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Abstract  25 

In aquatic environments, the concentration of inorganic carbon is spatially and temporally 26 

variable and CO2 can be substantially over-saturated or depleted. Depletion of CO2 plus low 27 

rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial 28 

environments and the frequency of species with a CCM, and their contribution to productivity is 29 

correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs 30 

and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, 31 

CCM activity is related to environmental conditions. CCMs are absent or down-regulated when 32 

their increased energy costs, lower CO2 affinity or altered mineral requirements outweigh their 33 

benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH 34 

and high light. Freshwater species are generally less effective at inorganic carbon removal than 35 

marine species but have a greater range of ability to remove carbon, matching the 36 

environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine 37 

phytoplankton and detailed mechanistic studies on larger aquatic photoautotrophs are 38 

understudied. Strengthening the links between ecology and CCMs will increase our 39 

understanding of the mechanisms underlying ecological success and will place mechanistic 40 

studies in a clearer ecological context. 41 

 42 

Keywords: Aquatic CCM, CO2, inorganic carbon, macroalgae, macrophytes, photosynthesis, 43 

phytoplankton, seagrasses  44 
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Introduction 46 

Photosynthesis on land contributes ~50% to the total global net primary productivity of about 47 

105 Pg C y-1 (Field et al., 1998) and is performed by approximately 300,000 species of terrestrial 48 

photoautotrophs (Kreft and Jetz, 2007), almost exclusively within the Plantae. About 275,000 49 

(92%) of the terrestrial species perform C3 carbon-fixation and contribute about 77% of 50 

terrestrial productivity (Still et al., 2003). C3 photosynthesis involves passive diffusion of CO2 51 

down a concentration gradient that is produced by carbon fixation by the primary carboxylating 52 

enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). In theory, this is all that is 53 

required to fix carbon, but Rubisco’s low rates of catalysis, low affinity for CO2 and ability to fix 54 

oxygen can lead to photorespiration, and limit rates of net photosynthesis (Laing et al., 1974; 55 

Raven and Johnston, 1991; Giordano et al., 2005). 56 

While C3 plants rely on ‘pull down’ of CO2 by Rubisco fixation, some terrestrial plants 57 

have a biochemical CO2 concentrating mechanism (CCM) that ‘pushes in’ CO2 towards Rubisco, 58 

increasing the concentration of CO2 around the active site and minimising photorespiration. 59 

This mechanism involves pre-fixation of carbon by the carboxylating enzyme 60 

phosphoenolpyruvate carboxylase (PEPC), that is unaffected by oxygen and produces a four-61 

carbon compound that is decarboxylated to generate CO2 around Rubisco. Plants with a CCM 62 

based on C4 carboxylation contribute the remaining 23% of terrestrial productivity. Two related 63 

types of C4-based CCMs are found in terrestrial plants. In C4 photosynthesis, there is an intra-64 

cellular or inter-cellular spatial separation of C4 carboxylation and decarboxylation 65 

(Voznesenskaya et al., 2001; Sage, 2002), while in crassulacean acid metabolism (CAM), there is 66 

a temporal separation of daytime C4 de-carboxylation and night-time C4 carboxylation. C4 67 

photosynthesis evolved independently at least 66 times and is present in about 8,100 species 68 

(about 2.7%) of terrestrial plants (Sage, 2016), while CAM also evolved in multiple lineages, and 69 

is found in 16,800 species (about 6% of terrestrial plants; (Silvera et al., 2010)). These 70 

additional pathways have costs but can also confer ecological benefits. On land, plants with a 71 

CCM have an ecological advantage in sub-tropical, tropical and arid or saline environments 72 

where reduced stomatal conductance decreases water loss but also reduces the internal CO2 73 

concentration (Osborne and Freckleton, 2009; Sage, 2016). 74 

Aquatic ecosystems contribute the remaining ~50% of global net primary productivity, 75 

which, unlike terrestrial productivity, is carried out by a large phylogenetic diversity of 76 

organisms. Although marine angiosperms, seagrasses, (72 species; (Les and Tippery, 2013)) and 77 

submerged freshwater angiosperms, macrophytes, (about 6000 species; (Cook, 1990)), can be 78 

very important local ‘ecosystem engineers’ they cover a low area of the globe and consequently 79 

these Plantae contribute relatively little to global productivity (van der Heijden and Kamenos, 80 
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2015). Instead, most aquatic primary production is performed by planktonic cyanobacteria and 81 

eukaryotic microalgae in the ocean with a small contribution from eukaryotic macroalgae 82 

(about 1 Pg C y-1, 2% of ocean productivity (Field et al., 1998) and about 0.17 Pg C y-1 83 

contribution to carbon-sequestration (Krause-Jensen and Duarte, 2016)). The global number of 84 

photoautotrophic algal species (including cyanobacteria) is poorly constrained but might be in 85 

the region of 150,000 (Guiry, 2012; Mann and Vanormelingen, 2013). In contrast to terrestrial 86 

primary producers, CCMs are widespread in aquatic primary producers, make a major 87 

contribution to aquatic primary productivity and include the biochemical C4 and CAM CCMs, 88 

found in their terrestrial counterparts, and also biophysical CCMs based on active uptake of 89 

HCO3
− or CO2 or both that are largely absent in land plants.  90 

The aim of this review is to set the ecological context for aquatic CCMs. To do this, we 91 

outline the availability of inorganic carbon in water, summarise the strategies that aquatic 92 

photoautotrophs use to maximise carbon uptake, quantify the effectiveness (used herein to 93 

refer to the ability to exploit the in carbon reserves) in CCMs in different types of 94 

photoautotroph, examine the costs and benefits of operating a CCM and describe the ecological 95 

conditions where a CCM appears to increase fitness and creates an ecological advantage.  96 

 97 

Availability of inorganic carbon in water 98 

Concentration of CO2 and O2 at air-equilibrium 99 

The solubility of CO2 and O2 are described by Henry’s law and are independent of variables such 100 

as pH. At 15°C and standard pressure, the concentration of CO2 in fresh water in equilibrium 101 

with an atmosphere containing 400 ppm CO2, is ~18 mmol m-3 (Fig. 1A). In sea water with a 102 

salinity of 34, and the same temperature, the concentration will be ~20 % lower at ~15 mmol 103 

m-3. Under these conditions, the concentration of oxygen will be 314 mmol m-3 in fresh water 104 

and ~19% lower in seawater at 256 mmol m-3. In both fresh water and sea water, the solubility 105 

of CO2 declines with temperature by about 2.3% °C-1 between 5 and 25 °C, while the solubility of 106 

O2 declines by about 1.7% °C-1 over the same temperature range. Consequently, at equilibrium 107 

with the atmosphere, the molar ratio of CO2 to O2 declines from about 0.064 at 5°C to 0.053 at 108 

25°C in both environments. 109 

Rate of diffusion 110 

A major difference between photosynthesis in water and air is the rate of gas diffusion which for 111 

CO2 in water at 25°C is 2 10-9 m2 s-1, about 10,000 lower than in air (Raven, 1970; Zeebe, 2011). 112 

Since materials have to diffuse through the boundary layer that surrounds all cells, thalli or 113 

leaves in a fluid (Vogel, 1994), the external transport resistance to carbon fixation can be high 114 
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(Black et al., 1981) particularly for larger objects in areas of low water velocity. Rates of O2 115 

diffusion in water are similarly lower than in air (Verberk et al., 2011) and as a result rates of 116 

loss of O2 out of a photosynthesising cell or tissue, will also be restricted by transport limitation, 117 

increasing internal O2 concentrations and further promoting the tendency for photorespiration 118 

(Mass et al., 2010). As a consequence, half-saturation concentrations for CO2 for photosynthesis 119 

in water are frequently substantially above air-equilibrium, especially in the larger 120 

photoautotrophs. For example, half-saturation constants for CO2 in freshwater macrophytes 121 

without a CCM, are about seven-times greater than air-equilibrium (Maberly and Madsen, 1998) 122 

while C3 photosynthesis in air is only stimulated by about 30% at elevated CO2 levels (Lloyd and 123 

Farquhar, 1996; Ainsworth and Long, 2005). 124 

Forms of inorganic carbon in water 125 

Unlike air, four forms of inorganic carbon exist in water. When CO2 dissolves, a small proportion 126 

