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ABSTRACT   

The large, burrowing bivalve Laternula elliptica is an abundant component of shallow water 

soft substrate communities around Antarctica but its congeners are temperate and tropical in 

distribution and their phylogenetic relationships are obscure. A new molecular analysis of 

Laternulidae species shows that there are two distinct clades; one of Exolaternula species, E. 

spengleri and E. liautaudi possessing a ligamental lithodesma and a larger clade of species 

lacking the lithodesma. Of the latter, Laternula elliptica is a sister taxon to temperate and 

tropical species, including the species that live around the coasts of Australia from Tasmania 

to Darwin. It is suggested that L. elliptica was left isolated around Antarctica following the 

opening of the Tasman Gateway and initiation of the Circum-Antarctic Current as Australia 

drifted northwards following the final breakup of Gondwana. A further scenario is that as 

Australia moved closer to Asia species spread into tropical habitats and more widely to the 

Red Sea and Japan. Exolaternula species have a likely Tethyan origin and the present day 

range is from the Arabian Gulf, around southern Asia and as far north as southern Russia.   

 

ADDITIONAL KEYWORDS: phylogeny – biogeography – Laternulidae - Anomalodesmata 
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INTRODUCTION 

Although the precise origins of the modern Antarctic marine fauna are undoubtedly complex, 

there has always been a distinct impression that certain elements within it are both of 

considerable antiquity and endemic to the southern high-latitudes (Lipps & Hickman, 1982; 

Clarke & Crame, 1989). In all probability these taxa date back to at least the Late Cretaceous 

– Early Palaeogene, a time when the southern margins of the Gondwana supercontinent were 

still more or less intact, and polar climates were significantly warmer than those of today. 

Zinsmeister’s (1982) extensive shallow marine Weddellian Province, stretching from 

southern Patagonia through western Antarctica to New Zealand and eastern Australia, was 

established on the basis of various endemic molluscan families, one of which, the 

Struthiolariidae (Littorinimorpha; Stromboidea), still occurs in the region at the present day 

(Beu, 2009). As our knowledge of both the fossil record and molecular phylogenetics of 

Antarctic marine taxa has steadily improved it is becoming appropriate to ask how certain 

specific elements within the fauna may have evolved. Do their roots lie in some form of 

ancestral Weddellian province, or were they more recent immigrants? This sort of question is 

particularly apposite for the very common infaunal bivalve, Laternula elliptica 

(Anomalodesmata; Laternulidae), as its congeners can be traced northwards through 

temperate South Australia into the heart of the tropical Indo-Pacific realm, and then 

northwards again into the temperate North-West Pacific. Is this a genus that spread either 

into, or out of, Antarctica, and if so, when? 

 

Laternula elliptica (King, 1832) is a large (>100 mm) infaunal bivalve abundant in shallow 

water and even intertidal habitats around the Antarctic continent and sub-Antarctic islands 

(Fig 1 A-C). Its abundance and prominence in benthic communities, and its rank as a 

keystone species by Harper et al. (2012), has attracted considerable research interest with a 

multitude of publications investigating many aspects of its biology and ecology. A few 

examples include: physiology (Morley et al., 2009; 2012), biochemistry (González & 

Puntarulo, 2011), reproduction (Kang et al., 2003), growth rates (Ralph & Maxwell, 1977; 

Brey et al., 2011), burrowing behaviour (Peck et al., 2004), trace metals (Ahn et al., 1996), 

shell microstructure and mineralogy (Sato-Okoshi & Okoshi, 2008; Nehrke et al., 2012), ice 

scour damage (Harper et al., 2012) and proteomics (Clark et al., 2010). 
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Outside of the Southern Ocean, Laternula species range from the southern temperate zone 

(Tasmania) through subtropical and tropical Australia, southeastern Asia, Philippines, China 

and Japan as far north as Peter the Great Bay in western Russia; to the west through the 

northern Indian Ocean, Arabian Gulf, Red Sea and, rarely, to East Africa but are absent from 

oceanic islands. One species, L. liautaudi is exotic to west coast USA (Miller et al., 1999 as 

L. marilina; or L. gracilis Fofonoff et al., 2017) and another, L. anatina, to the eastern 

Mediterranean (Gofas & Zenetos, 2003). The genus is particularly speciose around Australia 

from where 12 nominal species have been described or recorded.  

 

By contrast to the research focus on L. elliptica there are relatively few studies devoted to the 

temperate and tropical species of Laternula and most aspects of their biology and systematics 

remain uninvestigated. Exceptions are the morphological and ecological studies of Laternula 

rostrata by Morton (1973, 1976; Adal & Morton, 1973) and Prezant et al. (2008), the 

physiology of species from Singapore and south Australia (Morley et al., 2009; Lai et al., 

2011) and China (Zhuang, 2005), with ecological studies on Korean and Japanese species 

(Kang et al., 2006; Kanaya et al., 2008).  

 

Laternula species have thin, elongate, nacreous and granular prismatic shells, a posterior 

gape and the external surface is covered in short spikes (Checa & Harper, 2010). There is a 

prominent umbonal slit in the shell with an internal shell buttress posterior to the hinge 

(Savazzi, 1990). The internal ligament is set on a chondrophore and an anterior, transverse 

lithodesma (a calcified ossicle within the ligament),is present in some species. Siphons are 

long, fused and periostracum-covered (Fig. 1), with distal tentacles and siphonal eyes 

(Morton, 1973; Adal & Morton, 1973). The ventral mantle is fused, with a small pedal gape 

and the foot is small. Arenophilic mantle glands are present on siphons (Sartori et al., 2006) 

and their sand adherent secretions present on juvenile shells < 10 mm long (Harper unpub. 

obs). Laternulids live in muddy, intertidal or shallow subtidal habitats, often amongst or near 

mangroves (Prezant et al., 2008; Lai et al., 2011), in seagrass beds (personal observations) 

and frequently in habitats of fluctuating or elevated salinities.  

