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Abstract 18 

Deforestation for agriculture in the tropics, followed by abandonment, has resulted in large areas 19 

of secondary forest. Some authors have suggested that this secondary regrowth could help 20 

prevent mass extinction in the tropics by providing habitat for forest species. However, there is 21 

little generalised understanding of the biodiversity value of secondary forest. To address this 22 

knowledge gap, we conducted an analysis of avian responses to secondary forest succession, 23 

comparing data from 44 tropical secondary forest sites with nearby primary forest sites and 24 

investigating both species and functional diversity based metrics. Total species richness in 25 

secondary forests was 12% lower than in primary forests and was not related to secondary forest 26 

age. In contrast, forest specialist species richness increased with time since disturbance, reaching 27 

99% of primary forest values after 100 years. In terms of functional diversity, functional 28 

dispersion (FDis) and functional divergence (FDiv) were similar in primary and secondary 29 

forests. However, functional evenness (FEve) was 5% higher in secondary than in primary 30 

forests. The standardized effect size of functional diversity (sesFD) was higher in young 31 

secondary forests than primary forests and declined with time since disturbance. Overall, these 32 

results suggest that secondary tropical forests can support provision of ecosystem services but 33 

that these services may be less stable in young forests. Therefore, secondary tropical forests, 34 

particularly older regrowth, have biodiversity value and can support important ecosystem 35 

functions. These secondary forests should be protected from further disturbance but preserving 36 

primary forest is vital for supporting overall and forest specialist species richness. 37 

 38 
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Introduction 43 

Agricultural expansion in the tropics has led to large-scale deforestation (Gibbs et al., 2010), 44 

causing loss of forest species. Traditionally, protected areas have been seen as the best way to 45 

reduce deforestation and limit the resulting loss of biodiversity. These protected areas generally 46 

consist of natural or near-natural ecosystems, such as primary forest (Dudley, 2008). In the 47 

tropics such primary forests are generally considered to be irreplaceable for their biodiversity 48 

value (Gibson et al., 2011), as well as providing numerous ecosystem services. However, 49 

biodiversity declines continue in many tropical forest protected areas (Curran, 2004; Laurance et 50 

al., 2012). Additionally, it is not always feasible to designate sufficient land to adequately 51 

represent the range of communities found in specific biomes (Cox and Underwood, 2011) or 52 

support viable populations of all species (Struhsaker et al., 2005). Thus, it is clear that we cannot 53 

rely solely on protected areas of primary forest to conserve tropical forest biodiversity.  54 

Forests that have been altered as a result of unsustainable use or natural disasters are 55 

considered degraded, and this includes secondary forests, which have undergone forest clearance 56 

(ITTO, 2002). While degraded tropical forests may be of lower biodiversity value than primary 57 

forests, given that over half of all tropical forests are now considered to be degraded (ITTO, 58 

2002), they may provide a valuable opportunity for conservation. Wright and Muller-Landau 59 

(2006) suggested that expansion of secondary forests could play an important role in preventing 60 

extinctions by providing alternative habitat for forest species. Previous reviews suggest that 61 

secondary forests may provide habitat for forest specialists, but also that these forests differ in 62 

their conservation value depending on connectivity, disturbance history and, in particular, site 63 

age (Bowen et al., 2007; Chazdon et al., 2009; Gardner et al., 2007). Recently, the increasing 64 

recognition of the importance of degraded forests has led to ambitious restoration targets such as 65 

the Aichi Targets and the New York Declaration on Forests, which aim to restore more than 15% 66 

of degraded forests (Convention on Biological Diversity, 2010) and 200 million hectares of 67 

degraded forests (United Nations, 2014) worldwide, respectively. However, although there are 68 

numerous site and landscape level studies, there are a lack of syntheses on the benefits of 69 

secondary forests for biodiversity and ecosystem services, and those published are largely 70 

limited to impacts on plant communities and carbon storage (Derroire et al., 2016; Martin et al., 71 

2013) or to a limited number of biodiversity metrics, such as species richness (Dent and Wright, 72 

2009; Dunn, 2004a).  73 

Measures of the conservation value of an ecosystem commonly use species-based metrics 74 