(<0.2%; (Stumm and Morgan, 2012)) reacts with water producing carbonic acid (H2CO3), which 127 

together with dissolved CO2 comprises free CO2. Carbonic acid can dissociate forming 128 

bicarbonate (HCO3-), and CO2 can also react with water, or OH- at high pH, to form HCO3- 129 

directly. Bicarbonate can dissociate further forming carbonate (CO32-). Free CO2, HCO3- and CO32- 130 

in aggregate comprise the concentration of total dissolved inorganic carbon (CT). The equilibria 131 

between the different forms of inorganic carbon is controlled by temperature, ionic strength 132 

and particularly pH. At 15°C in fresh water with the average global river ion concentration 133 

(ionic strength 1.1 mol m-3; (Meybeck, 2003)), the first and second dissociation constants (pK1’ 134 

and pK2’ representing the pH where the concentrations of CO2 and HCO3- and HCO3- and CO32- 135 

are equal) are 6.41 and 10.38 respectively. In sea water at the same temperature they are 5.95 136 

and 9.11; which is 0.46 and 1.27 pH units lower than fresh water for pK1’ and pK2’ respectively 137 

(Fig. 1B). As a consequence, CO3
2- ions are a larger proportion of CT at a given pH in sea water 138 

compared to fresh water.  139 

Although under many circumstances, the different forms of inorganic carbon can be 140 

considered to be in equilibrium, the kinetics of hydration and dehydration between CO2 and 141 

HCO3- are relatively slow and can be exceeded by high rates of CO2 or HCO3- exchange per unit 142 

volume. This can cause the concentration of CO2 or HCO3
- to be pulled out of equilibrium from 143 

the concentration set by the physico-chemistry. The enzyme carbonic anhydrase acts to 144 

maintain chemical equilibrium between CO2 and HCO3- and is widely involved in different CCMs 145 

(Raven, 1995). 146 

Variation in inorganic carbon availability 147 
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Alkalinity is the sum of bases formed from weak acids, roughly equivalent to acid neutralising 148 

capacity and usually mainly represented by HCO3-. Variable geology leads to a variable alkalinity 149 

in fresh waters (Meybeck, 2003). It can exceed 1000 equiv m-3 in soda lakes where evaporation, 150 

rather than outflow, is the major process of water loss (Talling, 1985). It can also be very low or 151 

negative (net acidity) in acid sites affected by acid deposition (Battarbee, 1990), at peaty sites 152 

with a high concentration of organic acids, or at sites in the vicinity of volcanic activity or acid 153 

mine drainage where sulphide oxidation generates protons (Evangelou and Zhang, 1995; 154 

Pedrozo et al., 2001). Based on the GLORICH database of river chemistry, (Hartmann et al., 155 

2014) and site average values for 5303 streams or rivers with a Strahler order of 3 or greater, 156 

alkalinity as a proxy for the concentration of bicarbonate, had a median concentration of 1,559 157 

mequiv m-3 (Table 1). In contrast, the contemporary ocean has a comparatively constant 158 

alkalinity of about 2,300 mequiv m-3. 159 

At air-equilibrium, pH can vary from less than 2 in highly acid sites, to around 5 to 8 in 160 

lakes with low to moderate alkalinity, to over 10 in lakes with very high alkalinity (Fig. 1C) 161 

(Talling, 1985). At 15°C, the air-equilibrium pH of sea water is about 8.1 (equilibrium with an 162 

atmosphere of 400 ppm) and the concentration of CO2 represents about 0.7% of the dissolved 163 

inorganic carbon, while in fresh water, at a slightly high equilibrium concentration, it can vary 164 

between 100% of the inorganic carbon in acid sites, to less than 0.2% at sites with a high 165 

alkalinity (i.e. > 10 equiv m-3) 166 

Overlying the variation in pH at equilibrium with the atmosphere, biological production 167 

of CO2 by respiration or removal of CO2 or HCO3- by photosynthesis, can alter CT and pH and 168 

consequently the concentration and proportions of the different forms of inorganic carbon. 169 

Accordingly, the concentration of CO2 and the other forms of inorganic carbon can be under- or 170 

over-saturated compared to air-equilibrium (Fig. 2). Globally, annual average concentrations of 171 

CO2 are oversaturated in most lakes and rivers (Cole et al., 1994; Raymond et al., 2013). This 172 

results from microbial activity and photodegradation of organic carbon produced on land 173 

(Sobek et al., 2007) within the water body and also from lateral transfer of CO2-rich water 174 

produced by microbial breakdown of terrestrial organic carbon within the catchment (Maberly 175 

et al., 2013). Analyses of large-scale global datasets have shown median values for CO2 176 

concentration of 1598 µatm in streams and rivers and 736 µatm in lakes and reservoirs (Table 177 

1) (Raymond et al., 2013). At an assumed mean temperature of 15°C this is roughly equivalent 178 

to median CO2 concentrations of 73 mmol m-3 in streams and rivers and 34 mmol m-3 in lakes 179 

and reservoirs. Concentrations of CO2 are higher in tropical regions than in temperate or boreal 180 

regions (Lauerwald et al., 2015). Given the values of alkalinity for rivers from the GLORICH 181 

database noted above and in Table 1, median values of CO2 are about 20-times lower than 182 
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median values of HCO3- in rivers and, assuming similar alkalinity in lakes and rivers, about 46-183 

times lower than the median concentration of HCO3- in lakes. Particularly high concentrations of 184 

CO2 can also be generated in heterotrophic environments, especially those with restricted 185 

access to the atmosphere. For example, respiration can produce CO2 concentrations over 2,000 186 

mmol m-3 at depth in a lake (Casper et al., 2000), between 300 and 5,000 mmol m-3 in aquatic 187 

sediments (Madsen et al., 2002), over 400 mmol m-3 in groundwaters (Demars and Tremolieres, 188 

2009; Stets et al., 2009; Maberly et al., 2015) and for Swedish and Finnish lakes under ice, 189 

median values of 160 to 340 mmol m-3 and maximum values of 580 to 870 mmol m-3 (Denfeld et 190 

al., 2016).  191 

Although lakes, and especially rivers, tend to be over-saturated with CO2 at an annual 192 

scale, during periods of high photosynthetic demand, the concentration of CO2 can become 193 

depleted below air-equilibrium in many aquatic systems. Even lakes which are oversaturated 194 

with CO2 on an annual scale can experience substantial depletion in CO2 during productive 195 

periods ((Maberly, 1996) Fig. 2) and the same can be true in rivers (Jarvie et al., 2017). The least 196 

variable aquatic systems in terms of CO2 are those of low productivity such as the open ocean 197 

where pH is fairly constant at about 8 to 8.1 (Hofmann et al., 2011) and the CO2 concentration is 198 

always close to air equilibrium. However, at decadal scales as atmospheric CO2 has increased, 199 

the air-equilibrium concentrations of CO2 has also increased and ocean pH has decreased 200 

(Doney et al., 2009). In the coastal ocean, with higher productivity and in dense beds of 201 

macroalgae with high demand, pH can become elevated and the CO2 concentration depleted 202 

below air-equilibrium (Delille et al., 2000; Middelboe and Hansen, 2007; Hofmann et al., 2011; 203 

Cornwall et al., 2013; Krause-Jensen et al., 2016). There can also be substantial daily and semi-204 

diurnal changes in CO2 concentration over 24 hours and extreme depletion in sites with 205 

extremely high biomass such as rockpools (Maberly, 1992). In productive lakes, large summer 206 

populations of phytoplankton, especially cyanobacteria (e.g. (Talling, 1976; Maberly, 1996; 207 

Ibelings and Maberly, 1998)), or dense macrophyte beds (Van et al., 1976) can reduce photic-208 

zone concentrations of CO2 close to zero for extended periods in the summer when demand 209 

outstrips supply ((Maberly, 1996); Fig. 2). Under these circumstances, a CCM is essential for 210 

continued photosynthesis, especially since high concentrations of oxygen (up to 4-fold air 211 

equilibrium, (Van et al., 1976)), normally co-occur with carbon-depletion. Furthermore, under 212 

extreme carbon-depletion, even HCO3-, the uptake of which is a widespread aquatic CCM, can 213 

start to become depleted (Fig. 2C).  214 

An example calculation illustrates the potential mismatch between rates of transport of 215 