 

Compared with its lower latitude congeners Laternula elliptica is larger, thicker shelled 

(Watson et al., 2012; Prezant et al. 2015), and lacks the spikes (spinules) on the shell surface 

present in all other species. Apart from L. elliptica, discrimination of Laternula species is 

extremely confused and misidentifications abound. There is no real agreement on the number 
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of living species; the latest taxonomic account (Huber, 2010) recognised 19 species (followed 

in WoRMS 2017 with 20 species), previously Lamy (1934) documented 15-20 species and in 

the best illustrated of the 19th century monographs Reeve (1860-63) illustrated 30 species 

with 24 of these described as new. The type specimens from the latter work (NHMUK) are a 

major resource for any taxonomic study of the genus. We agree with Huber (2010) that 

species depictions and distributional data in many identification guides (e.g. Lamprell & 

Healy, 1998) and other publications (Morton, 1976) are wrongly assigned and have led to 

continuing confusion. Laternula species have been divided into two subgenera (Habe, 1977) 

on the basis of the presence (Exolaternula) or absence (Laternula) of a lithodesma. 

Nevertheless, the taxonomic or phylogenetic significance of this character has been doubted 

(Huber, 2010). In a broader context, molecular analyses (Harper et al., 2006: Combosch et 

al., 2017; Williams et al., 2017) place Laternula within the Anomalodesmata in a clade with 

Lyonsiidae, Clavagellidae and Pandoridae but distinct from Cochlodesma (Periplomatidae) 

that has a similar umbonal slit but which groups with Thraciidae and Myochamidae.  

 

Clearly, Laternula elliptica is a prominent and ecologically important element in Antarctic 

benthic faunas but biogeographically isolated from the warmer water species of the genus. In 

this study we use a molecular analysis to investigate the phylogenetic relationships of L. 

elliptica to the lower latitude species and evaluate three possible biogeographical scenarios 

concerning its present isolation in polar seas.  

 

1. Is Laternula elliptica a relict species dating from a former, broader, distributional range of 

the genus and warmer Antarctic conditions (for example during the Early-Middle Eocene) 

but now isolated by the formation of Circum-Antarctic Current and has subsequently become 

physiologically adapted to cold conditions? An expectation arising from this scenario might 

be that L. elliptica is most closely related to the temperate southern Australian species.  

 

2. Another possibility is that Laternula species originated on Late Gondwanan shallow shores 

and rafted northwards with Australia into the tropics after the split from Antarctica ca 30 

Myr, leaving L. elliptica isolated in the Southern Ocean. This may account for the diversity 

of Laternula species around Australia that range from temperate conditions around 

Victoria/Tasmania to tropical waters to the North. Laternula species then spread and 

diversified into tropical Asian shallow water environments. An expectation would be that L. 

elliptica is sister to all other species or groups with the Australian taxa. 
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3. A further scenario that matches the ‘out of the tropics’ (OTT) model developed by 

Jablonski et al. (2006, 2013) is that Laternula diversified on tropical-subtropical shores and 

later spread southwards into Antarctica during warmer conditions, with L. elliptica as a 

derived species.  

  

MATERIAL AND METHODS 

Molecular methods  

The DNA extraction and amplification protocols of Williams et al. (2013) were used to 

amplify portions of four genes from 16 specimens (Table 1). The genes amplified were the 

nuclear 28S rRNA gene (approximately 1640 bp) and three mitochondrial genes: 12S rRNA 

gene (approximately 610 bp), 16S rRNA gene (approximately 500 bp) and cytochrome b 

(405bp). Lyonsia norwegica (Lyonsiidae) and Bryopa lata (Clavagellidae) were used as 

outgroups having been shown in previous analyses to be sister groups of Laternulidae 

(Harper et al., 2006; Combosch et al., 2017; Williams et al., 2017). Sequence reactions were 

performed directly on purified polymerase chain reaction (PCR) products using the BigDye 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) and run on an Applied 

Biosystems 3730 DNA Analyzer automated capillary sequencer. Sequences for each gene 

fragment were assembled and edited using Sequencher (v.5.1; Gene Codes Corporation Ann 

Arbor, Michigan). 

Mitochondrial genes of another four taxa, Lyonsia norwegica, Bryopa lata, Laternula 

elliptica (Antarctica) and Laternula rostrata (Singapore, herein E. spengleri) were previously 

published as complete, or nearly complete, mitochondrial genomes (Williams et al. 2017) and 

12S, 16S and cytB sequence were taken from these sequences (GenBank Acc.  KX815957; 

KX815959; KX815960, KX815963). Sequences for 28S rRNA genes were obtained from the 

same NGS genomic data set used in Williams et al. (2017) to assemble mitochondrial 

genomes. Briefly, genomic DNA was sequenced on 1/5 of a flowcell on an Illumina MiSeq 

platform (v.2 chemistry; 2x250 paired-end). Reads were analysed and assembled using 

Geneious (v.8.1.8; https://www.geneious.com). The data were trimmed allowing no 

ambiguous base calls and removing bases from the terminal ends of reads with an error 

probability of 0.05 or higher (i.e. those with a greater than 5% chance of being incorrect). 

The trimmed reads were first assembled de novo and the resulting contigs were interrogated 

against the NCBI database, using BLAST (Altschul et al. 1990), in order to identify 
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ribosomal gene sequences. Gene boundaries were determined by comparison with other 

molluscan taxa. Coverage data are available in Williams et al. (2017). 

Phylogenetic datasets analysed included three individual gene datasets and a combined gene 

dataset including all individuals that had sequences for at least three genes. Alignment of 

cytB sequences was unambiguous and no stop codons were observed. Sequences of 

ribosomal genes were aligned in Geneious (Geneious v. 8.1.8; http://www.geneious.com) 

using ClustalW. Poorly aligned sites in the ribosomal gene alignments were identified using 

the online Gblock server using all three options for a less stringent selection (v.0.91b; 

Castresana, 2000, http://molevol.cmima.csic.es/castresana/Gblocks_server.html) and 

removed from alignments. After removal of ambiguously aligned blocks of data, a total of 

2,922 bp of aligned sequence remained to be used in phylogenetic analyses for the combined 

gene dataset (90% of the original 3,241positions). In individual analyses, alignment lengths 

after Gblocks were 444 bp of sequence from 16S rRNA (89% of 495 bp in the original 

alignment), 539 bp of 12S rRNA (90% of 597 bp in the original alignment) and 1575 bp of 

28S rRNA (88% of 1785 bp in the original alignment). 

The best nucleotide substitution models were determined using jModelTest (v. X; Darriba et 

al. 2012) using the AIC criterion. The best nucleotides substitution models were for cytB 

HKY+I+G and for all three rRNA genes GTR+I+G. These models were used in Bayesian 

phylogenies implemented in MrBayes (v. 3.2.6; Huelsenbeck & Ronquist, 2001). The 

analysis ran for 10,000,000 generations, with a sample frequency of 1,000. The first ten 

percent were discarded as burn-in after checking that runs had reached stationarity. 