(Myers et al., 2000), with the value of an area measured by the community species richness or 75 

the presence of particular species of interest. A complementary approach to species-based 76 

metrics is to assess changes in functional diversity, which describes the range of functional roles 77 

played by species within a community (Petchey and Gaston, 2006). Ecosystem functioning in 78 

general tends to be correlated with both species richness and functional diversity, with indices 79 

based on traits (e.g. feeding behaviour) performing better than those based solely on species 80 

richness and abundance (Griffin et al., 2009; Petchey and Gaston, 2006). Both the identity and 81 

distribution of functional traits have been shown to be important in predicting function (Gagic et 82 

al., 2015). 83 

In this study we focus on birds as they provide key functions, such as pollination, seed 84 

predation and dispersal, removal of carrion, and predation of other animals, in tropical forests, 85 

and as the roles of individual species can be characterized in terms of their feeding behaviour 86 

(Sekercioglu et al., 2004). We conducted a systematic review and analysis to assess: i) how avian 87 

species richness and species richness of forest specialists in secondary tropical forests compares 88 
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with that of primary tropical forests; ii) the functional diversity of avian communities in 89 

secondary tropical forests compared with that of primary tropical forests; and iii) how both 90 

metrics change, and possibly recover, with secondary forest age.  91 

 92 

Materials and Methods 93 

Data collation 94 

Using a standard methodology (Pullin and Stewart, 2006), a systematic review of the literature 95 

was conducted in May 2013 by searching Thomson Reuters Web of Knowledge with the terms 96 

bird* AND (secondary or disturb*) AND forest AND tropic*. Additional studies were found in 97 

the reviews by Barlow et al. (2007), Bowen et al. (2007), Gardner et al. (2007), Dent and Wright 98 

(2009) and Chazdon et al. (2009). Gilroy et al. (2014) and the PREDICTS database (Hudson et 99 

al., 2017), were searched for additional relevant data. 100 

Studies were selected if they included details of avian community composition in at least 101 

one secondary forest site and a reference undisturbed primary forest site. A primary forest was 102 

defined as a naturally forested area where there was no evidence of previous deforestation or 103 

degradation. A secondary forest was defined as a previously forested area undergoing secondary 104 

succession following total or near-total removal of trees (Corlett, 1994). This definition allowed 105 

inclusion of forests that had previously been clear-cut or cleared for agriculture or villages, but 106 

not those undergoing succession after fires. Additionally, forests that had been selectively logged 107 

were excluded as these recover differently (Corlett, 1994; Dunn, 2004b). Only studies from the 108 

tropics and sub-tropics between the latitudes of 40°N and 40°S were included. 109 

Data on the abundances of bird species present in forest sites were extracted from the 110 

articles. Additionally, for each secondary forest site, the age, land use history and whether the 111 

site was continuous or discontinuous with primary forest were noted. Article authors were 112 

contacted to request these data when articles suggested that they had been collected but were not 113 

presented. The median age of the secondary forest was recorded when a range of values was 114 

given. Methodologies used to sample bird communities, including sampling effort, were 115 

consistent within studies, but differed among studies. Methodologies used were recorded for use 116 

in statistical analyses to control for differences among studies. Data were recorded from only one 117 

study when multiple studies used the same dataset. 118 

Data on the traits of bird species were obtained from Wilman et al. (2014), the Handbook 119 

of the Birds of the World (del Hoyo et al., 2016) and BirdLife International (BirdLife 120 

International, 2013). For this study we selected traits with importance for ecological functions: 121 

(i) foraging strata (ground, understory, mid-high levels in trees, canopy, or well above 122 

vegetation); (ii) diet (invertebrates, mammals/birds, reptiles/amphibians, fish, scavenger, fruit, 123 

nectar, seeds, or other plant material); (iii) body mass in grams; (iv) body length in cm; and (v) 124 

movement pattern (migrant/not migrant). We selected these traits because they can be directly 125 

linked to ecosystem processes such as seed dispersal and pollination. Where no match was found 126 

for the Latin binomial name of a species in the trait database of Wilman et al. (2014) a web 127 

search was carried out to find synonymous names and the correct trait values assigned using 128 

these (10 species). Forest dependency data for all bird species were provided by BirdLife 129 