CO2 across the air-water interface and the rates of biological transformation of inorganic into 216 

organic carbon. Using the data and calculations for 1993 in a productive UK lake, Esthwaite 217 



8 
 

Water, (Maberly, 1996) and assuming a subsurface boundary layer thickness of 300 µm, an 218 

atmospheric CO2 partial pressure of 360 ppm and allowing for chemical enhancement, the 219 

maximum rate of CO2 influx across the air-water interface is 0.8 µmol m-2 s-1 and the average 220 

summer values are about 0.2 µmol m-2 s-1. If one assumes a surface mixed layer thickness of 5 m, 221 

a chlorophyll a concentration of 40 mg m-3 (the summer mean for 1993 in Esthwaite Water) and 222 

an average rate of photosynthesis of 100 µmol mg-1 Chla h-1, the demand for carbon per unit 223 

surface area in the upper mixed layer will be about 5.6 µmol m-2 s-1, which is nearly 30-times the 224 

average rate of CO2-influx and about 7-times the maximum rate of CO2-influx. In these types of 225 

systems as a consequence, the concentration of CO2 can routinely vary 10-fold in 24 hours, 226 

driven by the light-dark cycle.  227 

 228 

Biochemical, biophysical and morphological responses to CO2 availability 229 

Aquatic photoautotrophs respond to variable and often limiting supply of CO2 and HCO3- in ways 230 

that involve Rubisco characteristics, biochemical pathways, physiological processes and 231 

morphological and anatomical changes. 232 

Relationship between Rubisco kinetics and presence of a CCM 233 

The form of Rubisco and its kinetic properties differ among photoautotrophs and can be seen, in 234 

part, as an adaptation to CO2 availability. Many forms of Rubisco exist as a consequence of the 235 

diverse evolutionary origin of oxygenic photoautotrophs (see Table 1 and Fig. 3 in (Tabita et al., 236 

2008). The Forms IA (α-cyanobacteria), IB (β-cyanobacteria, glaucophytes, green algae, 237 

euglenophytes (Zahonova et al., 2016) chlorarachniophytes and embryophytes) and ID (red 238 

algae, cryptophytes, haptophytes and heterokonts) are hexadecamers made up of eight large 239 

and eight small subunits, while the Form II of dinophyceae (and anoxygenic photosynthetic 240 

bacteria) (Morse et al., 1995) are either dimers or multimers of the large subunit, although 241 

dinophytes with tertiary endosymbiosis may also contain chloroplasts with Form IB and ID 242 

(Tamura et al., 2005; Minge et al., 2010). The ID isoform, present in the ecologically important 243 

coccolithophores and diatoms within the heterokonts, differs substantially in amino acid 244 

sequence from the well-studied IB isoform (Clement et al., 2017b). 245 

The structural types of Rubisco do not match their kinetic properties however. The 246 

average Rubisco specificity factor, τ, defined as VcKo/VoKc (where Vc and Vo are the maximal 247 

velocities of carboxylation and oxygenation, respectively, and Kc and Ko the Michaelis constants 248 

for CO2 and O2), represents the propensity to catalyze the carboxylation versus the oxygenation 249 

reactions that lead to photorespiration. Although C3 and C4 land plants, diatoms and 250 
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coccolithophores have different forms of Rubisco, the specificity factor is similar at about 80 to 251 

90 while those from cyanobacteria and dinoflagellates are lower and those from red algae twice 252 

as high (Tortell, 2000; Young et al., 2016). Conversely, although diatoms and red algae have 253 

Form ID Rubisco, their specificity factors are very different (Tortell, 2000). Within C3 land 254 

plants, the Rubisco specificity factor is higher in species in environments where water supply is 255 

limited which is consistent with lower internal concentration of CO2 in relation to stomatal 256 

closure (Galmes et al., 2005). The Kc for Rubisco is also variable with average values of about 31 257 

mmol m-3 in green algae (3 species), 16 and 13 mmol m-3 in bryophytes and ferns (two species 258 

each), about 10 mmol m-3 in C3 land plants (23 species) and red algae (five species) and 47 259 

mmol m-3 in diatoms (ten species) ((Young et al., 2016) their SI and Table 1). Thus these values 260 

bracket typical air-equilibrium CO2 concentrations (at 25°C about 11 and 14 mmol m-3 in sea 261 

and fresh water respectively, Fig. 1), reinforcing the benefit of a CCM for species that have a 262 

Rubisco with a poor affinity for CO2. In cyanobacteria, for which a CCM has been shown in all 263 

studied photoautotrophic species, Rubisco has an even lower affinity for CO2 which is often > 264 

200 mmol m-3 (Moroney and Somanchi, 1999) and as high as 750 mmol m-3 in low light adapted 265 

strains of Prochlorococcus marinus (Scott et al., 2007), concentrations that are rarely found in 266 

photic aquatic environments. Therefore, the kinetic properties of Rubisco appear to be related 267 

to CCM activity. For example, many red macroalgae such as Lemanea and Batrachospermum in 268 

fresh water and Lomentaria and Delesseria in marine systems with an assumed high specificity 269 

factor, lack a CCM (Raven and Beardall, 1981; Maberly, 1990). Tortell showed in an analysis of 270 

seven phytoplankters from different phylogenetic groups that there was an inverse relationship 271 

between  and the extent of a CCM (Tortell, 2000). Thus carbon uptake can either be supported 272 

by Rubisco with a high specificity for CO2 or Rubisco with a lower affinity compensated for by a 273 

CCM that is more effective in terms of concentrating CO2. 274 

Responses to CO2 availability not involving a CCM  275 

Not all photoautotrophs have a CCM (Raven et al., 2005) and not all aquatic systems have low 276 

concentrations of CO2, at least as an annual mean as outlined above (Table 1). Thus, plants with 277 

an ‘avoidance strategy’ (sensu Klavsen et al. (2011)), may simply grow in environments where 278 

CO2 is sufficient for their photosynthetic needs and therefore do not require a CCM. In the 279 

‘exploitation strategy’, morphological and anatomical adaptations allow sources of CO2 that are 280 

more reliable than the bulk water to be exploited. Concentrations of CO2 within the sediment 281 

are high as photosynthesis is absent and organic matter is mineralised generating CO2. Many 282 

freshwater macrophytes have extensive lacunae that can be continuous from root to shoot 283 

(Sculthorpe, 1967), providing a transport route for CO2 from the sediment to the leaves. The 284 

possibility of this path as a carbon source was suggested in the older literature but first shown 285 
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experimentally for the short isoetid Lobelia dortmanna (Wium-Andersen, 1971). This 286 

exploitation strategy is present in most isoetids (Winkel and Borum, 2009) but diffusion 287 

resistance within the lacunae limits its ability to supply CO2 to species of short stature and 288 

consequently in taller species such as Myriophyllum spicatum, root uptake contributes little to 289 

total carbon uptake (Loczy et al., 1983). In the case of Isoetes australis, achlorophyllous leaf 290 

bases within the sediment also act as sources of CO2-entry to the internal lacunae (Pedersen et 291 

al., 2011). Borum et al. (Borum et al., 2015) showed that oxygen concentrations in the buried 292 

base of the shoot of the seagrass Zostera polychlamys were 29% higher when the CO2 293 

concentration around the shoot was saturating compared to 9 mmol m-3. This implies some 294 

diffusion of gases between root and shoot but the extent to which this supplies CO2 to leaves is 295 

likely to be low given the diffusion distance; more work is warranted on this. It has also been 296 

suggested that early terrestrial lycopsids may also have benefitted from tapping into elevated 297 

CO2 within the sediment (Green, 2010).  298 

Freshwater macrophytes form part of a cline from dry land with complete reliance on 299 

photosynthesis in air, to submergence with complete reliance on photosynthesis in water. This 300 

gradation also reflects the evolutionary invasion of terrestrial embryophytes into water (Du and 301 

