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Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate
the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can
impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To
analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a
database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data.
For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air
temperatures from gridded global datasets. We also quantified land cover metrics, including road density and
impervious surface, in buffer zones of 100 to 1,500m surrounding the perimeter of each lake. This database
represents the largest global collection of lake chloride data. We hope that long-term water quality
measurements in areas outside Europe and North America can be added to the database as they become
available in the future.
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Design Type(s) data integration objective • time series design • observation design

Measurement Type(s) concentration of chloride in water • land cover • water body

Technology Type(s) data acquisition system • digital curation

Factor Type(s) geographic location • ecoregion

Sample Characteristic(s)
lake • Canada • reservoir • Finland • French Republic • Germany •
Hungary • Italy • Sweden • Switzerland • United Kingdom • United
States of America

Background & Summary
Recent analyses estimate there are 27 million naturally-formed lakes and human-constructed reservoirs
(hereafter together referred to as lakes) on Earth with surface areas greater than 0.01 km2 (ref. 1). While these
lakes account for less than four percent of Earth’s terrestrial land cover, they provide many important social
and economic resources such as recreation, fisheries, irrigation, and energy production. Moreover, the vast
majority2 of these lakes are freshwater lakes (salinityo1 g l− 1), which are routinely used as drinking water
sources. Therefore, it is critically important to protect the ecosystem services that lakes provide for humanity.

One important measure of water quality is the amount of salt, or salinity, in a lake. Chloride is often
used as a measure of salinity because it is a highly conservative and highly soluble ion, is easily measured
with high accuracy, and is a good proxy for salinity3,4. While lakes vary in their natural chloride
concentrations due to geological factors2, changes in chloride levels can result from a response to climate5

and anthropogenic influences6. Anthropogenic sources of chloride include road salt, fertilizer,
wastewater, industrial effluents, and hydrochloric acid derived from coal combustion7–11. Increasing
chloride concentrations in lakes can change the acid neutralizing capacity of the water (pH), increase the
transport and bioavailability of heavy metals12, increase lake stratification13, and alter ecological
communities4,14,15, thereby degrading water quality and habitat.

Many long-term studies from around the world have identified anthropogenic-induced salinization of
lakes, including many large freshwater bodies such as the Laurentian Great Lakes7,16, Lake Champlain17,
Lake George18, Lake Constance19, and the deep subalpine lakes in Northern Italy20. To quantify the
prevalence and drivers of long-term salinization in lakes worldwide, we collected chloride data from
government organizations, universities, and lake associations; however, datasets covering at least ten
years were only available in Europe and North America. The database presented here encompasses long-
term chloride data from 529 lakes in Europe and North America, a geodatabase of lake polygon
shapefiles, as well as a variety of lake characteristics, land cover metrics, and climate statistics. This
database can be used to answer many questions about the salinization of freshwater lakes at different
scales, and can be applied to address the impacts of salinization on the ecology of freshwater lakes21. Our

Figure 1. Workflow for all datasets included in the global lake chloride database.
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hope is that other researchers will add additional lakes to expand the geographical coverage of our
database so that the effects of lake salinization can be more easily addressed at a global scale.

Methods
The organizational workflow and data requirements for inclusion of lakes in the global lake chloride
database are depicted in Fig. 1. All analyses were performed in the R statistical programming language22,
using a suite of packages to access data and perform statistical analyses.

Acquisition
Three primary approaches were used to collect lake chloride concentration data. Data were obtained from
1) online repositories containing datasets from multiple lakes, 2) online repositories containing data from
single lakes, or 3) individual researchers, including members of the Global Lake Ecological Observatory
Network (GLEON), and other organizations that responded to data requests. This range of approaches
accounted for the multiple ways data were stored and shared, and as such, maximized the number of
lakes included in our database.

For inclusion in this global lake chloride database, a site had to meet set criteria (Fig. 1).

1. The lake must have a surface area of at least 0.04 km2 (4 ha). This was the original size cutoff instituted
by the United States Environmental Protection Agency (EPA) in their 2007 National Lakes
Assessment.

2. The long-term mean chloride concentration must be less than 1 g l− 1. This removes brackish
and saline lakes from the database. Saline lakes are often defined as lakes with total dissolved
solids>3 g l− 1 (ref. 2).

