
 
 
 
Article (refereed) 
 
 
 

Clark, Douglas; Gedney, Nicola. 2008 Representing the 
effects of subgrid variability of soil moisture on runoff 
generation in a land surface model. Journal of Geophysical 
Research, 113 (D10111). doi:10.1029/2007/JD008940 

 
 
 
 

©2008. American Geophysical Union. All Rights Reserved. 

 
This version available at http://nora.nerc.ac.uk/5176/  
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the authors and/or other rights owners. Users 
should read the terms and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
This document is the author’s final manuscript version of the 
journal article, incorporating any revisions agreed during the peer 
review process. Some differences between this and the publisher’s 
version remain. You are advised to consult the publisher’s version 
if you wish to cite from this article. 
 
http://www.agu.org/journals/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Contact CEH NORA team at  
nora@ceh.ac.uk 

mailto:nora@ceh.ac.uk
http://nora.nerc.ac.uk/3098/
http://nora.nerc.ac.uk/policies.html#access
http://www.agu.org/journals/


 1 

 1 

 2 

Representing the effects of subgrid variability of soil moisture on runoff 3 

generation in a land surface model 4 

 5 

Douglas B. Clark, 6 

Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United 7 

Kingdom 8 

 9 

Nicola Gedney, 10 

Hadley Centre for Climate Prediction and Research, Met Office, Joint 11 

Centre for Hydrometeorological Research, United Kingdom 12 

 13 

 14 

 15 

Corresponding author: D.B.Clark, CEH Wallingford, Crowmarsh Gifford, 16 

Oxfordshire, OX10 8BB, United Kingdom.  E-mail: dbcl@ceh.ac.uk 17 

   18 

 19 



 2 

Abstract 1 

 2 

Different representations of runoff generation processes were implemented in the MOSES land 3 

surface model which is used with mesoscale and global atmospheric models. The standard model 4 

was compared with versions in which runoff generation was described by parameterizations based 5 

on either the Probability Distributed Model (PDM) or modified forms of TOPMODEL, all of which 6 

used probability functions to describe the subgrid distribution of soil moisture. The model results 7 

were compared with observed streamflow in three catchments in southern France. After calibration, 8 

the PDM- and TOPMODEL-based parameterizations performed substantially better than the 9 

standard model. The TOPMODEL approach gave the best results through allowing a more 10 

responsive subsurface flow that contributed to peak flows and also better captured the slower 11 

changes during recessions. This approach was sensitive to uncertainty in the value of the 12 

topographic index. The PDM-based model only changed the calculation of surface runoff and 13 

retained the standard description of subsurface runoff, and this limited the possible improvement in 14 

performance. In principle the values of the new parameters can be determined from observations, 15 

but in practice calibration is likely to be required. However, for each new parameterization, a single 16 

set of parameter values was found that performed well in all catchments. The simulated soil 17 

moisture and surface heat fluxes during summer dry periods were affected by the choice of runoff 18 

parameterization. 19 

 20 
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 1 

1. Introduction 2 

Land surface models for use in climate and NWP models have traditionally concentrated on 3 

the modeling of the radiative and turbulent fluxes that the atmospheric models require as boundary 4 

conditions. Further, there has been a tendency to develop relatively sophisticated one-dimensional 5 

models, in which the detail is in the vertical, while ignoring issues of horizontal heterogeneity 6 

within a gridbox [Koster et al., 2000]. Both of these historical factors have tended to mean that the 7 

generation of runoff is treated very simply in land surface models. However, an unrealistic 8 

simulation of runoff can have detrimental effects on the simulation of evaporation [Koster and 9 

Milly, 1997 ] and hence on the partitioning of the surface energy fluxes. Furthermore, researchers 10 

are making increasing use of coupled models, linking atmosphere, land and ocean, in which runoff 11 

is a quantity of primary concern. 12 

The processes governing the generation of runoff at the scale of a hillslope are complex and 13 

vary strongly with time and space. Runoff is often considered to be either surface runoff in which 14 

the water flows over the land surface, or subsurface runoff. Surface runoff can be divided into that 15 

generated by infiltration excess and saturation excess mechanisms. Infiltration excess runoff occurs 16 

when the rainfall rate is greater than that at which the water can infiltrate into the soil. Rainfall in 17 

excess of infiltration will then flow downslope as overland flow towards stream channels. 18 