Wang, 2014). The more constant supply of CO2 in the atmosphere is an opportunity for 302 

submerged plants to maximise carbon uptake. In the freshwater macrophyte Callitriche 303 

cophocarpa which lacks a CCM, growth rates were stimulated three-fold when floating leaves 304 

had access to atmospheric CO2 and submerged leaves were at air-equilibrium (Madsen and 305 

Breinholt, 1995). The benefit of atmospheric CO2 to amphibious freshwater plants has been 306 

widely demonstrated and promotes flowering in Nuphar lutea and Callitriche hamulata (= C. 307 

intermedia (Grainger, 1947), increases soluble carbohydrate reserves in Hippuris vulgaris 308 

(Janauer and Englmaier, 1986) and stimulates photosynthesis in Stratiotes aloides (Prins and 309 

Deguia, 1986).  310 

The nature of aquatic CCMs 311 

Many types and mechanisms of CCM exist in aquatic photoautotrophs. Several rely on 312 

production of particular localized environments by special structures such as the carboxysome, 313 

pyrenoid, charosome or transfer cells, of which latter, more than one type is found in seagrasses 314 

(Larkum et al THIS ISSUE). Some aquatic species possess biochemical CCMs analogous to those 315 

in terrestrial plants. The best known is that of the freshwater angiosperm Hydrilla verticillata 316 

that was studied by George Bowes and his group for over four decades (Bowes et al., 2002; 317 

Bowes, 2011). This species is a member of the monocotyledon family Hydrocharitaceae, lacks 318 

Kranz anatomy, but possesses a facultative C4 metabolism that is induced when CO2 is limiting 319 

(Holaday and Bowes, 1980). Spatial separation between carboxylation and decarboxylation is 320 
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achieved by PEPC being located in the cytoplasm while decarboxylation by NADP malic enzyme 321 

(NADP-ME) occurs with Rubisco in the chloroplast (Reiskind et al., 1989; Magnin et al., 1997; 322 

Reiskind et al., 1997). Although also lacking Kranz anatomy, similar C4 metabolism has been 323 

found in other species of the Hydrocharitaceae including Egeria densa (Casati et al., 2000) and 324 

Ottelia alismoides (Zhang et al., 2014). Unlike the two other species, O. alismoides appears to use 325 

NAD-ME rather than NADP-ME as the decarboxylating enzyme (Zhang et al., 2014), (Shao et al., 326 

2017). There is less detailed evidence for C4 metabolism in marine angiosperms (seagrasses). It 327 

is possible that Cymodocea nodosa, Halophila stipulacea and Thalassia testudinum possess C4 328 

metabolism (Beer et al., 1980; Koch et al., 2013) but further investigations are required. Within 329 

the marine macroalgae, there is good evidence for an ancient form of C4 metabolism in the 330 

coenocytic, chlorophyte alga Udotea flabellum that is based on phosphoenolpyruvate 331 

carboxykinase (PEPCK) which acts as a carboxylase in the cytosol and a decarboxylase in the 332 

chloroplast (Reiskind et al., 1988; Reiskind and Bowes, 1991). There are hints of possible C4 333 

metabolism in the brown alga Dictyota guineënsis and the red alga Palisada perforata 334 

(=Laurencia papillosa) based on activities of PEPC and PEPCK compared to Rubisco (Holbrook 335 

et al., 1988; Koch et al., 2013); see also (Raven and Giordano, in press). The marine diatom 336 

Thalassiosira weissflogii has been proposed to possess single-cell C4 metabolism (Reinfelder et 337 

al., 2000; Reinfelder, 2011), although the evidence for this is not very conclusive (Clement et al., 338 

2017a) (Clement et al., 2017b). Although not fully resolved, recent studies, on T. pseudonana 339 

(Tanaka et al., 2014; Clement et al., 2016; Clement et al., 2017b) and P. tricornutum (Haimovich-340 

Dayan et al., 2013; Yang et al., 2016) (Clement et al., 2017a) using different approaches, suggest 341 

these species do not possess C4 metabolism. 342 

Aquatic CAM was first shown in the freshwater lycophyte Isoetes howellii (Keeley, 1981; 343 

Keeley, 2014) and has been recorded in all species of Isoetes that have been studied (Keeley, 344 

1998). It is also found in other freshwater angiosperms including Littorella uniflora (Madsen, 345 

1987b; Robe and Griffiths, 2000), Crassula helmsii (Newman and Raven, 1995), Deinostema 346 

violaceum (Yin et al., in press) and O. alismoides (Zhang et al., 2014), (Shao et al., 2017). The 347 

presence of CAM in marine macroalgae is unclear (Koch et al., 2013). Low amplitude diel 348 

changes in acidity have been reported in Ascophyllum nodosum (Johnston and Raven, 1987) and 349 

some other fucoid algae (Keeley, 1998) but more research is required to determine whether or 350 

not this constitutes CAM activity. 351 

The remainder of aquatic CCMs are based on biophysical active transport of CO2, HCO3
- 352 

or both (Raven and Beardall, 2016). The most widespread CCM in aquatic plants, is based on 353 

access to HCO3- and is likely to depend on more than one mechanism. One, found notably in 354 

leaves of the monocotyledon genera Potamogeton, Elodea, Egeria and Hydrilla involves polar 355 
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leaves. Protons are excreted at the abaxial surface, converting bicarbonate to CO2 some of which 356 

will diffuse into the leaf, while at the adaxial surface net hydroxide excretion leads to the 357 

deposition of marl (Steemann Nielsenn, 1947; Prins et al., 1980; Prins et al., 1982; Prins and 358 

Elzenga, 1989). A similar process occurs in charophytes where acid and alkaline bands are 359 

present along the axis of giant cells (Lucas and Smith, 1973). 360 

Some freshwater angiosperms that can use HCO3-, such as the dicotyledon genera 361 

Myriophyllum or Ranunculus, lack spatial patterns of acid and alkaline zones and instead H+-362 

HCO3
- co-transport has been proposed (Prins and Elzenga, 1989). In marine macroalgae, also 363 

without evidence of acid or alkaline zones, there is a range of different proposed mechanisms 364 

(Raven and Hurd, 2012). These include bicarbonate transporters in Ectocarpus siliculosus 365 

(Gravot et al., 2010), anion exchange proteins in Macrocystis pyrifera (Fernandez et al., 2014) 366 

and proton extrusion acting with external carbonic anhydrase (but not involving acid and 367 

alkaline zones) in Saccharina latissima (= Laminaria saccharina) (Axelsson et al., 2000). The 368 

green alga Ulva lactuca possesses two mechanisms to use HCO3-, one based on carbonic 369 

anhydrase and external acidification of the boundary layer at seawater pH, again without 370 

discernible acid and alkaline zones, and one based on an anion transporter that is up-regulated 371 

after incubation at high pH (Axelsson et al., 1995). 372 

CCMs in cyanobacteria are among the best studied of any group of photosynthetic 373 

organisms. Active transporters of CO2 and HCO3- produce a large internal pool of HCO3- that is 374 

converted to CO2 around Rubisco within specialized structures that restrict leakage, 375 

carboxysomes (Price et al., 2008; Price, 2011). Chlamydomonas reinhardtii  has the best-studied 376 

eukaryotic CCM that involves HCO3- transporters located at the plasmalemma and the outer 377 

stromal membrane that generate high concentrations of HCO3- in the chloroplast stroma (Wang 378 

et al., 2011). There are at least twelve genes present encoding carbonic anhydrases in different 379 

locations (Moroney et al., 2011). The alpha CA in the acid thylakoid lumen (CA3) is believed to 380 

increase the rate of conversion of HCO3- to CO2 which can then diffuse out to the surrounding 381 

pyrenoid which is the location of Rubisco. A beta carbonic anhydrase (CA6) in the stroma has 382 

been suggested to trap CO2 that has diffused out of the lumen and bypassed the pyrenoid by 383 

speeding its conversion back to HCO3
- (Moroney et al., 2011). 384 

In diatoms, several biophysical CCM mechanisms are involved including bicarbonate 385 

active transporters(Matsuda et al., 2011; Nakajima et al., 2013) and carbonic anhydrase 386 

enzymes (Harada et al., 2005; Trimborn et al., 2009; Crawfurd et al., 2011; Hopkinson et al., 387 