Stationarity was determined by examining traces in TRACER (v.1.6 

http://tree.bio.ed.ac.uk/software/tracer/). Convergence between the two runs was tested by 

examining traces using TRACER and by checking that the potential scale reduction factors 

produced by the ‘sump’ command in MrBayes were close to one (Gelman & Rubin, 1992) 

and that the mean standard deviation of split frequencies approached zero. 

 

Taxonomic rationale 

Because the species taxonomy of Laternula is so confused care was taken to identify the taxa 

included in the molecular analyses. Type material of Laternula species was examined in 

NHMUK and MNHN along with images of other relevant specimens from ANSP, NHMD, 

MHNG and WAM. Using these, plus the taxonomic revisions of Reeve (1860), Lamy (1934) 

and most recently Huber (2010) and figures in regional faunas (e.g. Lamprell & Healy, 1993; 

Okutani, 2000; Lutaenko & Noseworthy, 2012) augmented by the results of our molecular 
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analysis herein we have derived an outline taxonomic classification (Appendix) listing what 

we believe are extant species and their synonyms. Notable taxonomic changes resulting from 

study of type material (NHMD) are that Solen spengleri Gmelin, 1791 (herein Exolaternula 

spengleri  Fig. 1 D) is an earlier name for the species variously called L. anserifera 

(Spengler, 1793), L. truncata (Lamarck, 1818 auct.) or L. rostrata (Sowerby, 1839). Images 

of newly separated valves of the holotype of Anatina liautaudi Mittre, 1844 (MNHN IM- -

2000-33234) indicate that it is the earliest name (herein as Exolaternula liautaudi) for the 

variously named northeast Asian margin species. Also genetic data (herein) show that the 

Australian species variously identified as Laternula gracilis, L. marilina and L. recta are a 

single species, with L. gracilis (Reeve, 1860) having priority. Our present estimate is that 

there are 15 living species of Laternulidae; further and more comprehensive sampling will 

likely resolve some problem areas but may also reveal the existence of cryptic species. 

 

Institutional abbreviations: ANSP, Academy of Natural Sciences Philadelphia at Drexel 

University, USA; BAS, British Antarctic Survey, Cambridge, UK; MAGNT, Museum and 

Gallery of Northern Territory, Australia; MHNG, Muséum d’histoire naturelle, Geneva, 

Switzerland; MNHN, Muséum national d’Histoire naturelle, Paris, France; NHMD, Natural 

History Museum of Denmark, Copenhagen; NHMUK, The Natural History Museum, 

London, UK; WAM, Western Australian Museum, Perth, WA. 

  

RESULTS 

All individual gene trees had similar topologies to each other and to the combined gene tree 

shown in Figure 2. A clear result is that the sequenced Laternulidae species split into two 

major groups; one comprising L. spengleri from Singapore and Philippines and L. liautaudi 

from Japan and southeastern Russia and a second, larger group containing all the other 

species including L. elliptica.  

 

A robust topology in all gene trees is that, in the larger clade, Laternula elliptica is sister 

group, with maximum support (P =1.0), to all the other Laternula species from Australia, 

southeastern Asia and southern Japan. Amongst the temperate and tropical samples there are 

three well-supported sub-clades. One consists of three Laternula collected from near 

Esperance (southern Western Australia), Papua New Guinea and southern Japan; these are 

similar to Laternula anatina in shell form but are genetically different from each other and 

we have identified them as L. creccina, L. anatina and L. japonica. The cooler water 
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Laternula creccina is the sister group to the two warm water species. A second sub-clade 

includes three samples collected at Darwin, Singapore and eastern Thailand but differ from 

each other in the molecular tree. The sample from Darwin is closest in shell characters to L. 

boschasina. The specimen from Singapore resembles the syntypes of L. bullata and differs 

from the Kungkraben Bay, Thailand example which we retain as Laternula sp. The third sub-

clade comprises Laternula from southern and eastern Australia (Port Phillip Bay (Victoria), 

Burrill Lake (New South Wales) and Moreton Bay (Queensland)). Laternula from these 

locations have been variously named in collections as L. gracilis, L. recta and L. marilina but 

these have only minor genetic differences suggesting that they are conspecific, with L. 

gracilis having taxonomic priority. A species from Shark Bay, Western Australia, that we 

identify as L. cf. corrugata is a sister to the eastern Australian Laternula gracilis.  

 

Geological record of Laternula  

Other anomalodesmatans possessing an umbonal slit (Periplomatidae) have been confused 

with Laternula especially in fossils and many records of fossil Laternula can be discounted. 

For example, the so-called Laternula fuchsi (Hoernes, 1875) widely reported from the 

Miocene (Burdigalian) of eastern Europe (Harzhauser et al., 2011) is a periplomatid, as is 

Laternula ravni Schnetler, 2001 from the Paleocene of Denmark. Furthermore, the 

‘Laternula’ species widely reported from the Cenozoic of far Eastern Russia are now 

classified as Periplomatidae (Kafanov et al., 2001). 

 

A search of fossil literature for records of bivalves that resemble our concept of Laternula 

indicates that they are rare. This may be a consequence of the poor preservation potential of 

the thin, fragile, aragonitic shells and also the association with mangrove and organic-rich 

sediments from estuarine settings. Anatina burdigalensis Cossmann & Peyrot, 1909 122-3 pl. 

LXIII fig 34 from the Miocene (Serravallian 13.82 -11.63 Myr) of Aquitaine Basin, France,  

resembles the living Exolaternula spengleri in shape (Fig. 1 G). Fossils resembling the living 

Exolaternula liautaudi have been recorded as L. limicola from the mid Miocene of central 

Japan (Itiogawa et al., 1981-2). Crame (1984) reported Laternula spp. from late Neogene 

(Pliocene?) deposits from Makran coast, Pakistan and these samples (in NHMUK) have 

shapes resembling living L. anatina. An earlier fossil from the Eocene Rio Turbio Formation 

of Patagonia (mid Lutetian – mid Priabonian 44.6 – 34 Myr - date from González Estebenet 

et al. (2014) described and figured as Laternula sp. by Griffin (1991: fig.10 1-2) is broadly 

similar to L. spengleri in shape (Fig. 1 H,I). A possible Late Cretaceous 
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(Campanian/Maastrichtian) Laternula sp, has been described from Argentina (Parras & 

Griffin, 2013); this is more equivocal in attribution but has an umbonal slit and buttress. 