3. The dataset must span at least ten years, and contain at least five data points. These criteria ensure
both a robust measure of chloride concentrations and the ability to detect a long-term trend.

4. The dataset must include one chloride record after 2000. This criterion was established to ensure
comparability in respect to time among site records.

Once the data were collected, they were processed using an a priori metadata protocol. Each lake was
assigned a project-specific identification number, and was paired with the associated data source name,
source contact/acquisition information, and public accessibility designation (publicly available/private).
We were unable to find any sites that met these criteria in South America, Africa, Asia, or Oceania. Many
sites in the aforementioned regions had lake chloride measurements, but no records that spanned at least
ten years, and therefore were not included in this database. In total, we collected 529 long-term datasets
from ten countries (Fig. 2).

Figure 2. Map of North America and Europe showing the locations of lakes included in the global lake

chloride database.
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United States (n= 315). The majority of lakes included in this database are located in the United
States (US). Data were obtained from the sources described below.

• The Water Quality Portal (WQP, http://www.waterqualitydata.us/) is a database that amalgamates data
from federal, state, tribal, and local sources in the United States. It includes data from the EPA Storage
and Retrieval (STORET) data warehouse and the United States Geological Survey (USGS) National
Water Information System (NWIS). We searched the WQP for the characteristic name ‘chloride’ in
‘lakes, reservoirs, and impoundments’, using the dataRetrieval package in R (v2.5.5 (ref. 23)). Data
extracted from the WQP included 67 lakes in Minnesota monitored by the Minnesota Pollution
Control Agency. Lakes located in the Minneapolis/St Paul region are some of the most urban lakes
included in the database (as determined by road density and land cover).

• North Temperate Lakes Long Term Ecological Research Site (LTER) collects long-term chloride data
for eleven lakes in Wisconsin24. Data for Lake Wingra, Lake Monona, and Lake Mendota were
augmented with earlier data from the Wisconsin Department of Natural Resources. In some cases, only
annual averages were available; these sampling dates were labeled as July-01 (Lake Mendota:
1957–1972, Lake Monona: 1940–1987).

• Hubbard Brook LTER (http://www.hubbardbrook.org/) hosts 43 years of chloride measurements from
Mirror Lake, New Hampshire.

• The Lake Champlain Basin Program provides a publicly accessible database of chloride measurements
from Lake Champlain (http://www.lcbp.org/water-environment/data-monitoring/lake-and-watershed-
data/). We obtained data for the Burlington Bay sampling site, and combined these with earlier data
from USGS site 04295000. Lake Champlain (744 km2) is the only US lake represented in the ten largest
lakes in our database.

• The EPA manages two long-term monitoring projects, specifically focused on the effects of
atmospheric deposition into surface water bodies. These programs are the Temporally Integrated
Monitoring of Ecosystems and Long Term Monitoring Project. The lakes included in these programs
tend to be located in remote environments in New York, Vermont, Maine and New Hampshire.

• The New York City Department of Environmental Protection monitors chloride concentrations in all
of its water supply reservoirs. Data were contributed from 10 reservoirs north of New York City. The
location of sampling stations changed in 2006/07 in Boyd’s Corners, Cross River, Croton Falls, and
Middle Branch Reservoirs.

• The University of Rhode Island Watershed Watch Program provided data for 59 lakes in Rhode Island
(http://web.uri.edu/watershedwatch/uri-watershed-watch-monitoring-data/). Rhode Island lakes com-
prise some of the most urban lakes in the database.

Canada (n= 37). Alberta Environment and Sustainable Resource Development provided chloride data
for eleven lakes in Alberta. The Water Quality Management Section of Manitoba Conservation and
Water Stewardship provided chloride data for 16 lakes in Manitoba. Manitoba lakes represent four of the
top ten largest lakes in the database, including Lake Winnipeg, the largest lake at 24,514 km2. Kawartha
Conservation provided datasets exceeding 40 years for Balsam Lake, Cameron Lake, and Sturgeon Lake in
Eastern Ontario. The International Institute for Sustainable Development provided data for four small
lakes in the IISD Experimental Lakes Area (ELA) in northern Ontario. The Ontario Ministry of the
Environment and Climate Change provided 15 years of data from Lake Simcoe. Of the ten largest lakes in
the database, Lake Simcoe (722 km2) has the highest road density surrounding its shoreline. In 2008, the
Ontario government introduced the Lake Simcoe Protection Act as a strategy to improve water quality.

