the surveillance system, DANMAP, has made significant contributions to the control of antibiotic resistance in Denmark (Bager 2000). Antibiotic use in animals should be confined to prescription and dispensed by veterinarians for treatment and not by the whim of the farmer for other purposes. For a surveillance system in China, there needs to be consistency in sampling and testing methods. Strict quality control should also be applied in order to compare trends in antibiotic resistance. The surveillance program should be publicly available, facilitating open science which can bring greater understanding by academia and innovation by industry.

It is critically important to control the environmental spread of antibiotics and ARBs, especially for STPs, which provide favourable conditions for proliferating of ARBs or transferring of ARGs. As conventional sewage treatment facilities were not designed to deal with antibiotics, the removal efficiencies of antibiotics were highly variable among different antibiotics and different STPs. So far, AOPs are not widely used in STPs because of the high cost, and conventional STPs were even absent in rural areas in China. It's urgent to reinforce the operation of STPs in rural areas and the application of more advanced techniques in urban STPs to improve the effluent quality. Current technologies are unable to provide complete removal or destruction of antibiotics which are subsequently transferred to sludge during sewage biological treatment. Further treatment is also needed for these solid matrices. Maximum residue limits for antibiotics in effluent and sludge of STP or animal manure in China should be implemented in the environment. Although beyond the scope of this review, similar residue limits might be appropriate for metals and biocides to address the challenge of co-selection. Some rules should be established to reduce the use of sewage sludge or animal manure on agricultural land, thereby reducing the risk of spreading resistance in the environment to humans, food crops and wildlife. There is also a need to identify the levels of antibiotics at which resistance might occur and develop maximum thresholds for antibiotics or ARGs for environmental compartments.

In August 2016, China presented its National Action Plan to Contain Antimicrobial Resistance (2016-2020). The Action Plan aims to establish comprehensive management strategies and measures at the national level to strengthen the supervision of the search and development, production, circulation, application, and environmental protection for the antimicrobial agents (Xiao and Li 2016). For the first time, 14 departments, including National Health and Family Planning Commission, National Development and Reform Commission, the Ministry of Environmental Protection, the Ministry of Agriculture were involved and collaborated to address AMR. The responsibilities of each department and nine major strategies for the prevention and control of antimicrobial resistance were clearly assigned in the Action Plan, including exploiting the advantages of joint prevention and control; increasing investment in the research and development of antimicrobials; strengthening the management of antibacterial agents supply security; strengthening the construction of antibacterial agent application and antimicrobial resistance control system; optimizing antimicrobial consumption and resistance surveillance system; improving the capacity of professional personnel in antimicrobial resistance prevention and control; strengthening the prevention and management of environmental pollution of antimicrobials; strengthening publicity and education of AMR; conducting extensive international change and cooperation. Actions have already taken place within the country under this plan. For example, the Ministry of Agriculture in China announced the 2017 Antimicrobial Resistance Surveillance Program of Bacteria from Food Animals. China has participated in extensive international collaborative programs to fight antibiotic resistance. At the G20 summit (September, 4-5, 2016) in Hangzhou, China, world leaders reached an important agreement on next steps in the battle with antimicrobial resistance. As the most populous and the largest consumer of antibiotics in the world, China faces the most significant challenge of any country when it comes to tackling antimicrobial resistance. Recent efforts at the national and international level must be seen as only the start of a growing commitment to the implementation of a One Health AMR Action Plan in all of China.

1651 1652

1594 1595 1596

1597 1598

1599 1600

1601 1602

1603 1604

1605

1606 1607

1608 1609

1610 1611

1612

1613 1614

1615 1616

1617 1618

1619 1620

1621 1622

1623

1624 1625

1626 1627

1628 1629

1630 1631

1632

1633 1634

1635 1636

1637 1638

1639

1640 1641

1642 1643

1644 1645

1646 1647

1648

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (41571130063 & 21210008) and the UK Antimicrobial Resistance Cross Council Initiative supported by the seven research councils (NE/N019687/1).

References

- Aarestrup, F.M.; Seyfarth, A.M.; Emborg, H.D.; Pedersen, K.; Hendriksen, R.S.; Bager, F. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 2001;45:2054-2059
- Arikan, O.A.; Rice, C.; Codling, E. Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination 2008;226:121-133
- Aust, M.O.; Godlinski, F.; Travis, G.R.; Hao, X.; McAllister, T.A.; Leinweber, P.; Thiele-Bruhn, S. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental pollution 2008;156:1243-1251
- Bager, F. DANMAP: monitoring antimicrobial resistance in Denmark. International Journal of Antimicrobial Agents 2000;14:271-274
- Bao, L.; Peng, R.; Wang, Y.; Ma, R.; Ren, X.; Meng, W.; Sun, F.; Fang, J.; Chen, P.; Wang, Y.; Chen, Q.; Cai, J.; Jin, J.; Guo, J.; Yang, S.; Mo, X.; Zhang, E.; Zhang, Y.; Lu, Z.; Chen, B.; Yue, X.; Zhu, M.; Wang, Y.; Li, X.; Bian, Y.; Kong, S.; Pan, W.; Ding, Q.; Cao, J.; Liu, R.; Chen, N.; Huang, X.; Agula, B.; Lyu, H. Significant Reduction of Antibiotic Consumption and Patients' Costs after an Action Plan in China, 2010-2014. Plos One 2015;10
- Behera, S.K.; Kim, H.W.; Oh, J.E.; Park, H.S. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. The Science of the total environment 2011;409:4351-4360
- Benveniste, R.; Davies, J. Aminoglycoside Antibiotic-Inactivating Enzymes in Actinomycetes Similar to Those Present in Clinical Isolates of Antibiotic-Resistant Bacteria. P Natl Acad Sci USA 1973;70:2276-2280
- Berg, J.; Thorsen, M.K.; Holm, P.E.; Jensen, J.; Nybroe, O.; Brandt, K.K. Cu Exposure under Field Conditions Coselects for Antibiotic Resistance as Determined by a Novel Cultivation-Independent Bacterial Community Tolerance Assay. Environmental science & technology 2010;44:8724-8728
- Bibbal, D.; Dupouy, V.; Ferre, J.P.; Toutain, P.L.; Fayet, O.; Prere, M.F.; Bousquet-Melou, A. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Applied and environmental microbiology 2007;73:4785-4790
- Binh, C.T.T.; Heuer, H.; Gomes, N.C.M.; Kaupenjohann, M.; Smalla, K. Similar bacterial community structure and high abundance of sulfonamide resistance genes in field-scale manures. Manure: Management, Uses and Environmental Impacts. Hauppauge, NY, USA: Nova Science Publishers;

- Binh, C.T.T.; Heuer, H.; Kaupenjohann, M.; Smalla, K. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. Fems Microbiology Ecology 2008;66:25-
- Bonvin, F.; Omlin, J.; Rutler, R.; Schweizer, W.B.; Alaimo, P.J.; Strathmann, T.J.; McNeill, K.; Kohn,
 T. Direct Photolysis of Human Metabolites of the Antibiotic Sulfamethoxazole: Evidence for
 Abiotic Back-Transformation. Environmental science & technology 2013;47:6746-6755
- Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. The Science of the total environment 2006;366:772-783
- CARSS; Committee of Experts on Rational Drug Use; National Health and Family Planning Commission of the P.R.China, C.A.R.S.S. China Antimicrobial Resistance Surveillance System Report 2015. China Licensed Pharmacist 2016;13:3-8 (In Chinese)
- Chang, H.; Hu, J.; Wang, L.; Shao, B. Occurrence of sulfonamide antibiotics in sewage treatment plants. Chinese Science Bulletin 2008;53:514-520
- Chang, X.; Meyer, M.T.; Liu, X.; Zhao, Q.; Chen, H.; Chen, J.A.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental pollution 2010;158:1444-1450
- Chen, B.; Yang, Y.; Liang, X.; Yu, K.; Zhang, T.; Li, X. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environmental science & technology 2013a;47:12753-12760
- Chen, B.; Zheng, W.W.; Yu, Y.; Huang, W.W.; Zheng, S.P.; Zhang, Y.; Guan, X.O.; Zhuang, Y.T.; Chen, N.; Topp, E. Class 1 Integrons, Selected Virulence Genes, and Antibiotic Resistance in Escherichia coli Isolates from the Minjiang River, Fujian Province, China. Applied and environmental microbiology 2011a;77:148-155
- Chen, B.W.; Liang, X.M.; Nie, X.P.; Huang, X.P.; Zou, S.C.; Li, X.D. The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. Journal of Hazardous Materials 2015;282:61-67
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environmental pollution 2014;193:94-101
- Chen, H.; Zhang, M.M. Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China. Environmental science & technology 2013a;47:8157-8163
- Chen, H.; Zhang, M.M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environment International 2013b;55:9-14
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014;95:604-612
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International 2016;92-93:1-10
- Chen, X.S.; Yin, Y.P.; Wei, W.H.; Wang, H.C.; Peng, R.R.; Zheng, H.P.; Zhang, J.P.; Zhu, B.Y.; Liu,

1771	
1772	
1773	
1774	Q.Z.; Huang, S.J. High prevalence of azithromycin resistance to Treponema pallidum in
1775	geographically different areas in China. Clinical microbiology and infection : the official
1776	publication of the European Society of Clinical Microbiology and Infectious Diseases
1777	2013b·19·975-979
1778	Chan V: They 7: Jiang V: Vy V Emergence of NDM 1 producing Aginetobaster baymonnii in
1779	Chen, F., Zhou, Z., Jiang, F., Fu, F. Emergence of NDM-1-producing Achietobacter baumannin in
1780	China. Journal of Antimicrobial Chemotherapy 2011b;66:1255-1259
1781	Cheng, W.; Chen, H.; Su, C.; Yan, S. Abundance and persistence of antibiotic resistance genes in
1782	livestock farms: a comprehensive investigation in eastern China. Environ Int 2013;61:1-7
1783	Cheng, W.X.; Li, J.N.; Wu, Y.; Xu, L.K.; Su, C.; Qian, Y.Y.; Zhu, Y.G.; Chen, H. Behavior of
1784	antibiotics and antibiotic resistance genes in eco-agricultural system: A case study Journal of
1785	the state is and antibiotic resistance genes in cco-agricultural system. A case study, southar of
1786	Hazardous Materials 2016;304:18-25
1787	Christian, T.; Schneider, R.J.; Färber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E. Determination
1788	of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta hydrochimica et hydrobiologica
1789	2003;31:36-44
1790	Collignon P. Voss A. China what antibiotics and what volumes are used in food production animals?
1791	Antimiarchial Desistance and Infection Control 2015:4:16
1792	
1793	Cui, L.; Zhao, J.; Lu, J. Molecular characteristics of extended spectrum beta-lactamase and
1794	carbapenemase genes carried by carbapenem-resistant Enterobacter cloacae in a Chinese
1795	university hospital. Turkish Journal of Medical Sciences 2015;45:1321-1328
1796	Currie, J.; Lin, W.; Meng, J. Addressing antibiotic abuse in China: An experimental audit study.
1797	Journal of Development Economics 2014;110:39-51
1798	Czekalski N · Berthold T · Caucci S · Foli A · Bueromann H Increased Levels of Multiresistant
1799	Postaria and Posistanaa Cones after Westawater Treatment and Their Discomination into Lake
1901	Bacteria and Resistance Genes after wastewater freatment and filen Dissemination into Lake
1902	Geneva, Switzerland. Frontiers in microbiology 2012;3
1802	D'Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.;
1804	Calmels, F.; Debruyne, R.; Golding, G.B.; Poinar, H.N.; Wright, G.D. Antibiotic resistance is
1805	ancient. Nature 2011;477:457-461
1806	Dai, X.T.; Sun, F.J.; Chen, Z.H.; Luo, G.M.; Feng, W.; Xiong, W.; Xia, P.Y. The epidemiology and
1807	resistance mechanisms of Asinatobacter haumannii isolates from the respiratory department ICU
1808	Color in the Cline Minute Line in the 2014 20 (10 (22)
1809	of a hospital in China. Microbial drug resistance 2014;20:618-622
1810	Dang, H.Y.; Ren, J.; Song, L.S.; Sun, S.; An, L.G. Dominant chloramphenicol-resistant bacteria and
1811	resistance genes in coastal marine waters of Jiaozhou Bay, China. World Journal of Microbiology
1812	& Biotechnology 2008;24:209-217
1813	Demain, A.L. Phamaceutically actibe secondary metabolites of microorganisms. Appl Microbiol
1814	Biotechnol 1000:52:455.463
1815	
1816	Dibner, J.J.; Richards, J.D. Antibiotic Growth Promoters in Agriculture: History and Mode of Action.
1817	Poultry Science 2005;84:634-643
1818	Dierikx, C.M.; Hengeveld, P.D.; Veldman, K.T.; de Haan, A.; van der Voorde, S.; Dop, P.Y.; Bosch,
1819	T.; van Duijkeren, E. Ten years later: still a high prevalence of MRSA in slaughter pigs despite a
1820	significant reduction in antimicrobial usage in pigs the Netherlands. Journal of Antimicrobial
1821	Chemotherany 2016:71:2414-2418
1822	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
1823	Ding, H.; Yang, Y.; Wei, J.; Fan, S.; Yu, S.; Yao, K.; Wang, A.; Shen, X. Influencing the use of
1824	antibiotics in a Chinese pediatric intensive care unit. Pharmacy world & science : PWS
1825	2008;30:787-793
1826	
1827	31
1828	

- Du, J.; Ren, H.Q.; Geng, J.J.; Zhang, Y.; Xu, K.; Ding, L.L. Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environmental Science and Pollution Research 2014;21:7276-7284
- Duriez, P.; Topp, E. Temporal dynamics and impact of manure storage on antibiotic resistance patterns and population structure of Escherichia coli isolates from a commercial swine farm. Applied and environmental microbiology 2007;73:5486-5493
- Enne, V.I.; Cassar, C.; Sprigings, K.; Woodward, M.J.; Bennett, P.M. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E-coli from cattle and sheep in Great Britain at slaughter. Fems Microbiology Letters 2008;278:193-199
- Fang, H.; Wang, H.F.; Cai, L.; Yu, Y.L. Prevalence of Antibiotic Resistance Genes and Bacterial Pathogens in Long-Term Manured Greenhouse Soils As Revealed by Metagenomic Survey. Environmental science & technology 2015;49:1095-1104
- Forsberg, K.J.; Reyes, A.; Bin, W.; Selleck, E.M.; Sommer, M.O.A.; Dantas, G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012;337:1107-1111
- Gao, L.; Hu, J.; Zhang, X.; Wei, L.; Li, S.; Miao, Z.; Chai, T. Application of swine manure on agricultural fields contributes to extended-spectrum beta-lactamase-producing Escherichia coli spread in Tai'an, China. Frontiers in microbiology 2015;6:313
- Gao, L.; Shi, Y.; Li, W.; Niu, H.; Liu, J.; Cai, Y. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere 2012;86:665-671
- Garcia-Galan, M.J.; Diaz-Cruz, S.; Barcelo, D. Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry. Journal of chromatography A 2013;1275:32-40
- Garcia-Galan, M.J.; Fromel, T.; Muller, J.; Peschka, M.; Knepper, T.; Diaz-Cruz, S.; Barcelo, D. Biodegradation studies of N (4)-acetylsulfapyridine and N (4)-acetylsulfamethazine in environmental water by applying mass spectrometry techniques. Anal Bioanal Chem 2012;402:2885-2896
- Gillings, M.R.; Gaze, W.H.; Pruden, A.; Smalla, K.; Tiedje, J.M.; Zhu, Y.-G. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. Isme Journal 2015;9:1269-1279
- Graham, D.W.; Knapp, C.W.; Christensen, B.T.; McCluskey, S.; Dolfing, J. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century. 2016;6:21550
- Gulkowska, A.; Leung, H.W.; So, M.K.; Taniyasu, S.; Yamashita, N.; Yeung, L.W.; Richardson, B.J.; Lei, A.P.; Giesy, J.P.; Lam, P.K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water research 2008;42:395-403
- Hall, A.R.; Colegrave, N. Decay of unused characters by selection and drift. J Evolution Biol 2008;21:610-617
- Heuer, H.; Focks, A.; Lamshoeft, M.; Smalla, K.; Matthies, M.; Spiteller, M. Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biology & Biochemistry 2008;40:1892-1900
- Heuer, H.; Kopmann, C.; Binh, C.T.T.; Top, E.M.; Smalla, K. Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G plus C content. Environmental Microbiology 2009;11:937-949

- Holman, D.B.; Chenier, M.R. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian journal of microbiology 2015;61:785-798
 - Holzel, C.S.; Harms, K.S.; Kuchenhoff, H.; Kunz, A.; Muller, C.; Meyer, K.; Schwaiger, K.; Bauer, J. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. J Appl Microbiol 2010;108:1642-1656
 - Hou, J.; Wan, W.; Mao, D.; Wang, C.; Mu, Q.; Qin, S.; Luo, Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environmental science and pollution research international 2015;22:4545-4554
 - Hou, J.; Wang, C.; Mao, D.; Luo, Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environmental science and pollution research international 2016;23:1722-1731
 - Hu, F.P.; Guo, Y.; Zhu, D.M.; Wang, F.; Jiang, X.F.; Xu, Y.C.; Zhang, X.J.; Zhang, C.X.; Ji, P.; Xie, Y.; Kang, M.; Wang, C.Q.; Wang, A.M.; Xu, Y.H.; Shen, J.L.; Sun, Z.Y.; Chen, Z.J.; Ni, Y.X.; Sun, J.Y.; Chu, Y.Z.; Tian, S.F.; Hu, Z.D.; Li, J.; Yu, Y.S.; Lin, J.; Shan, B.; Du, Y.; Han, Y.; Guo, S.; Wei, L.H.; Wu, L.; Zhang, H.; Kong, J.; Hu, Y.J.; Ai, X.M.; Zhuo, C.; Su, D.H.; Yang, Q.; Jia, B.; Huang, W. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014. Clinical Microbiology and Infection 2016a;22:S9-S14
 - Hu, F.P.; Zhu, D.M.; Wang, F.; Jiang, X.F.; Xu, Y.C.; Zhang, X.J.; Zhang, Z.X.; Ji, P.; Xie, Y.; Kang, M.; Wang, C.Q.; Wang, A.M.; Xu, Y.H.; Shen, J.L.; Sun, Z.Y.; Chen, Z.J.; Ni, Y.X.; Sun, J.Y.; Chu, Y.Z.; Tian, S.F.; Hu, Z.D.; Li, J.; Yu, Y.S.; Lin, J.; Shan, B.; Du, Y.; Guo, S.F.; Wei, L.H.; Wu, L.; Zhang, H.; Wang, C.; Hu, Y.J.; Ai, X.M.; Zhuo, C.; Su, D.H.; Wang, R.Z.; Fang, H.; Yu, B.X.; ZHAO, Y.; Gong, P. Report of CHINET Antimicrobial Resistance Surveillance Program in 2015. Chin J Infect Chemother 2016b;16:685-694 (In Chinese)
 - Hu, J.; Shi, J.; Chang, H.; Li, D.; Yang, M.; Kamagata, Y. Phenotyping and genotyping of antihioticresistant Escherichia coli isolated from a natural river basin. Environmental science & technology 2008a;42:3415-3420
 - Hu, L.; Zhong, Q.; Tu, J.; Xu, Y.; Qin, Z.; Parsons, C.; Zhang, B.; Hu, X.; Wang, L.; Yu, F.; Pan, J. Emergence of blaNDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagnostic Microbiology and Infectious Disease 2013;75:373-376
 - Hu, X.; He, K.; Zhou, Q. Occurrence, accumulation, attenuation and priority of typical antibiotics in sediments based on long-term field and modeling studies. J Hazard Mater 2012;225-226:91-98
 - Hu, X.G.; Luo, Y.; Zhou, Q.X.; Xu, L. Determination of Thirteen Antibiotics Residues in Manure by Solid Phase Extraction and High Performance Liquid Chromatography. Chinese J Anal Chem 2008b;36:1162-1166
 - Hu, X.G.; Zhou, Q.X.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental pollution 2010;158:2992-2998
 - Huang, J.J.; Hu, H.Y.; Lu, S.Q.; Li, Y.; Tang, F.; Lu, Y.; Wei, B. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China. Environment International 2012;42:31-36
 - Huang, M.H.; Zhang, W.; Liu, C.; Hu, H.Y. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant. Process Safety and