International, with each species categorised as having high, medium or low forest dependency, or 130 

being a non-forest species (BirdLife International, 2013). Species with high forest dependency 131 

were then classed as forest specialists and forest specialist species richness was calculated for 132 

each site. 133 
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We then calculated total species richness and six functional diversity metrics: functional 134 

diversity (FD), the standardized effect size of FD (sesFD), functional richness (FRic), functional 135 

evenness (FEve), functional divergence (FDiv) and functional dispersion (FDis) for each of our 136 

secondary and primary forest sites (see Table 1 for a description of the functional diversity 137 

metrics used). Species richness was calculated by summing the number of species found at each 138 

site. Using the R package fundiv we calculated FD (Petchey and Gaston, 2006). Since FD is 139 

known to be correlated with species richness, following this we calculated sesFD, a metric which 140 

adjusts FD for species richness. To calculate sesFD we used the r package picante (Kembel et al., 141 

2010) to compare observed FD to 999 iterations in which the number of species is constant but 142 

the identity of species is randomly drawn from the community, following previous studies 143 

(Edwards et al., 2013; Prescott et al., 2016). We calculated the remaining functional diversity 144 

metrics (FRic, FEve, FDiv and FDis; Table 1) using the R package FD (Laliberté and Legendre, 145 

2010).  146 

 147 

Statistical analyses 148 

This work aimed to compare changes in different metrics of species and functional diversity in 149 

avian communities in secondary tropical forests. However, functional diversity metrics are often 150 

highly correlated with species richness. Prior to analysis the log response ratio (Hedges et al., 151 

1999) for species richness and all functional diversity metrics, apart from sesFD, in secondary 152 

forests relative to primary forests was calculated for all paired sites. The log response ratio 153 

represents a standardized effect size which can range from -∞ to ∞, where negative values 154 

indicate lower values in secondary forests, positive values represent higher values in secondary 155 

forests, and 0 indicates no difference. The log response ratio is commonly used in ecological 156 

syntheses because it conforms to statistical assumptions and is intuitive (Hedges et al., 1999). 157 

Since values of sesFD can be negative or positive, calculation of the log response ratio for this 158 

metric would be problematic. As a result, we calculated the raw difference between secondary 159 

and primary forests sesFD. Before analysis, data exploration was carried out following the 160 

protocol of Zuur et al. (2010). As a result we identified that a small number of older sites 161 

strongly influenced coefficient values. To reduce the effect of these outliers we log transformed 162 

the variable forest age as recommended by Zuur et al. (2010). 163 

Linear mixed-effects models were constructed for all response variables using the R 164 

package lme4 (Bates et al., 2015). Models tested included additive models containing all 165 

combinations of variables describing secondary forest age and land-use history, as well as a null 166 

intercept only model. Models including a variable describing proximity of forests to undisturbed 167 

forests were not possible as not all studies contained data on this. Study identity was included as 168 

a random effect to avoid pseudoreplication as some studies compared multiple secondary forest 169 

sites with a single primary forest site. Models were run using maximum likelihood methods and 170 

model selection was based on Akaike information criterion adjusted for small sample size 171 

(AICc). The models with lowest AICc were considered to be the most well supported. The 172 

goodness of fit of the most parsimonious models was estimated by calculating R2
GLMM using the 173 

package MuMIn (Barton, 2015) following Nakagawa and Schielzeth (2013).  174 

Prior to model selection the impact of different sampling methods on results was tested 175 

by fitting models with methods (point count, transect, mist-netting) included as random effects 176 

with the model with lowest AICc selected. On no occasion did a model including sampling 177 

methods outperform one which solely contained a random effect for each individual study (Table 178 

S1). Phylogenetic correction was not used as we assessed functional trait changes in terms of 179 
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their putative impact on ecosystem function and not to explain changes in the avian community. 180 

All statistical analyses were performed using R version 3.3.0 (R Core Team, 2016). 181 