Saturation excess overland flow occurs when rain falls onto saturated soil, often in valley bottoms 19 

and riparian areas. In either case, water that infiltrates the soil will eventually reach a layer of low 20 

permeability, at which point it becomes a downslope subsurface flow. In many catchments aquifers 21 

also contribute to the subsurface flow. 22 

A coarse resolution land surface model cannot explicitly model the complexities of runoff 23 

generation within a catchment and instead aims to represent the major processes via subgrid 24 

parameterizations. A popular solution involves the use of probability distribution functions (pdfs) to 25 

represent subgrid variability, usually either a pdf of soil storage capacity [e.g., Dumenil and Todini, 26 
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1992; Wood et al., 1992; Liang and Xie, 2001] or of topographic characteristics [e.g., Famiglietti 1 

and Wood, 1994; Stieglitz et al., 1997; Ducharne et al., 2000; Chen and Kumar, 2001; Gedney and 2 

Cox, 2003]. Both approaches aim to describe the impact of subgrid variability of soil moisture on 3 

runoff production. 4 

In models that use a pdf of storage capacity, the distribution can be treated as a convenient 5 

functional form, as in the VIC model [Wood et al., 1992], but can also be understood in terms of a 6 

statistical distribution of connected soil moisture stores and their overall response to rainfall, as in 7 

the Probability Distributed Model (PDM, [Moore, 1985].) The parameters of the distribution can be 8 

found from calibration of the overall runoff model, or an attempt can be made to infer them from 9 

physical characteristics of the catchment such as topography and soils [Dumenil and Todini, 1992; 10 

Hagemann and Gates, 2003]. The second type of model is based on TOPMODEL  [Beven and 11 

Kirkby, 1979]. The tendency of each location within a catchment to be saturated is estimated using a 12 

topographic index λ, defined as )tan/ln( βλ a= , where a is the area draining to this location per 13 

unit contour length and tanβ is the slope of the land surface. The pdf of λ is used to calculate the 14 

overall saturated area. Famiglietti and Wood [1994] combined TOPMODEL with a land surface 15 

model, while Stieglitz et al. [1997] developed a simpler version of TOPMODEL for climate models 16 

and applied the equations to the single soil column that represented the average state of the 17 

catchment.  18 

The increasing availability of relatively high resolution fields of terrain height has meant that 19 

parameterizations based on the TOPMODEL approach have been implemented in several models 20 

[Ducharne et al., 2000; Chen and Kumar, 2001; Habets and Saulnier, 2001; Warrach et al., 2002; 21 

Niu and Yang, 2003]. Although TOPMODEL is physically-based, many of the assumptions only 22 

hold in certain catchments or at certain times [Beven, 1997] and must be regarded as poorer 23 

approximations at the scale of climate models. 24 

Habets and Saulnier [2001] compared the VIC and TOPMODEL-type approaches and found 25 

little difference in results, but a study by Warrach et al. [2002] found in favor of TOPMODEL. 26 
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Other studies have compared a TOPMODEL-type approach with simpler schemes and found that 1 

the topographic approach gave better estimates of runoff, with improved subsurface flow again 2 

being important [Stieglitz et al., 1997; Chen and Kumar, 2001]. 3 

The land surface model used in the present study is the Met Office Surface Exchange Scheme 4 

(MOSES, Essery et al., 2003). MOSES has been used with both PDM [Blyth, 2002; Boone et al., 5 

2004] and TOPMODEL-type parameterizations of runoff [Gedney and Cox, 2003], but a 6 

comparison of these has not previously been attempted. The present work was motivated by the 7 

desire to identify which parameterization better represented observed river flows and complements 8 

previous studies by testing a range of model formulations on the same data and presenting 9 

sensitivity studies. 10 

The remainder of this paper is arranged as follows: Section 2 describes the model and data 11 

used, and Section 3 presents results with the standard model. Sections 4 to 6 give the results of 12 

alternative parameterizations, before Section 7 provides an overall comparison of the models.  13 