Sweden (n= 102). A publicly available database of water chemistry was available through the Swedish
Department of Water and Environment (http://info1.ma.slu.se/db.html). We included long-term
monitoring data from a series of lakes that were designated as trend stations, which resulted in a
collection of 101 lakes geographically distributed throughout the country. We also included data from
data from Vänern, the largest lake in Sweden. Swedish coordinates were presented in the Swedish grid
RT90 (ESPG:2400) at 10-m resolution, and were converted to WGS84.

Germany, France, and Switzerland (n= 32). Chloride data for Lake Constance were obtained from
the Institut für Seenforschung in Langenargen. Data for Lake Zurich were provided by the City of Zurich
Water Supply (WVZ) and the Amt für Abfall, Wasser, Energie und Luft (AWEL) of the Canton of
Zurich, Switzerland. Chloride data for 28 lakes in Mecklenburg-Western Pomerania, Northern Germany
were compiled for a review of German sulfate trends. All authorities and persons who supplied data are
mentioned in the acknowledgements of Kleeberg25.

Data from Lake Geneva and Lake Bourget were accessed through the Alpine Lakes Observatory
(SOERE OLA—Observation and Experimentation System for long-term Environmental Research).
SOERE OLA is member of AnaEE-FRANCE and sponsored by AllEnvi, the National Research Alliance
for the Environment. Physical, chemistry, and biodiversity data can be download using the information
system developed by Eco-Informatique ORE team of the French National Institute for Agronomical
Research (INRA, https://si-ola.inra.fr). INRA collects data from Lake Bourget with its partner CISALB,
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the intercommunal association of Lake Bourget, and Lake Geneva (also known as Lac Léman) with its
partner CIPEL, the International Commission for the Protection of Leman.

Finland (n= 11). Water resource and environmental data for Finnish lakes are publicly available
through the Finnish Environment Institute (SYKE) (http://www.syke.fi/en-US/Open_information).
Chloride data for lakes included in our analysis were compiled by Lauri Arvola, at the University of
Helsinki, through the online SYKE portal. Lakes Saimaa, Päijänne, and Inari are three of the largest lakes
in the database; all lakes are over 1,000 km2.

United Kingdom (n= 8). The United Kingdom Upland Waters Monitoring Network (UK UWMN) is
a consortium led by University College London (UCL), the NERC Centre for Ecology and Hydrology
(CEH), Marine Scotland and Queen Mary College (QMUL). Originally funded by UK Government
Department for Environment, Food and Rural Affairs, the network is currently supported by the partner
organizations and a range of regional governments, agencies, and research institutes. The UK UWMN
provided chloride data for eight UK lakes.

Hungary (n= 3). Water quality data are publicly available through Middle-Transdanubian and West-
Transdanubian Water Directorates. We obtained long-term data from yearly reports of water quality of
the Kis-Balaton Reservoir System and of Lake Balaton. Chloride concentrations were determined by
argentometric methods according to Hungarian ISO Standards.

Italy (n= 1). The Institute of Ecosystem Study of the National Research Council (CNR ISE) in
Verbania, Italy, provided chloride data for Lake Maggiore20. These data are collected in the framework of
the long-term research program on Lake Maggiore funded by the International Commission for the
Protection of Waters between Italy and Switzerland (CIPAIS). Lake Maggiore is the westernmost of the
deep subalpine lakes in Northern Italy (LTER Europe site LTER_EU_IT_008). The lake area is 212.5 km2

and its maximum depth is 370 m.

Column name Description Coverage

SALT_ID Internal lake ID number 100%

FileName File name 100%

Common.Name Name of lake or reservoir that is commonly used. 100%

Latitude (decimal
degrees)

Latitudinal coordinate of lake 100%

Longitude (decimal
degrees)

Longitudinal coordinate of lake 100%

Continent Geographic location of lake 100%

Country Geographic location of lake 100%

State Abbreviation of state or province (only for North American lakes) 69.1%

Area.km2 Surface area of lake 100%

Depth.m Maximum depth of lake 66.4%

LakeType Type of lake: natural or reservoir 100%

YearMin Start year of dataset 100%

YearMax End year of dataset 100%

YearsTotal Total years of dataset coverage 100%

MeanCl.mgL Mean chloride concentration 100%

OutliersRemoved Number of outliers removed from original data 100%

ShapefileMethod Method used to obtain shapefile. Either: circle, GLWD, manual, NHD, or NHN. 100%