Further back in time some Mesozoic genera have been assigned to the Laternulidae, namely 

Anatimya, Cercomya, Plectomya and Platymyoidea (Keen & Cox, 1969) but these appear 

morphologically distant from living Laternula.   

 

History of Laternula in Antarctica.  

Careful re-examination of both reference collections and the literature indicates that there are 

no bona fide Early Cenozoic representatives of Laternula from the extensive Early Cenozoic 

fossil record of Antarctica. The Oligocene – Miocene interval is much less complete (Beu, 

2009; Beu & Taviani, 2014). The earliest unequivocal record of the genus is that known from 

the Cockburn Island Formation, which forms part of a complex sequence of glacial and 

interglacial sediments inter-bedded with the late Neogene James Ross Island Volcanic Group 

(JRIVG), north-eastern Antarctic Peninsula (Smellie et al., 2013; Beu & Taviani, 2014). 

Specimens from the type area of the formation, Cockburn Island (64° 12’S, 56° 50’W), were 

assigned to Laternula elliptica by both Soot-Ryen (1952) and Jonkers (1998a), with the only 

difference being that their maximum size (150mm+ in length) somewhat exceeded those of 

the modern form (Fig. 1 F). However, in all other respects they are very close to living L. 

elliptica and we see no need to assign them to a separate taxon. Co-occurring specimens of 

the large pectinid Austrochlamys anderssoni (Hennig) have been reliably dated at 4.7 Myr by 
87Sr/86Sr isotopes, and this age agrees well with that of 4.7 – 4.9 Myr for underlying basaltic 

lavas of the JRIVG (40Ar/39Ar dating) (Smellie et al., 2013). The 4.7 Myr age (i.e. earliest 

Pliocene) for the specimens of L. elliptica from Cockburn Island represents the earliest 

definitive fossil record of the genus from Antarctica. Within the James Ross Island group 

there are sparse records of Laternula from younger glacial/interglacial sediments inter-

bedded with the JRIVG (i.e. the Hobbs Glacier Formation and its lateral equivalents). For 

example, Laternula sp. is noted from the southern end of Sykes Cliffs on the western side of 

Croft Bay (64° 01’S, 57° 49’W) (Jonkers, 1998b), and a poorly constrained 40Ar/39Ar age 

from overlying lavas was resolved to be 2.38 Myr (Smellie et al., 2013). A potentially older 

Antarctic specimen of Laternula has been recovered from the Battye Glacier Formation, 

Prince Charles Mountains, East Antarctica (70° 48’S, 68° 20’E). Although it clearly 

possesses a buttressed chondrophore and nacreous inner shell layer, it is very incomplete and 

can only doubtfully be referred to Laternula? sp. (Stilwell et al. 2002, figs 2 m-n). The 

suggested Middle – Late Miocene age range for the Battye Glacier Formation is based on the 
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associated diatom assemblage. Better preserved material is available from the Sørsdal 

Formation, Marine Plain,  Vestfold Hills, East Antarctica (68° 38’S, 78° 8’E), and this has 

been identified as L. elliptica (Quilty et al. 2016). The Sørsdal Formation is dated by diatoms 

as Early Pliocene, 4.2 – 4.1 Myr (Quilty et al., 2016). There is an Early Pleistocene record of 

L. elliptica from the Scallop Hill Formation of McMurdo Sound (78° 11’S, 166° 58’E) 

(Galasian, early Pleistocene, Speden, 1962; Beu & Taviani, 2014), and widespread evidence 

for a Late Quaternary – Holocene circum-Antarctic distribution of the species (Pickard, 

1985). 

 

 

DISCUSSION 

 

The results show clearly that there are two distinct phylogenetic groups of Laternula species; 

the clade comprising L. spengleri and L. liautaudi with both species possessing a lithodesma 

and the larger clade of all the other species where it is lacking in the adult. A lithodesma is 

present in the majority of anomalodesmatan families including Pandoridae, Lyonsiidae and 

Clavagellidae, the sister clades to Laternula (Harper et al., 2000; 2006). Thus its presence in 

some species is interpreted as a retained plesiomorphic character and its absence in the larger 

clade as an apomorphic state. Contrary to Savazzi (1990: 100), only three species of 

Laternula are known to possess a lithodesma in adult shells: L. spengleri, L. liautaudi and L. 

erythraea (the latter not molecularly sampled) and the two species form a robust clade that 

supports their classification in a distinct genus, Exolaternula, although other shell characters 

appear similar to Laternula species. Significantly, Sartori (2009) reported and illustrated 

lithodesmas in juvenile L. elliptica with shell lengths less than ca 12 mm but these become 

resorbed in larger shells. This ontogenetic loss of a lithodesma has also been reported in some 

Thraciidae species (Sartori & Ball, 2009). 

 

The three known Exolaternula species are distributed today along the northern Indian Ocean 

and Arabian Gulf (E. erythraea), through southeast Asia (E. spengleri), China, Korea and 

Japan as far north as Peter the Great Bay, Russia (E. liautaudi). The latter also occurs as an 

exotic on west coast USA (Miller et al., 1999). The distribution of E. spengleri touches the 

very north of Australia, with a single 19th C (NHMUK) record from Port Essington, Northern 

Territory. The distribution given in Lamprell & Healy (1998) of this species (as L. rostrata) 
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around southern Australia and New South Wales and followed in some ecological studies, is 

erroneous and based on misidentifications.  

 

It seems likely, that Exolaternula split from the other Laternula in the early Cenozoic with 

the clade having a different biogeographic history. We suggest that the present day 

distribution of Exolaternula, restricted to the northern Indian Ocean and southern and eastern 

margins of Asia, reflects a Tethyan origin. The Miocene Anatina burdigalensis from southern 

France resembles E. spengleri in shell form and we consider it as a species of Exolaternula, 

the last survivor in western Tethys before the early Miocene closure of the Tethyan Seaway 

(Harzhauser et al., 2007). Fossils resembling the living Exolaternula liautaudi were present 

in Japan at least by the mid-Miocene (Itiogawa et al., 1981, 1982).  