 14 

 15 

2. Model, Data and Methodology 16 

2.1. Description of the Model 17 

 Details of MOSES can be found in Essery et al. [2003], while a few key features will be 18 

highlighted here. The soil is divided into vertical layers and moisture fluxes between layers are 19 

modeled using a finite difference approximation to the Richards’ equation, with the soil hydraulic 20 

characteristics following Clapp and Hornberger [1978]. Water drains from the bottom of the soil 21 

column at a rate equal to the hydraulic conductivity of the bottom layer. Surface runoff is generated 22 

by the infiltration excess mechanism following Dolman and Gregory [1992], assuming an 23 

exponential distribution of point rainfall rate across the fraction of the catchment where it is raining. 24 

Infiltration excess runoff is relatively rare on the gridscale of a climate model, and most runoff from 25 
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MOSES is via drainage. Alternative parameterizations for runoff generation were introduced, as 1 

described below, but all other aspects of the model, including the calculation of infiltration excess 2 

runoff, were unchanged. 3 

 4 

2.2 PDM-based Runoff Scheme 5 

 The Probability Distributed Model (PDM) is described by Moore [1985] and Moore and Bell 6 

[2002]. In PDM, the distribution of soil storage capacity within a catchment is modeled by a pdf. In 7 

this study each catchment was modeled as a single gridbox and the following development uses the 8 

gridbox mean storage S. As precipitation is added to the soil stores, the smaller stores are the first to 9 

saturate. The fraction of the gridbox that is saturated can be shown to be  10 
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where S0 is the minimum storage below which there is no surface saturation, Smax is the maximum 12 

possible gridbox storage (at saturation) and b is a shape parameter. The interpretation of the value 13 

of b in terms of the shape of the pdf is discussed by Moore [1985]. Subsequent precipitation on the 14 

saturated fraction of the catchment generates surface runoff, which is calculated as shown in the 15 

Appendix. Surface runoff can be generated before the entire catchment is saturated, and the amount 16 

of runoff depends in part on the antecedent soil moisture. Note that if S0=0, PDM reduces to the 17 

form used in several models, including VIC. MOSES_PDM calculated saturation excess surface 18 

runoff following PDM and introduced three new parameters. Available data were used to prescribe 19 

Smax (see Section 4.1), leaving b and S0 to be calibrated.  20 

 21 
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2.3. TOPMODEL-based Runoff Scheme 1 

 For details of the theory underlying TOPMODEL, see Beven and Kirkby [1979] and 2 

Sivapalan et al. [1987]. In TOPMODEL, the spatial variability of soil moisture is parameterized in 3 

terms of the spatial distribution of λ. The saturated hydraulic conductivity, Ks, is assumed to 4 

decrease with depth beneath the surface (z) as 5 

 fz

ss eKzK
−= 0)(  6 

where Ks0 is the saturated conductivity at the soil surface and  f is a decay parameter. Chen 7 

and Kumar [2001] introduced an anisotropy factor, α, to account for differences of Ks in the vertical 8 

and horizontal directions, Ksx= α Ksz (hereafter, the subscript z is dropped and Ks refers to the 9 

vertical direction). Lateral subsurface flow (known as baseflow) occurs at a rate given by 10 

wfzs

b ee
f

K
R

−Λ−= 0α
  (1) 11 

where Λ and zw are the catchment averages of λ and the depth to the water table respectively. 12 

Given zw, the saturated fraction of the catchment can be calculated from the pdf of λ [Beven and 13 

Kirkby, 1979]. For a rainfall rate P (net of interception), saturation excess surface runoff is 14 

calculated as 15 

PfR sats = . 16 

TOPMODEL was implemented in the current work following the approach of Stieglitz et al. 17 

[1997], and this version of the model was called MOSES_TOP. There was no drainage though the 18 

bottom of the soil column and the depth to water table was diagnosed using an equilibrium 19 

assumption for the soil water at each timestep, following Chen and Kumar [2001]. The baseflow 20 

was partitioned between layers beneath the water table according to the transmissivity of each layer. 21 

Some previous studies [e.g. Chen and Kumar, 2001] calculated evaporation separately for the 22 
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saturated and unsaturated fractions of the catchment, but MOSES_TOP used the gridbox average 1 

soil moisture when calculating transpiration. 2 

MOSES_TOP involved several new parameters. Available data were used to prescribe Ks0 3 