 182 

Results 183 

A total of 24 studies that aimed to sample the entire avian community with data on 44 paired 184 

secondary and primary forest sites were found through the systematic review (Table 2). These 185 

studies documented 29,023 observations of 1,673 bird species. Sites were widely distributed 186 

across the tropics but most were found in the Americas or Asia (Table 2, Figure 1). Secondary 187 

forest sites had regenerated for between one and 100 years but nearly half of the sites had been 188 

disturbed within 10 years prior to the studies taking place (Table 2). Only five sites had been 189 

recovering for at least 40 years since disturbance.  190 

 191 

Total and forest specialist species richness 192 

The most well supported model describing differences in species richness in secondary and 193 

primary forests was a null model (Table S2). Species richness in secondary forests was on 194 

average 12% lower than in primary forests (intercept=-0.13, SE=0.06, p=0.03, Figure 3).  195 

The species richness of forest specialists was best described by a model including only 196 

secondary forest age as a predictor (Table S2). Forest specialist species richness increased with 197 

time since disturbance (slope=0.21, SE=0.07, p=0.01), but was not predicted to reach 198 

equivalence with primary forests within 100 years (Figure 2a). After one year since disturbance 199 

forest specialist species richness in secondary forests was predicted to be 63% lower than 200 

primary forests, and after 100 years this had risen to 1% lower than primary forests. This model 201 

showed a reasonable explanatory power (R2
GLMM=0.14, Table S2). 202 

 203 

Functional diversity metrics 204 

FD and FRic were found to be highly correlated both with each other (correlation coefficient of 205 

0.9) and with species richness (correlation coefficient of 0.9 with FD and 0.8 with FRic). As a 206 

result, these two metrics were removed from this analysis. A null, intercept only model was the 207 

most well supported for FDis, FDiv and FEve (Table S2, Figure 3). FDis and FDiv did not differ 208 

significantly between primary and secondary forests. However, FEve was 5% higher in 209 

secondary forests than in primary forests (intercept=0.06, SE=0.03, p=0.03). 210 

sesFD declined with time since last disturbance (slope=-1.17, SE=0.24, Figure 2b) and 211 

was higher in younger forests than in primary forests (Table S2). sesFD was predicted to reach 212 

equivalence with primary forest values after approximately 22 years (Figure 2b). This model 213 

showed relatively high explanatory power (R2
GLMM=0.35, Table S2). 214 

 215 

Discussion 216 

Our study represents the largest quantitative synthesis of avian responses to secondary tropical 217 

forest succession to date. Our results indicate that avian species richness is lower in secondary 218 

forests than in primary forests. Forest specialist species richness increases with secondary forest 219 

age and is likely to take over 100 years to recover. Regarding functional diversity, two metrics 220 

(FDis and FDiv) were similar in secondary and primary forests, whereas FEve was higher in 221 

secondary forests. Once differences in species richness were accounted for, sesFD showed a 222 

marked decline with increasing age of secondary forests, suggesting increasing functional 223 

redundancy in avian communities during succession. 224 

 225 
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Species Richness 226 

Our results show that avian species richness is lower in secondary forests than in primary forests, 227 

in agreement with previous reviews (Barlow et al., 2007; Bowen et al., 2007), and also that 228 

species richness does not respond to secondary forest age. The latter result is in contrast to Dunn 229 

(2004a) who found that avian species richness in secondary forests increased with time since 230 

disturbance and reached equivalence with primary forests after 20 years. However, Dunn (2004a) 231 

considered a more limited number of sites than our analysis and only one of these sites had been 232 

recovering for more than 40 years. It is possible that in younger secondary forests time since 233 

disturbance has an important role in determining avian community composition, but for older 234 

secondary forests other factors, such as patch size, have a greater influence on the successional 235 

state.  236 

Although our analysis found species richness of forest specialists failed to recover within 237 

100 years, this metric was predicted to be only 1% lower in secondary forests after 100 years of 238 

recovery than in primary forests. This mirrors the observation that avian community composition 239 

of secondary forests approaches equivalence with that of primary forests after around 100 years 240 

(Dent and Wright, 2009). The rate of change in forest specialist species richness is perhaps 241 

unsurprising given that although secondary forests attain much of the structure and plant 242 

diversity of primary forests within 50 years, tree community composition, and therefore the 243 

structural complexity of forests, is likely to take much longer (Derroire et al., 2016; Martin et al., 244 