 

In the Laternula clade the sister position of Laternula elliptica relative to all other species 

suggests a separation before the diversification of the temperate and tropical species. This is 

consistent with the scenario that L. elliptica or its precursor was left isolated around 

Antarctica after the separation and northward movement of Australia with the opening of the 

Tasman Gateway and onset of the Antarctic Circumpolar Current ca 30 Myr in the early 

Oligocene (Scher et al., 2015). This final breakup of the Gondwanan-Weddellian Province 

(Zinsmeister, 1979) would have disrupted larval interchange as Australia progressively 

moved northwards. Subsequently, as Australia moved into lower latitudes, warmer water 

species such as L. anatina may have spread into southeast Asia and the northern Indian 

Ocean while Australia retained a diversity of temperate water endemic species such as L. 

gracilis, L. creccina and L. tasmanica or their precursors. The scenario that L. elliptica 

originated from a southward migration as a more derived taxon (out of the tropics hypothesis 

(Jablonski et al., 2006, 2013)) during a period of polar amelioration can be rejected. 

 

A single record from Pliocene of New Zealand of a fragmentary fossil, Laternula synthetica 

Marwick, 1948, with an estimated shell length of 120 mm (later renamed L. laterna Lamarck, 

1818 by Beu, 2004) was interpreted to have arrived during a warm period. However, the long 

pallial sinus of this fossil precludes identification as L. laterna (a tropical species) that has a 

short sinus, it most closely resembles the southeastern Australian species, L. gracilis and L. 

tasmanica.  
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Although it would be desirable to include more samples in the analysis our results are 

consistent with an Australian origin for the tropical Laternula. For example Laternula 

creccina from temperate southern Australia is a sister species to tropical L. anatina from 

Papua New Guinea and sub-tropical L. japonica from Japan. Similarly, L. cf. boschasina 

from Darwin, northern Australia, is sister species to two tropical species from Singapore and 

Thailand. Moreover, the diversity of Laternula species around Australia and their wide 

latitudinal spread compared with other Indo-West Pacific areas is also evidence supporting 

this idea. 

 

Of the Laternula species, L. anatina (Fig. 1 E) has the broadest distribution, recorded from 

Kenya, Red Sea, the northern Indian Ocean, through southeastern Asia, northern Australia to 

Philippines, China and southern Japan. It is also present as a Lessepsian invader into the 

eastern Mediterranean (Gofas & Zenetos, 2003). Nonetheless, our preliminary molecular 

results suggest that cryptic species may exist; for example, the frequently synonymised L. 

japonica is genetically distinct from L. anatina. Other species at lower latitudes have 

narrower ranges, L. navicula in the northern Indian Ocean, L. boschasina in southeast Asia 

and L. laterna around northern Australia.    

  

Our phylogenetic evidence supports the idea that Laternula elliptica or its precursor was 

isolated around Antarctica following the split and northward movement of the Australian 

continent with the opening of the Tasman Gateway and initiation of the Circum-Antarctic 

Current.  Following separation and onset of cooling conditions the species became adapted 

physiologically to lower temperatures (Peck et al., 2009). Laternula elliptica differs 

morphologically from congeners in its much larger size, very wide posterior gape, thicker 

shell (Watson et al., 2012) and prominent periostracum. It also lacks the exterior shell spikes 

characteristic of all other Laternula species and many other anomalodesmatans (Checa & 

Harper, 2010). Laternula elliptica is abundant in shallow water around Antarctica particularly 

at depths of 10-30 m and even intertidal (Waller et al., 2017) with population densities 

reported up to 65/m2 (Dell, 1990; Zamorano et al., 1986). The general lack of durophagous 

predators (decapod crustaceans and fish) in Antarctic seas (Clarke et al., 2004) could be a 

contributory factor in its success. By comparison the lower latitude species of Laternula tend 

to occupy peripheral marine habitats where predation pressure is likely reduced, such as 

mangrove fringes (Morton, 1973; Prezant et al., 2008), estuaries with fluctuating salinities 

(Kanaya et al., 2008; Kang et al., 2006), or locations with elevated salinities such as Shark 
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Bay, Western Australia (Logan & Cebulski, 1970) or the Arabian Gulf (Sheppard et al., 

2010).   

 

Corroboration of the biogeographical scenarios with a fossil record would be desirable but as 

already noted the fossil record of Laternula is poor. The only Southern Hemisphere Early 

Cenozoic occurrence, Laternula sp. from the Eocene Rio Turbio Formation, Santa Cruz 

Province, Argentina, is part of a still imperfectly known molluscan fauna that does show at 

least some resemblance to that known from the La Meseta Formation of Seymour Island, 

north-eastern Antarctic Peninsula (Griffin, 1991). Palaeogeographic reconstructions for the 

Eocene connection between Tierra del Fuego and the northern tip of the Antarctic Peninsula 

are complex, but some of the most recent ones, based on new marine geophysical data, place 

the Rio Turbio basin at a significantly higher palaeolatitude than its present day position of 

51° 30’S (Maldonado et al., 2014, fig. 8). It would certainly have been well within 

Zinsmeister’s (1979, 1982, 1984) Weddellian Province and Laternula sp. may represent part 

of the ancestral lineage of L. elliptica. The Rio Turbio Formation does appear to contain a 

series of distinct sedimentary facies that are missing in the La Meseta Formation, and the two 

units almost certainly represent slightly different types of shallow marine environment 

(Griffin, 1991). 

As a result of recent taxonomic and stratigraphic studies it has been determined that 

approximately one-third of the 147 gastropod and bivalve species known from the Middle 

Eocene section of the La Meseta Formation can now be assigned to modern genera (Beu, 

2009; Crame et al., 2014). This means that, for at least one key part of the modern Antarctic 

marine fauna, it was beginning to take shape some 10 – 15 Myr before the onset of 

significant global cooling at the Eocene – Oligocene boundary (Zachos et al., 2008). 

Molecular phylogenetic evidence suggests that the amphipod genus Epimeria, which today 

forms a species flock in the Southern Ocean, diversified initially in the Middle or Late 

Eocene (Verheye et al., 2017), and the split between the Antarctic/subantarctic limpet 

Nacella and its temperate to tropical sister taxon Cellana occurred at 32 Ma (González-

Wevar et al., 2017). There is even a combination of molecular phylogenetic and 

biogeographic evidence from the Antarctic terrestrial realm to suggest that a range of taxa 

had similar Early Cenozoic roots, and have survived to the present day using various types of 

refugia (Convey et al., 2008). All of this evidence suggests that the Antarctic biota is of 

considerable ancestry and has been able to adapt to progressive global cooling over a period 

of tens of millions of years. Laternula had Eocene or even earlier roots in the Antarctic 
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region and was then able to adapt to both the cooling of Antarctica and the warming of the 

Australian continent as it moved progressively northwards. 