CoastDist.km Distance to the nearest coastline 100%

WetDryDep Sea salt deposition in kg ha− 1 yr− 1 (sum of wet and dry deposition) 100%

Precip.mm Mean annual total precipitation from 1960 to 1990 100%

TempMMM Long-term mean monthly temperatures from 1960 to 1990. MMM represents the month of the year. 100%

RoadDensityXXX Road density, where XXX represents 100, 200, 300, 400, 500, 1,000, and 1,500-m buffer zones surrounding the lake.
Measured in km km− 2.

100%

LandImperviousBinXXX Impervious surface, where XXX represents 100, 200, 300, 400, 500, 1,000, and 1,500-m buffer zones surrounding the lake.
Calculated from datasets with binary pixels via Method 1 (see above). Measured in percent.

69.2%

LandImperviousPerXXX Impervious surface, where XXX represents 100, 200, 300, 400, 500, 1,000, and 1,500-m buffer zones surrounding the lake.
Calculated from datasets with percentage pixels via Method 2 (see above). Measured in percent.

92.9%

Table 1. Column names, column description, and percentage of sites with data for each feature for
lake file.
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Chloride data
Each lake entry contains, at minimum, the sample date and the chloride concentration, converted to
standardized units (mg l− 1). Sampling depth was included for most sites. In some datasets, decadal gaps
between sampling dates existed because early data points were sparse. Because trend analyses can be
overly sensitive to outlying data points, we added additional quality control criteria; if a decadal gap was
present in a dataset, at least five sampling points had to exist prior to the gap; otherwise, earlier data were
not included. Additionally, the tsoutliers package in R (v0.6 (ref. 26)) was used to find and remove
additive outlier data points, which although rare, skewed the linear and additive models’ fit to the data.
The approach uses a t-statistic to test the significance of outliers at each time step and highlights those
above a critical value. In our analyses, we conservatively chose a critical value of 20. In total, the data from
483 lakes were unchanged, and 64 lakes had 1–9 data points removed. The number of outliers removed
from the original dataset is included in the metadata.

Lake data
Each lake was identified by its latitude and longitude (in decimal degrees) and given a unique ID number.
The country, or the province/state for North American lakes, was determined from the geographic coordinates.
In the United States, the county was added to the file name, as there are often lakes with duplicate names
within a state. Lake areas were obtained from a variety of published data sources. In rare cases, where lake area
was not available, lake area was calculated from custom shapefiles in ArcGIS (see section on shapefiles). Lakes

Column Name Description

SALT_ID Internal lake ID number

FileName File name

Common.Name Name of lake or reservoir that is commonly used

Station Sampling station ID. The ID is program specific and is included to cross-reference sites with original sources. For some lakes, data are
present from multiple stations.

Sample.Date Date of sample collection. All data were collected on discrete days, with the exception of early data from Lake Mendota and Monona (see
Methods).

Sample.Depth Depth of sample collection

Chloride Chloride concentration in mg l− 1

Decimal.Date Sample date provided as decimal value

Std.Chloride Chloride concentration provided as a standardized z-score value, which was calculated for each lake

Integrated.Depth Is TRUE if sample was integrated over a portion of the water column. Is FALSE otherwise. If a sample depth is given, this was the starting
depth of sampling.

Table 2. Column name and description for lake chloride data file.
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Figure 3. Time series of chloride concentrations in Lake Constance and Vänern. Data points are colored

by lake depth.
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were classified as natural lakes or reservoirs. This distinction was made from visual inspection of satellite images
for a dam, or from published government reports or articles that identified the waterbody as a reservoir. 407 of
the 529 lakes had maximum lake depth data, in meters. The distance of the lake to the nearest coast (km) was
calculated using the coordinates of the lake and a 1:10m coastline vector shapefile available from Natural Earth
(http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/), using the equal-area
mollweide projection. The coastline vector was edited to exclude the St Lawrence Seaway.

Climate data
To ensure homogeneity across regions, all climate data were obtained from gridded global datasets.