2011; Hopkinson et al., 2013; Clement et al., 2016); (Clement et al., 2017a). The nature of the 388 

CCM has also been studied in other marine phytoplankton including chlorophytes and other 389 

chromalveloates from the dinoflagellates, haptophytes (including coccolithophores) and 390 
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eustigmatophytes (Huertas et al., 2000; Colman et al., 2002; Rost et al., 2003; Dason et al., 2004; 391 

Hoins et al., 2016; Kottmeier et al., 2016). These and other studies (Clement et al., 2017a) 392 

(Riebesell et al., 1993; Clark and Flynn, 2000) show that there is a large diversity in ability of 393 

marine phytoplankton to utilize the carbon reserves. 394 

 395 

Regulation of CCMs by environmental conditions 396 

It has been known for a long time that algae are phenotypically plastic and their photosynthetic 397 

characteristics can be altered by environmental conditions e.g. (Briggs and Whittingham, 1952). 398 

In microalgae where this regulation has been best studied and for which a substantial literature 399 

exists, a CCM is rapidly up-regulated at low CO2 and down-regulated at high CO2 (Giordano et al., 400 

2005). Similar regulation of HCO3- use occurs in freshwater macrophytes (Sand-Jensen and 401 

Gordon, 1986; Madsen et al., 1996; Adamec, 2009). In Myriophyllum alterniflorum there are 402 

phenotypic differences between populations from low and high alkalinity sites which largely 403 

disappear after incubation in standard conditions (Maberly and Madsen, 2002a). C4 metabolism 404 

in freshwater macrophytes is up-regulated when inorganic carbon is limiting in H. verticillata 405 

and E. densa (Casati et al., 2000; Bowes, 2011) but appears to be constitutive in O. alismoides 406 

(Zhang et al., 2014). In contrast, C4 metabolism is present in leaves of Eleocharis vivipara when 407 

in air but absent when in water (Ueno, 1998; Murphy et al., 2007). CAM activity in freshwater 408 

macrophytes is up-regulated at low CO2 and high light (Madsen, 1987a; Robe and Griffiths, 409 

1990; Baattrup-Pedersen and Madsen, 1999; Klavsen and Maberly, 2010) (Shao et al., 2017) and 410 

can also be down-regulated when leaves are exposed to the more constant supply of CO2 in air 411 

(Aulio, 1986; Robe and Griffiths, 2000; Yang and Liu, 2015). In the halotolerant Dunaliella salina, 412 

high salinity (2.22 kmol m-3 NaCl) promoted a CCM, presumably because high salinity reduces 413 

the solubility of CO2 (Booth and Beardall, 1991). 414 

Low light can lead to a reduction in CCM activity in eukaryotic and prokaryotic 415 

microalgae (Beardall, 1991; Beardall and Giordano, 2002; Raven and Beardall, 2014). There is 416 

evidence of regulation of CCMs in microalgae by variation in the concentration and form of 417 

nitrogen and the concentration of phosphorus (Beardall and Giordano, 2002; Raven and 418 

Beardall, 2014). However, for both elements, both increases and decreases in inferred activity of 419 

a CCM in response to limitation have been recorded (Raven and Beardall, 2014). 420 

 421 

Costs & Benefits of CCMs  422 
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The fact that CCMs occur in some but not all species, are frequently down-regulated when 423 

inorganic carbon is not limiting (Giordano et al., 2005) and can be lost in microalgae evolving 424 

over 1000 generations at high CO2 (Collins et al., 2006) indicates that their operation incurs 425 

costs as well as conferring benefits. 426 

Energy costs 427 

By definition, a CCM involves an energy cost because it generates a concentration of CO2 at the 428 

active site of Rubisco above that which could be achieved by passive processes. However, Sage 429 

and Khoshravesh (Sage and Khoshravesh, 2016) point out that locating photorespiratory and 430 

respiratory release of CO2 close to Rubisco may act as a passive CCM that can mitigate, rather 431 

than overcome, the consequences of Rubisco’s properties. An active CCM will incur energy costs 432 

for investing in catalytic machinery and running the CCM (Raven and Lucas, 1985). This has 433 

ecological relevance because light is often, although not always, a limiting resource for aquatic 434 

photoautotrophs because of the relatively high rates of attenuation in aquatic environments 435 

(Maberly, 2014). A detailed calculation of the theoretical minimum energy (photon) running 436 

costs has been undertaken by (Raven et al., 2014) as mol photons absorbed per mol carbon 437 

fixed. They estimated that when a CCM is absent, the minimum photon cost will be between 9.92 438 

and 9.96. Assuming that no leakage of CO2 is occurring out of the site where it is accumulated, 439 

the minimum photon cost when CCM is active varies between 9.25 and 10 depending on the 440 

precise CCM. Assuming a leakage rate equivalent to the rate of photosynthesis, the photon cost 441 

increases to between 9.5 and 11 mol photons absorbed per mol carbon fixed (Raven and 442 

Beardall, 2016). The additional costs of producing the CCM machinery are more uncertain and 443 

complicated by trade-offs with other resources such as nitrogen and phosphorus.  444 

A CCM is present in psychrophilic marine diatom communities from the Western 445 

Antarctic Peninsula, including species such as Fragilariopsis cylindrus. However, it operates with 446 

a relatively low energy cost (Kranz et al., 2015) because at 0°C the Michaelis constant for 447 

Rubisco (Kc) is only 15 mmol CO2 m-3 while the air equilibrium the CO2 concentration is 25 448 

mmol m-3 (Young et al., 2015). Even though the ambient CO2 concentration had been reduced to 449 

about 6 mmol m-3 in a bloom, the diatoms were nearly saturated with inorganic carbon by the 450 

CCM at a low energy cost (Kranz et al., 2015; Young et al., 2015). 451 

Affinity costs 452 

A less recognised cost of operating at least some types of CCM relates to the affinity for CO2. In a 453 

review of the kinetics of CO2 uptake from a range of freshwater macrophytes, it was shown that 454 

the K½ for CO2 for species able to use HCO3- as well as CO2 was about 210 mmol m-3 but only 108 455 

mmol m-3 for species restricted to CO2 (Maberly and Madsen, 1998). The slope of CO2-uptake 456 
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per CO2 concentration was similarly greater in species restricted to CO2. Using experiments in 457 

different gas mixtures, including helium, it was shown that species with the ability to use HCO3- 458 

have a higher internal resistance to CO2 uptake than species restricted to CO2 (Madsen and 459 

Maberly, 2003). This also occurs in other types of photoautotrophs; the permeability of 460 

plasmalemma from Chlamydomonas reinhardtii grown at high CO2 is about 1.7-times greater 461 

than those grown at low CO2, consistent with these differences (Raven and Beardall, 2016). A 462 

high permeability is obviously advantageous in a species restricted to CO2 but if a species is 463 

concentrating CO2 internally with a CCM, a high permeability runs the risk of futile cycling. The 464 

different affinities of macrophytes with and without an ability to use HCO3- has a clear potential 465 

ecological significance in shallow water where light energy is high. 466 

Other costs 467 

There are other largely unquantified costs, or at least trade-offs, involved in the operation of a 468 

CCM. These involve a different element requirement when a CCM is present or absent (Raven 469 

and Johnston, 1991). For example, the enzyme carbonic anhydrase is ubiquitously up-regulated 470 

along with a CCM which will incur some attendant cost including those for the uptake of 471 

elements such as Zn, Co or Cd that can be present at low concentration, especially in the open 472 

ocean (Lane and Morel, 2000). In marine phytoplankton, N and P quotas also vary with CO2 473 

concentration (Reinfelder, 2012) but the extent to which these incur a cost or benefit is poorly 474 

constrained. 475 

Benefits 476 

The benefits of operating a CCM have been alluded to and include reducing rates of 477 

photorespiration, increasing rates of photosynthesis when CO2 is limiting and extending the 478 

amount of carbon that is accessible to photosynthesis during carbon depletion. An example of 479 

these benefits is shown in Fig. 3 where rates of carbon uptake for three species of the 480 

freshwater macrophyte Myriophyllum which vary in the presence and effectiveness of their CCM 481 

are compared. M. verticillatum lacks a CCM, being reliant on CO2 alone, and had a CO2 482 

compensation point of 3.2 mmol m-3 allowing it to remove only 4% of the available inorganic 483 

carbon. M. alterniflorum and M. spicatum were able to use CO2 and HCO3- and while M. 484 

alterniflorum could remove 51% of the available inorganic carbon, M. spicatum was even more 485 

effective and removed 80% of the available carbon. Rates at air-equilibrium, ~15 mmol m-3, as a 486 

percentage of those at 200 mmol m-3, which was not quite saturating, were 3%, 20% and 34% in 487 