1949	
1950	Environmental Protection 2015a:93:68-74
1951	
1952	Huang, X.; Liu, C.X.; Li, K.; Liu, F.; Liao, D.R.; Liu, L.; Zhu, G.F.; Liao, J. Occurrence and
1953	distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around
1954	swine feedlots in Fujian Province, China. Environmental Science and Pollution Research
1955	2013a;20:9066-9074
1956	Huang X: Liu CX: Li K: Su LO: Zhu GE: Liu L Performance of vertical un-flow constructed
1957	Huang, X., Elu, C.X., El, K., Su, J.Q., Elu, G.I., Elu, E. Fertormanee of vertical up-now constructed
1958	wetlands on swine wastewater containing tetracyclines and tet genes. water research
1959	2015b;70:109-117
1960	Huang, Y.J.; Cheng, M.M.; Li, W.H.; Wu, L.H.; Chen, Y.S.; Luo, Y.M.; Christie, P.; Zhang, H.B.
1961	Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and
1962	analysis by liquid chromatography-tandem mass spectrometry with the isotone-labelled internal
1963	standard mathed Anal Matheda III. 2012h:5-2721 2721
1964	standard method. Anal Methods-UK 20130,5:3721-3731
1965	Ji, X.L.; Shen, Q.H.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.L.; Wu, M.H. Antibiotic resistance gene
1966	abundances associated with antibiotics and heavy metals in animal manures and agricultural soils
1967	adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials 2012;235:178-185
1968	Iia A · Wan V · Xiao V · Hu I Occurrence and fate of quinolone and fluoroquinolone antibiotics in a
1969	sta, A., Wai, T., Mao, T., Hu, S. Occurrence and face of quinofone and hadroquinofone antibioties in a
1970	municipal sewage treatment plant. water research 2012;46:387-394
1971	Jia, W.; Li, G.; Wang, W. Prevalence and antimicrobial resistance of Enterococcus species: a hospital-
1972	based study in China. International journal of environmental research and public health
1973	2014;11:3424-3442
1974	Jiang L. Hu, X. Xu, T. Zhang, H. Sheng, D. Yin, D. Prevalence of antibiotic resistance genes and
1975	their relationship with antibiotics in the Huangny Diver and the drinking water sources. Shanghoi
1976	their relationship with antibiotics in the Huangpu Kiver and the drinking water sources, Shanghai,
1977	China. The Science of the total environment 2013;458-460:267-272
1978	Ju, F.; Li, B.; Ma, L.; Wang, Y.; Huang, D.; Zhang, T. Antibiotic resistance genes and human bacterial
1979	pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water
1980	research 2016:91:1-10
1981	Karci A: Balciogly IA Investigation of the tetracycline sulfonamide and fluoroguinolone
1982	Karei, A., Datelogiu, I.A. investigation of the tetracycline, sufficiality and hubbour
1983	antimicrobial compounds in animal manure and agricultural soils in Turkey. The Science of the
1984	total environment 2009;407:4652-4664
1985	Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care
1986	products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the
1987	quality of receiving waters. Water research 2009:43:363-380
1988	Key D. Dischwell, D.A. Devell, A.D.A. Este of exterinary artikistics in a macromonous tile drained
1969	Kay, P., Blackweit, P.A., Boxan, A.B.A. Fate of veterinary antibiotics in a macroporous the dramed
1990	clay soil. Environmental Toxicology and Chemistry 2004;23:1136-1144
1991	Kim, SC.; Carlson, K. Temporal and Spatial Trends in the Occurrence of Human and Veterinary
1992	Antibiotics in Aqueous and River Sediment Matrices. Environmental science & technology
1993	2007.41.50-57
1994	Kim SD: Cho I: Kim IS: Vanderford BI: Snyder SA Occurrence and removal of
1995	Kini, S.D., Cho, J., Kini, I.S., Vanderlord, B.J., Shyder, S.A. Occurrence and removal of
1990	pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.
1997	Water research 2007;41:1013-1021
1990	Kümmerer, K. Antibiotics in the aquatic environment - A review - Part I. Chemosphere 2009;75:417-
2000	434
2000	Langford F.M. Weary D.M. Fisher I. Antihiotic Resistance in Gut Racteria from Dairy Colump. A
2001	D D D Caller and the second se
2002	Dose Response to the Level of Antibiotics Fed in Milk. Journal of Dairy Science 2003;86:3963-
2003	24
2004	34
2000	

1948

2007 2008 2009

2010

2011 2012

2013

2014

2015

2016

2017 2018

2019

2020

2021

2022

2023 2024

2025

2026

2027

2028

2029

2030 2031

2032

2033

2034

2035 2036

2037

2038

2039

2040

2041

2042 2043

2044

2045

2046

2047

2048 2049

2050

2051

2052

2053

2054 2055

2056

2057

2058

2059

2060 2061

2062

- Leung, H.W.; Minh, T.B.; Murphy, M.B.; Lam, J.C.; So, M.K.; Martin, M.; Lam, P.K.; Richardson, B.J. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ Int 2012;42:1-9
- Li, B.; Yang, Y.; Ma, L.P.; Ju, F.; Guo, F.; Tiedje, J.M.; Zhang, T. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. Isme Journal 2015;9:2490-2502
- Li, B.; Zhang, T. Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 2011;83:1284-1289
- Li, B.; Zhang, T.; Xu, Z.; Fang, H.H. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica chimica acta 2009;645:64-72
- Li, C.; Lu, J.J.; Liu, J.; Zhang, G.L.; Tong, Y.B.; Ma, N. Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China. Environmental Science and Pollution Research 2016a;23:15111-15121
- Li, D.; Yu, T.; Zhang, Y.; Yang, M.; Li, Z.; Liu, M.M.; Qi, R. Antibiotic Resistance Characteristics of Environmental Bacteria from an Oxytetracycline Production Wastewater Treatment Plant and the Receiving River. Applied and environmental microbiology 2010;76:3444-3451
- Li, J.; Song, X.; Yang, T.; Chen, Y.; Gong, Y.; Yin, X.; Lu, Z. A Systematic Review of Antibiotic Prescription Associated With Upper Respiratory Tract Infections in China. Medicine 2016b;95
- Li, J.N.; Cheng, W.X.; Xu, L.K.; Jiao, Y.N.; Baig, S.A.; Chen, H. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment. Environmental Science and Pollution Research 2016c;23:6826-6835
- Li, N.; Zhang, X.; Wu, W.; Zhao, X. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China. Chemosphere 2014a;111:327-335
- Li, P.; Wu, D.F.; Liu, K.Y.; Suolang, S.Z.; He, T.; Liu, X.; Wu, C.M.; Wang, Y.; Lin, D.G. Investigation of Antimicrobial Resistance in Escherichia coli and Enterococci Isolated from Tibetan Pigs. Plos One 2014b;9
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 2013a;92:435-444
- Li, X.; Xie, Y.; Wang, J.; Christakos, G.; Si, J.; Zhao, H.; Ding, Y.; Li, J. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in northern China. The Science of the total environment 2013b;458-460:63-69
- Li, X.W.; Xie, Y.F.; Li, C.L.; Zhao, H.N.; Zhao, H.; Wang, N.; Wang, J.F. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China. The Science of the total environment 2014c;468-469:258-264
- Li, Y.-x.; Zhang, X.-l.; Li, W.; Lu, X.-f.; Liu, B.; Wang, J. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environmental Monitoring and Assessment 2013c;185:2211-2220
- Li, Y. China's misuse of antibiotics should be curbed. BMJ : British Medical Journal 2014;348
- Li, Y.X.; Li, W.; Zhang, X.L.; Yang, M. Simultaneous Determination of Fourteen Veterinary Antibiotics in Animal Feces by Solid Phase Extraction and High Performance Liquid Chromatography. Chinese J Anal Chem 2012;40:213-217

2063
Liang, Z.; Ke, B.; Deng, X.; Liang, J.; Ran, L.; Lu, L.; He, D.; Huang, Q.; Ke, C.; Li, Z.; Yu, H.; Klena, J.D.; Wu, S. Serotypes, seasonal trends, and antibiotic resistance of non-typhoidal Salmonella from human patients in Guangdong Province, China, 2009-2012. BMC infectious diseases 2015;15:53

- Lin, H.; Sun, W.C.; Zhang, Z.L.; Chapman, S.J.; Freitag, T.E.; Fu, J.R.; Zhang, X.; Ma, J.W. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system. Environmental pollution 2016;211:332-337
- Lin, L.; Yuan, K.; Liang, X.M.; Chen, X.; Zhao, Z.S.; Yang, Y.; Zou, S.C.; Luan, T.G.; Chen, B.W. Occurrences and distribution of sulfonamide and tetracycline resistance genes in the Yangtze River Estuary and nearby coastal area. Marine Pollution Bulletin 2015;100:304-310
- Ling, Z.H.; Yang, Y.; Huang, Y.L.; Zou, S.C.; Luan, T.G. A preliminary investigation on the occurrence and distribution of antibiotic resistance genes in the Beijiang River, South China. Journal of Environmental Sciences 2013;25:1656-1661
- Liu, M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L.; Zhang, S. Abundance and Distribution of Tetracycline Resistance Genes and Mobile Elements in an Oxytetracycline Production Wastewater Treatment System. Environmental science & technology 2012;46:7551-7557
- Liu, Z.; Li, W.; Wang, J.; Pan, J.; Sun, S.; Yu, Y.; Zhao, B.; Ma, Y.; Zhang, T.; Qi, J.; Liu, G.; Lu, F. Identification and Characterization of the First Escherichia coli Strain Carrying NDM-1 Gene in China. PLOS ONE 2013;8:e66666
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Sul, W.J.; Stedtfeld, T.M.; Chai, B.L.; Cole, J.R.; Hashsham, S.A.; Tiedje, J.M.; Stanton, T.B. In-feed antibiotic effects on the swine intestinal microbiome. P Natl Acad Sci USA 2012;109:1691-1696
- Lu, H.; Wang, X.; Lang, X.; Wang, Y.; Dang, Y.; Zhang, F.; Tang, J.; Li, X.; Feng, X. Preparation and application of microarrays for the detection of antibiotic resistance genes in samples isolated from Changchun, China. Molecular biology reports 2010a;37:1857-1865
- Lu, L.; Dai, L.; Wang, Y.; Wu, C.; Chen, X.; Li, L.; Qi, Y.; Xia, L.; Shen, J. Characterization of antimicrobial resistance and integrons among Escherichia coli isolated from animal farms in Eastern China. Acta tropica 2010b;113:20-25
- Luo, Y.; Mao, D.Q.; Rysz, M.; Zhou, D.X.; Zhang, H.J.; Xu, L.; Alvarez, P.J.J. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental science & technology 2010;44:7220-7225
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental science & technology 2011;45:1827-1833
- Luo, Y.; Yang, F.X.; Mathieu, J.; Mao, D.Q.; Wang, Q.; Alvarez, P.J.J. Proliferation of Multidrug-Resistant New Delhi Metallo-beta-lactamase Genes in Municipal Wastewater Treatment Plants in Northern China. Environmental Science & Technology Letters 2014;1:26-30
- Mao, D.Q.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.X.; Li, F.X.; Hou, J.; Mu, Q.H.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water research 2015;85:458-466
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews 2011;24:718-733
- Martinez-Carballo, E.; Gonzalez-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental pollution

2007;148:570-579

- McEwen, S.A.; Fedorka-Cray, P.J. Antimicrobial Use and Resistance in Animals. Clinical Infectious Diseases 2002;34:S93-S106
- McKenna, M. The Abstinence Method: Dutch farmers just say no to antibiotics for livestock. Modern Farmer; 2014
- Moore, P.R.; Evenson, A.; Luckey, T.D.; McCoy, E.; Elvehjem, C.A.; Hart, E.B. USE OF SULFASUXIDINE, STREPTOTHRICIN, AND STREPTOMYCIN IN NUTRITIONAL STUDIES WITH THE CHICK. Journal of Biological Chemistry 1946;165:437-441
- Mu, Q.; Li, J.; Sun, Y.; Mao, D.; Wang, Q.; Luo, Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research 2015;22:6932-6940
- Na, G.; Zhang, W.; Zhou, S.; Gao, H.; Lu, Z.; Wu, X.; Li, R.; Qiu, L.; Cai, Y.; Yao, Z. Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria: implications for antibiotic resistance genes. Mar Pollut Bull 2014;84:70-75
- Ok, Y.S.; Kim, S.C.; Kim, K.R.; Lee, S.S.; Moon, D.H.; Lim, K.J.; Sung, J.K.; Hur, S.O.; Yang, J.E. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 2011;174:693-701
- Ou, D.Y.; Chen, B.; Bai, R.N.; Song, P.Q.; Lin, H.S. Contamination of sulfonamide antibiotics and sulfamethazine-resistant bacteria in the downstream and estuarine areas of Jiulong River in Southeast China. Environmental Science and Pollution Research 2015;22:12104-12113
- Ouyang, W.Y.; Huang, F.Y.; Zhao, Y.; Li, H.; Su, J.Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Applied Microbiology and Biotechnology 2015;99:5697-5707
- Pan, X.; Qiang, Z.; Ben, W.; Chen, M. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 2011;84:695-
- Pei, R.; Kim, S.-C.; Carlson, K.H.; Pruden, A. Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water research 2006;40:2427-2435
- Peng, S.; Wang, Y.; Zhou, B.; Lin, X. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Science of the Total Environment 2015;506:279-286
- Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. The Science of the total environment 2006;371:314-322
- Pruden, A.; Pei, R.T.; Storteboom, H.; Carlson, K.H. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environmental science & technology 2006;40:7445-
- Pu, X.Y.; Pan, J.C.; Wang, H.Q.; Zhang, W.; Huang, Z.C.; Gu, Y.M. Characterization of fluoroquinolone-resistant Shigella flexneri in Hangzhou area of China. The Journal of antimicrobial chemotherapy 2009;63:917-920
- Qiao, M.; Chen, W.D.; Su, J.Q.; Zhang, B.; Zhang, C. Fate of tetracyclines in swine manure of three selected swine farms in China. Journal of Environmental Sciences 2012;24:1047-1052
- Qin, S.; Fu, Y.; Zhang, Q.; Qi, H.; Wen, J.G.; Xu, H.; Xu, L.; Zeng, L.; Tian, H.; Rong, L.; Li, Y.;

- Shan, L.; Xu, H.; Yu, Y.; Feng, X.; Liu, H.-M. High Incidence and Endemic Spread of NDM-1-Positive Enterobacteriaceae in Henan Province, China. Antimicrobial Agents and Chemotherapy 2014;58:4275-4282
- RFA. Massive Antibiotic Pollution in China's Rivers 'Fueled by Abuse'. Orlando Echo; 2015
- Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014;969:162-170
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006;65:725-759
- Schmidt, A.S.; Bruun, M.S.; Dalsgaard, I.; Larsen, J.L. Incidence, Distribution, and Spread of Tetracycline Resistance Determinants and Integron-Associated Antibiotic Resistance Genes among Motile Aeromonads from a Fish Farming Environment. Applied and environmental microbiology 2001;67:5675-5682
- Schwaiger, K.; Harms, K.; Holzel, C.; Meyer, K.; Karl, M.; Bauer, J. Tetracycline in liquid manure selects for co-occurrence of the resistance genes tet(M) and tet(L) in Enterococcus faecalis. Veterinary Microbiology 2009;139:386-392
- Shao, B.; Chen, D.; Zhang, J.; Wu, Y.; Sun, C. Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater. Journal of chromatography A 2009;1216:8312-8318
- Shelver, W.L.; Hakk, H.; Larsen, G.L.; DeSutter, T.M.; Casey, F.X. Development of an ultra-highpressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. Journal of chromatography A 2010;1217:1273-1282
- Singer, A. How chemicals and heavy metals contribute to antimicrobial resistance. The Pharmaceutical Journal 2017;298
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Frontiers in microbiology 2016;7
- Song, Z.; Zhang, J.; He, L.; Chen, M.; Hou, X.; Li, Z.; Zhou, L. Prospective multi-region study on primary antibiotic resistance of Helicobacter pylori strains isolated from Chinese patients. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 2014;46:1077-1081
- Stokstad, E.L.R.; Jukes, T.H. Further Observations on the "Animal Protein Factor". Proceedings of the Society for Experimental Biology and Medicine 1950;73:523-528
- Su, H.C.; Pan, C.G.; Ying, G.G.; Zhao, J.L.; Zhou, L.J.; Liu, Y.S.; Tao, R.; Zhang, R.Q.; He, L.Y. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. The Science of the total environment 2014a;490:708-714
- Su, H.C.; Ying, G.G.; Tao, R.; Zhang, R.Q.; Zhao, J.L.; Liu, Y.S. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. Environmental pollution 2012;169:42-49
- Su, J.Q.; An, X.L.; Li, B.; chen, Q.L.; Gillings, M.R.; Chen, H.; Zhang, T.; Zhu, Y.G. Metagenomics of Urban Sewage Identifies an Extensively Shared Antibiotic Resistome in China. Microbiome 2017:DOI: 10.1186/s40168-40017-40298-y
- Su, J.Q.; Wei, B.; Xu, C.Y.; Qiao, M.; Zhu, Y.G. Functional metagenomic characterization of antibiotic

resistance genes in agricultural soils from China. Environment International 2014b;65:9-15

- Sun, J.; Hu, J.; Peng, H.; Shi, J.; Dong, Z. Molecular and physiological characterization of fluoroquinolone resistance in relation to uropathogenicity among Escherichia coli isolates isolated from Wenyu River, China. Chemosphere 2012;87:37-42
- Sun, J.; Shen, X.; Li, M.; He, L.; Guo, S.; Skoog, G.; Grape, M.; Cars, O.; Dong, S. Changes in patterns of antibiotic use in Chinese public hospitals (2005-2012) and a benchmark comparison with Sweden in 2012. Journal of Global Antimicrobial Resistance 2015;3:95-102
- Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C.P. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental pollution 2016;208:371-381
- Sun, Y.; Liu, Q.; Chen, S.; Song, Y.; Liu, J.; Guo, X.; Zhu, L.; Ji, X.; Xu, L.; Zhou, W.; Qian, J.; Feng, S. Characterization and Plasmid Elimination of NDM-1-Producing Acinetobacter calcoaceticus from China. Plos One 2014;9
- Tang, J.; Wang, L.; Xi, Y.; Liu, G. A three-year survey of the antimicrobial resistance of microorganisms at a Chinese hospital. Experimental and Therapeutic Medicine 2016;11:731-736
- Tang, X.; Lou, C.; Wang, S.; Lu, Y.; Liu, M.; Hashmi, M.Z.; Liang, X.; Li, Z.; Liao, Y.; Qin, W.; Fan, F.; Xu, J.; Brookes, P.C. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology & Biochemistry 2015;90:179-187
- Tao, R.; Ying, G.G.; Su, H.C.; Zhou, H.W.; Sidhu, J.P. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. Environmental pollution 2010;158:2101-2109
- Tong, L.; Huang, S.; Wang, Y.; Liu, H.; Li, M. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. The Science of the total environment 2014;497-498:180-187
- Tuc Dinh, Q.; Alliot, F.; Moreau-Guigon, E.; Eurin, J.; Chevreuil, M.; Labadie, P. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC– MS/MS. Talanta 2011;85:1238-1245
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. P Natl Acad Sci USA 2015;112:5649-5654
- Verlicchi, P.; Al Aukidy, M.; Jelic, A.; Petrović, M.; Barceló, D. Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy). Science of The Total Environment 2014;470:844-854
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water research 2007;41:1001-1012
- Wang, D.; Sui, Q.; Lu, S.G.; Zhao, W.T.; Qiu, Z.F.; Miao, Z.W.; Yu, G. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. Environmental science and pollution research international 2014a;21:4276-4285
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental science & technology 2014b;48:9079-9085
- Wang, J.; Ben, W.W.; Yang, M.; Zhang, Y.; Qiang, Z.M. Dissemination of veterinary antibiotics and

> 2359 2360

corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environment International 2016a;92-93:317-323

- Wang, J.; Wang, P.; Wang, X.; Zheng, Y.; Xiao, Y. Use and prescription of antibiotics in primary health care settings in china. JAMA Internal Medicine 2014c;174:1914-1920
- Wang, J.L.; Mao, D.Q.; Mu, Q.H.; Luo, Y. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants. Science of the Total Environment 2015;526:366-373
- Wang, N.; Guo, X.Y.; Yan, Z.; Wang, W.; Chen, B.; Ge, F.; Ye, B.P. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China. Plos One 2016b;11
- Wang, N.; Yang, X.; Jiao, S.; Zhang, J.; Ye, B.; Gao, S. Sulfonamide-Resistant Bacteria and Their Resistance Genes in Soils Fertilized with Manures from Jiangsu Province, Southeastern China. Plos One 2014d;9
- Wang, Y.-J.; Jia, D.-A.; Sun, R.-J.; Zhu, H.-W.; Zhou, D.-M. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environmental science & technology 2008;42:3254-3259
- Wardwell, L.H.; Jude, B.A.; Moody, J.P.; Olcerst, A.I.; Gyure, R.A.; Nelson, R.E.; Fekete, F.A. Co-Selection of Mercury and Antibiotic Resistance in Sphagnum Core Samples Dating Back 2000 Years. Geomicrobiol J 2009;26:351-360
- Watanabe, N.; Bergamaschi, B.A.; Loftin, K.A.; Meyer, M.T.; Harter, T. Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields. Environmental science & technology 2010;44:6591-6600
- Wei, X.Q.; Zhong, S.J. The use of antibiotics in breeding industry. Journal of Animal Science and Veterinary Medicine 2011;30:117-118 (In Chinese)
- Wen, Q.X.; Yang, L.; Duan, R.; Chen, Z.Q. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China. Environmental pollution 2016;212:34-40
- WHO. Impacts of antimicrobial growth promoter termination in Denmark: The WHO international review panel's evaluation of the termination of the use of antimicrobial growth promoters in Denmark. 2003
- WHO. Global action plan on antimicrobial resistance. 2015
- Witte, W. Selective pressure by antibiotic use in livestock. International Journal of Antimicrobial Agents 2000;16:19-24
- Wright, G.D. Antibiotic resistance in the environment: a link to the clinic? Current Opinion in Microbiology 2010;13:589-594
- Wu, L.; Pan, X.; Chen, L.; Huang, Y.; Teng, Y.; Luo, Y.; Christie, P. Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China. Environmental science and pollution research international 2013;20:8342-8354
- Wu, N.; Qiao, M.; Zhang, B.; Cheng, W.D.; Zhu, Y.G. Abundance and Diversity of Tetracycline Resistance Genes in Soils Adjacent to Representative Swine Feedlots in China. Environmental Science & Technology 2010;44:6933-6939
- Xia, W.; Chen, Y.; Mei, Y.; Wang, T.; Liu, G.; Gu, B.; Pan, S. Changing trend of antimicrobial resistance among pathogens isolated from lower respiratory tract at a university-affiliated hospital of China, 2006-2010. Journal of thoracic disease 2012;4:284-291