(see Section 5.2) and the two parameters used to describe the pdf of λ, leaving f and α to be 4 

calibrated. 5 

2.4 The Study Area, Data Sources and Methodology  6 

This study focuses on three subcatchments of the Rhône basin in southeast France that were 7 

also considered as part of the Rhône-AGG experiment [Boone et al., 2004]. Brief details of each are 8 

given in Table 1, while their locations can be seen in Fig.1 of  Boone et al. [2004]. All of the 9 

catchments were relatively wet, with annual precipitation in excess of 1200mm and relatively little 10 

snowfall. 11 

Land surface and soil properties were specified as in the Rhône-AGG experiment. 12 

Simulations with MOSES and MOSES_PDM used four soil layers, with total depth equal to the 13 

observed catchment-average (typically 2 to 3 m). Simulations with MOSES_TOP used the same top 14 

four layers, but added two deeper layers to take the bottom of the soil column to 10m. Each 15 

catchment was represented as a single grid box. The areas of the catchments correspond to a length 16 

scale of 30-50km, which is sufficiently large to include substantial subgrid variability of surface and 17 

soil characteristics. The model was driven by 3-hourly, catchment-average meteorological 18 

conditions (see Boone et al., 2004). 19 

Model performance was assessed by comparing simulated and observed streamflow. Only the 20 

treatment of runoff in the model was altered, hence some of the error in simulations could be a 21 

result of deficiencies in other parameterizations.  MOSES has no representation of runoff routing in 22 

streams, but all parts of  the three catchments are closer than one day’s travel to the catchment 23 

outlet (A.Boone, personal communication, 2003) and the need for explicit consideration of flow 24 

routing was avoided by comparing three-day averages of modeled runoff and observed streamflow. 25 
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The model was spun up by repeatedly simulating the period August 1985 to July 1986 until a quasi-1 

steady state was obtained. Each integration was then continued for three years to July 1989. 2 

Calibration used data for August 1986 to July 1987, and August 1987 to July 1989 was used as a 3 

validation period to assess the model performance outside the calibration period. 4 

The statistic that is used in most of the analysis that follows is the modeling efficiency [Nash 5 

and Sutcliffe, 1970], defined as  6 
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where Mi denotes a modeled value at time i, Oi an observed value, an overbar indicates the average 8 

and the sum is over N times. E is a measure of the extent to which the model is an improvement 9 

over using the average observed flow, with a perfect model giving E=1. The quadratic nature of E 10 

means that it is sensitive to outliers, and mistimed peaks result in substantially lower values. The 11 

model bias ( 0−M ) and mean absolute error (MAE; ∑
=

−
N

i

ii OMN
1

1 ) are also used below. 12 

Calibration was performed by specifying a set of values for each parameter, and running the 13 

model for all possible combinations of values. This was considered to give reasonable estimates of 14 

the optimal parameter values because the response surfaces were relatively smooth. 15 

 16 

3. Simulations with MOSES 17 

Summary statistics for simulations with MOSES are given in Table 2. On average, MOSES 18 

produced more runoff than observed, with a large wet bias in the Ognon. The bias in the Ognon 19 

could be reduced by calibrating the soil hydraulic properties, but a substantial bias remained and it 20 

was decided to use the soil properties as given for all catchments. 21 

Precipitation and observed and modeled streamflow for one year in the Ain are shown in 22 

Fig.1a and b. The modeled flow was dominated by drainage (over 99% of the total), with negligible 23 
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surface runoff. (All runs in the present study produced small amounts of infiltration excess runoff.) 1 

The modeled peaks were generally too low and late, consistent with the fact that runoff was largely 2 

generated by drainage through the bottom of the soil column, while there was too much flow during 3 

recessions. Qualitatively similar results were obtained for all catchments. 4 

 5 

4. Simulations with MOSES_PDM 6 

4.1 Calibration of MOSES_PDM 7 

The pdf of soil storage capacities used in MOSES_PDM is described by the shape parameter 8 

b and the storage parameters S0 and Smax. Smax was set to θsat zpdm, where θsat is the volumetric 9 

moisture content at saturation. zpdm is the depth over which soil moisture is considered for PDM and 10 

was taken to be 1m. The model was calibrated for each catchment by varying b between 0 and 10, 11 

and S0/Smax between 0 and 1. The optimal parameter values are given in Table 3, while Fig.2 12 

illustrates the E values. In this figure, MOSES and then three runs of MOSES_PDM are shown for 13 

each catchment (the runs with TOPMODEL are considered later). The MOSES_PDM runs are: (1) 14 