 

Despite the present day diversity and abundance of Laternula species around Australia the 

fossil record from there is lacking, with no mention of the genus in Darragh’s (1985) analysis 

of the Cenozoic molluscan faunas of southeastern Australia. However, the stratigraphic 

record is very patchy and suitable facies are not preserved and, coupled with the preferred 

marginal marine habitats and fragile shells, may account for the lack of Laternula fossils. 

However, Pufahl et al. (2004) report Laternula sp. from Pliocene estuarine deposits in the 

Murray Basin, South Australia. The fossils are preserved as casts and molds with aragonitic 

shells dissolved away and identifications were made in the field (N. James personal 

communication). If confirmed, these are the only Laternula fossils recorded from Australia.   

 

In summary, our molecular results revealed two distinct groups of living Laternulidae; 

Exolaternula species possessing a lithodesma and a distribution largely around the northern 

Indian Ocean and the southern margin of the Asian continent. The Exolaternula clade likely 

had a Tethyan origin with connections to the western Tethys in the early Miocene but later 

severed by the closure of the Tethyan Seaway. The more numerous Laternula species lack a 

lithodesma in the adult, with the Antarctic L. elliptica as a sister taxon to all other species 

from Australia and central Indo-West Pacific. The Laternula clade likely originated on the 

Late Gondwanan southern Australia/Antarctica continent, leaving L. elliptica isolated around 

Antarctica after Australia split and drifted northwards opening the Southern Ocean. 

Temperate and tropical species exist around Australia but we suggest that the tropical species 

spread and diversified into coastal Asia from the mid-Miocene onwards after the closer 

approach of Australia.  
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FIGURE LEGENDS 
 

Figure 1. Laternula elliptica, type species of Exolaternula and Laternula, and fossil 

Laternulidae. A. Laternula elliptica (King, 1832) James Ross Island, Antarctica (NHMUK), 

L= 69 mm; B, C. Laternula elliptica, in life position with fused inhalant an exhalant siphons 

Images by David Cothran/Lindblad Expeditions, All Rights Reserved.  D. Exolaternula 

spengleri (Gmelin, 1791) (senior synonym of A. truncata, A. rostrata) Port Essington, 

Australia (NHMUK), L = 78.4 mm; E. Laternula anatina (Linnaeus, 1758), Moluccas 

(NHMUK), L= 55.2 mm. F. Laternula elliptica, Early Pliocene, Cockburn Island Formation, 

Cockburn Island, north-eastern Antarctic Peninsula. (BAS DJ. 351.21), L= 138 mm. G. L. 

burdigalensis (Cossmann & Peyrot, 1909) Miocene, Salles, France, L= 80 mm (from 

Cossmann & Peyrot, 1909). H. I. Laternula. sp., Eocene, Rio Turbio Formation, Patagonia, 

Argentina, L = 50 mm, from Griffin (1991) with permission Journal of Paleontology.  

 

Figure 2. Combined gene tree for Laternulidae based on sequences from four genes (28S 

rRNA, 12S, 16S and cyt b) using Bayesian inference as implemented by MrBayes. Support 

values are posterior probabilities (PP). Images are of sequenced specimens or proxies – not to 

scale. Colour code on localities denotes: tropical (red), temperate (green), Antarctic(blue)  

Locality codes used on tree: BL - Burrill Lake, New South Wales, Australia; DAR – Darwin, 

Australia; ESP – Esperance, Western Australia; HJ – Higata-Jima Is, Japan; GE – Geelong, 

Victoria, Australia; KK – Kungkraben Bay, Thailand; KS – Kojima-Shinden, Japan; LP – 

Luzon, Philippines; MB – Moreton Bay, Queensland, Australia; OB- Olga Bay, eastern 

Russia; PNG – Papua New Guinea; RO – Rothera, Adelaide Island, Antarctica; SB – Shark 

Bay, Western Australia; SIN - Singapore; SS – South Shetland Isles.  

 

Figure 3. Distributional ranges of Exolaternula and Laternula species in the Indo-West 

Pacific and Southern Oceans. Robinson projection. Red - Exolaternula, blue - Laternula, 

green - Laternula elliptica.  
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Table 1. Details of species included in molecular analysis  
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Appendix. Critical assessment of the living species of Laternulidae and their synonyms. 
Type localities are given where known. Note that number of considered valid species and 
nomenclature differs from Huber (2010) and WoRMS. The classification will evolve as more 
samples are included in molecular analyses.  
 
LATERNULIDAE 
 
Genus Exolaternula Habe, 1977 type species: Anatina truncata Lamarck, 1818 = L. 
spengleri (Gmelin, 1791) = L. rostrata (Sowerby, 1839). Lithodesma present. 
 
Exolaternula spengleri (Gmelin, 1791)  
Solen spengleri Gmelin 1791: 3228.    
Synonyms: Mya anserifera Spengler, 1793: tab 2 fig 8, holotype NHMD 116367 (Gmelin’s 
name is based on this specimen and figure), Nicobar Islands; Anatina truncata auct. non 
Lamarck 1818; Anatina rostrata (G.B. Sowerby II 1839); Anatina limicola Reeve, 1863, 
Japan; Anatina elegans Philippi, 1844, China; Anatina bernicula Lamy, 1934, Tongatabu. 
 
Remarks:  Reeve (1860) used the name A. anserifera for a figured specimen from Tasmania 
now considered to be Laternula tasmanica leading to citations of the former in southern 
Australia (e.g. Morton 1975)  
 
Distribution: Sri Lanka, Southeast Asia, northern Australia, Philippines, China, southern 
Japan (Ryukyu Ids).  
 
Exolaternula liautaudi  (Mittre, 1844)  
Anatina liautaudi Mittre, 1844:16, pl. 104, holotype MNHN-IM- 2000-33234. Manila, 
Philippines. Image: https://science.mnhn.fr/institution/mnhn/collection/im/item/2000-33234 
Synonyms: Laternula limicola auct. non Reeve 1863; L. navicula auct. non Reeve 1863; L. 
marilina auct. non Reeve, 1860; L. gracilis auct. non Reeve, 1860;  Anatina kamakurana 
Pilsbry, 1895, Kamakura, Japan; Anatina pechiliensis Grabau & King, 1928, Peitaiho, NW 
China; Laternula nanhaiensis Zhuang & Cai, 1982, Hepu, Guangxi.  
 