- Xiao, Y.; Li, L. Legislation of clinical antibiotic use in China. The Lancet Infectious Diseases 2013;13:189-191
- Xiao, Y.; Li, L. China's national plan to combat antimicrobial resistance. Lancet Infectious Diseases 2016;16:1216-1218
- Xiao, Y.; Wei, Z.; Shen, P.; Ji, J.; Sun, Z.; Yu, H.; Zhang, T.; Ji, P.; Ni, Y.; Hu, Z.; Chu, Y.; Li, L. Bacterial-resistance among outpatients of county hospitals in China: significant geographic distinctions and minor differences between central cities. Microbes and Infection 2015;17:417-425
- Xiao, Y.H.; Wang, J.; Li, Y. Bacterial resistance surveillance in China: a report from Mohnarin 2004-2005. European Journal of Clinical Microbiology & Infectious Diseases 2008;27:697-708
- Xie, Z.; Tu, S.; Shah, F.; Xu, C.; Chen, J.; Han, D.; Liu, G.; Li, H.; Muhammad, I.; Cao, W. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Field Crops Research 2016;188:142-149
- Xiong, W.; Sun, Y.; Ding, X.; Zhang, Y.; Zhong, X.; Liang, W.; Zeng, Z. Responses of plasmidmediated quinolone resistance genes and bacterial taxa to (fluoro)quinolones-containing manure in arable soil. Chemosphere 2015;119:473-478
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015;119:1379-1385
- Xu, W.; Yan, W.; Li, X.; Zou, Y.; Chen, X.; Huang, W.; Miao, L.; Zhang, R.; Zhang, G.; Zou, S. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks. Environmental pollution 2013;182:402-407
- Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water research 2007;41:4526-4534
- Xu, Y.; Guo, C.S.; Luo, Y.; Lv, J.P.; Zhang, Y.; Lin, H.X.; Wang, L.; Xu, J. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environmental pollution 2016;213:833-840
- Xue, B.; Zhang, R.; Wang, Y.; Liu, X.; Li, J.; Zhang, G. Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and environmental safety 2013;92:229-236
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environmental pollution 2013;175:22-29
- Yan, Q.; Gao, X.; Huang, L.; Gan, X.M.; Zhang, Y.X.; Chen, Y.P.; Peng, X.Y.; Guo, J.S. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model. Chemosphere 2014;99:160-170
- Yang, H.C.; Chen, S.; White, D.G.; Zhao, S.H.; McDermott, P.; Walker, R.; Meng, J.H. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. Journal of Clinical Microbiology 2004;42:3483-3489
- Yang, J.-x.; Li, T.; Ning, Y.-z.; Shao, D.-h.; Liu, J.; Wang, S.-q.; Liang, G.-w. Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis: A hospital-based study in Beijing, China. Infection Genetics

 and Evolution 2015;33:253-260

- Yang, J.F.; Ying, G.G.; Zhao, J.L.; Tao, R.; Su, H.C.; Chen, F. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. The Science of the total environment 2010;408:3424-3432
- Yang, J.F.; Ying, G.G.; Zhao, J.L.; Tao, R.; Su, H.C.; Liu, Y.S. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of environmental science and health Part B, Pesticides, food contaminants, and agricultural wastes 2011;46:272-280
- Yang, Y.; Li, B.; Zou, S.C.; Fang, H.H.P.; Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water research 2014;62:97-106
- Yezli, S.; Li, H. Antibiotic resistance amongst healthcare-associated pathogens in China. Int J Antimicrob Agents 2012;40:389-397
- Yin, X.; Song, F.; Gong, Y.; Tu, X.; Wang, Y.; Cao, S.; Liu, J.; Lu, Z. A systematic review of antibiotic utilization in China. The Journal of antimicrobial chemotherapy 2013;68:2445-2452
- Zeng, L.; Hu, D.; Choonara, I.; Mu, D.; Zhang, L.; Li, X.; Zhang, Z.; Hu, Z.; Quan, S. A prospective study of the use of antibiotics in the Emergency Department of a Chinese University Hospital. The International journal of pharmacy practice 2017;25:89-92
- Zhai, W.C.; Yang, F.X.; Mao, D.Q.; Luo, Y. Fate and removal of various antibiotic resistance genes in typical pharmaceutical wastewater treatment systems. Environmental Science and Pollution Research 2016;23:12030-12038
- Zhang, H.; Liu, P.; Feng, Y.; Yang, F. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar Pollut Bull 2013;73:282-290
- Zhang, H.; Luo, Y.; Wu, L.; Huang, Y.; Christie, P. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environmental science and pollution research international 2015a;22:5908-5918
- Zhang, J.; Zhou, K.; Zheng, B.; Zhao, L.; Shen, P.; Ji, J.; Wei, Z.; Li, L.; Zhou, J.; Xiao, Y. High Prevalence of ESBL-Producing Klebsiella pneumoniae Causing Community-Onset Infections in China. Frontiers in microbiology 2016a;7
- Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015b;24:707-719
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental science & technology 2015c;49:6772-6782
- Zhang, R.; Eggleston, K.; Rotimi, V.; Zeckhauser, R.J. Antibiotic resistance as a global threat: Evidence from China, Kuwait and the United States. Globalization and Health 2006;2:6-6
- Zhang, R.; Zhang, G.; Zheng, Q.; Tang, J.; Chen, Y.; Xu, W.; Zou, Y.; Chen, X. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicology and environmental safety 2012;80:208-215
- Zhang, S.; Gu, J.; Wang, C.; Wang, P.; Jiao, S.; He, Z.; Han, B. Characterization of Antibiotics and Antibiotic Resistance Genes on an Ecological Farm System. Journal of Chemistry 2015d;
- Zhang, S.H.; Lv, X.Y.; Han, B.; Gu, X.C.; Wang, P.F.; Wang, C.; He, Z.L. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China. Environmental Science and Pollution Research 2015e;22:11412-11421
- Zhang, T.; Zhang, M.; Zhang, X.X.; Fang, H.H. Tetracycline Resistance Genes and Tetracycline

 Resistant Lactose-Fermenting Enterobacteriaceae in Activated Sludge of Sewage Treatment Plants. Environmental science & technology 2009a;43:3455-3460

- Zhang, X.-X.; Zhang, T. Occurrence, Abundance, and Diversity of Tetracycline Resistance Genes in 15 Sewage Treatment Plants across China and Other Global Locations. Environmental science & technology 2011;45:2598-2604
- Zhang, X.; Wu, B.; Zhang, Y.; Zhang, T.; Yang, L.; Fang, H.H.; Ford, T.; Cheng, S. Class 1 integronase gene and tetracycline resistance genes tetA and tetC in different water environments of Jiangsu Province, China. Ecotoxicology 2009b;18:652-660
- Zhang, Y.Y.; Zhuang, Y.; Geng, J.J.; Ren, H.Q.; Xu, K.; Ding, L.L. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Science of the Total Environment 2016b;550:184-191
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. The Science of the total environment 2010;408:1069-1075
- Zhao, W.; Guo, Y.; Lu, S.; Yan, P.; Sui, Q. Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering 2016;10:2
- Zheng, S.; Qiu, X.; Chen, B.; Yu, X.; Liu, Z.; Zhong, G.; Li, H.; Chen, M.; Sun, G.; Huang, H.; Yu, W.; Freestone, D. Antibiotics pollution in Jiulong River estuary: source, distribution and bacterial resistance. Chemosphere 2011;84:1677-1685
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhang, R.Q.; Lai, H.J.; Chen, Z.F.; Pan, C.G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. The Science of the total environment 2013a;444:183-195
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Chen, F.; Zhang, R.Q.; Peng, F.Q.; Zhang, Q.Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A 2012;1244:123-138
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Yang, B.; Chen, Z.F.; Lai, H.J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. The Science of the total environment 2013b;452-453:365-376
- Zhou, L.J.; Ying, G.G.; Zhang, R.Q.; Liu, S.; Lai, H.J.; Chen, Z.F.; Yang, B.; Zhao, J.L. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China. Environ Sci-Proc Imp 2013c;15:802-813
- Zhou, L.J.; Ying, G.G.; Zhao, J.L.; Yang, J.F.; Wang, L.; Yang, B.; Liu, S. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental pollution 2011;159:1877-1885
- Zhou, X.; Qiao, M.; Wang, F.-H.; Zhu, Y.-G. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environmental Science and Pollution Research 2017;24:701-710
- Zhu, N.; Ma, J. The estimation of the production amount of animal manure and its environmental effect in China. Agricultural Outlook 2014;10:46-48 (In Chinese)
- Zhu, S.; Chen, H.; Li, J. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake basin, Eastern China. Ecotoxicology and environmental safety 2013a;96:154-159
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje,

2539	
2540	IM Diverse and abundant antibiotic resistance genes in Chinese swine forms. Proceedings of the
2541	J.M. Diverse and abundant antibiotic resistance genes in chinese swine farms. Thecedings of the
2542	National Academy of Sciences of the United States of America 2013b;110:3435-3440
2543	Zhu, Y.G.; Zhao, Y.; Li, B.; Huang, C.L.; Zhang, S.Y.; Yu, S.; Chen, Y.S.; Zhang, T.; Gillings, M.R.;
2544	Su, J.Q. Continental-scale pollution of estuaries with antibiotic resistance genes. 2017;2:16270
2545	Zou I.K. Li I.W. Pan X. Tian G.B. Luo Y. Wu O. Li B. Cheng I. Xiao II. Hu S. Zhou
2546	Y. Dave VI Meleville characterization of hete laster project at Eacherichic cellicated from
2547	Y.; Pang, Y.J. Molecular characterization of beta-lactam-resistant Escherichia coll isolated from
2548	Fu River, China. World J Microbiol Biotechnol 2012;28:1891-1899
2549	
2550	
2551	
2552	
2553	
2554	
2555	
2556	
2557	
2558	
2559	
2560	
2561	
2562	
2563	
2564	
2565	
2566	
2567	
2507	
2500	
2509	
2570	
2571	
2572	
2573	
2574	
2575	
2576	
2577	
2578	
2579	
2580	
2581	
2582	
2583	
2584	
2585	
2586	
2587	
2588	
2589	
2590	
2591	
2592	
2593	
2594	44
2595	
2596	

Supplemental Material

Review of Antibiotic Resistance in China and its Environment

Min Qiao^{1,2}, Guang-GuoYing³, Andrew C. Singer⁴, Yong-Guan Zhu^{1, 5*}

¹State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
² University of Chinese Academy of Sciences, Beijing 100049, China
³State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
⁴NERC Centre for Ecology & Hydrology, Wallingford, OX10 8BB, United Kingdom
⁵Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Figure S1. Concentrations of antibiotics in influent and effluent of Chinese STPs. (The mean values for each compound are listed on the top x-axes)

Figure S2. Concentrations of antibiotics in surface water of Chinese rivers. (The mean values for each compound are listed on the top x-axes)

Figure S3. Concentrations of antibiotics in sediments of Chinese rivers.

(The mean values for each compound are listed on the top x-axes)

Figure S4. Concentrations of antibiotics in Chinese animal manures (chicken, duck, cattle and swine

manure). (The mean values for each compound are listed on the top x-axes)

Figure S5. Concentrations of antibiotics in Chinese soils.

(The mean values for each compound are listed on the top x-axes)

 Table S1 Concentrations of antibiotics in different environment media in China

Table S2 Abundance of antibiotic resistant genes (ARGs) in different environment media in China

Figure S1. Concentrations of antibiotics in influent and effluent of Chinese STPs. (The mean values for each compound are listed on the top x-axes)

Figure S3. Concentrations of antibiotics in sediments of Chinese rivers. (The mean values for each compound are listed on the top x-axes)

Figure S4. Concentrations of antibiotics in Chinese animal manures (chicken, duck, cattle and swine manure). (The mean values for each compound are listed on the top x-axes)

Figure S5. Concentrations of antibiotics in Chinese soils. (The mean values for each compound are listed on the top x-axes)

Location	Media	Antibiotics	Concentration	Unit	Reference
			range/Mean		
Beijing	STP Influent	Sulfamethoxazole	1200	ng/L	(Chang et al.
		Sulfapyridine	290		2008)
		Sulfamerazine	48		
		Sulfadiazine	350		
		Sulfamethizol	330		
	STP Effluent	Sulfamethoxazole	1400		
		Sulfapyridine	220		
		Sulfamerazine	21		
		Sulfadiazine	220		
		Sulfamethizol	10		
Beijing	STP Influent	Sulfamethoxazole	290-1000	ng/L	(Gao et al.
		Sulfapyridine	110-530		2012)
	Sulfamethazine	3.2-10		,	
		Sulfadiazine	380-2000		
		Norfloxacin	51-310		
		Ciprofloxacin	15-140		
		Fleroxacin	16-43		
		Ofloxacin	44-3100		
		Lomefloxacin	5.6-180		
		Spiramycin	nd-160		
		Josamycin	nd-2.7		
		Tylosin	nd-4		
		Erythromycin	130-520		
		Roxithromycin	67-260		
	STP Effluent	Sulfamethoxazole	130-460		
		Sulfapyridine	110-330		
		Sulfamethazine	1.6-11		
		Sulfadiazine	120-560		
		Norfloxacin	9-200		
		Ciprofloxacin	nd-55		
		Fleroxacin	nd-38		
		Ofloxacin	150-1200		
		Lomefloxacin	nd-140		
		Spiramycin	nd-32		
		Josamycın	nd-2		
		Tylosin	nd-3		
		Erythromycin	51-300		
		Roxithromycin	54-360	-	/ ~·
Beijing Qinghe	STP Influent	Pipemidic acid	86	ng/L	(Jia et al. 2012)
		Fleroxacin	14		

Table S1 Concentrations of antibiotics in different environment media in China

		Ofloxacin	1287			
		Norfloxacin	775			
		Ciprofloxacin	99			
		Enrofloxacin	8.3			
		Lomefloxacin	162			
		Sarafloxacin	nd			
		Gatifloxacin	66			
		Sparfloxacin	4 4			
		Moxifloxacin	72			
	STP Effluent	Pipemidic acid	33			
		Fleroxacin	5.2			
		Ofloxacin	528			
		Norfloxacin	256			
		Ciprofloxacin	37			
		Enrofloxacin	21			
		Lomefloxacin	71			
		Sarafloxacin	nd			
		Gatifloxacin	40			
		Sparfloxacin	1.1			
		Moxifloxacin	40			
Beijing	STP Influent	Sulfathiazole	nd	ng/L	(Li et	al.
5 0				U	2013a)	
		Sulfamethoxazole	332-646 (496)		,	
		Sulfisoxazole	nd			
		Sulfapyridine	281-608 (451)			
		Sulfadimethoxine	nd			
		Sulfamethazine	4.63-7.95 (6.32)			
		Sulfadiazine	760-4820 (2009)			
		Sulfamerazine	nd			
		Sulfamonomethoxine	nd			
		Norfloxacin	1368-2746 (1813)			
		Ciprofloxacin	35.0-119 (82.1)			
		Difloxacin	nd-9.55 (2.39)			
		Enrofloxacin	nd-7.92 (3.55)			
		Fleroxacin	nd-375 (147)			
		Ofloxacin	1445-3675 (2794)			
		Lomefloxacin	40.4-97.4 (63.7)			
		Sarafloxacin	nd-23.3 (9.37)			
		Spiramycin	3.08-11.0 (7.46)			
		Josamycin	nd-2.11 (0.86)			
		Tylosin	2.62-17.2 (6.42)			
		Erythromycin	48.6-520 (221)			
		Roxithromycin	25.0-224 (129)			
	STP Effluent	Sulfathiazole	nd			
		Sulfamethoxazole	4.82-20.2 (12.3)			
		Sulfisoxazole	nd			

		Sulfapyridine	0.94-3.98 (2.72)				
		Sulfadimethoxine	nd				
		Sulfamethazine	nd-0.39 (0.1)				
		Sulfadiazine	5.14-19.0 (10.7)				
		Sulfamerazine	nd				
		Sulfamonomethoxine	nd				
		Norfloxacin	nd-124 (40.1)				
		Ciprofloxacin	nd-4.98 (1.77)				
		Difloxacin	nd-0.79 (0.2)				
		Enrofloxacin	nd-1.26 (0.55)				
		Fleroxacin	nd-8.38 (3.75)				
		Ofloxacin	19.4-185 (72.6)				
		Lomefloxacin	nd-11.5 (3.3)				
		Sarafloxacin	nd-1.76 (0.44)				
		Spiramycin	nd				
		Josamycin	nd				
		Tylosin	nd				
		Erythromycin	nd-42.1 (14.7)				
		Roxithromycin	0.43-32.7 (9.99)				
Beijing	STP Influent	Sulfanilamide	nd-1200	ng/L	(Shao	et	al.
					2009)		
		Sulfameter	nd-215				
		Sulfachloropyridazine	nd-57				
		Sulfaquinoxaline	nd-103				
		Ofloxacin	38-716				
		Pefloxacin	4-160				
		Norfloxacin	2-120				
		Ciprofloxacin	16-408				
		Enrofloxacin	2-407				
		Lomefloxacin	nd-18				
		Tetracycline	23-980				
		Oxytetracycline	95-2942				
		Tylosin	nd-269				
		Kitasamycin	32-395				
		Erythromycin	12-354				
		Diazepam	nd-16				
		Chloramphenicol	nd-40				
		Clenbuterol	nd-11				
		Metoprolol	nd-32				
	STP Effluent	Sulfanilamide	nd-117				
		Sulfameter	nd-67				
		Sulfachloropyridazine	nd-22				
		Sulfaquinoxaline	nd-35				
		Ofloxacin	18-235				
		Pefloxacin	1-73				
		Norfloxacin	1-72				

		Ciprofloxacin	3-195		
		Enrofloxacin	1-92		
		Lomefloxacin	nd-10		
		Tetracvcline	10-210		
		Oxytetracycline	11-916		
		Tylosin	nd-189		
		Vitasamuain	5.40		
			3-40		
		Erythromycin	3-63		
		Diazepam	nd-8		
		Chloramphenicol	nd-8		
		Clenbuterol	nd-6		
		Metoprolol	nd-4		
Beijing	STP Influent	Sulfacetamide	9.5	ng/L	(Xu et al. 2015)
		Sulfamerazine	4.8		,
		Sulfadimidine	30.4		
		Sulfamethoxazole	263.3		
		Trimethoprim	1955.2		
		Ofloxacin	3645.2		
		Enrofloxacin	19.1		
		Tetracycline	177.6		
		Oxytetracycline	1425.4		
		Chlortetracycline	12.9		
	STP Effluent	Sulfacetamide	6.9		
		Sulfamerazine	1.2		
		Sulfadimidine	21.7		
		Sulfamethoxazole	192.6		
		Trimethoprim	1777.5		
		Ofloxacin	2068.4		
		Enrofloxacin	20.1		
		Tetracycline	32		
		Oxytetracycline	163.1		
.		Chlortetracycline	nd		
Chongqing	STP Influent	Erythromycin	206	ng/L	(Chang et al. 2010)
		Erythromycin-H ₂ O	703		
		Roxithromycin	nd		
		Tylosin	44		
		Lincomycin	1467		
		Trimethoprim	18		
		Ciproflaxacin	458		
		Lomefloxacin	143		
		Norfloxacin	859		
		Ofloxacin	780		