PDM_0: the best calibrated model with the constraint that S0 was zero (2) PDM_calib: the best 15 

calibrated model for each catchment (3) PDM_best: the single pair of parameter values that, when 16 

used for all catchments, gave the best results averaged over the three catchments. In the remainder 17 

of this work, such a “best” set of values is termed a “best overall” set. The final group in this figure, 18 

labeled “average”, shows the efficiency averaged over the three catchments. (Note that in Fig.2, E 19 

for PDM_calib in the Ognon is less than that for the best overall model because E is given for the 20 

validation period, not the calibration period.) 21 

For the Ain and Ardeche, MOSES_PDM performed substantially better than MOSES. The 22 

final set of results in Fig.2 confirms that, on average, MOSES_PDM performed substantially better 23 

than MOSES. On average, restricting the model to S0=0 (PDM_0, as used in VIC) still resulted in 24 

considerable improvement over MOSES, but non-zero values of S0 gave better results. It was not 25 
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surprising that adding a parameter allowed better simulations, but non-zero values of S0 also make 1 

physical sense, as discussed below. The best overall model (PDM_best) had parameter values 2 

S0/Smax=0·75,  b=10. 3 

The modeled streamflow for the Ain, using the “best overall” parameters, is shown in Fig.1c. 4 

Comparison with the MOSES results (Fig.1b) shows that the timing of the peaks was better 5 

simulated by MOSES_PDM, but the peaks remained low. Fig.1d shows that subsurface drainage 6 

was dominant (over 75%), with saturation excess surface runoff contributing to the peaks. 7 

MOSES_PDM also showed excessive flow during recessions, consistent with the fact that drainage 8 

was simulated in the same way as by MOSES. The lower infiltration with PDM was largely 9 

balanced by reduced drainage, and total runoff was very similar between runs with and without 10 

PDM. 11 

4.2 Sensitivity of MOSES_PDM 12 

The sensitivity of MOSES_PDM to parameter values is illustrated by the whiskers shown 13 

next to PDM_best in Fig.2. These show the effects of varying S0 by ±10% about its value in the best 14 

overall model. The sensitivity to b was too small to be plotted in this way. In every catchment, the 15 

sensitivity was sufficiently small as to mean that the “best overall” parameters gave better results 16 

than MOSES. 17 

These results are best interpreted with the help of Fig.3, which shows the response surface for 18 

the Ain. Small values of  S0 meant that nearly every rainfall event would result in surface runoff, in 19 

which case b<1 was best (relatively more larger stores – see Moore [1985]) since this gave a 20 

smaller saturated fraction and reduced the size of the runoff peaks. The highest efficiency was 21 

found with S0/Smax ~0.7, meaning that no saturation excess runoff was generated until the soil was 22 

70% saturated. This gave good results by generating surface runoff to augment large peaks of 23 

streamflow when the catchment was very wet, while not generating any surface runoff over a drier 24 

catchment. This seems reasonable, since for many dry catchments one would expect there to be 25 
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little or no saturated area (outside channels) and a rainfall event could all be absorbed by the soil 1 

without any surface runoff. S0/Smax ~0.7 favoured larger values of b (relatively more small stores) 2 

since these tend to give more runoff during the peak flows. As small b or large S0 increased the ratio 3 

of subsurface to surface runoff, the best runs in Fig.3 were all dominated by subsurface flow. 4 

The simpler parameterization with S0=0 was very sensitive to b and an advantage of allowing 5 

larger values of the threshold S0 was that this sensitivity was reduced, particularly for S0/Smax ~0.7. 6 

In all catchments the response surface of E showed slow variation around the optimum. This meant 7 

that the simulation for a given catchment was not critically dependent upon the exact parameter 8 

values and, more importantly, it was possible to identify a “best overall” set of parameters.  9 