Remarks:  There has been much nomenclatural confusion concerning this species; in 
Japanese, Chinese and Russian literature it is often cited as L. marilina, an Australian species 
lacking a lithodesma and now synonymised with L. gracilis.  Comparison of type specimens 
shows that L. liautaudi, originally described from the Philippines, is the earliest name.  
 
Distribution: Northern Philippines, China, Taiwan, Korea, Japan and eastern Russia (Peter 
the Great Bay), exotic to northwest America.  
 
Exolaternula erythraea (Morris & Morris, 1993) 
Laternula (Exolaternula) erythraea Morris & Morris, 1993: 8,19, holotype NHMUK 
1992175, Fujairah, United Arab Emirates.   
 
Remarks:  L. erythraensis used in error for L. erythraea e.g. Oliver (1995), Fuelner & Hornby 
(2006).   
 
Distribution: Arabian Gulf, Gulf of Oman.  
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Genus Laternula Röding, 1798, type species: Solen anatinus Linnaeus, 1758. Synonym: 
Laternulina Habe 1952, type species Anatina japonica Lischke, 1872. Lithodesma absent  
in adult. 
  
Laternula anatina (Linnaeus, 1758)  
Solen anatinus Linnaeus 1758: 673. 
Synonyms: Anatina subrostrata Lamarck, 1818; Anatina hispidula Cuvier, 1829; 
Anatina amphora Reeve, 1863, Island of Burias, Philippines; Anatina cumingi Reeve, 1863, 
Amboina; Anatina eximia Reeve, 1863; Anatina flexuosa Reeve 1863, Japan; Anatina labiata 
Reeve 1863, Ceylon; Anatina siphonata Reeve, 1863, Borneo. 
 
Remarks: no type material for S. anatinus exists. Linnaeus based the name on the figure in 
Rumphius (1705 pl 45 f O and subsequent editions) with locality given as ‘O. Asiatici’.  The 
figure is poor but has the upturned posterior ‘beak’ of shells identified as this species. Also 
figured in Chemnitz (1782: 62 pl. 6, figs 46-48) and according to Lamy (1934) Lamarck 
(1818) based his name A. subrostrata on these figures.  
 
Distribution: East Africa (rare), Red Sea, SE Asia, NW Australia, Philippines, China, 
Okinawa, southern Japan.  Exotic to eastern Mediterranean  
 
Laternula elliptica (King, 1832)   
Anatina elliptica King, 1832: 335, holotype NHMUK 197528, South Shetland Islands.   
 
Synonym: Anatina prismatica Sowerby, 1834, South Shetland Islands.   
 
Remarks: usually cited as described by Broderip & King 1832 but see Coan et al. (2011) for 
authorship 
 
Distribution: Circum-Antarctica, Kerguelen, South Georgia, South Shetland Islands.  
 
 
Laternula boschasina (Reeve, 1860) 
Anatina boschasina Reeve, 1860, pl. 2, fig. 13, syntypes NHMUK 197513/1-3, Negros 
Island, Philippines.  
 
Remarks: Our sequenced species from Darwin is much smaller than the syntypes but has a 
similar deep sinus, commarginal folds and brown periostracal margin.  
 
Distribution: uncertain but includes southeast Asia, northern Australia.  
 
 
Laternula bullata (Reeve, 1863) 
Anatina bullata Reeve, 1863, pl. 1 fig 3, syntypes NHMUK 197513/1-3, Sibonga, Zebu, 
Philippines.  
 
Remarks:   The species sequenced from Singapore (sometimes called L. boschasina) is 
similar to the type with a rounded anterior, tapering posterior and shallow pallial sinus. 
 
Distribution:  Southeast Asia. 
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Laternula corrugata (Reeve 1863)  
Anatina corrugata Reeve, 1863, pl. 4, fig. 25, NHMUK 197523/1-2, Ticao Island,  
Philippines.  
 
Remarks: The species sequenced from Shark Bay Western Australia is broadly similar to 
syntypes of this species but maybe distinct.   
 
Distribution: Philippines, ?Western Australia.  
 
 
Laternula creccina (Reeve, 1860)  
Anatina creccina Reeve, 1860 pl. 2 fig. 12, NHMUK 197512/1-2, Adelaide, Australia.    
 
Synonyms: Anatina vagina Reeve, 1863, Moreton Bay, Australia; Anatina attenuata Reeve, 
1863, Sydney, Australia.   
Remarks: The Moreton Bay locality for A. vagina is likely erroneous.  
Distribution: South-eastern, southern and south-western Australia.   
 
Laternula gracilis (Reeve, 1860)  
Anatina gracilis Reeve 1860 pl. 2 fig. 9, NHMUK 19759/1-3  Moreton Bay, Queensland.  
Synonyms: Anatina marilina Reeve, 1860, Australia; Anatina recta Reeve, 1863, Port Phillip, 
Victoria, Australia; ?Anatina tasmanica Reeve, 1863,Tasmania.  
 
Remarks: Molecular analysis indicates that specimens identified as three species above are 
monospecific with L. gracilis taking priority.  The status of the larger species L. tasmanica is 
uncertain but shares characters with L. gracilis.  
 
Distribution: Eastern Australia from southern Queensland to Victoria and Tasmania.  
 
 
Laternula impura  (Pilsbry 1901) 
Anatina impura Pilsbry, 1901: 208, pl. 19 fig. 9, syntypes ANSP 68536, Sagami, Japan.  
 
Remarks: The status of this species is uncertain. 
 
Distribution: Southern Japan 
 
Laternula japonica Lischke, 1872: 107; figd 1874, pl. 9, figs 7-10, types not located, Tokyo, 
Japan. 
 
Remarks: This species is often synonymised with L. anatina but our molecular results 
indicate it is genetically distinct. An earlier name may be Anatina blainvillei Reeve, 1863, pl. 
3, fig 17, Island of Burias, Philippines.   
 
Distribution:  southern Japan.  
 
Laternula laterna (Lamarck, 1818)  
Anatina laterna Lamarck 1818: 463. lectotype MNHG 1082/33 selected Beu (2004: 184, figs 
18 C-E).  
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Synonyms: Anatina cistella Reeve 1863, Moluccas; Anatina constricta, Reeve, 1863, North 
Australia; A. valenciennesii Reeve, 1863, China.   
 
Remarks: The lectotype is a large specimen with a short posterior beak and differs from the 
Lamarckian syntype specimens (now paralectotypes) labelled A. laterna in MNHN Paris 
(Lamy, 1934, pl. 1, fig. 7).  
 