Sulfadimethoxine nd Sulfamethoxarole 2020 Iso-Chlotetracycline 105 Epi-iso-Chlotetracycline 39 Oxyteracycline 11 Tetracycline 125 Erythromycin-H2O 537 Roxithromycin 10 Timethoprim 177 Ciproflaxacin 101 Lomefloxacin 101 Ciproflaxacin 101 Lomefloxacin 166 Ofloxacin nd Norfloxacin 166 Ofloxacin nd Sulfamethoxine nd Sulfamethoxine nd Sulfamethoxine nd Sulfamethoxacole 1050 Iso-Chloretracycline 56 Epi-iso-Chloretracycline 51.998.27.8 (229.9) ng/L (Yan et al. 2014) Sulfamethoxacole 1050 12014) 14 Sulfamethoxacole 2460.4.3180 (2353.4) 14 14 Sulfamethoxacole 2460.4.3180 (2353.4) 14 14			Sulfadiazine	1382				
Sulfamethoxazole 2020 Iso-Chlorteracycline 105 Epi-iso-Chlortetracycline 39 Oxyteracycline 118 STP Efflueni Erythromycin Erythromycin 125 Erythromycin 0 Trimethoprim 177 Norfloxacin 101 I.omefloxacin 101 I.omefloxacin 166 Ofloxacin 83 Norfloxacin 166 Ofloxacin 18 Sulfamethoxarole 105 I.omefloxacin 166 Ofloxacin 84 Sulfadiazine 875 Sulfadimethoxine 14 Sulfamethoxarole 1050 Iso-Chlorteracycline 14 Sulfamethoxarole 202.8-257.8 (229.9) ng/L Okyteracycline 14 Sulfamethoxarole 2460.43180 (2935.4) 12 Trimethoprim 51.9-98.8 (77.37) 14 Ofloxacin nd-27.6 (19.9) 12 Sulfamethoxarole			Sulfadimethoxine	nd				
Sulfamethoxazole 2020 Iso-Chlottetracycline 105 Epi-iso-Chlottetracycline 39 Oxytetracycline 118 STP Effluent Tetracycline Erythromycin-H2O 537 Roxithromycin 125 Erythromycin-H2O 537 Roxithromycin 101 Trimethoprin 171 Ciproflaxacin 101 Iomefloxacin 166 Ofloxacin 166 Ofloxacin 105 Sulfadiazine 875 Sulfamethoxaiole 1050 Iso-Chlortetracycline 12 Sulfadiazine 14 Sulfamethoxaiole 1050 Iso-Chlortetracycline 12 Oxytetracycline 104 Sulfamethoxaiole 1050 Iso-Chlortetracycline 12 Oxytetracycline 104 Sulfamethoxaiole 120-174.4 (150.2) Sulfamethoxaiole 2460.4-3180 (2935.4) Trimethoprin 152-974.6 (19.9) Trimethoprin 152-974.6 (102.0) Norfloxacin <td></td> <td></td> <td>Sulfamethazine</td> <td>18</td> <td></td> <td></td> <td></td> <td></td>			Sulfamethazine	18				
Iso-Chloretracycline 105 Epi-iso-Chloretracycline 39 Oxytetracycline 118 STP Efflueni Erythromycin Erythromycin 125 Erythromycin 60 Tylosin 0 Lincomycin 101 Tylosin 101 I.omedixacin 101 I.omedixacin 101 I.omefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadirainc 875 Sulfadirainc 14 Sulfadirainc 14 Sulfadirainc 150-Chlortetracycline Sulfadirainc 129-174.4 (150.2) Sulfamethoxazole 129-174.4 (150.2			Sulfamethoxazole	2020				
Epi-iso-Chloretracycline 39 Oxytetracycline 41 Tetracycline 118 STP Effluent Erythromycin Roxithromycin nd Tylosin 0 Lincomycin 101 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadiazine 875 Sulfadiazine 80 Sulfadiazine 1050 Iso-Chloretracycline 56 Epi-iso-Chloretracycline 32 Oxyteracycline nd Tetraeycline nd Tetraeycline nd Sulfadiazine 29-174.4 (150.2) Sulfamethazine 129-174.4 (150.2) <td< th=""><td></td><td></td><td>Iso-Chlortetracycline</td><td>105</td><td></td><td></td><td></td><td></td></td<>			Iso-Chlortetracycline	105				
Oxytetracycline 41 Tetracycline 118 STP Efflueni Erythromycin Roxithromycin nd Tylosin 0 Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 166 Ofloxacin 166 Ofloxacin 16 Olsocina 14 Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfamethoxarole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline nd Tetracycline nd Sulfamethoxarole 202.8-257.8 (229.9) ng/L Qita et al. 2014) 2014) Sulfamethoxarole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Offoxacin ndc.3-225.1 (203.0) Moxifloxacin ndc.3-225.1 (203.0) Moxifloxac			Epi-iso-Chlortetracvcline	39				
Tertacycline 118 STP Effluent Erythromycin 125 Erythromycin 125 Erythromycin nd Tylosin 0 Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfamethoxazole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 129-174.4 (150.2) Sulfamethozine 129-174.4 (150.2) Sulfamethozine 129-174.4 (150.2) Sulfamethozine 13.9-98.8 (77.37) Ofloxacin 27.6 (19.9)			Oxvtetracvcline	41				
STP Effluent Erythromycin 125 Erythromycin-H2O 537 Roxithromycin nd Tylosin 0 Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 166 Ofloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxacole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 56 Epi-iso-Chlortetracycline nd Oxytetracycline nd Sulfamethoxazole 202.8-257.8 (229.9) ng/L. (Yan et al. 2014) 2014) 2014) Sulfamethoxazole 2460.4-3180 (2935.4) 2014) Trimethoprim 51.9-98.100.100 30.7376.5 (362.5) Norfloxacin nd-27.6 (19.9) 19.94.25.00 Frythromycin 330.27-376.5 (362.5) 51.90 Norfloxacin <td< th=""><td></td><td></td><td>Tetracycline</td><td>118</td><td></td><td></td><td></td><td></td></td<>			Tetracycline	118				
Erythromycin-H2O 537 Roxithromycin nd Tylosin 0 Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin 16 Sulfadiazine 875 Sulfadiazine 875 Sulfadiazine 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Sulfadiazine 202.8-257.8 (229.9) ng/L Chongqing STP Influent Sulfadiazine 129-174.4 (150.2) Sulfamethoxazole 14 2014) 2014) Sulfamethoxazole 129-174.4 (150.2) 2014) Sulfamethoxazole 246		STP Effluent	Erythromycin	125				
Roxithromycin nd Tylosin 0 Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfamethazine 14 Sulfamethazine 14 Sulfamethazine 129-174.4 (150.2) Sulfamethazine 129-174.4 (150.2) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 176.7-401.5 (345.9) Norfloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluett Sulfamethoxazole 1060.3-1212.2 (1147.9) <td></td> <td></td> <td>Erythromycin-H₂O</td> <td>537</td> <td></td> <td></td> <td></td> <td></td>			Erythromycin-H ₂ O	537				
Tylosin 0 Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine 14 Sulfamethoxacole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Trimethoprim 51.9-98.8 (77.37) Ofloxacin 129-174.4 (150.2) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin nd-32.25.1 (203.0) Moxifloxacin nd-32.25.1 (203.0) Moxifloxacin nd-37.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine 117.8-74.8 (155.0) <t< th=""><th></th><th></th><th>Roxithromycin</th><th>nd</th><th></th><th></th><th></th><th></th></t<>			Roxithromycin	nd				
Lincomycin 410 Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfamethoxine 14 Sulfamethoxacole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Tetracycline nd Sulfamethoxacole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 186.3-2251. (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-1820 STP Effluent Sulfadiazine 31.7-47.2 (39.9) Sulfamethoxacole 1060.3-121.2 (147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 330.27-376.5 (362.5) Sulfamethoxacole 1060.3-121.2 (1147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 35.2-75.4 (204.4)			Tylosin	0				
Trimethoprim 177 Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfadimethoxine nd Sulfadimethoxine nd Sulfamethoxacole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Trimethoprim 129-174.4 (150.2) Sulfamethoxacole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 726.7-401.5 (345.9) Norfloxacin ndc3.2-25.1 (203.0) Moxilloxacin ndc3.2-25.1 (203.0) Moxilloxacin ndc3.2-25.1 (203.0) Moxilloxacin ndc3.2-2.51 (203.0)			Lincomycin	410				
Ciproflaxacin 101 Lomefloxacin 43 Norfloxacin 166 Ofloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfadimethoxine nd Sulfamethazine 14 Sulfamethazine 14 Sulfamethoxacole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Tetracycline nd Sulfadiazine 202.8-257.8 (229.9) ng/L Yan et al. 2014) Sulfamethazine 129-174.4 (150.2) Sulfamethoxacole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 359.7-434.6 (404.0) Azithromycin 30.27-376.5 (362.5)			Trimethoprim	177				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ciproflaxacin	101				
Norfloxacin 166 Ofloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfadimethoxine 14 Sulfamethoxacole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Sulfadiazine 202.8-257.8 (229.9) ng/L Yam et al. 2014) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 186.3-225.1 (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 350.273.76.5 (362.5) STP Effluett Sulfadiazine STP Effluett Sulfadiazine STP Effluett Sulfadiazine Stultamethoxazole 1060.3-1212.2 (1147.9) 117methoprim Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9)			Lomefloxacin	43				
Ofloxacin nd Sulfadiazine 875 Sulfadimethoxine nd Sulfamethoxine 14 Sulfamethoxazole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Sulfamethoxazole 202.8-257.8 (229.9) ng/L Yan et al. 2014) Sulfamethozine 129-174.4 (150.2) Sulfamethozacole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 359.7-434.6 (404.0) Azithromycin 359.7-376.5 (362.5) STP Effluent Sulfadiazine Sulfamethozacole 1060.3-1212.2 (147.9) Trimethoprim Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 52.5.12 (30.4)			Norfloxacin	166				
Sulfadiazine 875 Sulfadimethoxine nd Sulfamethoxazole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Tetracycline 202.8-257.8 (229.9) ng/L (Yan et al. 2014) Sulfadiazine 202.8-257.8 (229.9) ng/L (Yan et al. 2014) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 350.7-343.6 (404.0) Azithromycin 350.7-376.5 (362.5) STP Effluent Sulfadiazine 117.8-74.8 (155.0) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 43.0-82.9 (57.9) Norfloxacin 27.9 (20.4)			Ofloxacin	nd				
SulfadimethoxinendSulfamethazine14Sulfamethoxazole1050Iso-Chlortetracycline56Epi-iso-Chlortetracycline32OxytetracyclinendTetracyclinendSulfadiazine202.8-257.8 (229.9)ng/L(Yan et al. 2014)Sulfamethoxazole2460.4-3180 (2935.4)Trimethoprim51.9-98.8 (77.37)Ofloxacin276.7-401.5 (345.9)Norfloxacinnd-27.6 (19.9)Erythromycin-H2O238.6-275.4 (254.24)Roxithromycin359.7-434.6 (404.0)Azithromycin31.7-47.8 (155.0)Sulfamethoxazole1060.3-1212.2(1147.9)1147.9)Trimethoprim37.9-75.5 (52.6)Ofloxacin37.9-75.5 (52.6)Ofloxacin37.9-75.5 (52.6)Norfloxacin37.9-75.5 (52.6)Norfloxacin37.9-75.5 (52.6)Norfloxacin32.7-37.5 (30.4)			Sulfadiazine	875				
Sulfamethazine 14 Sulfamethoxazole 1050 Iso-Chlortetracycline 56 Epi-iso-Chlortetracycline 32 Oxytetracycline nd Tetracycline nd Sulfamethoxazole 1020.8-257.8 (229.9) ng/L Yan et al. 2014) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 30.72-376.5 (52.6) Ofloxacin 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25.5-34 2 (30.4) <td></td> <td></td> <td>Sulfadimethoxine</td> <td>nd</td> <td></td> <td></td> <td></td> <td></td>			Sulfadimethoxine	nd				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Sulfamethazine	14				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Sulfamethoxazole	1050				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Iso-Chlortetracycline	56				
Oxytetracycline Tetracycline nd Chongqing STP Influent Sulfadiazine 202.8-257.8 (229.9) ng/L (Yan et al. 2014) Sulfamethazine 129-174.4 (150.2) 2014) 2014) Sulfamethoxazole 2460.4-3180 (2935.4) 17000000000000000000000000000000000000			Epi-iso-Chlortetracycline	32				
Chongqing STP Influent Tetracycline nd Sulfadiazine 202.8-257.8 (229.9) ng/L (Yan et al. 2014) Sulfamethazine 129-174.4 (150.2) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin 186.3-225.1 (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine 117.8-74.8 (155.0) Sulfamethoxazole Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9)			Oxytetracycline	nd				
Chongqing STP Influent Sulfadiazine 202.8-257.8 (229.9) ng/L (Yan et al. 2014) Sulfamethazine 129-174.4 (150.2) 2014) 2014) Sulfamethoxazole 2460.4-3180 (2935.4) 2014) Trimethoprim 51.9-98.8 (77.37) 0floxacin Ofloxacin 276.7-401.5 (345.9) Norfloxacin Norfloxacin 186.3-225.1 (203.0) Moxifloxacin Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin Sulfadiazine 117.8-74.8 (155.0) Sulfamethazine Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim 37.9-75.5 (52.6) 0floxacin Ofloxacin 43.0-82.9 (57.9) Norfloxacin			Tetracycline	nd				
2014) Sulfamethazine 129-174.4 (150.2) Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin 186.3-225.1 (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine 117.8-74.8 (155.0) Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25.5-34.2 (30.4)	Chongqing	STP Influent	Sulfadiazine	202.8-257.8 (229.9)	ng/L	(Yan	et	al.
Sulfamethazine $129-174.4 (150.2)$ Sulfamethoxazole $2460.4-3180 (2935.4)$ Trimethoprim $51.9-98.8 (77.37)$ Ofloxacin $276.7-401.5 (345.9)$ Norfloxacin $186.3-225.1 (203.0)$ Moxifloxacin $nd-27.6 (19.9)$ Erythromycin-H2O $238.6-275.4 (254.24)$ Roxithromycin $359.7-434.6 (404.0)$ Azithromycin $330.27-376.5 (362.5)$ STP EffluentSulfadiazineSulfamethazine $31.7-47.2 (39.9)$ Sulfamethoxazole $1060.3-1212.2$ (1147.9)TrimethoprimTrimethoprim $37.9-75.5 (52.6)$ Ofloxacin $43.0-82.9 (57.9)$ Norfloxacin $25.5-34.2 (30.4)$						2014)		
Sulfamethoxazole 2460.4-3180 (2935.4) Trimethoprim 51.9-98.8 (77.37) Ofloxacin 276.7-401.5 (345.9) Norfloxacin 186.3-225.1 (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25.5-34.2 (30.4)			Sulfamethazine	129-174.4 (150.2)				
$\begin{array}{llllllllllllllllllllllllllllllllllll$			Sulfamethoxazole	2460.4-3180 (2935.4)				
Ofloxacin 276.7-401.5 (345.9) Norfloxacin 186.3-225.1 (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25.5-34.2 (30.4)			Trimethoprim	51.9-98.8 (77.37)				
Norfloxacin 186.3-225.1 (203.0) Moxifloxacin nd-27.6 (19.9) Erythromycin-H2O 238.6-275.4 (254.24) Roxithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine Sulfamethazine 117.8-74.8 (155.0) Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim STPloxacin 43.0-82.9 (57.9) Norfloxacin 25.5-34.2 (30.4)			Ofloxacin	276.7-401.5 (345.9)				
Moxifloxacinnd-27.6 (19.9)Erythromycin-H2O $238.6-275.4 (254.24)$ Roxithromycin $359.7-434.6 (404.0)$ Azithromycin $330.27-376.5 (362.5)$ STP EffluentSulfadiazineSulfamethazine $31.7-47.2 (39.9)$ Sulfamethoxazole $1060.3-1212.2$ (1147.9)TrimethoprimTrimethoprim $37.9-75.5 (52.6)$ Ofloxacin $43.0-82.9 (57.9)$ Norfloxacin $25 5-34 2 (30.4)$			Norfloxacin	186.3-225.1 (203.0)				
Erythromycin-H2O $238.6-275.4 (254.24)$ Roxithromycin $359.7-434.6 (404.0)$ Azithromycin $330.27-376.5 (362.5)$ STP EffluentSulfadiazineSulfamethazine $117.8-74.8 (155.0)$ Sulfamethazine $31.7-47.2 (39.9)$ Sulfamethoxazole $1060.3-1212.2$ (1147.9)TrimethoprimTrimethoprim $37.9-75.5 (52.6)$ Ofloxacin $43.0-82.9 (57.9)$ Norfloxacin $25.5-34.2 (30.4)$			Moxifloxacin	nd-27.6 (19.9)				
Roxithromycin 359.7-434.6 (404.0) Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30.4)			Erythromycin-H2O	238.6-275.4 (254.24)				
Azithromycin 330.27-376.5 (362.5) STP Effluent Sulfadiazine Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30.4)			Roxithromycin	359.7-434.6 (404.0)				
STP Effluent Sulfadiazine 117.8-74.8 (155.0) Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) 11147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30.4)			Azithromycin	330.27-376.5 (362.5)				
Sulfamethazine 31.7-47.2 (39.9) Sulfamethoxazole 1060.3-1212.2 (1147.9) (1147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30.4)		STP Effluent	Sulfadiazine	117.8-74.8 (155.0)				
Sulfamethoxazole 1060.3-1212.2 (1147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30.4)			Sulfamethazine	31.7-47.2 (39.9)				
(1147.9) Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30 4)			Sulfamethoxazole	1060.3-1212.2				
Trimethoprim 37.9-75.5 (52.6) Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30.4)				(1147.9)				
Ofloxacin 43.0-82.9 (57.9) Norfloxacin 25 5-34 2 (30 4)			Trimethoprim	37.9-75.5 (52.6)				
Norfloxacin 25 5-34 2 (30 4)			Ofloxacin	43.0-82.9 (57.9)				
			Norfloxacin	25.5-34.2 (30.4)				
Moxifloxacin 5.7-7.7 (6.6)			Moxifloxacin	5.7-7.7 (6.6)				
Erythromycin-H ₂ O 135.9-174.0 (153)								

		Roxithromycin	300.6-386.4 (347.5)				
		Azithromycin	58-111.0 (81.5)				
Dalian	STP Influent	Cephalexin	nd-166	ng/L	(Zhang 2013)	et	al.
		Cefradine	nd-125		2010)		
		Norfloxacin	220-542				
		Ofloxacin	276-382				
		Roxithromycin	70-313				
		Azithromycin	98-711				
	STP Effluent	Cephalexin	nd-29				
		Cefradine	nd-34				
		Norfloxacin	80-205				
		Ofloxacin	108-382				
		Roxithromycin	99-444				
		Azithromycin	148-728				
Northern China	STP Influent	Oxytetracycline	2400-334300	ng/L	(Hou 2016)	et	al.
		Chlortetracycline	800-1800		,		
		Tetracycline	11900-61000				
	STP Effluent	Oxytetracycline	32000				
		Tetracycline	2600				
Shanghai	STP Influent	Trimethoprim	257	ng/L	(Wang 2014a)	et	al.
	STP Effluent	Trimethoprim	186				
Xiamen	STP Influent	Sulfamethoxazole	nd-95.2 (25)	ng/L	(Sun 2016)	et	al.
		Ofloxacin	23.6-786 (200)		,		
		Sarafloxacin	nd-1.20 (0.1)				
		Oxytetracycline	8.60-230 (91)				
		Tetracycline	nd-189 (48)				
	STP Effluent	Sulfamethoxazole	nd-22.4 (9.1)				
		Ofloxacin	13.3-702 (150)				
		Sarafloxacin	nd-1.3 (0.2)				
		Oxytetracycline	nd-51.4 (20)				
		Tetracycline	nd-37.6 (14)				
Fujian province	STP Influent	Sulfadiazine	2.3-32.1	ng/L	(Zhang 2015a)	et	al.
		Sulfamethazine	nd-259				
		Sulfamethoxazole	5.41-152				
		n-Acetyl sulfamethazine	4.0-51.5				
		n-Acetyl sulfadiazine	nd-51.4				
		<i>n</i> -Acetyl sulfamethoxazole	72.7-2312				
		Ciprofloxacin	nd-55.8				
		Norfloxacin	nd-130				
		Ofloxacin	6.0-91.5				

		Enrofloxacin	nd-16.8				
		Roxithromycin	6.5-63.7				
		Erythromycin	1.12-1.67				
		Cephalexin	33.4-822				
		Cephradine	92.5-11850				
		Tetracycline	nd-175				
		Oxytetracycline	nd-167				
		Chlortetracycline	nd-261				
		Doxycycline	nd-51				
		4-epitetracycline	nd-87.7				
		4-epioxytetracycline	nd-287				
		Isochlortetracycline	nd-233				
	STP Effluent	Sulfadiazine	1.46-28.4				
		Sulfamethazine	nd-233				
		Sulfamethoxazole	2.96-145				
		n-Acetyl sulfamethazine	2.50-52.9				
		<i>n</i> -Acetyl sulfadiazine	nd-51.4				
		<i>n</i> -Acetyl	38.7-208				
		Sulfamethoxazole					
		Ciprofloxacin	nd-49.8				
		Norfloxacin	nd-172				
		Ofloxacin	5.70-53.4				
		Enrofloxacin	nd-18.5				
		Roxithromycin	12.7-104				
		Erythromycin	1.20-4.40				
		Cephalexin	25.0-187				
		Cephradine	21.4-369				
		Tetracycline	nd-101				
		Oxytetracycline	nd-178				
		Chlortetracycline	nd-154				
		Doxycycline	nd-87.3				
		4-Epitetracycline	nd-82.1				
		4-Epioxytetracycline	nd-296				
		Isochlortetracycline	nd-651				
Guangzhou	STP Influent	Sulfadiazine	5100-5150	ng/L	(Peng	et	al.
-				-	2006)		
		Sulfamethoxazole	5450-7910				
		Ofloxacin	3520-5560				
		Chloramphenicol	1730-2430				
	STP Effluent	Sulfadiazine	nd				
		Sulfamethoxazole	nd				
		Ofloxacin	nd-740				
		Chloramphenicol	nd				
Pearl River	STP Influent	Ofloxacin	80-368	ng/L	(Xu 2007)	et	al.
		Norfloxacin	54-263		2007)		

		Roxithromycin Erythromycin-H ₂ O	75-164 253-1978		
	STP Effluent	Sulfadiazine Sulfadimidine Sulfamethoxazole Chloramphenicol Ofloxacin Norfloxacin Roxithromycin	nd-72 nd-696 10-118 nd-31 41-165 27-85 35-64		
		Erythromycin-H ₂ O Sulfadiazine Sulfadimidine Sulfamethoxazole Chloramphenicol	216-2054 nd-36 nd-346 9-78 nd-17		
Guangdong province	STP Influent	Trimethoprim	72.3-162	ng/L	(Zhou et al. 2013b)
-	STP Effluent	Lincomycin Chloramphenicol Trimethoprim Lincomycin	44.2-129 22.1 31.1-64 nd-53.9		
Hong Kong	STP Influent	Chloramphenicol Erythromycin-H2O	5.8 470-810	ng/L	(Gulkowska et al. 2008)
Shenzhen	STP Effluent	Trimethoprim Tetracycline Norfloxacin Cefalexin Cefotaxim Erythromycin-H2O Trimethoprim Tetracycline Norfloxacin Cefalexin Cefotaxim Erythromycin-H2O	120-320 96-1300 110-460 670-2900 nd-1100 510-850 120-230 180-620 85-320 240-1800 nd-34 590		
Nan Shan	511 initiaent	Trimethoprim Tetracycline Norfloxacin Penicillin G Cefotaxim	200 150 370 29 1100		
Hong Kong	STP Influent	Cefalexin Ofloxacin Erythromycin-H2O	1020-5640 142-7900 243-4740	ng/L	(Leung et al. 2012)
		J	2		