Temperature and precipitation. Monthly mean temperatures and annual precipitation totals were obtained
using the WorldClim dataset, which contains high resolution global interpolated climate data from 1960–
1990 (ref. 27). We used the highest resolution 30 s data, which is equivalent to 0.86 km2 at the equator. Lakes in
the interior of North America, including those in North Dakota, Alberta, and Colorado receive less than 500mm
of precipitation a year. In contrast, some lakes in Vermont and the UK average greater than 1,300mm a year.

Sea salt deposition. A global data set of wet and dry sea salt (NaCl) deposition was obtained from the
World Data Centre for Precipitation Chemistry28 (http://www.wdcpc.org/assessment). We used the north
grid of the HTAP 2001 ensemble-mean model results for emissions, deposition, and concentration, which
has a spatial resolution of 1.0° latitude x 1.0° longitude28. Sea salt deposition is given as the combined total
wet and dry deposition (kg ha− 1 yr− 1). Overall deposition was lower over North American lakes (mean= 13
kg ha− 1 yr− 1), than European lakes (mean= 38 kg ha− 1 year− 1). Deposition was highest in the United
Kingdom, where lakes receive an average of 98 kg ha− 1 of sea salt deposition each year.

Shapefiles
Shapefiles that geographically delimited the perimeter of the lakes were required to quantify surrounding
land use patterns. Shapefiles were acquired via five methods:

1. Lakes in the continental United States were included in the National Hydrography Dataset (NHD,
n= 336, http://nhd.usgs.gov/). The high resolution NHD data are available at 1:24,000-scale.

2. Shapefiles for lakes in Canada were downloaded from the 1:50,000 National Hydro Network (NHN).
3. Shapefiles for Swedish lakes were available through the Swedish Water Archives (n=102, http://www.smhi.

se/klimatdata/hydrologi/sjoar-och-vattendrag/). We used surface water body layer version Vy_y_2012_2.
Multiple shapefiles were merged to create a single shapefile for Vänern (pers. comm. B. Denfield).
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Figure 4. Comparison of the two methods of quantifying impervious surface in 100–1,500-m buffer zones

around all US lakes in the database. In Method 1, each pixel is a Boolean value (TRUE, impervious; FALSE,

not impervious). In Method 2, each pixel is quantified as percent impervious surface from 0–100%.
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4. Shapefiles for European lakes greater than 0.1 km2 were obtained from the Global Lakes and Wetlands
Database (GLWD Level 1 and 2) (n= 43, http://www.worldwildlife.org/pages/global-lakes-and-
wetlands-database). Lakes are presented at a scale of 1:1,000,000.

5. Shapefiles for Lake Fenek (12.5 km2) and Lake Hidvegi (17.1 km2) in Hungary, and eleven other small
European lakes in the UK, Germany, and Finland were not publicly available. These shapefiles were
generated manually using ArcMap10.2.2.

The method by which shapefiles were acquired is included in the metadata as NHD, NHN, Sweden,
GLWD, or Manual.

Land cover
We constructed buffer zones surrounding each lake to approximate the anthropogenic influence of watershed
and shoreline runoff of chloride into lakes. Buffer widths of 100, 200, 300, 400, 500, 1,000, and 1,500m were
chosen based on previous findings, such as those by Kelting et al.29, who found that >70% of total variation in
chloride concentrations in Adirondack Park, NY could be explained by the road density in 320- to 1,280-m
buffer zones. Regalado and Kelting30 used a 100-m buffer as an estimate of vehicular spray distance, and Read
et al.31 used a 200-m buffer to understand local drivers on lake characteristics across the United States. We
calculated both the percent impervious surface and total road density within buffer zones surrounding each lake
as metrics for urban development. Buffer zones were constructed using the gBuffer function in the rgeos
package in R (v0.3-19) (ref. 32) using local WGS84 Universal Transverse Mercator (UTM) zone projections.

Impervious surface
Impervious surfaces are all impenetrable artificial surfaces, including roadways and parking lots (concrete
and asphalt), and building roofs33. Since impervious surfaces prevent water infiltration into soils,
increased runoff from these urban landscapes can threaten water resources34. Impervious surfaces have
previously been linked to road salt application and the salinization of fresh waters9,35,36.