Distribution: northern Australia, Indonesia.  Beu (2004) wrongly states, citing Lamprell & 
Healy (1998: 214), that the distribution ranges from southern Western Australia to South 
Australia, Victoria, Tasmania and New South Wales. 
 
Laternula navicula (Reeve, 1863)  
Anatina navicula Reeve, 1863 pl. 4 fig 21, NHMUK 197520/1-3, type locality not cited.  
Synonyms: Anatina barkudaensis Preston 1915 Lake Chilka, India; Anatina barkulensis 
Preston, 1915, Lake Chilka; Anatina granulosa Preston, 1914, Lake Chilka; Anatina smithi 
Preston 1905, Sri Lanka.  
  
Distribution: NW Indian Ocean, Arabian Sea, India, Sri Lanka, Andaman Sea. 
 
Laternula sp.  
Remarks: This species collected in Kungkraben Bay, Thailand and called L. corrugata by 
Prezant et al. (2008) and then changed to L. anatina Prezant et al. (2015) is neither of these 
taxa. It is broadly similar in shape to L. bullata Reeve, 1860 but molecularly distinct from 
Singapore specimens that we identify as that species.  
 
The following species are of uncertain status, all are small shells and probably juveniles.  
Anatina faba Reeve, 1863, Pl 4 fig 22, Brisbane, type not located. Anatina argentea Reeve 
1863 pl. 4 fig 29 NHMUK 197526. Anatina prolongata Reeve 1863 pl 4 fig 28. Port Curtis, 
Queensland, type not located.   
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rs for vouchers  and GenBank accession  numbers for t COLLECTION LOCALITY
Locality 
code VOUCHER NUMBER 28S cyt B 12S 16S

Exolaternula liautaudi   (Mittre, 1844)  Olga Bay, Eastern Russia, 43°41'56'' N, 135°15'04''E OB 1 NHMUK 20170326 LT960470 LT960693 LT960373 LT960384

Exoaternula liautaudi  (Mittre, 1844 )  Olga Bay, Eastern Russia, 43°41'56'' N, 135°15'04''E OB 2 NHMUK 20170327 LT960471 LT960694 LT960374 LT960385

Exolaternula liautaudi  (Mittre, 1844)  Kojima‐ Shinden, Kawasaki, Japan, 35°30'52"N, 139°48'29"E KS NHMUK 20170328 LT960472 LT960695 LT960386

Exolaternula spengleri  (Gmelin, 1791)  Casiguran Bay, Luzon, Philippines, 16°15.95' N, 122°05' E  LP MNHN IM‐2007‐41446 LT960473 LT960387

Exolaternula spengleri  (Gmelin, 1791)  Sungei Buroh, Singapore, 1°26' 39'' N, 103° 43'39" E SIN NHMUK 20160581 LT960474 KX815963 KX815963 KX815967

Laternula elliptica  (King, 1831) Rothera Point, Adelaide Island, Antarctica, 67°34'S, 68°08'W RO no voucher LT960475 KX815959 KX815959 KX815959

Laternula elliptica   (King, 1831) King George Id, South Shetland Islands, 62°09.87'S, 58°33.83'W SS NHMUK 20170329 LT960476 LT960696 LT960388

Laternula creccina  (Reeve, 1860)  Esperance, Bandy Creek, W. Australia, 33°49'50"S,121°56'10" ESP NHMUK 20030177 LT960477 LT960697 LT960389

Laternula anatina  (Linnaeus, 1758) Papua New Guinea, near Rempi, stn PR104, 5°5'6" S,145°48' PNG MNHN IM‐2013‐15152 LT960478 LT960698 LT960375 LT960390

Laternula japonica  (Lischke, 1872) Hakata‐jima Island, Ehime pref., Japan, 34°12'N, 133°05'E HJ NHMUK 20170330 LT960479 LT960376 LT960391

Laternula  cf. boschasina  (Reeve, 1860) Ludmilla Creek, Darwin, Australia, 12°24'28'S, 130°50"07" DAR NHMUK  20170331 LT960480 LT960699 LT960377

Laternula  cf. bullata   (Reeve, 1860)  Sungei Buroh, Singapore; 1°26' 39'' N, 103° 43'39" E SIN NHMUK 20170332 LT960481 LT960700 LT960378 LT960392

Laternula  sp. Kungkraben Bay, Thailand, 12° 34.42'N, 101° 54.24'E KK NHMUK 20170333 LT960482 LT960701 LT960379 LT960393

Laternula  cf. corrugata  (Reeve, 1863) Denham, Shark Bay, W. Australia, 25°54'11"S, 118°31'16"E SB NHMUK 20170334 LT960483 LT960702 LT960380 LT960394

Laternula gracilis  (Reeve, 1860)          Geelong, Victoria, Australia, 38°9'07"S, 144°23'44"E GE 1 NHMUK 20170335 LT960703 LT960381 LT960395

Laternula gracilis  (Reeve, 1860)         Geelong, Victoria, Australia, 38°9'07"S, 144°23'44"E GE 2 NHMUK 20170336 LT960484 LT960382 LT960396

Laternula gracilis  (Reeve, 1860)   Burrill Lake, NSW, Australia, 35°22'03"S, 150°26'04"E BL NHMUK 20170337 LT960485 LT960704 LT960383 LT960397

Laternula gracilis  (as L. marilina  in Taylor et al.  2007) N. Stradbroke Id, Moreton Bay, Qld, Australia, 27°24'29"S, 153°2 MB 1 NHMUK 29970221 AM779661

Laternula gracilis  (Reeve, 1860)  N. Stradbroke Id, Moreton Bay, Queensland, Australia MB 2 Combosch et al. 2017 KX713395 KX713227

OUTGROUPS

Bryopa lata  (Broderip, 1834) Singapore, 1°13.9' N, 103° 52'E NHMUK 20160581 LT960486 KX815957 KX815957 KX815957

Lyonsia norwegica  (Gmelin, 1791) Tjarno, Sweden, 58° 52.42' N, 11° 06.18'E  NHMUK 20160584 LT960487 KX815960 KX815960 KX815960

Table 1. Laternulidae species included in the analysis with collection localities, locality codes used in Figure 2,  museum registration numbers for vouchers  and GenBank accession  numbers for the genes sequenced for each taxon. MNHN - Museum national dHistoire Naturelle, Paris; NHMUK - The Natural History Museum, London.   
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