2013; Poorter et al., 2016). Thus, the results of our study reinforce the view that, although 245 

conservation value is accumulated relatively rapidly in secondary forests, primary forests (and 246 

potentially mature secondary forests) are vital to prevent extinctions of forest specialists (Gibson 247 

et al., 2011).  248 

Although some guilds are particularly sensitive to disturbance (e.g. understory 249 

insectivores; see Powell et al., 2016, 2015), our results indicate that some forest specialist species 250 

are found in young secondary forests. After one year of succession forest specialist species 251 

richness in secondary forests was 63% lower than in primary forests. This raises the question of 252 

why are there any forest specialist species at all in such young secondary forests. Part of the 253 

answer to this relates to how forests are cleared prior to agricultural use. Many secondary forests 254 

in the tropics are the result of abandonment of subsistence agriculture during which some large 255 

trees are often retained during forest clearance (Guevara et al., 1986; Harvey and Haber, 1998). 256 

Harvey and Haber (1998) found that agricultural fields in Costa Rica contained an average of 25 257 

trees per hectare, and that a third of these trees were primary forest specialist species. As a result, 258 

large trees located in the agricultural matrix may be used by forest species to feed or roost 259 

(Harvey and Haber, 1998), increasing the species richness of avian forest specialists in young 260 

secondary forests. 261 

 262 

Functional diversity  263 

FDis, a unified metric for functional diversity (Laliberté and Legendre, 2010), was found to be 264 

equivalent between primary and secondary forests. FDiv in secondary forests was also similar to 265 

primary forest levels, suggesting that the degree to which abundant species had the most extreme 266 

trait values was similar in secondary and primary forests. These results both suggest similar 267 

levels of ecosystem functioning between the two forest types. Only one other study has 268 

investigated the effects of forest degradation or conversion on FDis, finding that it was higher in 269 

pastures and oil palm plantations than in forest remnants (Prescott et al., 2016). Together with 270 

our results, this study hints that degradation through conversion of forests to other habitat types 271 
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may lead to increased FDis and a reduction in ecosystem function (Prescott et al., 2016), 272 

although more work is needed to relate FDis to specific ecosystem functions. 273 

 FEve was 5% higher in secondary forests than primary forests, suggesting a more equal 274 

abundance of species in trait space in secondary forests. Assuming that resources are evenly 275 

distributed, this means in theory that resources within secondary forests are being used more 276 

efficiently than in primary forests (Mason et al., 2005), which would be an unexpected result. 277 

However alternatively, a high FEve value could also suggest that the habitat is not very 278 

structurally complex, meaning that there are a smaller number of evenly occupied niches with 279 

few interactions between species (García-Morales et al., 2016; Schleuter et al., 2010). As 280 

primary forests have greater structural complexity than secondary forests (Derroire et al., 2016), 281 

this could explain the difference in FEve between these two forest types in our analysis.  282 

At present, there is no clear picture on the relationship between FEve of avian 283 

communities and forest degradation in the literature. Prescott et al. (2016) found FEve to be 284 

lower in pasture than in forest remnants but equivalent in forest remnants and oil palm 285 

plantations. In contrast, Edwards et al. (2013) found that FEve was lower in oil palm plantations 286 

(and in twice-logged forests) than in unlogged (and once-logged) forests. Thirdly, Ibarra and 287 

Martin (2015) found no relationship between the degree of deforestation and FEve. Given these 288 

conflicting results, we suggest this is an area requiring further research. 289 

The most pronounced relationship with forest age was seen in the standardized effect size 290 

of FD (sesFD). As secondary forest age increased sesFD declined, reaching equivalence with 291 

primary forests after approximately 22 years. This metric adjusts FD by accounting for species 292 

richness at sites, with negative values indicating lower FD than expected given site level 293 

richness. Thus, the reduction in relative sesFD with forest age that we observed suggests 294 

increasing functional redundancy in older secondary forests (Pavoine and Bonsall, 2011). 295 

Previous studies have found that sesFD for bird communities can increase (Edwards et al., 2013) 296 

or decrease across a gradient of degradation (Prescott et al., 2016). However, our observation of 297 

an increase in functional redundancy suggests that the resilience of ecosystem processes may 298 

increase with secondary forest age due to buffering of the negative impacts of species extinction. 299 