4.3 A Priori Estimation of Parameter Values for MOSES_PDM 10 

The values of b can be set by calibration  [e.g. Warrach et al., 2002] or may be considered 11 

constant over all catchments [e.g. Habets et al., 1999]. Other studies have attempted to link the 12 

parameters of PDM-like models to physical characteristics. Dumenil and Todini [1992 ] calculated 13 

b as a simple function of the subgrid standard deviation of elevation, so that hilly terrain gave a 14 

larger value of b and would tend to give more runoff. Hagemann and Gates [2003] used a soil 15 

dataset to characterize the subgrid distribution of soil storage and fitted a pdf to this.  16 

In the present work, the relatively low sensitivity of MOSES_PDM to parameter values meant 17 

that both methods for estimating values a priori gave reasonable results. However, better results 18 

were obtained by using a single set of calibrated parameters for all catchments. Moreover, both a 19 

priori methods are potentially sensitive to the resolution of the data used. More catchments would 20 

need to be studied to determine if there is any useful relationship between parameter values and 21 

catchment characteristics, and in the meantime we propose to use the “best overall” parameters for 22 

all catchments. 23 

 24 

 25 
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5. Simulations with MOSES_TOP 1 

5.1 Estimation of parameters of the topographic index 2 

The pdf of λ for each catchment was modeled as a two-parameter gamma distribution, using 3 

the HYDRO1K global dataset (http://edc.usgs.gov/products/elevation/gtopo30/hydro) to calculate 4 

the mean (Λ) and standard deviation (σλ) of λ for each catchment. These statistics are sensitive to 5 

the resolution of the elevation data used [e.g., Wolock and Price, 1994; Zhang and Montgomery, 6 

1994; Saulnier et al., 1997; Kumar et al., 2000; Wolock and McCabe, 2000; Ibbitt and Woods, 7 

2004; Bormann, 2006; Pradhan et al., 2006]. Generally Λ decreases as finer resolution data are 8 

used, while Kumar et al. [2000] showed that σλ also decreases. For global or other large-scale 9 

applications, data on a 1 km grid (such as HYDRO1K) are often used, but Ibbitt and Woods [2004] 10 

suggested that data at much greater resolution would be required to estimate the “true” value. Figure 11 

4 summarises the results of several published estimates of how Λ varies with grid size. These 12 

studies have considered different locations and there is considerable scatter between the results. In 13 

general there appears to be a modest decrease of Λ down to grid sizes of the order of 100m, with a 14 

much larger rate of decrease for smaller grid sizes. Ibbitt and Woods [2004] and Pradhan et al. 15 

[2006 ] have considered how a theory for downscaling might be developed, but as yet there is no 16 

robust method with which to adjust Λ.  17 

Far from it being the case that Λ has a value that can be defined via readily-available 18 

topographic data, the value of Λ is highly uncertain. Some studies authors have acknowledged the 19 

scale-dependence of Λ, and have attempted to correct for it. For example, Chen and Kumar [2001] 20 

downscaled from 1km to 90m, while Niu and Yang [2003] downscaled from 1km to 100m. 21 

However, Fig.4 suggests that estimates of Λ may continue to vary to much smaller scales. This 22 

uncertainty in Λ is important because, as will be shown later, variations in Λ of this size can result 23 

in substantially different model performance.  24 
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In the current work, the simple relationship Λ= Λ1000-5 was to used to calculate Λ from the 1 

HYDRO1K value of Λ1000. This arbitrary rule was intended to capture some of the behaviour shown 2 

in Fig.4 as the grid size decreases from 1km to of the order of 10m. Implicit in this approach was 3 

the assumption that there is a “correct” value of Λ, which might be determined with high resolution 4 

data. This gave values of 7·6, 6·0 and 7·3 for the Ain, Ardeche and Ognon respectively. No attempt 5 

was made to account for the effect of data resolution on σλ. The calculated values of Λ are clearly 6 

subject to large uncertainty and the sensitivity of the models to the value of Λ is explored below. 7 

5.2 Calibration of MOSES_TOP 8 

Existing global datasets generally do not contain enough information to specify a vertical 9 

profile of Ks. Previous studies have adopted a variety of approaches to relate a given value of Ks to a 10 

surface value (Ks0) and the decay parameter f [Stieglitz et al., 1997; Chen and Kumar, 2001; 11 