M. verticillatum, M. alterniflorum and M. spicatum respectively (Fig. 3B), showing that the CCM 488 

based on HCO3- -use increased rates of photosynthesis at air-equilibrium in addition to 489 

increasing the pool of available inorganic carbon. For two of these species of Myriophyllum, 490 

these photosynthesis differences have recently been shown to translate to benefit growth at low 491 
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CO2: M. spicatum growth was much less affected by CO2 depletion than M. verticillatum (Dulger 492 

and Hussner, 2017). 493 

 494 

Frequency and extent of CCMs in different types of photoautotroph 495 

In addition to phenotypic plasticity in the activity of CCMs within a given species, there are 496 

genotypic differences in the effectiveness of CCMs to exploit the inorganic carbon reserves 497 

among different species which together generate a gradient in ability to deplete inorganic 498 

carbon in freshwater macrophytes and phytoplankton (Talling, 1976; Allen and Spence, 1981). 499 

Fig. 4 presents the compiled published and unpublished results for different types of aquatic 500 

photoautotrophs on the extent to which inorganic carbon can be removed from water based on 501 

pH-drift experiments. Percent carbon availability is calculated from the calculated or measured 502 

concentration of CT at the end of a drift compared to the alkalinity of the medium. There is a 503 

wide range of ability to exploit the inorganic carbon reserves within each group, with species 504 

without a CCM only being able to remove a small fraction of the available carbon compared to 505 

species with an effective CCM. The seagrasses and marine phytoplankton had the highest 506 

median ability to remove inorganic carbon and the freshwater macrophytes clearly had the 507 

lowest (Fig. 4). However, freshwater macrophytes, freshwater phytoplankton and marine 508 

macroalgae had the largest range in ability to remove inorganic carbon, while the seagrasses 509 

(although with a limited number of species tested) and marine phytoplankton had the lowest 510 

range. Thus, broadly comparing marine and freshwater photoautotrophs, the marine 511 

photoautotrophs had a 1.7-fold greater median ability to extract inorganic carbon while the 512 

freshwater photoautotrophs had a 1.4-fold greater range in ability to extract inorganic carbon.  513 

The lower median capability of freshwater macrophytes to exploit the reserves of 514 

inorganic carbon is consistent with their alternative strategies for acquiring inorganic carbon 515 

described above. Thus, only 50 species of the 110 tested (45%) are able to use HCO3
- (Fig. 5A). 516 

Four species perform C4 photosynthesis and 9 species perform CAM based on diel acidity 517 

changes. All the species with C4 also use HCO3- while only two species, Ottelia alismoides (Zhang 518 

et al., 2014) and possibly Scirpus subterminalis (Beer and Wetzel, 1981) and Vallisneria spiralis 519 

(Yin et al., in press) combine both CAM and HCO3- use. O. alismoides, appears, uniquely, to 520 

combine three different types of CCM, HCO3- - use, C4 and CAM (Shao et al., 2017). Fifty two 521 

species have no apparent CCM. Of these, 69 % have access to CO2 from the atmosphere, 522 

sediment or grow in environments where CO2 is likely to be high locally (Fig. 5B). In contrast, 523 

only about 24% of species with an ability to use HCO3
- have alternative strategies, and these 524 

largely comprise C4 metabolism and access to atmospheric CO2. 525 
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Most groups of eukaryotic algae and aquatic plants contain species with and without 526 

CCMs (Raven et al., 2005). Nevertheless, phylogenetic differences underlie some of the variation 527 

in ability to remove inorganic carbon. Of particular note for their apparently uniform absence of 528 

a CCM is the group of heterokont algae, the Chrysophyceae sensu latu (= Synurophyceae and 529 

Chrysophyceae). No species studied from this group has been shown to be able to use HCO3
- and 530 

there is no evidence for the operation of a CCM (Saxby-Rouen et al., 1998; Maberly et al., 2009; 531 

Bhatti and Colman, 2011). There are no clearly attested freshwater bryophytes or lycophytes 532 

with a CCM (Spence and Maberly, 1985) apart from in one experiment with Fontinalis 533 

antipyretica (Penuelas, 1985), and a possible CCM in an aquatic hornwort (Bain and Proctor, 534 

1980), although terrestrial species from this group do have a CCM (Villarreal and Renner, 2012). 535 

Within the freshwater macrophyte genus Callitriche, most species lack a CCM but two of the 536 

three species within the subgenus Pseudocallitriche (Philbrick and Les, 2000), C. 537 

hermaphroditica (Maberly and Madsen, 2002b) and C. truncata (Whitney & Maberly 538 

unpublished) can also use HCO3-; the third species, has not yet been tested. Within the 539 

prokaryotes, all tested species of cyanobacteria appear to possess a CCM which compensates for 540 

the low affinity of their Rubisco enzyme. This is also the case for a culture of Merismopedia 541 

glauca, collected from the New Forest, England (Maberly, unpublished), which can grow in 542 

eutrophic lakes e.g. (Yamamoto and Shiah, 2012) but the genus contains species such as M. 543 

tenuissima that are often dominant in acid sites and absent when pH is increased by liming 544 

(Anderson et al., 1997). Work is required on M. tenuissima to determine if this acid-tolerant 545 

cyanobacterium possesses a CCM. 546 

 547 

Environmental conditions and CCM activity: towards establishing inorganic carbon as an 548 

ecological factor 549 

In some circumstances, inorganic carbon can limit the primary productivity of marine 550 

phytoplankton (Riebesell et al., 1993; Hein and Sand-Jensen, 1997; Clark and Flynn, 2000), 551 

freshwater phytoplankton (Ibelings and Maberly, 1998; Jansson et al., 2012), marine 552 

macroalgae (Holbrook et al., 1988), seagrasses (Borum et al., 2015) and freshwater 553 

macrophytes (Madsen and Maberly, 1991). Given this and the environmental variability in 554 

inorganic carbon concentrations and other resources and the wide variability in abilities of 555 

aquatic photoautotrophs to acquire inorganic carbon, it is likely that inorganic carbon is one of 556 

the environment factors that controls the ecological distribution of aquatic photoautotrophs. 557 

Some of the differences between marine and freshwater photoautotrophs in Fig. 4 can be 558 

accounted for, in part, by the availability of inorganic carbon in the respective environments. 559 

The marine environment has a nearly uniform concentration of HCO3- and a lower variability in 560 
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CO2 concentrations and CO2 sources than freshwaters, increasing the benefit of using HCO3- but 561 

not placing a premium on a highly effective CCM. In contrast, the freshwater environment has 562 

highly variable concentrations of both HCO3
- and CO2 and CO2 from the sediment or atmosphere 563 

can be accessed, so some species would not benefit from using HCO3
- however, a highly effective 564 

CCM is needed to continue to photosynthesise during episodes of extreme carbon depletion. 565 

Below, three examples of the interaction between CCMs and ecology are outlined. 566 

CCMs and distribution of freshwater macrophytes 567 

The high CO2 concentrations that exist in some freshwater environments allow plants that grow 568 

there to survive without a CCM. For example, the freshwater moss F. antipyretica lacks a CCM 569 

but survives in a lake, Esthwaite Water UK, where surface concentrations of CO2 in summer are 570 

extremely low (Fig. 2). This is possible because it grows close to the sediment surface where CO2 571 

concentrations were on average about 120 mmol m-3 and reached a maximum of 270 mmol m-3 572 

and were close to saturating for F. antipyretica (Maberly, 1985a, b). In another example, 573 

Fontinalis antipyretica and the submerged form of Berula erecta, both of which are restricted to 574 

CO2, grew immediately downstream of the source of the River La Sorgue, in southern France, fed 575 

by groundwater where the CO2 concentration was in excess of 400 mmol m-3 (Maberly et al., 576 