Equally this suggests that even where functional diversity in young secondary tropical forests is 300 

similar to that found in primary forests, these communities and the ecosystem services they 301 

supply may be less stable over time. 302 

 303 

Caveats 304 

Our study represents the most comprehensive synthesis of avian functional diversity in 305 

secondary forests to date but, like all syntheses, it was affected by the quality and 306 

representativeness of the data we used (Gonzalez et al., 2016). As a result there are two 307 

important caveats that relate to our analysis. Firstly, our study highlights the importance of the 308 

age of secondary forests as a determinant of the biodiversity it plays host to, but there are many 309 

other important variables that we could not account for in this study. For example, the duration 310 

and intensity of previous land use affect the initial conditions of secondary forests following 311 

abandonment (Jakovac et al., 2015). Following abandonment, the connectivity, proximity to 312 

primary forest, and patch size can all play important roles in determining the rate at which forest 313 

species colonise degraded forests (Banks-Leite et al., 2010; Maldonado-Coelho and Marini, 314 

2000; Prugh et al., 2008). Secondly, the primary forest sites used in our study may have varied in 315 

quality as statistical controls since definitions of primary forest probably differed between 316 

studies. In both of these cases it was not possible to account for this potential variation amongst 317 
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studies and addressing how these factors interact with age of secondary forests is a key research 318 

gap. 319 

Regarding representativeness, the sites used in our study are likely to be broadly 320 

representative of secondary forests throughout the tropics. Few sites had been intensively farmed 321 

and the majority of sites were under 40 years old, reflecting secondary tropical forests generally 322 

(Asner et al., 2009; Smith et al., 2003). 323 

 324 

Conclusion 325 

The conservation value of secondary tropical forests will vary depending upon the aims of 326 

conservation strategies. If the aims are to support overall or forest specialist species richness at 327 

primary forest levels then our results suggest that preservation of primary forests is vital, in 328 

agreement with previous reviews (Barlow et al., 2007; Bowen et al., 2007), although the richness 329 

of forest specialist species, and hence the conservation value of regrowth, does increase with 330 

secondary forest age. If strategies are related to the levels of ecosystem functioning of the forests 331 

then, although there were some differences between secondary and primary tropical forests for 332 

functional diversity metrics, our results suggest that secondary forests can support provision of 333 

ecosystem functions, including pollination and seed dispersal (but see Markl et al., 2012). Our 334 

results also suggest that secondary forest age influences conservation value in terms of 335 

ecosystem functioning, with older secondary forests having increased functional redundancy. 336 

The conservation value of secondary forests will never be maximised if regrowth is 337 

deforested. However, mid-age stands are often converted to agriculture in South America (Smith 338 

et al., 2003) and degraded forests are regularly converted to oil palm or rubber plantations in 339 

Southeast Asia (Abood et al., 2015; Koh and Wilcove, 2008), resulting in loss of avian species 340 

and functional diversity (Edwards et al., 2013; Prescott et al., 2016; Tscharntke et al., 2008). 341 

Therefore, to maximise the biodiversity value of tropical landscapes, secondary forests should be 342 

protected, particularly in landscapes where little pristine habitat remains. Protecting older 343 

secondary forests provides high conservation value now, whereas protecting young regrowth 344 

promises future returns. Restoration of young secondary forests could also play a role. 345 

Enrichment planting can be used to enhance biodiversity by adding tree species that are unlikely 346 

to colonise unassisted, for example late-successional species or those lacking dispersers 347 

(Griscom and Ashton, 2011; Lamb et al., 2005). Assisting vegetative recovery to a late-348 

successional species composition could improve habitat suitability for forest specialists and 349 

hence, accelerate their recovery. Secondary forests have a role to play in the conservation of 350 

forest species and provision of ecosystem services and this should be recognised in tropical 351 

conservation strategies. 352 

  353 
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Figures 745 

 746 

747 
Figure 1 Geographic distribution of the study sites used in this analysis. 748 
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 750 