		Norfloxacin	28-5430		
		Roxithromycin	nd-500		
		Sulfamethoxazole	38-444		
		Tetracycline	16-1510		
		Oxytetracycline	nd-230		
		Trimethoprim	72-700		
		Chloramphenicol	26-452		
	STP Effluent	Cefalexin	170-5070		
		Ofloxacin	96-7870		
		Erythromycin-H ₂ O	246-4330		
		Norfloxacin	nd-3700		
		Roxithromycin	nd-547		
		Sulfamethoxazole	5-278		
		Tetracycline	nd-1420		
		Oxytetracycline	nd-842		
		Trimethoprim	59-465		
		Chloramphenicol	nd-1050		
Hong Kong	STP Influent	Ampicillin	nd-383	ng/L	(Li and Zhang 2011)
		Cefotaxime	nd-93.0		
		Cefalexin	65.7-1718		
		Sulfamethoxazole	52.0-291		
		Sulfadiazine	4.4-530		
		Sulfamethazine	nd-54.7		
		Norfloxacin	7.0-264		
		Ciprofloxacin	98.6-1033		
		Ofloxacin	188-1042		
		Tetracycline	59.8-353		
		Oxytetracycline	nd-107		
		Chlortetracycline	nd-178		
		Roxithromycin	4.2-141		
		Erythromycin-H2O	169-409		
		Trimethoprim	100-172		
		Vancomycin	nd-60.6		
	STP Effluent	Ampicillin	nd-17.4		
		Cefotaxime	nd-56.7		
		Cefalexin	nd-1176		
		Sulfamethoxazole	3.6-67.4		
		Sulfadiazine	nd-2.8		
		Sulfamethazine	nd		
		Norfloxacin	5.6-165		
		Ciprofloxacin	30.2-851		
		Ofloxacin	32.6-610		
		Tetracycline	18.5-236		
		Oxytetracycline	nd-49.0		
		Chlortetracycline	nd-30.9		

		Roxithromycin	1.6-76.7	7		
		Erythromycin-H ₂ O	104-410	C		
		Trimethoprim	38-120			
		Vancomycin	nd-28.9)		
Hong Kong	STP Influent	Ampicillin	nd-389.	.5	ng/L	(Li et al. 2009)
		Cefalexin	175.4-5	39.4		
		Sulfamethoxazole	146.5-3	55.5		
		Sulfadiazine	nd-73.0	1		
		Norfloxacin	nd-59.5			
		Ciprofloxacin	99.2-72	0.0		
		Ofloxacin	104.4-3	35.9		
		Tetracycline	134.5-2	70.8		
		Roxithromycin	3.5-25.3	3		
		Erythromycin-H ₂ O	51.3-21	6.7		
		Trimethoprim	128.7-1	61.2		
	STP Effluent	Ampicillin	nd-126.	.4		
		Cefalexin	nd-375.	.6		
		Sulfamethoxazole	15.3-46	.6		
		Sulfadiazine	nd-16.2			
		Norfloxacin	nd-13.9	1		
		Ciprofloxacin	7.6-73.3	3		
		Ofloxacin	2.1-556	.4		
		Tetracycline	nd-89.4			
		Roxithromycin	2.9-14.2	2		
		Erythromycin-H ₂ O	37.9-96	.3		
		Trimethoprim	10.8-66	0.2		
Other countrie	S					
Korea	STP Influent	Sulfamethazine	nd-343	(132)	ng/L	(Behera et al. 2011)
		Sulfamethoxazole	79-216	(120)		,
		Trimethoprim	101-27	7 (205)		
		Lincomvcin	3095-19	9401 (8176)		
	STP Effluent	Sulfamethazine	nd-408	(114)		
		Sulfamethoxazole	20-162	(57)		
		Trimethoprim	13-154	(63)		
		Lincomvcin	1437-21	(02)		
US	STP Influent	Sulfamethoxazole	390-100	00	ng/L	(Brown et al.
		T	500 14	00		2006)
		I rimetnoprim	590-140	JU 00		
		Ofloxacin	400-100	JU 20		
		Ciprofloxacin	200-100	J0		
	SIP EIIluent	Suirametnoxazole	<i>3</i> 10			
		i rimetnoprim	180			
			110			(17 1 11
UK	SIP Influent	rimetnoprim	1514-40	5/5 (2925)		(Kasprzyk-Hor
		Sullamethoxazole	20-274	(115)		dern et al.
			10			

		Chloramphenicol	150-452 (248)		2009)	
		Erythromycin-H ₂ O	144-10025 (2530)			
	STP Influent	I rimethoprim	385-1218 (8/6)			
		Sultamethoxazole	4-44 (19)			
		Chloramphenicol	<6-69 (21)			
		Erythromycin-H ₂ O	23-2772 (696)			
Germany	STP Influent	Azithromycin	50-946 (285)	ng/L	(Rossmann al. 2014)	et
		Ciprofloxacin	78-1570 (422)			
		Doxycycline	nd-2393 (259)			
		Roxithromycin	nd-771 (92)			
		Sulfamethoxazole	12-2204 (515)			
		Trimethoprim	22-372 (186)			
	STP Effluent	Azithromycin	nd-956 (277)			
		Ciprofloxacin	19-920 (146)			
		Doxycycline	nd-1110			
		Roxithromycin	nd-281 (84)			
		Sulfamethoxazole	18-8263 (191)			
		Trimethoprim	25-554 (208)			
Italy	STP Influent	Azithromycin	120	ng/L	(Verlicchi al. 2014)	et
		Ciprofloxacin	2200		,	
		Erythromycin	46			
		Norfloxacin	210			
		Ofloxacin	980			
		Roxithromycin	65			
		Trimethoprim	59			
	STP Effluent	Azithromycin	130			
		Ciprofloxacin	630			
		Erythromycin	15			
		Norfloxacin	150			
		Ofloxacin	400			
		Roxithromycin	290			
		Trimethoprim	40			
Finland	STP Influent	Ciprofloxacin	nd-4230 (600)	ng/L	(Vieno et 2007)	al.
		Norfloxacin	nd-960 (120)			
		Ofloxacin	nd-350 (100)			
	STP Effluent	Ciprofloxacin	nd-130 (60)			
		Norfloxacin	nd-110 (nd)			
		Ofloxacin	nd-30 (14)			
Tianjin (Panjiakou	Surface water	Oxytetracycline	0.2-19.93	ng/L	(Li et 2014a)	al.
Reservoir)					,	
		Chlortetracyclin	nd-22.33			
		Tetracycline	0.14-14.05			

		Doxycycline	0.19-13.69		
		Nalidixic Acid	nd-11.20		
		Oxolinic Acid	0.31-2.70		
		Flumequine	0.79-3.70		
		Chloramphenicol	0.29-7.15		
		Thiamphenicol	nd-45		
		Florfenicol	nd-73.66		
		Penicillin G	nd-5.59		
		Erythromycin	nd-3.15		
		Roxithromycin	nd-3.90		
		Josamycin	nd-3.70		
		Kitasamycin	0.25-6.27		
		Spiramycin	nd-58.81		
		Sulfaguanidine	nd-8.67		
		Sulfacetamide	1.32-43.10		
		Sulfamethazine	0.21-3.70		
		Sulfapyridine	nd-3.40		
		Sulfadiazine	0.35-1086		
		Sulfadimethoxine	0.95-3.56		
		Sulfachlorpyridazine	nd-4.78		
		Sulfamethizole	0.39-3.47		
		Sulfamonomethoxine	nd-3.20		
		Sulfamethoxypyridazine	0.16-3.10		
		Sulfameter	0.28-3.30		
		Sulfamethoxazole	nd-7.23		
		Sulfamerazine	0.19-3.80		
Haihe River	Surface	Trimethoprim	nd-230	ng/L	(Luo et al.
	water				2011)
		Sulfadiazine	nd-550		
		Sulfamethoxazole	nd-3900		
		Sulfachloropyridazine	nd-39000		
		Ciprofloxacin	nd-1700		
		Ofloxacin	nd-460		
		Tetracycline	nd-1900		
		Oxytetracycline	nd-4200		
		Erythromycin	nd-4200		
		Roxithromycin	nd-3700		
Laizhou Bay	Surface water	Enoxacin	nd-209 (62)	ng/L	(Zhang et al. 2012)
		Norfloxacin	7.5-103 (40)		
		Ciprofloxacin	nd-66 (31)		
		Enrofloxacin	nd-7.6 (1.8)		
		Ofloxacin	nd-6.5 (0.24)		
		Trimethoprim	1.3-330 (53)		
		Sulfamethoxazole	1.5-82 (19)		
		Sulfamethazine	nd-1.5 (0.13)		

		Sulfamethazine	nd-0.43 (0.02)		
		Erythromycin	0.9-8.5 (2.6)		
		Roxitromycin	nd-1.5 (0.38)		
		Azithromycin	nd-1.2 (0.14)		
		Clarithromycin	nd-0.82 (0.19)		
Huangpu	Surface	Sulfadiazine	4.9-112.5 (53.6)	ng/L	(Chen and
River	water				Zhou 2014)
(Shanghai)		Sulfapyridine	nd-103.1 (24.1)		
		Sulfamethoxazole	2.2-764.9 (259.6)		
		Sulfathiazole	nd-121.1 (34.1)		
		Sulfamerazine	nd		
		Sulfamethazine	19.9-389.4 (188.9)		
		Sulfaquinoxaline	nd-64.2 (21.5)		
		Erythromycin	0.4-6.9 (3.9)		
		Roxithromycin	0.2-2.2 (0.9)		
		Norfloxacin	nd-2.6 (0.2)		
		Ciprofloxacin	nd-34.2 (2.7)		
		Enrofloxacin	nd-14.6 (2.8)		
		Ofloxacin	nd-28.5 (6.5)		
		Chloramphenicol	nd-3.9 (0.4)		
		Thiamphenicol	nd-0.6 (0.5)		
		Florfenicol	nd-241.1 (116.3)		
		Tetracycline	nd-54.3 (4.2)		
		Oxytetracycline	nd-219.8 (78.3)		
		Doxycycline	nd-112.3 (11.3)		
		Chlortetracycline	nd-46.7 (3.6)		
Yangtze	Surface	Chloramphenicol	nd-8.63	ng/L	(Yan et al.
Estuary	water				2013)
		Thiamphenicol	nd-86.6		
		Florfenicol	0.45-89.5		
		Sulfadiazine	0.55-71.8		
		Sulfapyridine	nd-219		
		Sulfamethoxazole	1.48-56.8		
		Sulfathiazole	nd-5.23		
		Sulfamerazine	nd		
		Sulfamethazine	0.53-89.1		
		Sulfaquinoxaline	nd-23.5		
		Norfloxacin	nd-14.2		
		Ciprofloxacin	nd-2.27		
		Enrofloxacin	nd-4.77		
		Ofloxacin	nd-12.4		
		Tetracycline	nd-2.37		
		Oxytetracycline	nd-22.5		
		Doxycyclinehyclate	nd-5.63		
		Chlortetracycline	nd-3.50		
		Erythromycin	nd-45.4		

		Roxithromycin	0.05-8.20				
Qingshan Lake	Surface water	Trimethoprim	nd-11.57	ng/L	(Zhu 2013)	et	al.
Luke	water	Penicillin G	nd-1 68		2015)		
		Penicillin V	nd				
		Sulfamethoxazole	4 79-19 2				
Iianghan	Surface	Sulfadiazine	nd-37.4	ng/L	(Tong	et	al
Plain	water	Sumululin		118/12	2014)		u 11
		Sulfathiazole	nd-3.7)		
		Trimethoprim	nd-19.0				
		Sulfamethazine	nd-33.8				
		Sulfamethoxazole	nd-13.4				
		Sulfamerazine	nd-11.0				
		Ofloxacin	nd-135.1				
		Norfloxacin	nd-134.2				
		Ciprofloxacin	nd-18.0				
		Enrofloxacin	nd-53.1				
		Lomefloxacin	nd-13.1				
		Tetracycline	nd-137.4				
		Oxytetracycline	nd-61.8				
		Chlortetracycline	nd-122.3				
		Doxycycline	nd-66.5				
		Erythromycin-H ₂ O	nd-381.5				
		Clarithromycin	nd-15.8				
		Azithromycin	nd-5.6				
		Roxithromycin	nd-3.7				
Pearl River Delta	Surface water	Sulfadiazine	nd-18	ng/L	(Liang 2013)	et	al.
		Sulfamethazine	nd-218)		
		Sulfamethoxazole	nd-37.6				
		Norfloxacin	nd-136				
		Ofloxacin	nd-15.8				
		Enrofloxacin	nd				
		Tetracycline	nd-13.1				
		Erythromycin-H ₂ O	nd-121				
		Roxithromycin	nd				
Pearl River	Surface	Sulfadiazine	nd-22.3	ng/L	(Xu	et	al.
Delta and	water				2013)		
Pearl River							
Estuary							
		Sulfadimidine	nd-23.5				
		Sulfamethoxazole	nd-40.6				
		Norfloxacin	nd-34.2				
		Ofloxacin	2.5-127				
		Ciprofloxacin	nd-33.6				
		Enrofloxacin	nd-21.5				

		Erythromycin	nd-52.3		
		Roxithromycin	nd-12.0		
Pearl River	Surface	Sulfadiazine	nd-726	ng/L	(Yang et al.
	water				2011)
		Sulfamethoxazole	nd-616		
		Sulfamethazine	nd-1080		
		Sulfapyridine	nd-74.6		
		Trimethoprim	nd-605		
		Norfloxacin	nd-124		
		Erythromycin-H ₂ O	nd-1540		
		Roxithromycin	nd-2260		
Jiulong River	Surface water	Florfenicol	nd-20.8	ng/L	(Zheng et al. 2011)
		Sulfadiazine	nd-60.5		
		Sulfamethanzine	nd-124.4		
		Sulfamonomethoxine	nd-46		
		Sulfamethoxazole	nd-84.4		
		Ofloxacin	nd-49		
		Enrofloxacin	nd-60.8		
		Sulfapyridine	nd-1.8		
		Sulfameter	nd-5.2		
Other countrie	S		1		
Korea	Surface water	Erythromycin	1.8-4.8 (3.4)		(Kim et al. 2007)
		Sulfamethoxazole	1.7-36 (20)		,
		Trimethoprim	3.2-5.3 (4.0)		
US	Surface water	Sulfamethoxazole	5-7 (6)		(Arikan et al. 2008)
		Chlortetracycline	1-180 (20))
		Oxvtetracvcline	5-84 (53)		
		Tetracycline	1-3 (2)		
		Doxycycline	13-146 (66)		
US	Surface water	Tetracycline	10-30 (20)		(Kim and Carlson 2007)
	Water	Chlortetracycline	10-210 (80)		Curison 2007)
		Oxytetracycline	10-1210(00)		
		Doxycycline	10-50 (20)		
		Sulfamerazine	10-60 (20)		
		Sulfamethazine	20-20 (20)		
		Sulfamethoxazole	40-320 (110)		
		Erythromycin-H ₂ O	20-450 (120)		
		Tylosin	50-50 (50)		
IJК	Surface	Trimethonrim	nd-90 (19)		(Kasprzyk-Hor
	water	1111000prini	ing 20 (12)		dern et al.
		Sulfamethoxazole	nd-1		,

		Chloramphenicol	nd		
		Erythromycin-H ₂ O	nd-2		
		Trimethoprim	10-183 (62)		
		Sulfamethoxazole	nd-4 (1)		
		Chloramphenicol	nd-40 (5)		
		Ervthromycin-H ₂ O	nd-72 (15)		
Germany	Surface	Erythromycin	4-190		(Christian et al
Germany	water		1 170		2003)
		Roxythromycin	nd-14		2000)
		Trimethoprim	nd-12		
		Sulfadimidine	nd-7		
		Sulfamethoxazole	nd-52		
		Ciprofloxacin	nd-9		
		Ofloxain	nd-20		
France	Surface	Tvlosin	nd-2.8		(Dinh et al.
	water	<u> </u>			2011)
		Erythromycin	nd-131		,
		Tetracycline	nd-7.4		
		Trimethoprim	nd-254		
		Sulfamethoxazole	nd-1435		
		Ciprofloxacin	nd-135		
		Norfloxacin	nd-75		
		Ofloxacin	2.1-231		
Italy		Azithromycin	7		(Verlicchi et
-		Ciprofloxacin	25		al. 2014)
		Trimethoprim	2		
Finland		Ciprofloxacin	nd-36		(Vieno et al.
		Ofloxacin	nd-5		2006)
Dagu River	Sediment	Roxithromycin	21-5622	ng/g	(Hu et al. 2012)
		Ofloxacin	nd-634		,
		Ciprofloxacin	9-7812		
		Enrofloxacin	nd-7708		
		Acetylspiramycin	16-7653		
		Sulfachloropyridazine	nd-6310		
		Trimethoprim	nd-3502		
		Sulfadiazine	nd-12300		
		Gentamicin	nd-11230		
		Rifampicin	nd-12370		
		Minocycline	nd-5622		
		Oxytetracycline	nd-8211		
Haihe River	Sediment	Trimethoprim	0.75-28	ng/g	(Luo et al. 2011)
		Sulfadiazine	3.4-34		2011)
		Sulfamethoxazole	0.85-59		
		Sulfachloropyridazine	2.1-39		
		- mail of opping allow			

		Ciprofloxacin	nd-55				
		Ofloxacin	nd-69				
		Tetracycline	nd-7.8				
		Oxytetracycline	nd-57				
		Erythromycin	nd-7.3				
		Roxithromycin	nd-7.2				
Yellow River	Sediment	Sulfadiazine	nd-22.0	ng/g	(Zhou	et	al.
					2011)		
		Trimethoprim	nd-2.86				
		Oxytetracycline	nd-7.42				
		Tetracycline	nd-18.0				
		Norfloxacin	nd-56.9				
		Ofloxacin	nd-63.04				
		Ciprofloxacin	nd-32.8				
		Erythromycin-H2O	nd-49.8				
		Roxithromycin	nd-6.80				
Hai River	Sediment	Sulfadiazine	nd-1.71				
		Sulfapyridine	nd				
		Sulfamethazine	nd-5.69				
		Trimethoprim	nd-5.63				
		Oxytetracycline	nd-422				
		Tetracycline	1.19-135				
		Chlortetracycline	nd-10.9				
		Doxycycline	nd-7.00				
		Norfloxacin	5.95-5770				
		Ofloxacin	nd-59.5				
		Ciprofloxacin	2.05-1290				
		Lomefloxacin	nd-298				
		Enrofloxacin	nd-2.34				
		Erythromycin-H2O	nd-67.2				
		Roxithromycin	nd-11.7				
Liao River	Sediment	Sulfadiazine	nd-11.0				
		Sulfamethoxazole	nd				
		Trimethoprim	nd-9.84				
		Oxytetracycline	nd-653				
		Tetracycline	nd-4.82				
		Chlortetracycline	nd-32.5				
		Doxycycline	nd-2.80				
		Norfloxacin	nd-177				
		Ofloxacin	nd-50.5				
		Ciprofloxacin	nd-28.7				
		Lomefloxacin	nd-5.82				
		Erythromycin-H2O	nd-40.3				
		Roxithromycin	nd-29.6				
Huangpu River	Sediment	Sulfadiazine	0.07-0.71 (0.4)	ng/g	(Chen Zhou 20)14)	and

(Shanghai)

		Sulfapyridine	nd-6.6 (1.7)				
		Sulfamethoxazole	0.05-0.6 (0.2)				
		Sulfathiazole	nd-0.6 (0.2)				
		Sulfamerazine	0.03-0.8 (0.2)				
		Sulfamethazine	0.2-2.7 (1.2)				
		Sulfaquinoxaline	0.08-0.9 (0.4)				
		Erythromycin	1.5-24.6 (10.2)				
		Roxithromycin	0.3-4.1 (1.9)				
		Enrofloxacin	nd-8.9 (3.2)				
		Ofloxacin	nd-12.4 (4.1)				
		Chloramphenicol	nd-0.7 (0.3)				
		Thiamphenicol	nd-1.3 (0.4)				
		Florfenicol	nd-1.3 (0.5)				
		Tetracycline	nd-21.7 (3.5)				
		Oxytetracycline	0.6-18.6 (6.9)				
		Doxycycline	nd-21.3 (7.0)				
		Chlortetracycline	nd-6.3 (2.4)				
Yongjiang River	Sediment	Sulfacetamide	nd-0.43 (0.039)	ng/g	(Xue 2013)	et	al.
Nanning City		Sulfadiazine	nd-0.07 (0.017)		,		
		Sulfathiazole	nd				
		Sulfadimidine	nd-0.81 (0.13)				
		Sulfamethoxazole	nd-0.20 (0.032)				
		Trimethoprim	nd-1.07 (0.32)				
		Roxithromycin	0.19-2.16 (0.93)				
		Erythromycin	0.30-2.58 (1.36)				
		Clarithromycin	0.09-0.89 (0.40)				
		Azithromycin	0.11-0.79 (0.35)				
Qingshan Lake	Sediment	Trimethoprim	42.0-130.3	ng/g	(Zhu 2013)	et	al.
		Penicillin G	nd				
		Penicillin V	nd				
		Sulfamethoxazole	2.1-7.9				
Pearl River Delta	Sediment	Sulfadiazine	nd	ng/g	(Liang 2013)	et	al.
		Sulfamethazine	0.44-3.24		,		
		Sulfamethoxazole	nd				
		Norfloxacin	2.61-20.5				
		Ofloxacin	0.74-13.7				
		Enrofloxacin	1.03-1.43				
		Tetracycline	0.61-7.13				
		Erythromycin-H ₂ O	0.70-14.0				
		Roxithromycin	6.07-13.5				
Gongdong province	Sediment	Sulfadiazine	nd-83.9	ng/g	(Yang 2010)	et	al.
1					,		