2015). Species of low stature may benefit from the locally high concentrations of CO2 above the 577 

sediment surface and these may account for at least 15% of the over 100 species tested (Fig. 5) 578 

but this is almost certainly an underestimate of the importance of this strategy since seedlings 579 

or small shoots will also benefit from this carbon sources as will species growing in otherwise 580 

heterotrophic areas with generally elevated CO2 concentrations. Carnivorous plants such as 581 

Aldrovanda vesiculosa and species of Utricularia that typically grow in dystrophic sites with low 582 

nutrient concentrations, low oxygen concentrations but high CO2 concentrations also lack a CCM 583 

(Adamec, 1997a, b, 2009). However, one population of U. australis from a site with low CO2 584 

showed some evidence for HCO3- use (Adamec, 2009) so more work is needed on the extent of 585 

genotypic or phenotypic plasticity in this species. Rivers tend to have higher concentrations of 586 

CO2 than lakes because they are closer to the source of CO2 produced by decomposition 587 

processes within the catchment (Sand-Jensen and Frost-Christensen, 1998). Comparing species 588 

of freshwater macrophyte found in both rivers and lakes using the pH-drift technique, those 589 

from rivers had a slightly lower median ability to extract inorganic carbon than those in lakes 590 

(Baattrup-Pedersen et al., 2013). 591 

The link between water chemistry and freshwater macrophyte distribution has been 592 

known for many decades (e.g. (Iversen, 1929; Hutchinson, 1970)), and Hutchinson (1970) made 593 

this link explicitly for species of Myriophyllum. These patterns, particularly since pH and 594 

alkalinity are often the key variables linked to distribution, have been associated with 595 
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macrophyte carbon-physiology e.g. (Spence, 1967) and . An example can be seen for the survey 596 

of macrophytes in 82 Danish lakes, reported by (Vestergaard and Sand-Jensen, 2000). The lakes 597 

were categorised into five groups based on their macrophyte communities and the 598 

concentrations of HCO3
- and CO2 in the five lake groups were measured. Here, the macrophytes 599 

within each of these groups were assigned to whether or not they could use HCO3
- and the 600 

extent to which they could deplete inorganic carbon based on pH-drift experiments using the 601 

information compiled in Supplementary Table 1. The average difference in the ability of the 602 

macrophytes in each group to exploit the inorganic carbon reserves was significantly related to 603 

the carbonate chemistry: the percent carbon available increased with HCO3- concentration and 604 

pH and decreased with CO2 (Fig. 6). Very similar results were obtained based on the proportion 605 

of species able to use HCO3- instead of ability to extract inorganic carbon (data not shown). 606 

While numerous environmental conditions control the distribution of macrophytes, the results 607 

in Fig. 6 show that high concentrations of HCO3- and low concentrations of CO2 favour species 608 

with an ability to use HCO3-. These two factors are linked since HCO3- concentration (alkalinity) 609 

along with lake depth can be used to predict background phosphorus concentration in lakes 610 

(Vighi and Chiaudani, 1985) and this nutrient often limits lake productivity, and hence controls 611 

summer depletion of CO2. 612 

CCMs and distribution of freshwater phytoplankton 613 

Within freshwater phytoplankton, species from acid sites where concentrations of HCO3- are 614 

minimal or absent have a lower ability to remove inorganic carbon than species from neutral or 615 

alkaline sites. The ellipsoidal form of the trebouxiophyte Watanabea sp., which in culture at pH 616 

2 was the predominant form at low CO2 concentrations (Diaz and Maberly, 2009), appeared to 617 

operate a CCM but in the absence of HCO3- at this pH, this must have been based on active 618 

uptake of CO2. The spheroidal form of this species and other species tested from the highly acid 619 

Lake Caviahue and its inflows in Argentina appeared to largely lack CCMs. Similarly, the 620 

acidophile Chlamydomonas acidophila and the acidotolerant C. pitschmannii, with optima for 621 

growth of pH 3.6 and pH 5.3 respectively, mainly relied on CO2 as a source of inorganic carbon 622 

(Lachmann et al., 2016). In contrast, the neutrophiles C. reinhardtii and Scenedesmus vacuolatus 623 

with optima for growth of pH 6.3 and 8.1 respectively, were effective HCO3- users. A similar link 624 

between pH preference and the presence or effectiveness of a CCM has also been shown for 625 

desmids. Species such as Staurastrum chaetoceras and S. planktonicum found in alkaline lakes 626 

were highly effective at removing inorganic carbon, while species such as S. brachiatum 627 

restricted to acidic water had a much less effective CCM (Spijkerman et al., 2005).  628 

To illustrate the spatial and temporal variation in carbon removal ability in freshwater 629 

phytoplankton, samples were collected in spring and summer from four lakes in Cumbria which 630 
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differed in their alkalinity, productivity and extent of carbon depletion (Fig. 7). Net 631 

phytoplankton from each lake were assessed for their ability to remove inorganic carbon using 632 

pH-drift experiments. There were large differences among seasons and lakes in the ability of the 633 

phytoplankton to remove inorganic carbon, but adjusting the concentration of HCO3
- to a 634 

standard value had no significant effect (ANOVA, P = 0.000 for lake and season but P = 0.089 for 635 

bicarbonate treatment). In the least productive lake, Derwentwater, where surface 636 

concentrations of CO2 never fell below air-equilibrium, minimum CO2 concentrations at the end 637 

of the drift were greater than 1 mmol m-3 in spring and summer suggesting that the 638 

phytoplankton population as a whole did not have a CCM. In contrast, in the most productive 639 

lake, Esthwaite Water, where summer lake CO2 concentrations fell to around 100-times below 640 

air-equilibrium (~0.17 mmol m-3), the final CO2 in drifts were substantially below the nominal 1 641 

mmol m-3 threshold in spring and summer. The difference between the lake phytoplankton in 642 

their ability to remove inorganic carbon was closely related to species composition. In the lakes 643 

where low CO2 concentrations favoured cyanobacteria (Shapiro, 1997) the phytoplankton 644 

population had a much greater ability to remove carbon than in those dominated by diatoms 645 

and chrysophytes (Fig. 7E,F). Thus, the ability of the phytoplankton population to remove 646 

inorganic carbon decreased with increasing % biovolume of diatoms and chrysophytes and 647 

conversely increased with increasing % biovolume of cyanobacteria. This is consistent with 648 

seasonal difference seen in Esthwaite Water with spring diatoms having a lower ability to 649 

remove inorganic carbon than the summer cyanobacteria (Talling, 1976). These results suggest 650 

that inorganic carbon removal from productive lakes shifts the phytoplankton population 651 

towards species with effective CCMs, although the dynamic nature of these lakes where wind 652 

mixing can entrain pH from depth (Maberly, 1996) means that short-lived windows of higher 653 

CO2 may occur that could be exploited by rapidly-growing species without a CCM.  654 

There is also evidence for intraspecific carbon competition within the widespread 655 

cyanobacterium, Microcystis that can dominate during high-pH episodes in nutrient enriched 656 

lakes (Talling, 1976). A study of 20 different strains of Microcystis aeruginosa showed variation 657 

in the presence of genes coding for different components of the CCM (Sandrini et al., 2014). 658 

Thus while all 20 strains possessed genes for the HCO3
- uptake system BCT1, eleven strains 659 

lacked the HCO3- transporter gene BicA and another strain lacked the HCO3- transporter gene 660 

SbtA. Measurements in a lake, and in laboratory experiments, showed that there was a trade-off 661 

between the activity of these transporters and inorganic carbon availability. When inorganic 662 

carbon availability was high, populations were dominated by genotypes with the bicA gene 663 

which had a low affinity for HCO3- but a high rate of flux, while at low inorganic carbon 664 

availability populations were dominated by genotypes with SbtA which has a much higher 665 
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affinity for HCO3- but a lower rate of flux (Sandrini et al., 2016). Thus, the effectiveness of 666 

cyanobacterial CCMs, the high phenotypic variability of a given genotype and physiological 667 

differences among genotypes make cyanobacteria powerful competitors for inorganic carbon 668 

with other types of phytoplankton. 669 

Growth in low light environments 670 

Unlike the other marine photosynthetic organisms, marine macroalgae had a large range of 671 

ability to exploit the reserves of inorganic carbon. In agreement with expectations related to the 672 

additional energy costs of operating a CCM, there are indications that marine macroalgae 673 

growing in subtidal or shaded environments lack or have a low CCM activity. Thus in a survey of 674 