 751 
 752 

Figure 2 The relationship between secondary forest age and (a) forest specialist species richness 753 

and (b) standardized functional diversity (sesFD) in secondary tropical forests relative to primary 754 

tropical forests. The dotted black line represents the point at which metrics are equal in 755 

secondary and primary forest sites. Solid lines represent predictions from models with the lowest 756 

AICc and grey shaded areas represent the 95% confidence intervals for these predictions. 757 
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 759 

 760 
 761 

Figure 3 Difference between secondary and primary tropical forest site diversity for variables 762 

where the null model was considered most parsimonious. Dots represent mean differences 763 

between secondary and primary sites and error bars represent 95% confidence intervals. The 764 

dotted black line represents the point at which metrics are equal in secondary and primary forest 765 

sites.  766 
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Tables 768 

 769 

Table 1 Descriptions of functional diversity metrics used in this study 770 

Metric name Abbreviation 
used in this 
study 

Metric description Relevant references  

Functional 
Diversity 

FD A distance based metric of 
functional diversity that is not 
influenced by species abundances. 

Petchey and Gaston, 
2006 

Functional 
Richness 

FRic The volume multidimensional trait 
space occupied by a community. 
High FRic indicates that many traits 
are present within a community. 

Laliberté and Legendre, 
2010; Villéger et al., 
2008 

Functional 
Evenness 

FEve The evenness of species abundances 
in multidimensional trait space. High 
FEve values suggest a relatively 
equal abundance of species in trait 
space, and in theory this means that 
resources within an ecosystem are 
being used in an efficient manner 
(Prescott et al., 2016) 

Laliberté and Legendre, 
2010; Villéger et al., 
2008 

Functional 
Divergence 

FDiv The distribution of species 
abundance along multidimensional 
trait axes. FDiv is low when 
abundant species have trait values 
that are close to the centre of 
functional trait space, but high when 
abundant species have extreme trait 
values (Villéger et al., 2008). This 
can be seen as a measure of the 
niche differentiation within a 
community, such that if FDiv is 
high, then there are high levels of 
niche differentiation (Prescott et al., 
2016). 

Laliberté and Legendre, 
2010; Villéger et al., 
2008 

Functional 
Dispersion 

FDis The distance from the centroid of 
multidimensional trait space, 
weighted by species abundances. 
This metric has been suggested as a 
unified metric for functional 
diversity (Laliberté and Legendre, 
2010). 

Laliberté and Legendre, 
2010; Villéger et al., 
2008 
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Table 2 Studies from which avian community composition data were extracted, with location 772 

recorded at a country level and the age of secondary forest sites (measured as the number of 773 

years since disturbance) in each study 774 

Reference Location of forest sites Age of secondary forest 
site(s) (years)

Andrade and Rubio-Torgler, 1994 Colombia 3, 11.5 

Banks-Leite et al., 2012 Brazil 50 

Barlow et al., 2007 Brazil 16.5 

Becker and Agreda, 2005 Ecuador 17.5 

Becker et al., 2008 Ecuador 17.5, 17.5, 40 

Blake and Loiselle, 2001 Costa Rica 5, 27.5 

Borges, 2007 Brazil 4.5, 11, 27.5 

Dawson et al., 2011 Papua New Guinea 20 

Gilroy et al., 2014 Colombia 3, 8, 8, 20, 20, 35  

Hutto, 1989 Mexico 2, 5 

Johns, 1991 Brazil 1 

Maas et al., 2009 Indonesia 3.5, 4, 5.5 

Mallari et al., 2011 Philippines 10, 30 

Marsden et al., 2006 Papua New Guinea 5, 14 

Mulwa et al., 2012 Kenya 50 

Naidoo, 2004 Uganda 13 

O’Dea and Whittaker, 2007 Ecuador 17.5 

Raman et al., 1998 India 1, 5, 10, 25, 100 

Reid et al., 2012 Costa Rica 9 

Renner et al., 2006 Guatemala 4 

Sodhi et al., 2005 Indonesia 40 

Terborgh and Weske, 1969 Peru 7.5 

Tvardikova, 2010 Papua New Guinea 7 
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Wijesinghe and Brooke, 2005 Sri Lanka 5 
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Supplementary materials 777 