In land cover datasets, impervious surface is typically represented two ways: Method 1) a pixel is
represented either as impervious or not-impervious (Boolean value), or Method 2) impervious surface is a
continuous variable within each pixel from 0 to 100 percent37. The latter is a more robust quantification
of impervious surface37.

United States. The 2011 United States National Land Cover Database (NLCD) is a national land cover
product at a spatial resolution of 30 m (http://www.mrlc.gov/nlcd11_data.php). The NLCD presents the
option of quantifying impervious surface via both methods from above. Method 1 is implemented via the

Trout Lake
Wisconsin 
(15.65 km2) 

Method 1 Method 2
ImpSur = 6.8% ImpSur = 0.8%          Road Density  = 4.08 km km-2

Method 1 Method 2
ImpSur = 43.7% ImpSur = 16.5% Road Density = 17.42 km km-2

Lake Wingra
Wisconsin
(1.36 km2)

Figure 5. Comparison of impervious surface and road density calculations for Trout Lake and Lake

Wingra, Wisconsin, USA. Values are given for a 500-m buffer. Impervious surface calculations via Method 1

have higher absolute values than Method 2, but relative differences are similar (see Fig. 4).
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NLCD 2011 Land Cover layer38. Impervious surface was defined as the total of all pixels classified as
developed. Method 2 is implemented via the NLCD 2011 Percent Developed Impervious layer39.

Canada. A national land cover product was not available for Canada. Instead, we used two different
products. For Ontario, we used the Ontario Land Cover Compilation v.2.0. (https://www.ontario.ca/data/
land-cover-compilation). The OLCC has a 5-m pixel resolution. Impervious surfaces include settlements/
infrastructure, transportation routes, and built-up areas. For Manitoba and Alberta, we used the LULC
thematic raster data from GlobeLand 30 (http://www.globallandcover.com/GLC30Download/index.aspx)
at a spatial resolution of 30 m. For both products, pixels are represented as a Boolean classification of
impervious surface (Method 1).

Europe. For all European lakes, we used the European Space Agency’s GIO-land (Global monitoring
for environment and security/Copernicus Initial Operations land) layers (http://www.eea.europa.eu/
themes/landuse/gio-land). GIO-land includes a 20-m resolution layer of the percent impervious
(1–100%), which enabled us to implement Method 2 for our calculation of impervious surface.

Road density. Road density has been used in previous studies as a proxy for urbanization and the
application of road salt29,40,41. Road density was defined as the ratio of the length of the total road
network in a given area (km) to the land area (km2). Worldwide road data were downloaded from
OpenStreetMap via the osmar package in R (v1.1-7 (ref. 42)). In each buffer zone, we selected ‘ways’ tagged
as highway, which included all primary, secondary, residential, and service roads. In our database, the highest
road densities in a 500-m buffer were located around lakes in Minneapolis/St Paul, Minnesota and were up
to 27 km km− 2. Road density and percent impervious surface in buffer zones surrounding a lake were
positively correlated overall (r2= 0.69 in 500-m buffer, r2= 0.79 in 1,500-m buffer); however, many lakes
with low road density (0–5 km km− 2) had 0% impervious surface.

Data Records
The final database includes three files (Data Citation 1).

1. All descriptive lake data are formatted as a horizontal data table and is provided in
chloride_concentrations.csv (Table 1).

2. Chloride time series data are formatted as a long data table and is provided in lake_characteristics.csv
(Table 2).

3. Shapefiles for 529 lakes are provided as shapefiles in a zip file.

The database is designed so additional lake data can be easily added as they become available. All
climate and land cover metrics were derived using open source datasets, and processed using open source
tools. As new long-term datasets become available, or current datasets are expanded, the database can be
updated with minimal time investment.

Technical Validation
For sites where maximum lake depth was not available, we have inferred that samples were collected at
the surface, although this cannot be verified. Where samples were collected at multiple depths, we visually
examined a selection of these lakes and found that chloride trends were consistent throughout the water
column. For example, in Lake Constance and Vänern, both large freshwater lakes, chloride
concentrations in the hypolimnion (bottom waters) and the epilimnion (surface waters) show similar
trends through time (Fig. 3).

A comparison of the two methods used for calculating impervious surface reveal the measure of
impervious surface surrounding a lake using Method 1 typically returns higher estimates, these are highly
correlated to values calculated using Method 2, and become more tightly correlated as buffer width
increases (Figs 4 and 5).
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