(Pearl River					
Delta)		Sulfanyridine	nd		
		Sulfamethazin	nd-748		
		Sulfamethoxazole	nd		
		Ovvtetracycline	nd 106		
		Tatraqualina	nd 72.6		
		Norflovagin	nd 1120		
		Oflovacin	nd 1560		
		Ciprofloxacin	nd 87 5		
		Erythromyoin HoO	nd 62.7		
			1.122		
		Roxithromycin	na-133		
Uther countrie	Sadimont	Chlortetrogyaling	2110(46)	nala	(Arilian at al
08	Sediment	Chlorietracycline	2.1-10 (4.6)	ng/g	(Arikan et al. 2008)
		Sulfamethoxazole	0.10-0.15 (0.10)		
US	Sediment	Tetracycline	1.1-102.7 (17.9)	ng/g	(Kim and Carlson 2007)
		Chlortetracycline	1.1-30.8 (10.8)		
		Oxytetracycline	2.4-56.1 (14.8)		
		Doxycycline	2.2-38.9 (15.7)		
		Sulfamerazine	2.3-6.8 (4.8)		
		Sulfamethazine	1.0-13.7 (4.7)		
		Sulfamethoxazole	1.2-1.9 (1.6)		
		Erythromycin-H2O	1.3-25.6 (10)		
		Roxithromycin	1.1-5.9 (2.1)		
		Tylosin	1.1-9.3 (3.0)		
France	Sediment	Azithromycin	265.1 maximum	ng/g	(Feitosa-Felizz ola and Chiron
		Clarithromycin	3.82 maximum		2009)
Spain	Sediment	Carbamazepine	0.9		(Vazquez-Roig et al. 2012)
		Ciprofloxacin	1.1		
		Norfloxacin	0.4		
		Ofloxacin	0.1		
		Sulfamethoxazole	0.1		
		Tetracycline	0.7		
		Trimethoprim	0.2		
South Africa		Trimethoprim	87.55	ng/g	(Matongo et al. 2015)
Tianjin,	Swine,	Ciprofloxacin	0.808	mg/kg	(Hou et al.
Liaoning	chicken, and			_	2015)
-	cattle	Chlortetracycline	8.06		
	manures	Oxytetracycline	2.875		
		Sulfamethoxazole	0.0189		
Tianjin	Swine	Ciprofloxacin	0.3-3	mg/kg	(Hu et al.

	manure,				2008)
	chicken	Chlortetracycline	0.6-24.3		
	manure	Oxytetracycline	9.7-173.2		
		Tetracycline	10.2-41.5		
		Doxycycline	8.6-59.8		
		Sulfamethoxazole	2.3;5.2		
		Sulfadiazine	4.5-18.7		
Tianjin	Manure	Ciprofloxacin	0.1-4.3	mg/kg	(Hu et al. 2010)
		Ofloxacin	0.23-15.7		
		Chlortetracycline	0.14-26.8		
		Oxytetracycline	0.08-183.2		
		Tetracycline	0.11-43.5		
		Sulfamethoxazole	0.23-5.7		
Liaoning	Swine,	Tylosin	0.23-0.35	mg/kg	(Li et al. 2012)
-	chicken and	Enrofloxacin	1.77		
	cattle manure	Ciprofloxacin	0.78		
		Norflxacin	2.28		
Heilongjiang Jilin and	Cattle manure	Tylosin	0.22-0.28 (0.25)	mg/kg	(Li et al. 2013b)
Liaoning		Enrofloxacin	0.46-4.17 (1.18)		,
provinces		Ciprofloxacin	0.28-0.84 (0.53)		
1		Norflxacin	0.43-1.76 (0.85)		
		Chlortetracycline	0.61-1.94 (1.04)		
		Oxytetracycline	0.21-10.37 (5.1)		
		Tetracycline	0.43-2.69 (1.08)		
		Sulfamethoxazole	0.22-1.02 (0.46)		
	Chicken manure	Tylosin	0.23-0.34 (0.28)		
		Enrofloxacin	0.33-15.43 (3.33)		
		Ciprofloxacin	0.33-2.94 (1.03)		
		Norflxacin	0.5-9.52 (2.72)		
		Chlortetracycline	0.57-3.11 (1.29)		
		Oxytetracycline	0.96-13.39 (6.45)		
		Tetracycline	0.54-4.57 (1.83)		
		Sulfamethoxazole	0.25-7.11 (2.23)		
	Swine manure	Tylosin	0.23-1.88 (0.69)		
		Enrofloxacin	0.36-2.22 (0.87)		
		Ciprofloxacin	0.31-0.96 (0.49)		
		Norflxacin	0.41-3.18 (1.1)		
		Chlortetracycline	0.68-22.34 (3.19)		
		Oxytetracycline	0.73-56.81 (11.81)		
		Tetracycline	0.32-30.55 (5.29)		
		Sulfamethoxazole	0.21-2.16 (1.07)		

Beijing, Jiaxing	Swine manure	Chlortetracycline	0.0079;0.0674;0.127	mg/kg	(Qiao 2012)	et	al.
(Zhejiang		Oxytetracycline Tetracycline	0.0749;2.544;0.0392		-)		
and Putian (Fujian			0.0022,0.122,1.21				
province) Shandong	Swine manure	Chlortetracycline	2.6 Median	mg/kg	(Pan e 2011)	et	al.
	Winter and Summer	Oxytetracycline	0.4 Median		,		
	~	Tetracycline	0.4 Median				
		Sulfamethoxazole	0.3 Median				
Shandong.Jia	Chicken	Enrofloxacin	0.0106-8.575	mg/kg	(Zhang	et	al.
ngsu,Shangh	manure		(0.1028)	00	2015b)		
ai,Zhejiang,		Ofloxacin	0.0179-4.99 (0.232)		,		
Anhui, Sichu		Norflxacin	0.0102-4.54 (0.114)				
an and		Chlortetracycline	0.0139-0.1295				
Yunnan		,	(0.0227)				
		Oxytetracycline	0.019-416.75				
			(0.7153)				
		Tetracycline	0.0214-8.675				
			(0.1102)				
		Doxycycline	0.0198-8.3 (0.1049)				
		Sulfamethoxazole	0.0041-0.0288				
			(0.0067)				
		Sulfamethazine	0.0059-0.0227				
			(0.0097)				
		Sulfadiazine	0.0055-1.845				
			(0.0282)				
	Duck manure	Enrofloxacin	0.0201-0.0287				
			(0.024)				
		Ofloxacın	0.0735-0.595 (0.209)				
		Norflxacın	0.0162-0.384				
			(0.0789)				
		Chlortetracycline	0.0191-0.0443				
			(0.0291)				
		Oxytetracycline	0.0205-7.15 (0.3829)				
		1 etracycline	0.132-0.32 (0.262)				
		Doxycycline	0.1223 - 0.303				
		Sulfamethovozala	(0.2407)				
		Sunamenioxazoit	(0.0042-0.0001				
		Sulfamethazine	0.0074-0.011 (0.009)				
		Sulfadiazine	0.0053-0.0055				
-----------	--------	-------------------	----------------------	-------	-------	----	-----
			(0.0054)				
	Swine	Enrofloxacin	0.0125-0.089				
	manure		(0.0388)				
		Ofloxacin	0.012-0.124 (0.038)				
		Norflxacin	0.0138-0.107				
			(0.0409)				
		Chlortetracycline	0.0206-215.346				
			(1.0407)				
		Oxytetracycline	0.0215-43.429 (1.1)				
		Tetracycline	0.0159-30.941				
			(0.6027)				
		Doxycycline	0.0151-30.718				
			(0.6379)				
		Sulfamethoxazole	0.0041-0.0143				
			(0.0065)				
		Sulfamethazine	0.0057-0.0337				
			(0.0117)				
		Sulfadiazine	0.0051-6.792				
			(0.1195)				
	Cattle	Enrofloxacin	0.0101-0.74 (0.0561)				
	manure						
		Ofloxacin	0.0212-0.1895				
			(0.0642)				
		Norflxacin	0.0184-0.227				
			(0.0624)				
		Chlortetracycline	0.0151-0.0655				
		-	(0.0302)				
		Oxytetracycline	0.13-1.94 (0.532)				
		Tetracycline	0.0173-2.495 (0.074)				
		Doxycycline	0.0153-2.495				
			(0.0745)				
		Sulfamethoxazole	0.0042-0.00785				
			(0.0052)				
		Sulfamethazine	0.0047-0.034				
			(0.0106)				
		Sulfadiazine	0.0052-0.065				
			(0.0125)				
Shandong,	Swine	Enrofloxacin	0.48-33.26 (2.09)	mg/kg	(Zhao	et	al.
Jiangsu,	manure			00	2010)		
Shanghai,		Ciprofloxacin	0.64-33.98 (2.01)		,		
Zhejiang,		Norflxacin	0.56-5.5 (2.09)				
Jiangxi,		Chlortetracycline	0.16-21.06 (1.15)				
Hubei,		Oxytetracycline	0.15-59.06 (2.69)				
Hunan and		Doxycycline	0.23-13.5 (0.79)				
Guangxi		Sulfamethoxazole	0.23-0.84 (0.51)				
-							

province		Sulfadiazine	0.09-0.8 (0.21)				
-	Chicken	Enrofloxacin	0.33-1420.76 (4.65)				
	manure						
		Ciprofloxacin	0.68-45.59 (3.78)				
		Norflxacin	0.85-225.45 (4.68)				
		Chlortetracycline	0.16-17.68 (1.09)				
		Oxytetracycline	0.27-10.56 (1.55)				
		Doxycycline	0.92-10.91 (3.39)				
		Sulfamethoxazole	0.12-2.8 (0.78)				
		Sulfadiazine	0.03-3.12 (0.15)				
	Cattle	Enrofloxacin	1.72-46.7 (6.79)				
	manure						
		Ciprofloxacin	0.49-29.59 (3.44)				
		Norflxacin	1.23-2.76 (1.84)				
		Chlortetracycline	0.24-27.59 (2.22)				
		Oxytetracycline	0.32-59.59 (1.24)				
		Doxycycline	0.44-1.05 (0.68)				
Nanjing	Chicken	Enrofloxacin	0.0036-7 (1.2425)	mg/kg	(Huang	et	al.
	manure				2013b)		
		Ciprofloxacin	0.0205-0.52 (0.1501)				
		Ofloxacin	0.072-1.0525				
			(0.2895)				
		Norflxacin	0.0765-1.285				
			(0.4028)				
		Chlortetracycline	0.0144-0.02551				
			(0.0182)				
		Oxytetracycline	0.1925-3.0775				
			(0.7566)				
		Tetracycline	0.0223-0.117				
			(0.0696)				
		Doxycycline	0.0256-0.1172				
			(0.0664)				
		Sulfamethoxazole	0.0048-0.0288				
			(0.012)				
		Sulfamethazine	0.0096-0.0227				
			(0.015)				
		Sulfadiazine	0.0058-1.04 (0.2126)				
Shanghai	Swine,	Oxytetracycline	18.7;21.36;21.96	mg/kg	(Ji et al.	201	12)
	poultry and						
	cattle manure						
		Tetracycline	12.27;12.01;10.31				
		Sulfamethoxazole	7.56;9.36;8.62				
		Sulfamethazine	6.17;6.39;8.01				
		Sulfadiazine	4.87;4.57;8.03				
Guangxi	Swine	Ofloxacin	0.00815	mg/kg	(Zhou	et	al.
	manure				2012)		

		Chlortetracycline	35.5				
		Oxytetracycline	0.661				
		Tetracycline	0.821				
Bobai	Swine	Enrofloxacin	nd-0.0165	mg/kg	(Zhou	et	al.
county(swine	manure				2013a)		
) and							
Nanning city							
in Guangxi							
province							
-		Ciprofloxacin	nd-0.00908				
		Ofloxacin	0.0053-2.97				
		Norflxacin	0.0102-0.0479				
		Chlortetracycline	2.36-97.6				
		Oxytetracycline	0.235-1.7				
		Tetracycline	0.0671-9.26				
		Doxycycline	0.0177-2.24				
		Sulfamethazine	0.00675-0.25				
		Sulfadiazine	0.00463-0.254				
Bobai	Swine	Ofloxacin	nd-0.00444	mg/kg	(Zhou	et	al.
County of	manure			00	2013c)		
Guangxi					,		
province							
1		Norflxacin	nd-0.00645				
		Chlortetracycline	0.464-141				
		Oxytetracycline	0.0108-0.636				
		Tetracycline	0.00738-17.7				
		Doxycycline	0.199-0.814				
		Sulfamethazine	nd-0.00177				
Other countries	S						
Korea	Swine,	Macrolides	0.07-0.14,1.05-2.1,0.	mg/kg	(Kim	et	al.
	poultry and		62-1.24	00	2011)		
	cattle manure				,		
		Sulfanomides	0.49,8.44,1.39				
		Tetracyclines	1.65,16.56,15.62				
US	Slurry	Sulfamethazine	0.00225-0.00506	mg/L	(Shelver	et	al.
	manure			U	2010)		
		Sulfamethoxazole	0.000108-1.47	mg/L	,		
		Sulfathiazole	0.000785-0.0017	mg/L			
Canada	Cattle	Sulfamethazine	9.9	mg/kg	(Aust	et	al.
	manure			00	2008)		
		Chlortetracycline	0.4		,		
Germanv	Swine	Tetracycline	0.1-46	mg/kg	(Holzel	et	al.
5	manure	J	-	60	2010)		
		Chlortetracvcline	0.1-50.8)		
		Oxytetracvcline	0.1-0.9				
		Doxycycline	0.1-0.7				

		Sulfonamides	0.05-38.4			
Turkey	Swine,	Oxytetracycline	0.06-0.48	mg/kg	(Karci	and
	poultry and				Balcioglu	
	cattle manure	Chlortetracycline	0.24-0.38		2009)	
		Sulfamethazine	0.1-3.76			
		Enrofloxacin	0.06			
		Sulfadiazine	1.2			
Austria	Swine,	Tetracycline	0.36-23	mg/kg	(Martinez-	Car
	chicken and				ballo et	al.
	turkey				2007)	
	manure	Oxytetracycline	0.21-29			
		Enrofloxacin	0.13-0.75,2.8-8.3			
		Chlortetracycline	0.1-46;1.7			
		Sulfadiazine	51,91			
		Sulfadimidine	20			
		Trimethoprim	17			
Beijing and Tianjin	Soil	Chlortetracycline	0.8-5.2	ng/g	(Chen et 2014)	al.
-		Oxytetracycline	2.6-111.8		,	
		Sulfamethoxazole	0.8-90			
		Sulfadiazine	0.8-97.2			
Ninghe, Dongli, and	Soil	Tylosin	1.8-44.6	ng/g	(Hou et 2015)	al.
Jinnan in		Enrofloxacin	9.2-96.4		,	
Tianjin and		Ciprofloxacin	6.2-83.2			
from		Ofloxacin	4.9-115.1			
Shenyang,		Chlortetracycline	4.9-10967			
Fushun, and		Oxytetracycline	0.3-571.4			
Tieling in		Tetracycline	2.3-152.9			
Liaoning		Doxycycline	14.8-494.7			
province		Sulfamethoxazole	2.2-58.1			
Tianjin	Soil	Ciprofloxacin	0.8-30.1	ng/g	(Hu et 2010)	al.
		Ofloxacin	0.6-1.6		,	
		Chlortetracycline	33.1-1079			
		Oxytetracycline	124-2683			
		Tetracycline	2.5-105			
		Sulfamethoxazole	0.03-0.9			
		Chloramphenicol	0.1-1.1			
Beijing, Jiaxing	Soil	Chlortetracycline	1.6-239.4	ng/g	(Qiao et 2012)	al.
(Zhejiang province) and Putian (Fujian						
province)						

		Oxytetracycline	1.6-12.3		
		Tetracycline	nd-90		
		Doxycycline	nd-8.6		
Beijing,	Soil	Ciprofloxacin	8.12-13.74	ng/g	(Wang et al.
Shijiazhuang		-			2014b)
, Wuhan,		Ofloxacin	7.54-25.23		,
Kunming,		Norflxacin	9.32-14.54		
Baotou and		Chlortetracycline	0.36-62.61		
Urumqi		Oxytetracycline	0.29-33.21		
-		Tetracycline	1.32-95.28		
		Doxycycline	0.16-107.10		
Beijing, Tianjin, and	Soil	Chlortetracycline	0.36-33.2	ng/g	(Wu et al. 2010)
Jiaxing		Oxytetracycline	0.29-33.21		,
e		Tetracycline	1.32-95.28		
		Doxycycline	0.16-5.01		
Shandong province	Soil	Enrofloxacin	0.1-166.9 (18.6)	ng/g	(Li et al. 2014b)
1		Ciprofloxacin	2.4-651.6 (104.4)		,
		Ofloxacin	0.4-288.3 (55.7)		
Nanjing	Soil	Enrofloxacin	nd-20.6 (7.7)	ng/g	(Huang et al. 2013b)
		Ciprofloxacin	nd-17.1 (8.1)		,
		Ofloxacin	nd-25.85 (8.1)		
		Norflxacin	nd-13.7 (4.0)		
		Oxytetracycline	nd-19.3 (7.3)		
		Sulfachinoxalin	20.3-33.1 (26.6)		
		Sulfaclozine	nd-10.2 (3.6)		
Shanghai	Soil	Oxytetracycline	3410-4240	ng/g	(Ji et al. 2012)
-		Tetracycline	1870-2450		
		Sulfamethoxazole	1320-2210		
		Sulfamethazine	1290-1630		
		Sulfadiazine	1930-2450		
Fuyang city in Zhejiang	Soil	Chlortetracycline	0.22-18.2	ng/g	(Wu et al. 2013)
provience		Ovvetotragualing	0 49 6 77		
		Tetroqueline	0.48-0.72		
		Devueveline	0.28-2.73		
Eujion	Soil	Doxycycline	0.21-10.4	nala	(Huong at al
rujian	5011	Emonoxaciii	nd-037.3 (13.3)	ng/g	(Huang et al. 2013a)
		Ciprofloxacin	nd-237.3 (29.3)		
		Otloxacın	nd-205.7 (4.7)		
		Chlortetracycline	nd-2668.9 (55.6)		
		Oxytetracycline	7.2-613.2 (28.5)		
		Tetracycline	nd-189.8		

Guangxi	Soil	Enrofloxacin	6.22	ng/g	(Zhou et al. 2012)
		Ofloxacin	1.85		
		Norflxacin	9.35		
		Chlortetracycline	33.3		
		Oxytetracycline	8.59		
		Tetracycline	3.09		
Bobai county(swine	Soil	Enrofloxacin	nd-95.8	ng/g	(Zhou et al. 2013a)
) and		Ciprofloxacin	nd-14.0		,
Nanning city		Ofloxacin	nd-108		
in Guangxi		Norflxacin	nd-58.8		
province		Chlortetracycline	nd-12900		
		Oxytetracycline	nd-1410		
		Tetracycline	nd-1010		
		Doxycycline	nd-499		
		Sulfamethazine	nd-3.69		
		Sulfadiazine	nd-4.95		
		Sulfamononmethoxine	nd-5.37		
Bobai County of	Soil	Ofloxacin	1.04	ng/g	(Zhou et al. 2013c)
Guangxi					20130)
province		Chlortetracycline	116		
		Oxytetracycline	13.1		
		Tetracycline	4.06		
		Doxycycline	13.5		
		Sulfamethazine	11.9		
		Sulfamononmethoxine	5.74		
Other countrie	S				
Korea	Soil	Chlortetracycline	0.31-0.89	ng/g	(Ok et al. 2011)
		Oxvtetracvcline	1.68-3.77)
		Tetracycline	0.82-2.94		
		Sulfamethoxazole	0.77-5.43		
		Sulfamethazine	20.30-28.38		
Malaysia	Soil	Doxycycline	63-728	ng/g	(Ho et al. 2014)
		Tvlosin	8-679		-)
		Norfloxacin	18-96		
		Enrofloxacin	36-378		
Turkey	Soil	Oxytetracycline	20-510	ng/g	(Karci and
5		Chlortetracycline	80-120	00	Balcioglu
		Sulfamethazine	40-110		2009)
		Enrofloxacin	20-50		/
US	Soil	Sulfamethazine	0.0345-0.663	ng/g	(Shelver et al.