 778 

Table S1 Model selection table showing test of different random effects structures for different 779 

variables investigated. 780 

Variable Random_effects AICc Model 
Rank 

Species Richness Study 33.76 1 
Mist_nets+Transect+Study 36.45 2 
Mist_nets+Study 36.45 3 
Mist nets+ Transect+Vocal+Study 39.31 4 
Mist nets+Transect+Vocal+Study 42.38 5 
Point obs+Mist nets+Transect+Vocal+Study 45.66 6 

Forest Specialist 
Species Richness 

Study 70.59 1 
Mist_nets+Transect+Study 73.15 2 
Mist_nets+Study 73.15 3 
Mist nets+ Transect+Vocal+Study 75.87 4 
Mist nets+Transect+Vocal+Study 78.73 5 
Point observation+Mist nets+Transect+Vocal+Study 81.77 6 

Functional 
Diversity (FD) 

Study 20.16 1 
Mist_nets+Study 22.81 2 
Mist_nets+Transect+Study 22.84 3 
Mist nets+ Transect+Vocal+Study 25.71 4 
Mist nets+Transect+Vocal+Study 28.77 5 
Point obs+Mist nets+Transect+Vocal+Study 32.05 6 

Functional 
Richness (FRic) 

Study 171.03 1 
Mist_nets+Transect+Study 173.72 2 
Mist_nets+Study 173.72 3 
Mist nets+ Transect+Vocal+Study 176.58 4 
Mist nets+Transect+Vocal+Study 179.64 5 
Point obs+Mist nets+Transect+Vocal+Study 182.92 6 

Functional 
Evenness (FEve) 

Study -44.77 1 
Mist_nets+Study -42.09 2 
Mist_nets+Transect+Study -42.09 3 
Mist nets+ Transect+Vocal+Study -40.07 4 
Mist nets+Transect+Vocal+Study -37.01 5 
Point obs+Mist nets+Transect+Vocal+Study -33.73 6 

Functional 
Divergence 
(FDiv) 

Study -77.38 1 
Mist_nets+Transect+Study -74.69 2 
Mist_nets+Study -74.69 3 
Mist nets+ Transect+Vocal+Study -73.27 4 
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Mist nets+Transect+Vocal+Study -70.22 5 
Point obs+Mist nets+Transect+Vocal+Study -66.93 6 

Functional 
Dispersion (FDis) 

Study -9.47 1 
Mist_nets+Transect+Study -6.82 2 
Mist_nets+Study -6.80 3 
Mist nets+ Transect+Vocal+Study -4.42 4 
Mist nets+Transect+Vocal+Study -1.36 5 
Point obs+Mist nets+Transect+Vocal+Study 1.92 6 
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Table S2 Model selection table for all models considered in this study. 782 

Variable Model AICc ΔAICc Conditional R2 
Species Richness Null model 24.93 0.00 0.00 

Age 25.68 0.76 0.04 
Disturbance type 28.83 3.90 0.22 

Forest Specialist 
Species Richness 

Null model 65.41 1.78 0 
Age 63.63 0 0.14 
Disturbance type 70.50 6.87 0.25 

Functional Diversity 
(FD) 

Null model 8.78 0.00 0.00 
Age 11.29 2.51 0.00 
Disturbance type 14.80 6.02 0.17 

Functional Richness 
(FRic) 

Null model 168.37 0.00 0.00 
Age 170.74 2.36 0.00 
Disturbance type 174.16 5.79 0.16 

Functional Evenness 
(FEve) 

Null model -58.52 0.00 0.00 
Age -57.24 1.28 0.02 
Disturbance type -50.65 7.87 0.12 

Functional Divergence 
(FDiv) 

Null model -93.68 0.00 0.00 
Age -92.15 1.54 0.03 
Disturbance type -84.39 9.30 0.05 

Functional Dispersion 
(FDis) 

Null model -21.34 0.00 0.00 
Age -19.92 1.42 0.01 
Disturbance type -16.47 4.87 0.24 

Standardised Effect 
Size of FD (sesFD) 

Null model 148.74 12.59 0 
Age 136.15 0 0.35 
Disturbance type 145.09 8.94 0.19 
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