35 marine macroalgae, species from the sublittoral, especially understory species that might be 675 

further shaded by larger kelps, had a significantly lower ability to remove inorganic carbon than 676 

intertidal or rockpool species and largely lacked a CCM (Maberly, 1990). Many of these shaded 677 

subtidal species were Rhodophyta and in a study restricted to this group, Murru and Sandgren 678 

(2004) found a similar pattern and a larger synthesis of data for all types of marine macroalgae 679 

reinforced this (Stepien, 2015; Stepien et al., 2016). Thus the cost of operating a CCM in a low-680 

light environment appears to outweigh the benefits which are arguably low because light, 681 

rather than inorganic carbon, may be limiting and concentrations of CO2 unlikely to be depleted 682 

below air equilibrium. 683 

Low light usually restricts the growth of freshwater macrophytes at depth (Spence, 684 

1967). A compilation of depth limits and minimum light requirements for different groups of 685 

freshwater macrophytes showed that bryophytes were often found at the depth limit and had 686 

the lowest light requirement of about 2.2% of surface light (Middelboe and Markager, 1997) 687 

while depth limits for charophytes, elodeid and isoetid macrophytes were at higher light levels. 688 

Since virtually all freshwater bryophytes lack a CCM, the saved energy costs may be one of the 689 

characteristics permitting growth at low light. 690 

 691 

Conclusions 692 

Dissolved inorganic carbon is potentially more limiting for aquatic photoautotrophs than CO2 in 693 

air is for terrestrial plants because of low rates of CO2 diffusion in water and, particularly in 694 

fresh waters, strong seasonal depletion of inorganic carbon. CCMs are consequently more 695 

important in aquatic compared to terrestrial systems both in terms of species numbers and 696 

contribution to productivity. There is a large range of CCM mechanisms and carbon-extraction 697 

capabilities in aquatic photoautotrophs, particularly in fresh waters where the range of 698 

concentrations of CO2 and HCO3
- is large. Marine photoautotrophs are more similar to one 699 
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another in terms of ability to remove carbon and generally better able to extract carbon, 700 

probably because the benefit of using HCO3- is greater given its high concentration and because 701 

alternative reserves of CO2 in the sediment or atmosphere are largely unavailable, unlike for 702 

freshwater macrophytes. The variation in inorganic concentration and variability in CCM 703 

capability results in inorganic carbon being an ecological factor that controls ecological 704 

distribution. At low light, because of the energy cost associated with operating a CCM, and the 705 

lower benefits of increasing rates of photosynthesis, photoautotrophs from these environments 706 

often lack or have a low capacity to operate a CCM. Future work should focus on exploring the 707 

diversity of CCMs in the understudied seagrasses and the numerous phylogenetic groups of 708 

marine phytoplankton and exploit the biochemical and molecular tools and approaches that 709 

have been developed for microalgae to generate a mechanistic understanding of CCM 710 

mechanisms in larger aquatic photoautotrophs. Strengthening the links between ecology and 711 

CCMs will increase our understanding of the mechanisms underlying ecological success, aquatic 712 

productivity and species distribution and will place mechanistic studies in a clearer ecological 713 

context. 714 
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Table 1. Annual average concentrations of CO2 from a global dataset of lakes and rivers. 

CO2 data derive from (Raymond et al., 2013) Supplementary Information and the 

alkalinity data derive from the GLORICH database (Hartmann et al., 2014). 

Environment 25 percentile 50 percentile 75 percentile 

Rivers CO2 (µatm) 964 1598 2311 

Lakes CO2 (µatm) 340 736 915 

Rivers CO2 (mmolm-3)* 44 73 105 

Lakes CO2 (mmolm-3)* 16 34 42 

Rivers alkalinity (mequiv m-3) 540 1559 3056 

*Calculated from µatm for an assumed temperature of 15°C. 
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Figure legends 

Fig. 1. Inorganic carbon chemistry in aquatic systems. A, solubility of CO2 (solid lines) and O2 

(dashed lines) in fresh water (orange) and sea water (blue) as a function of temperature. B, 

effect of ionic strength on pK1' (solid lines) and pK2' (dashed lines) at 5°C (blue), 15°C (grey) 

and 25°C (orange), seawater values shown by circles. C, pH at equilibrium with water at 

different alkalinities at 280 ppm (blue) 400 ppm (grey) and 560 ppm (orange); seawater values 

shown as circles. The black line shows pK1' for fresh water. D, Bjerrum plot of CO2 (orange), 

HCO3- (grey) and CO32- (blue) for seawater (solid line) and freshwater with alkalinities 

representing the 25th (dotted line) and 75th percentile (dashed line) in Table 1. More detail is 

provided in Supplementary methods. 

 

Fig. 2. Seasonal changes in carbonate chemistry in a productive lake, Esthwaite Water UK, 

during 1993. A, pH; B, concentration of CO2; C, concentration of HCO3–; and D, concentration of 

CO32-. Hourly values are shown (blue line) in comparison to values calculated for equilibrium 

with an atmosphere containing 360 ppm CO2 (orange line). The insets show the ranked values; 

note [CO2] is on a log scale, with the mean air-equilibrium concentration shown by a circle. More 

detail is provided in Supplementary methods. 

 

Fig. 3. Comparison of rate of carbon uptake vs concentration of total inorganic carbon during a 

pH-drift experiment for three species of Myriophyllum. Rates are expressed as a function of 

concentration of: A, CT and B, CO2. Plants were collected from different sites but grown under 

standard conditions before the experiments. Drift conditions: alkalinity 1 equiv m-3, 

temperature 20°C, light 500 µmol m-2 s-1 photosynthetically available radiation (Maberly 

unpublished). The vertical line shows the air-equilibrium (400 µatm) conditions. More detail is 

provided in Supplementary methods. 

 

Fig. 4. Gradation in ability to remove inorganic carbon based on pH-drift experiments for 

different groups of aquatic photoautotrophs. These include in order of decreasing median 

ability: seagrasses (10 species); marine phytoplankton (13 species); filamentous freshwater 

algae (34 species); marine macroalgae (142 species); freshwater phytoplankton (37 species), 

freshwater macrophytes (102 species).The vertical line show the median ability for each group. 

More detail is provided in Supplementary methods and the data are available in Supplementary 

Table 1. 
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Fig. 5. Number of species of freshwater macrophyte with different strategies for obtaining 

inorganic carbon in photosynthesis. A, species, categorised following (Klavsen et al., 2011); B, 

Percentage of CO2 only or HCO3
- species with alternative strategies. More detail is provided in 

Supplementary methods. 

 

Fig. 6. Relationship between the ability of submerged macrophytes to remove inorganic carbon 

and their presence in groups of Danish lakes of different water chemistry. Lake groups 

characterised in terms of A, alkalinity, B, CO2 concentration and C, pH. Error bars show one 

standard deviation; the group means were fitted to a log or linear equation the parameters of 

which are shown. Lake data derived from (Vestergaard and Sand-Jensen, 2000). More detail is 

provided in Supplementary methods. 

 

Fig. 7. Seasonal and phylogenetic variation in ability of freshwater phytoplankton to remove 

inorganic carbon. A, seasonal variation in CO2 concentration (log scale) for Derwentwater (blue, 

Ullswater (orange), Windermere South Basin (grey) and Esthwaite Water (Green), the blue 

shading shows times when the experiments were performed; B, as for panel A, but HCO3- 

concentration; C, % carbon removal for the four lake in spring at ambient (grey) or a standard 

(blue) concentration of HCO3- of about 0.55 mmol m-3, error bars show one standard deviation; 

D, as for panel C but for summer; E, % carbon available as a function of % contribution of 

diatoms plus chrysophytes to total biovolume in spring (blue) or summer (orange) with 

polynomial fit for combined seasonal data; F, as for panel E, but % contribution of 

cyanobacteria. More detail is provided in Supplementary methods 
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