					2010)
		Sulfadimethoxine	15	ng/g	(Watanabe et al. 2010)
		Sulfamethoxazole	11		
		Tetracycline	30		
Canada	Soil	Sulfamethazine	10.4-72	ng/g	(Aust et al. 2008)
UK	Soil	Oxytetracycline	322-1691	ng/g	(Kay et al. 2004)
		sulfachloropyridazine	212-365		
Spain	Soil	Sulfisomidin	0.11	ng/g	(Garcia-Galan et al. 2013)
		Sulfadiazine	2.59		
		Sulfamethoxazole	1.01		
		Sulfamethoxypyridazine	5.13		
		Sulfadimethoxine	0.18		
Denmark	Soil	Tylosin A	1-50	ng/g	(Halling-Søren sen et al. 2005)
		Chlortetracycline	20-30		
Germany	Soil	Tetracycline	295	ng/g	(Hamscher et al. 2005)
		Sulfamethazine	2		
		Chlortetracycline	39		

Location	Media	ARGs	Abundance	Unit	Reference
			Rang/mean		
Hebei	STP Effluent	tetA, tetC, tetG,	$1.2 \times 10^{-4} - 1.3$	copies/16SrRNA	(Liu et al.
	& Sludge	tetL, tetM, tetO,			2012)
		tetQ, $tetW$, $tetX$			
Northern	STP Effluent	sul	6.7×10^{3}	copies/mL	(Mao et al.
China			7 0 1 0 5		2015)
		erm	7.0×10^{3}		
		tet	8.4×10^{4}		
		qnr	7.3×10^{3}	· ,	
	STP Sludge	sul	2.2×10^{11}	copies/g	
		erm	1.2×10^{10}		
		tet	1.3×10^{10}		
NL (1		qnr	1.5×10^{2} 1.4(10 ² - 1.7010 ⁸	· / T	
Northern	STP Influent	sul, sul2, tetM,	$1.46 \times 10^2 - 1.78 \times 10^3$	copies/mL	(Wang et al.
China		tetW, tetQ, tetO,			2015)
		tetI, blaOXA-I,			
		blaOXA-10			
	STP Effluent	sul sul? totM	2.08×10^3 3.68 × 10 ⁶	conies/mI	
	STF Ennuent	sul, sul2, lelm,	2.08 \ 10 - 3.08 \ 10	copies/iiiL	
		tetW, $tetQ$, $tetO$,			
		$h_aOYA = 10$			
		DIUOAA-10			
	STP Sludge	sul, sul2, tetM,	$9.38 \times 10^7 - 4.3 \times 10^{10}$	copies/g	
		tetW, tetQ, tetO,			
		tetT, blaOXA-1,			
		blaOXA-10			
Harbin	STP Influent	tetW	2.63×10^{6}	copies/mL	(Wen et al.
				1	2016)
		tetA	$2.82 imes 10^4$,
		tetO	$4.57 imes 10^4$		
	STP Effluent	tetW	1.0×10^{7}		
		tetA	2.19×10^{5}		
		tetO	2.82×10^{5}		
Hangzhou	STP Influent	tet	6.91×10^{7}	copies/mL	(Chen and
-				_	Zhang 2013a)
		sul	3.06×10^{7}		
		intI1	8.44×10^{7}		
	STP Effluent	tet	1.21×10^{6}		
		sul	3.31×10^6		
		intI1	$2.82 imes 10^6$		
Hangzhou	STP Influent	tetM	3.78×10^{-3}	copies/16SrRNA	(Chen and
					Zhang 2013b)

Table S2 Abundance of antibiotic resistant genes (A	ARGs) in different	t environment	: media in (China
---	--------------------	---------------	--------------	-------

Zhejiang	STP Influent	tetO tetQ tetW sul tetA, tetB, tetC, tetG, tetL, tetM, tetO, tetQ, tetW, tetX, sul1, sul2, and intI	$\begin{array}{l} 5.81 \times 10^{-4} \\ 1.23 \times 10^{-3} \\ 9.27 \times 10^{-3} \\ 4.76 \times 10^{-2} \\ 1.38 \times 10^{11} - 1.49 \times 10^{11} \end{array}$	copies/mL	(Li et al. 2016b)
	STP Sludge	tetA, tetB, tetC, tetG, tetL, tetM, tetO, tetQ, tetW, tetX, sul1, sul2, and intI	$3.24 \times 10^{10} - 9.68 \times 10^{10}$	copies/g	
Jiangsu, Shanghai	STP Influent	tetG	$2.34 \times 10^2 - 4.37 \times 10^5$	copies/mL	(Du et al. 2014)
-		tetW	$1.74 \times 10^3 - 5.62 \times 10^5$		
		tetX	$9.77 \times 10^2 - 1.95 \times 10^6$		
		sul1	$1.29 \times 10^5 - 1.1 \times 10^7$		
		intI1	$1.58 \times 10^5 - 2.04 \times 10^7$		
	STP Effluent	tetG	$2.45 \times 10^3 - 3.8 \times 10^4$		
		tetW	$5.89 \times 10^1 - 3.55 \times 10^3$		
		tetX	$5.01 \times 10^3 - 2.09 \times 10^5$		
		sul1	$9.33 \times 10^4 - 1.05 \times 10^6$		
		intI1	$8.71 \times 10^4 - 9.12 \times 10^6$		
Nanjing	STP Influent	tetA	4.96×10^{7}	copies/mL	(Zhang et al. 2009b)
		tetC	8.06×10^{7}		
		intI1	2.04×10^{7}		
	STP Effluent	tetA	1.41×10^{6}		
		tetC	1.37×10^{6}		
		intI1	1.20×10^{6}		
Xinjiang	STP Influent	sul1	$1.79 \times 10^{-1} - 6.67 \times 10^{-1}$	copies/16SrRNA	(Li et al. 2016a)
		sul2	$7.33 \times 10^{\text{-2}} - 3.38 \times 10^{\text{-1}}$		
		sul3	$9.22 \times 10^{-2} - 5.9 \times 10^{-1}$		
		intI1	$8.07 \times 10^{\text{-3}} - 3.02 \times 10^{\text{-2}}$		
Hongkong	STP Influent	tetA	1.59×10^{8}	copies/mL	(Zhang et al. 2009a)
		tetC	1.90×10^{8}		
	STP Effluent	tetA	6.5×10^{4}		
		tetC	3.68×10^{5}		
South China	STP Effluent	tetA, tetB, tetC, tetE, tetM, tetO, tetS,tetX,	7.11 × 10 ⁻⁹ – 1.53 × 10 ⁻⁴	copies/16SrRNA	(Huang et al. 2015)
Harbin,	STP Sludge	tetA	1.06×10^{-2}	copies/16SrRNA	(Zhang and

Beijing,					Zhang 2011)
Qingdao,		tetB	7.66×10^{-6}		
Wuhan,		tetC	1.31×10^{-2}		
Nanjing,		tetD	2.20×10^{-6}		
Shanghai,		tetE	2.20×10^{-6}		
Guangzhou		tetG	1.38×10^{-2}		
,		tet&	2.68×10^{-5}		
Hongkong		tetI.	6.29×10^{-6}		
		tetM	5.15×10^{-5}		
		tet()	2.53×10^{-3}		
		tete tetA/P	1.30×10^{-4}		
		tetS	8.52×10^{-3}		
		tetS tetX	1.62×10^{-3}		
Reijing	Surface	sull	$2.62 \times 10^{-3} - 4.16 \times 10^{-2}$	copies/16SrDNA	(Ling et al
River	water	5411	(1.41×10^{-2})		(Enig et al. 2013)
South	water		(1.11 10)		2015)
China					
C		sul2	$2.60 \times 10^{-4} - 7.09 \times 10^{-3}$		
			(1.58×10^{-3})		
		tetC	$(1.00^{-1} - 10^{-1})$ 8 30 × 10 ⁻² - 13 20		
		tete tetA	$1.38 \times 10^{-2} - 1.37 \times 10^{-1}$		
		tetX	$2.69 \times 10^{-4} - 6.73 \times 10^{-2}$		
		tetG	$9.65 \times 10^{-7} - 3.76 \times 10^{-2}$		
		tet0	$8.53 \times 10^{-5} - 1.53 \times 10^{-3}$		
		tetQ tetM	$4.30 \times 10^{-6} - 8.77 \times 10^{-4}$		
		tet()	$5.51 \times 10^{-6} - 8.23 \times 10^{-4}$		
Haihe	Surface	sull	$9.3 \times 10^4 - 1.8 \times 10^6$	conies/mL	(Luo et al
River	water	5111	9.5 * 10 1.0 * 10	copies/ mil	(Euo et ul. 2010)
	water	sul?	$3.9 \times 10^5 - 3.6 \times 10^7$		2010)
Northern	Surface	sull sul?	$33 \times 10^4 - 3.55 \times 10^4$	conies/mL	(Na et al. 2014)
Yellow Sea	water	5001, 5002		copres, mil	(114 00 41. 2011)
Urban	Surface	sull sul? tetA	$7.0 \times 10^{1} - 5.9 \times 10^{6}$	conies/mL	(Xu et al. 2016)
River	water	tetB tetE tetM	1.0 10 0.9 10	copres, mil	(114 01 41. 2010)
Reijing	water	tet7			
Deijing		intI1	1.2×10^{6}	conies/mL	
Huanonu	Surface	sul1	$0.32 \times 10^5 - 1.84 \times 10^5$	copies/mL	(Jiang et al
River	water	5001	0.52 10 1.01 10	copies, mil	2013)
	Water	sul2	$0.43 \times 10^5 - 4.19 \times 10^5$		2010)
		tetA	$0.28 \times 10^3 - 3.16 \times 10^3$		
		tet B	$2.92 \times 10^{1} - 4.30 \times 10^{1}$		
		tetC	$1.03 \times 10^3 - 4.08 \times 10^3$		
		tetG	$0.06 \times 10^4 - 3.18 \times 10^4$		
		tetM	$2.30 \times 10^{1} - 31.0 \times 10^{1}$		
		tetO	$1.95 \times 10^{1} - 22.7 \times 10^{1}$		
		tetW	$1.61 \times 10^{1} - 38.4 \times 10^{1}$		
		tetX	$1.01 \times 10^{2} - 7.83 \times 10^{2}$		

		TEM	$1.36 \times 10^3 - 20.0 \times 10^3$		
Taihu Lake	Surface water	tetA	$10^4 - 10^5$	copies/mL	(Zhang et al. 2009b)
		tetC	10 ⁵)
		intI1	10 ³		
Jiulongjian g River	Surface water	ami	$2.78 \times 10^{10} - 3.66 \times 10^{10}$	copies/L	(Ouyang et al. 2015)
C		sul	$2.55 \times 10^9 - 2.66 \times 10^9$,
		van	$6.00 \times 10^8 - 1.69 \times 10^9$		
Haihe River	Sediment	sul1,sul2	$2.6 \times 10^{-5} - 5.1 \times 10^{-2}$	copies/g	(Luo et al. 2010)
Northern Yellow Sea	Sediment	sul1,sul2	$8.3\times10^3-5.9\times10^7$	copies/g	(Na et al. 2014)
Urban	Sediment	sul1, sul2, tetA,	$4.2 \times 10^2 - 2.0 \times 10^8$	copies/g	(Xu et al. 2016)
River,Beiji ng		tetB, tetE, tetM, tetZ			
		intI1	$4.4 imes 10^7$	copies/g	
Dongjiang River	Sediment	intI1	1.84×10^{8}	copies/g	(Su et al. 2014)
		intI2	6.04×10 ⁵		
		sul1	3.63×10 ⁸		
		sul2	6.97×10 ⁸		
		sul3	3.67×10 ⁸		
		tetA	1.59×10^{8}		
		tetB	6.31×10 ⁵		
		tetM	5.42×10^{7}		
		tetO	2.01×10^{7}		
		tetO	2.68×10^{7}		
		<i>∼</i> tetS	1.87×10^{7}		
		tetW	1.99×10^{7}		
		tetX	1.04×10^{8}		
		ermB	1.29×10^{8}		
		ermC	8.27×10^{6}		
		ermF	4.37×10^{8}		
Yangtze River	Sediment	int[]	$3.7 imes 10^6$	copies/g	(Lin et al. 2015)
Estuary	0 - 1.		1.08 1.09	· · · · / •	(771- 1
Taihu Lake	Sediment	tetA	$10^{\circ} - 10^{\circ}$	copies/mL	(Zhang et al. 2009b)
		tetC	$10^8 - 10^{10}$		
.		int[]	$10^{\circ} - 10^{\circ}$	· ,	
Liaoning	Manure	tetM	$(1.99\pm0.16)\times10^{\circ} -$ $(1.85\pm0.13)\times10^{9}$	copies/g	(Mu et al. 2015)
		tetO	$(3.53\pm0.26)\times10^{5}-$		

			$(1.69\pm0.14)\times10^{9}$		
		tetQ	$(3.10\pm0.33)\times10^{6}$ –		
		~	$(1.66\pm0.09)\times10^9$		
		tetW	$(1.05\pm0.09)\times10^7 -$		
			$(6.84+0.65) \times 10^8$		
		sul1	$(9.35+0.87) \times 10^7 - (2.05+0.1)$	9)×10 ¹⁰	
		sul?	$(7.40+0.56)\times10^7 - (1.48+0.17)\times10^{10}$		
		anrS	$(7.40\pm0.50)\times10^{6}$ (1.40±0.1)	/)/10	
		qnns	$(2.03\pm0.13)\times10^{-1}$		
		oarB	$(4.42\pm0.78)\times10^{8}$ (2.02±0.1	$(2) \times 10^{10}$	
		oqxB armB	$(1.70+0.14)\times10^7 =$	2)~10	
		ermb	$(1.70\pm0.14)\times10^{-1}$		
		armaC	$(1.51\pm0.10)\times10^{5}$		
		erme	$(0.32\pm0.44) \times 10^{7} =$		
Tioniin	Monuro	totM	$(4.43\pm0.20)\times10^{7}$	copies/g	(Mu at al
Tanjin	Ivialiure	leim	$(2.00\pm0.18) \times 10^{-9}$	copies/g	$(Mu \ et \ al.$
		tatO	$(1.41\pm0.11) \times 10^{7}$		2013)
		leiO	$(5.41\pm0.40) \times 10^{8}$		
		4-40	$(8.20\pm0.81)\times10^{6}$		
		tetQ	$(2.25\pm0.14)\times10^{9}$ -		
			$(2.96\pm0.25)\times10^{9}$		
		tetw	$(1.89\pm0.15)\times10^{9}$ –		
		11	c) 10 ¹⁰		
		sul1	$(1.46\pm0.08)\times10^9 - (2.89\pm0.26)\times10^{10}$		
		sul2	$(4.41\pm0.31)\times10^{6}$ –		
			$(7.48\pm0.52)\times10^{9}$		
		qnrS	$(3.01\pm0.22)\times10^{8}-$		
			$(2.72\pm0.14)\times10^{9}$	10	
		oqxB	$(5.16\pm0.42)\times10^8 - (7.05\pm0.5)$	$4) \times 10^{10}$	
		ermB	$(9.31\pm0.86)\times10^{7}$ –		
			$(2.06\pm0.16)\times10^9$		
		ermC	$(9.33\pm0.85)\times10^{6}-$		
			$(7.65\pm0.52)\times10^7$		
Beijing	Manure	tetM	$1.47 \times 10^{-3} - 1.95 \times 10^{-2}$	copies/16SrRNA	(Wang et al. 2016a)
		tetO	$9.23\times 10^{-2} - 1.19\times 10^{0}$		
		tetQ	$1.77 \times 10^{-2} - 1.54 \times 10^{-1}$		
		tetW	$1.70 imes 10^{-2} - 1.11 imes 10^{-1}$		
		tetA	$1.56\times 10^{-4} - 1.87\times 10^{-3}$		
		<i>tet</i> C	$4.48\times 10^{-4} - 2.48\times 10^{-3}$		
		<i>tet</i> G	$7.44 \times 10^{-6} - 1.59 \times 10^{-3}$		
		<i>tet</i> L	$9.33 \times 10^{-4} - 2.81 \times 10^{-1}$		
		tetA/P	$2.50\times 10^{-3} - 2.70\times 10^{-2}$		
		tetX	$7.04\times 10^{-4} - 1.48\times 10^{-1}$		
		sul1	$1.80 imes 10^{-3} - 2.53 imes 10^{-2}$		
		sul2	$7.05\times 10^{-4} - 3.34\times 10^{-2}$		
		intI1	$1.85 \times 10^{-5} - 3.45 \times 10^{-3}$		
		intI2	$1.03 \times 10^{-4} - 1.08 \times 10^{-3}$		
			39		

Hangzhou	Manure	tetA	$3.28 \times 10^6 - 2.48 \times 10^8$	copies/g	(Cheng et al. 2013)
		tetB	$7.29 \times 10^6 - 3.03 \times 10^8$		
		tetC	$1.47 \times 10^6 - 2.34 \times 10^7$		
		tetG	$1.68 \times 10^8 - 2.66 \times 10^9$		
		tetL	$3.74 \times 10^7 - 7.38 \times 10^8$		
		tetM	$6.63 \times 10^8 - 1.33 \times 10^9$		
		tetO	$2.23 \times 10^8 - 3.11 \times 10^9$		
		tetQ	$1.45 \times 10^9 - 3.18 \times 10^9$		
		tetW	$2.25 \times 10^8 - 1.64 \times 10^9$		
		tetX	$2.71 \times 10^7 - 1.65 \times 10^9$		
		sull	$3.59 \times 10^8 - 3.66 \times 10^9$		
		sulII	$7.14 \times 10^8 - 4.27 \times 10^9$		
		intI1	$8.27\times 10^8 - 3.15\times 10^{10}$		
Hangzhou	Manure	tetA	4.7×10^{9}	copies/g	(Cheng et al. 2016)
		tetB	1.44×10^{8}		
		tetC	3.94×10^{7}		
		tetG	$2.30 imes 10^{10}$		
		tetL	1.18×10^{9}		
		tetM	5.15×10^{9}		
		tetO	1.01×10^{11}		
		tetQ	6.60×10^{11}		
		tetW	2.98×10^{11}		
		tetX	1.13×10^{10}		
		sull	1.14×10^{11}		
		sulII	$4.90 imes 10^{10}$		
		intI1	$4.53 imes 10^{10}$		
Shanghai	Manure &	sul1. sul2. sul3.	$2.37 \times 10^{-5} - 4.23 \times 10^{-2}$	copies/16SrRNA	(Ji et al. 2012)
28	soil	sulA			()
		tetM, tetW, tetO, tetBP	$2.23\times 10^{-8} - 3.96\times 10^{-3}$		
Jiangsu	Manure	tetA	$10^4 - 10^9$	copies/g	(Wang et al. 2016b)
		tetC	$10^5 - 10^8$,
		<i>tet</i> E	$10^5 - 10^8$		
		tetG	$10^{5} - 10^{9}$		
		tetM	$10^5 - 10^{11}$		
		tetO	$10^6 - 10^{10}$		
		tetQ	$10^6 - 10^{10}$		
		tetT	$10^5 - 10^9$		
		tetW	$10^4 - 10^{10}$		
		sul1	$10^6 - 10^{10}$		
		sul2	$10^6 - 10^{11}$		
		sul3	$10^4 - 10^9$		

		qnrD	$10^4 - 10^8$		
		qnrS	$10^4 - 10^8$		
		oqxB	$10^4 - 10^9$		
		ermB	$10^6 - 10^{11}$		
		ermC	$10^5 - 10^{10}$		
		acrA	$10^5 - 10^9$		
		acrB	$10^4 - 10^9$		
		aadD	$10^5 - 10^{10}$		
		aph	$10^5 - 10^9$		
		aac	$10^5 - 10^{10}$		
Jiangsu	Manure	sul1	2.2×10^{-2}	copies/16SrRNA	(Zhang et al. 2015c)
		sul2	8.99×10^{-3}		,
		sul3	$6.09 imes 10^{-3}$		
		sulA	$0.2 imes 10^{-3}$		
		qnrA	32×10^{-3}		
		qnrS	0.12×10^{-3}		
		tetA	2.03×10^{-3}		
		tetE	2.45×10^{-3}		
		tetB	1.02×10^{-3}		
		tetO	$2 imes 10^{-2}$		
Beijing, Tianjin	Soil	tetA	$1.6 \times 10^{-5} - 1.2 \times 10^{-2}$	copies/16SrRNA	(Chen et al. 2014)
U		tetB	$nd - 2.1 \times 10^{-5}$		
		<i>tet</i> C	$2.4 imes 10^{-6} - 1.2 imes 10^{-1}$		
		tetD	$nd - 2.6 \times 10^{-5}$		
		<i>tet</i> E	$nd - 1.5 \times 10^{-2}$		
		<i>tet</i> G	$1.4 imes 10^{-5} - 4.3 imes 10^{-1}$		
		tetK	$nd - 1.7 \times 10^{-4}$		
		<i>tet</i> L	$nd - 3.1 \times 10^{-4}$		
		tetM	$nd - 1.1 \times 10^{-4}$		
		tetO	$2.2 imes 10^{-6} - 8.2 imes 10^{-2}$		
		tetS	$1.4 imes 10^{-5} - 4.2 imes 10^{-1}$		
		tetQ	$nd - 4.2 \times 10^{-6}$		
		tetX	$nd - 1.2 \times 10^{-3}$		
		sul1	$4.9 imes 10^{-6} - 1.7$		
		sul2	$5.8\times 10^{-7} - 1.7\times 10^{-1}$		
		sul3	$1.4 imes 10^{-6} - 5.5 imes 10^{-3}$		
Liaoning	Soil	tetM	$(2.67\pm0.19)\times10^5$ –	copies/g	(Mu et al.
-			$(3.31\pm0.27)\times10^7$		2015)
		tetO	$(1.92\pm0.08)\times10^5$ –		
			$(3.68\pm0.34)\times10^7$		
		tetQ	$(1.91\pm0.14)\times10^5$ –		
			$(1.24\pm0.07)\times10^7$		
		tetW	$(1.04\pm0.08)\times10^5$ –		
			$(7.17\pm0.66)\times10^{6}$		

		sul1	$(4.89\pm0.37)\times10^{6}$ –		
			$(5.98\pm0.58)\times10^8$		
		sul2	$(9.86\pm0.84)\times10^{6}$ –		
			$(1.72\pm0.13)\times10^{9}$		
		qnrS	$(3.76\pm0.24)\times10^4$ –		
			$(2.92\pm0.21)\times10^{6}$		
		oqxB	$(3.45\pm0.21)\times10^7$ –		
			$(1.53\pm0.09)\times10^8$		
		ermB	$(1.79\pm0.15)\times10^5$ –		
			$(1.79\pm0.11)\times10^7$		
		ermC	$(1.64\pm0.13)\times10^4$ –		
			$(4.00\pm0.37)\times10^5$		
Tianjin	Soil	tetM	$(7.40\pm0.72)\times10^{6}-$	copies/g	(Mu et al.
			$(2.31\pm0.22)\times10^7$		2015)
		tetO	$(2.08\pm0.12)\times10^7-$		
			$(1.82\pm0.14)\times10^{8}$		
		tetQ	$(1.13\pm0.09)\times10^7$ –		
			$(5.06\pm0.41)\times10^7$		
		tetW	$(2.69\pm0.21)\times10^{6}-$		
			$(2.38\pm0.17)\times10^7$		
		sul1	$(4.84\pm0.33)\times10^{6}-$		
			$(1.83\pm0.15)\times10^8$		
		sul2	$(3.09\pm0.24)\times10^{6}-$		
			$(1.74\pm0.14)\times10^{8}$		
		qnrS	$(6.99 \pm 0.62) \times 10^{5} -$		
			$(1.30\pm0.11)\times10^7$		
		oqxB	$(3.52\pm0.28)\times10^7$ –		
			$(5.30\pm0.45)\times10^8$		
		ermB	$(6.81\pm0.54)\times10^{6}-$		
			$(1.05\pm0.07)\times10^7$		
		ermC	$(1.99\pm0.18)\times10^{5}-$		
			$(4.20\pm0.33)\times10^5$		
Beijing	Soil	tetM	$1.18\times 10^{-4} - 6.44\times 10^{-4}$	copies/16SrRNA	(Wang et al.
					2016a)
		tetO	$7.39 \times 10^{-5} - 5.34 \times 10^{-4}$		
		tetQ	$2.86 \times 10^{-5} - 1.82 \times 10^{-3}$		
		tetW	$5.98\times 10^{-5} - 3.68\times 10^{-4}$		
		tetA	$2.46 \times 10^{-4} - 4.96 \times 10^{-4}$		
		tetC	$1.48 \times 10^{-3} - 4.37 \times 10^{-3}$		
		tetG	$1.80 \times 10^{-4} - 1.75 \times 10^{-3}$		
		tetL	$4.38\times 10^{-4} - 2.80\times 10^{-3}$		
		tetA/P	$8.88\times 10^{-5} - 8.63\times 10^{-4}$		
		tetX	$3.62 \times 10^{-6} - 1.08 \times 10^{-2}$		
		sul1	$2.04\times 10^{-3} - 1.82\times 10^{-2}$		
		sul2	$4.44 \times 10^{-4} - 1.52 \times 10^{-2}$		
		intI1	$5.15\times 10^{-4} - 3.80\times 10^{-3}$		
		intI2	$4.39\times 10^{-5} - 7.08\times 10^{-4}$		
			42		

Beijing, Tianjin,	Soil	tetM	$2.96 \times 10^5 - 1.43 \times 10^9$	copies/g	(Wu et al. 2010)
Jiaxing		tetO	$3.68 \times 10^5 - 4.09 \times 10^8$		
-		tetQ	$6.63 \times 10^5 - 4.30 \times 10^8$		
		tetW	$1.38 \times 10^5 - 3.48 \times 10^8$		
		tetT	$7.86 imes 10^4 - 1.41 imes 10^7$		
Hangzhou	Soil	tetA	4.7×10^{6}	copies/g	(Cheng et al. 2016)
		tetB	1.38×10^{5}		,
		tetC	4.16×10^{6}		
		tetG	5.36×10^{7}		
		tetL	2.51×10^{6}		
		tetM	$4.89 imes 10^7$		
		tetO	1.50×10^{8}		
		tetQ	2.83×10^{8}		
		tetW	3.15×10^{8}		
		tetX	6.15×10^{6}		
		sulI	9.66×10^{7}		
		<i>sul</i> II	2.22×10^{7}		
		intI1	42.03×10^{8}		
Jiangsu	Soil	tet	$10^6 - 10^8$	copies/g	(Wang et al. 2016b)
		sul	$10^{6} - 10^{9}$,
		qnr	$10^4 - 10^6$		
		erm	$10^4 - 10^7$		
		acr	$10^4 - 10^7$		
		ami	$10^4 - 10^7$		
Jiangsu	Soil	sul1	39.19×10^{-2}	copies/16SrRNA	(Zhang et al. 2015c)
		sul2	0.42×10^{-3})
		sul3	0.48×10^{-3}		
		sulA	0.71×10^{-3}		
		qnrS	0.08×10^{-3}		
		tetA	$0.02 imes 10^{-3}$		
		tetE	1.35×10^{-3}		
		tetB	$0.44 imes 10^{-3}$		
		tetO	10.55×10^{-2}		

References

- Arikan, O.A.; Rice, C.; Codling, E. Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination 2008;226:121-133
- Aust, M.O.; Godlinski, F.; Travis, G.R.; Hao, X.; McAllister, T.A.; Leinweber, P.; Thiele-Bruhn, S. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environmental pollution 2008;156:1243-1251
- Behera, S.K.; Kim, H.W.; Oh, J.E.; Park, H.S. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. The Science of the total environment

2011;409:4351-4360

- Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. The Science of the total environment 2006;366:772-783
- Chang, H.; Hu, J.; Wang, L.; Shao, B. Occurrence of sulfonamide antibiotics in sewage treatment plants. Chinese Science Bulletin 2008;53:514-520
- Chang, X.; Meyer, M.T.; Liu, X.; Zhao, Q.; Chen, H.; Chen, J.A.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental pollution 2010;158:1444-1450
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environmental pollution 2014;193:94-101
- Chen, H.; Zhang, M.M. Effects of Advanced Treatment Systems on the Removal of Antibiotic Resistance Genes in Wastewater Treatment Plants from Hangzhou, China. Environmental science & technology 2013a;47:8157-8163
- Chen, H.; Zhang, M.M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environment International 2013b;55:9-14
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014;95:604-612
- Cheng, W.; Chen, H.; Su, C.; Yan, S. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ Int 2013;61:1-7
- Cheng, W.X.; Li, J.N.; Wu, Y.; Xu, L.K.; Su, C.; Qian, Y.Y.; Zhu, Y.G.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. Journal of Hazardous Materials 2016;304:18-25
- Christian, T.; Schneider, R.J.; Färber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E. Determination of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta hydrochimica et hydrobiologica 2003;31:36-44
- Dinh, Q.T.; Alliot, F.; Moreau-Guigon, E.; Eurin, J.; Chevreuil, M.; Labadie, P. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta 2011;85:1238-1245
- Du, J.; Ren, H.Q.; Geng, J.J.; Zhang, Y.; Xu, K.; Ding, L.L. Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environmental Science and Pollution Research 2014;21:7276-7284
- Feitosa-Felizzola, J.; Chiron, S. Occurrence and distribution of selected antibiotics in a small Mediterranean stream (Arc River, Southern France). J Hydrol 2009;364:50-57
- Gao, L.; Shi, Y.; Li, W.; Niu, H.; Liu, J.; Cai, Y. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere 2012;86:665-671
- Garcia-Galan, M.J.; Diaz-Cruz, S.; Barcelo, D. Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry. Journal of chromatography A 2013;1275:32-40
- Gulkowska, A.; Leung, H.W.; So, M.K.; Taniyasu, S.; Yamashita, N.; Yeung, L.W.; Richardson, B.J.; Lei, A.P.; Giesy, J.P.; Lam, P.K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water research 2008;42:395-403
- Halling-Sørensen, B.; Jacobsen, A.-M.; Jensen, J.; SengeløV, G.; Vaclavik, E.; Ingerslev, F. Dissipation and effects of chlortetracycline and tylosin in two agricultural soils: A field-scale study in southern Denmark. Environmental Toxicology and Chemistry 2005;24:802-810
- Hamscher, G.; Pawelzick, H.T.; Höper, H.; Nau, H. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environmental Toxicology and Chemistry 2005;24:861-868
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. The Science of the total environment 2014;488-489:261-267
- Holzel, C.S.; Harms, K.S.; Kuchenhoff, H.; Kunz, A.; Muller, C.; Meyer, K.; Schwaiger, K.; Bauer, J. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and

sulfonamides. J Appl Microbiol 2010;108:1642-1656

- Hou, J.; Wan, W.; Mao, D.; Wang, C.; Mu, Q.; Qin, S.; Luo, Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environmental science and pollution research international 2015;22:4545-4554
- Hou, J.; Wang, C.; Mao, D.; Luo, Y. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China. Environmental science and pollution research international 2016;23:1722-1731
- Hu, X.; He, K.; Zhou, Q. Occurrence, accumulation, attenuation and priority of typical antibiotics in sediments based on long-term field and modeling studies. J Hazard Mater 2012;225-226:91-98
- Hu, X.G.; Luo, Y.; Zhou, Q.X.; Xu, L. Determination of Thirteen Antibiotics Residues in Manure by Solid Phase Extraction and High Performance Liquid Chromatography. Chinese J Anal Chem 2008;36:1162-1166
- Hu, X.G.; Zhou, Q.X.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental pollution 2010;158:2992-2998
- Huang, M.H.; Zhang, W.; Liu, C.; Hu, H.Y. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant. Process Safety and Environmental Protection 2015;93:68-74
- Huang, X.; Liu, C.X.; Li, K.; Liu, F.; Liao, D.R.; Liu, L.; Zhu, G.F.; Liao, J. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environmental Science and Pollution Research 2013a;20:9066-9074
- Huang, Y.J.; Cheng, M.M.; Li, W.H.; Wu, L.H.; Chen, Y.S.; Luo, Y.M.; Christie, P.; Zhang, H.B. Simultaneous extraction of four classes of antibiotics in soil, manure and sewage sludge and analysis by liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal Methods-Uk 2013b;5:3721-3731
- Ji, X.L.; Shen, Q.H.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.L.; Wu, M.H. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials 2012;235:178-185
- Jia, A.; Wan, Y.; Xiao, Y.; Hu, J. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water research 2012;46:387-394
- Jiang, L.; Hu, X.; Xu, T.; Zhang, H.; Sheng, D.; Yin, D. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. The Science of the total environment 2013;458-460:267-272
- Karci, A.; Balcioglu, I.A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. The Science of the total environment 2009;407:4652-4664
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water research 2009;43:363-380
- Kay, P.; Blackwell, P.A.; Boxall, A.B.A. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry 2004;23:1136-1144
- Kim, K.-R.; Owens, G.; Kwon, S.-I.; So, K.-H.; Lee, D.-B.; Ok, Y.S. Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment. Water, Air, Soil Pollut 2011;214:163-174
- Kim, S.-C.; Carlson, K. Temporal and Spatial Trends in the Occurrence of Human and Veterinary Antibiotics in Aqueous and River Sediment Matrices. Environmental science & technology 2007;41:50-57
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water research 2007;41:1013-1021
- Leung, H.W.; Minh, T.B.; Murphy, M.B.; Lam, J.C.; So, M.K.; Martin, M.; Lam, P.K.; Richardson, B.J. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ Int 2012;42:1-9
- Li, B.; Zhang, T. Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 2011;83:1284-1289
- Li, B.; Zhang, T.; Xu, Z.; Fang, H.H. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica chimica acta 2009;645:64-72

- Li, C.; Lu, J.J.; Liu, J.; Zhang, G.L.; Tong, Y.B.; Ma, N. Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China. Environmental Science and Pollution Research 2016a;23:15111-15121
- Li, J.N.; Cheng, W.X.; Xu, L.K.; Jiao, Y.N.; Baig, S.A.; Chen, H. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment. Environmental Science and Pollution Research 2016b;23:6826-6835
- Li, N.; Zhang, X.; Wu, W.; Zhao, X. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China. Chemosphere 2014a;111:327-335
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 2013a;92:435-444
- Li, X.W.; Xie, Y.F.; Li, C.L.; Zhao, H.N.; Zhao, H.; Wang, N.; Wang, J.F. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China. The Science of the total environment 2014b;468-469:258-264
- Li, Y.-x.; Zhang, X.-I.; Li, W.; Lu, X.-f.; Liu, B.; Wang, J. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environmental Monitoring and Assessment 2013b;185:2211-2220
- Li, Y.X.; Li, W.; Zhang, X.L.; Yang, M. Simultaneous Determination of Fourteen Veterinary Antibiotics in Animal Feces by Solid Phase Extraction and High Performance Liquid Chromatography. Chinese J Anal Chem 2012;40:213-217
- Liang, X.; Chen, B.; Nie, X.; Shi, Z.; Huang, X.; Li, X. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 2013;92:1410-1416
- Lin, L.; Yuan, K.; Liang, X.M.; Chen, X.; Zhao, Z.S.; Yang, Y.; Zou, S.C.; Luan, T.G.; Chen, B.W. Occurrences and distribution of sulfonamide and tetracycline resistance genes in the Yangtze River Estuary and nearby coastal area. Marine Pollution Bulletin 2015;100:304-310
- Ling, Z.H.; Yang, Y.; Huang, Y.L.; Zou, S.C.; Luan, T.G. A preliminary investigation on the occurrence and distribution of antibiotic resistance genes in the Beijiang River, South China. Journal of Environmental Sciences 2013;25:1656-1661
- Liu, M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L.; Zhang, S. Abundance and Distribution of Tetracycline Resistance Genes and Mobile Elements in an Oxytetracycline Production Wastewater Treatment System. Environmental science & technology 2012;46:7551-7557
- Luo, Y.; Mao, D.Q.; Rysz, M.; Zhou, D.X.; Zhang, H.J.; Xu, L.; Alvarez, P.J.J. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental science & technology 2010;44:7220-7225
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental science & technology 2011;45:1827-1833
- Mao, D.Q.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.X.; Li, F.X.; Hou, J.; Mu, Q.H.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water research 2015;85:458-466
- Martinez-Carballo, E.; Gonzalez-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental pollution 2007;148:570-579
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere 2015;134:133-140
- Mu, Q.; Li, J.; Sun, Y.; Mao, D.; Wang, Q.; Luo, Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research 2015;22:6932-6940
- Na, G.; Zhang, W.; Zhou, S.; Gao, H.; Lu, Z.; Wu, X.; Li, R.; Qiu, L.; Cai, Y.; Yao, Z. Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria: implications for antibiotic resistance genes. Mar Pollut Bull 2014;84:70-75
- Ok, Y.S.; Kim, S.C.; Kim, K.R.; Lee, S.S.; Moon, D.H.; Lim, K.J.; Sung, J.K.; Hur, S.O.; Yang, J.E. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 2011;174:693-701
- Ouyang, W.Y.; Huang, F.Y.; Zhao, Y.; Li, H.; Su, J.Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Applied Microbiology and Biotechnology 2015;99:5697-5707

- Pan, X.; Qiang, Z.; Ben, W.; Chen, M. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 2011;84:695-700
- Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. The Science of the total environment 2006;371:314-322
- Qiao, M.; Chen, W.D.; Su, J.Q.; Zhang, B.; Zhang, C. Fate of tetracyclines in swine manure of three selected swine farms in China. Journal of Environmental Sciences 2012;24:1047-1052
- Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014;969:162-170
- Shao, B.; Chen, D.; Zhang, J.; Wu, Y.; Sun, C. Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater. Journal of chromatography A 2009;1216:8312-8318
- Shelver, W.L.; Hakk, H.; Larsen, G.L.; DeSutter, T.M.; Casey, F.X. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. Journal of chromatography A 2010;1217:1273-1282
- Su, H.C.; Pan, C.G.; Ying, G.G.; Zhao, J.L.; Zhou, L.J.; Liu, Y.S.; Tao, R.; Zhang, R.Q.; He, L.Y. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. The Science of the total environment 2014;490:708-714
- Sun, Q.; Li, M.; Ma, C.; Chen, X.; Xie, X.; Yu, C.P. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental pollution 2016;208:371-381
- Tong, L.; Huang, S.; Wang, Y.; Liu, H.; Li, M. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. The Science of the total environment 2014;497-498:180-187
- Vazquez-Roig, P.; Andreu, V.; Blasco, C.; Pico, Y. Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego-Oliva Marshlands (Valencia, eastern Spain). Science of the Total Environment 2012;440:24-32
- Verlicchi, P.; Al Aukidy, M.; Jelic, A.; Petrović, M.; Barceló, D. Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy). Science of The Total Environment 2014;470:844-854
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water research 2007;41:1001-1012
- Vieno, N.M.; Tuhkanen, T.; Kronberg, L. Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection. Journal of Chromatography A 2006;1134:101-111
- Wang, D.; Sui, Q.; Lu, S.G.; Zhao, W.T.; Qiu, Z.F.; Miao, Z.W.; Yu, G. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China. Environmental science and pollution research international 2014a;21:4276-4285
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental science & technology 2014b;48:9079-9085
- Wang, J.; Ben, W.W.; Yang, M.; Zhang, Y.; Qiang, Z.M. Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environment International 2016a;92-93:317-323
- Wang, J.L.; Mao, D.Q.; Mu, Q.H.; Luo, Y. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants. Science of the Total Environment 2015;526:366-373
- Wang, N.; Guo, X.Y.; Yan, Z.; Wang, W.; Chen, B.; Ge, F.; Ye, B.P. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China. Plos One 2016b;11
- Watanabe, N.; Bergamaschi, B.A.; Loftin, K.A.; Meyer, M.T.; Harter, T. Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields. Environmental science & technology 2010;44:6591-6600
- Wen, Q.X.; Yang, L.; Duan, R.; Chen, Z.Q. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China. Environmental pollution 2016;212:34-40
- Wu, L.; Pan, X.; Chen, L.; Huang, Y.; Teng, Y.; Luo, Y.; Christie, P. Occurrence and distribution of heavy metals and tetracyclines in

agricultural soils after typical land use change in east China. Environmental science and pollution research international 2013;20:8342-8354

- Wu, N.; Qiao, M.; Zhang, B.; Cheng, W.D.; Zhu, Y.G. Abundance and Diversity of Tetracycline Resistance Genes in Soils Adjacent to Representative Swine Feedlots in China. Environmental science & technology 2010;44:6933-6939
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015;119:1379-1385
- Xu, W.; Yan, W.; Li, X.; Zou, Y.; Chen, X.; Huang, W.; Miao, L.; Zhang, R.; Zhang, G.; Zou, S. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks. Environmental pollution 2013;182:402-407
- Xu, W.; Zhang, G.; Li, X.; Zou, S.; Li, P.; Hu, Z.; Li, J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water research 2007;41:4526-4534
- Xu, Y.; Guo, C.S.; Luo, Y.; Lv, J.P.; Zhang, Y.; Lin, H.X.; Wang, L.; Xu, J. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environmental pollution 2016;213:833-840
- Xue, B.; Zhang, R.; Wang, Y.; Liu, X.; Li, J.; Zhang, G. Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and environmental safety 2013;92:229-236
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environmental pollution 2013;175:22-29
- Yan, Q.; Gao, X.; Huang, L.; Gan, X.M.; Zhang, Y.X.; Chen, Y.P.; Peng, X.Y.; Guo, J.S. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model. Chemosphere 2014;99:160-170
- Yang, J.F.; Ying, G.G.; Zhao, J.L.; Tao, R.; Su, H.C.; Chen, F. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. The Science of the total environment 2010;408:3424-3432
- Yang, J.F.; Ying, G.G.; Zhao, J.L.; Tao, R.; Su, H.C.; Liu, Y.S. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of environmental science and health Part B, Pesticides, food contaminants, and agricultural wastes 2011;46:272-280
- Zhang, H.; Du, M.; Jiang, H.; Zhang, D.; Lin, L.; Ye, H.; Zhang, X. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environ Sci: Processes Impacts 2015a;17:225-234
- Zhang, H.; Liu, P.; Feng, Y.; Yang, F. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar Pollut Bull 2013;73:282-290
- Zhang, H.; Luo, Y.; Wu, L.; Huang, Y.; Christie, P. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming. Environmental science and pollution research international 2015b;22:5908-5918
- Zhang, R.; Zhang, G.; Zheng, Q.; Tang, J.; Chen, Y.; Xu, W.; Zou, Y.; Chen, X. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicology and environmental safety 2012;80:208-215
- Zhang, S.; Gu, J.; Wang, C.; Wang, P.; Jiao, S.; He, Z.; Han, B. Characterization of Antibiotics and Antibiotic Resistance Genes on an Ecological Farm System. Journal of Chemistry 2015c;
- Zhang, T.; Zhang, M.; Zhang, X.X.; Fang, H.H. Tetracycline Resistance Genes and Tetracycline Resistant Lactose-Fermenting Enterobacteriaceae in Activated Sludge of Sewage Treatment Plants. Environmental science & technology 2009a;43:3455-3460
- Zhang, X.-X.; Zhang, T. Occurrence, Abundance, and Diversity of Tetracycline Resistance Genes in 15 Sewage Treatment Plants across China and Other Global Locations. Environmental science & technology 2011;45:2598-2604
- Zhang, X.; Wu, B.; Zhang, Y.; Zhang, T.; Yang, L.; Fang, H.H.; Ford, T.; Cheng, S. Class 1 integronase gene and tetracycline resistance genes tetA and tetC in different water environments of Jiangsu Province, China. Ecotoxicology 2009b;18:652-660
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. The Science of the total environment 2010;408:1069-1075

- Zheng, S.; Qiu, X.; Chen, B.; Yu, X.; Liu, Z.; Zhong, G.; Li, H.; Chen, M.; Sun, G.; Huang, H.; Yu, W.; Freestone, D. Antibiotics pollution in Jiulong River estuary: source, distribution and bacterial resistance. Chemosphere 2011;84:1677-1685
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhang, R.Q.; Lai, H.J.; Chen, Z.F.; Pan, C.G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. The Science of the total environment 2013a;444:183-195
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Chen, F.; Zhang, R.Q.; Peng, F.Q.; Zhang, Q.Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A 2012;1244:123-138
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Yang, B.; Chen, Z.F.; Lai, H.J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. The Science of the total environment 2013b;452-453:365-376
- Zhou, L.J.; Ying, G.G.; Zhang, R.Q.; Liu, S.; Lai, H.J.; Chen, Z.F.; Yang, B.; Zhao, J.L. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, south China. Environ Sci-Proc Imp 2013c;15:802-813
- Zhou, L.J.; Ying, G.G.; Zhao, J.L.; Yang, J.F.; Wang, L.; Yang, B.; Liu, S. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environmental pollution 2011;159:1877-1885
- Zhu, S.; Chen, H.; Li, J. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake basin, Eastern China. Ecotoxicology and environmental safety 2013;96:154-159