Warrach et al., 2002; Decharme et al., 2006]. For the current work, the value of Ks that was 12 

provided for each catchment was assumed to be the average down to a depth of 2m (results were not  13 

particularly sensitive to this depth). The value of Ks0 was then calculated for each value of f. This 14 

resulted in relatively large values of Ks close to the surface, consistent with the existence of 15 

macropores and less compacted soil in these layers. 16 

MOSES_TOP was calibrated by varying f over the range 1 to 9, and α over the range 1 to 100. 17 

This range of α  was motivated by results in the literature. Chen and Kumar [2001] used a value of 18 

2000, found by calibration, while Niu and Yang [2003] used values in the range 10-20. In a review 19 

of published results, largely from laboratory and pumping tests, Kumar [2004] noted values in the 20 

range of 0·4 to 562, with most studies suggesting a maximum of less than 100. 21 

The calibrated parameter values are shown in Table 4. Again, it was possible to identify a 22 

single set of parameters that gave good results in all catchments: f=3·0, α=100. The values of f 23 

found by calibration were of the order of 3-4 and were broadly consistent with those found in 24 

previous modeling studies [Stieglitz et al., 1997; Chen and Kumar, 2001; Warrach et al., 2002; Niu 25 
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and Yang, 2003; Decharme et al., 2006], and certainly within the wide range found by Beven [1982] 1 

in observations. The last line in Table 4 shows that the decision to restrict α to values of 100 or less 2 

did not drastically affect the results. 3 

The last two bars in each section of Figure 2 represent E for MOSES_TOP calibrated for each 4 

catchment, and MOESES_TOP with “best overall” parameters. Simulations with MOSES_TOP 5 

were better than those with MOSES in all catchments, particularly the Ain and Ardeche. The 6 

simulated hydrograph shown in Fig.1e confirms that the timing and size of peak flows were well 7 

captured by MOSES_TOP, and recessions were also generally well matched. Figure 1f shows that 8 

the optimal parameters resulted in runoff that consisted largely of subsurface flow (84%). Although 9 

MOSES and MOSES_TOP were both dominated by subsurface flow, the more rapid variations of 10 

MOSES_TOP compared much more favorably with the observed streamflow.  11 

5.3 Sensitivity of  MOSES_TOP 12 

The sensitivity of MOSES_TOP to the values of f and α is illustrated for the Ain in Fig.5a. 13 

With f=3, using α=1 gave simulations that were much too ‘flashy’ due to low baseflow and a large 14 

saturated fraction. A better match to observations was found with larger values of α which gave 15 

increased baseflow and smaller saturated fraction. Sensitivity to α was small for α≥200, but was 16 

much greater when α was in the range suggested as physically plausible, namely α~100. (This result 17 

is sensitive to the value of Λ – see below). 18 

Larger values of f gave faster decrease of Ks with depth, which tended to produce a higher 19 

water table (i.e. closer to the surface) and greater baseflow. With α=2000, using f=1 gave a lower 20 

water table but low flows were too high and peaks too low. f=8 meant the low flows were too small, 21 

but the column could wet up quickly, giving large saturated fraction and peak flows that were too 22 

great. Hence an intermediate value of f gave best results (Fig.5a). 23 

The model’s sensitivity to Λ is summarized in Fig5b, which shows E as a function of ∆Λ1000, 24 

the amount subtracted from Λ1000. Increasing Λ decreases baseflow by Eq.1 and gives a higher 25 
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water table. Figure 5b shows that for f=3, α =1000, sensitivity to Λ was low for values of ∆Λ1000<-1 

2. For α =100, ∆Λ1000<-5 was required and the standard runs (∆Λ1000=-5) lay in this regime. For 2 

α=1, ∆Λ1000≈-10 (c.f. average Λ1000=11.6) was required to get similarly large E values. This 3 

parameter interdependency is considered further in the next section. 4 

5.4 Interplay Between Parameters of  MOSES_TOP 5 

Previous studies with TOPMODEL noted that the same runoff could be obtained in 6 

simulations with different values of Λ, as long as the transmissivity values were adjusted 7 

appropriately [Franchini et al., 1996; Saulnier et al., 1997]. For TOPMODEL, the problem was 8 

often approached in terms of how to adjust Λ so that values of Ks0 found by calibration could be 9 

applied in models of different gridbox size. In the present work, Ks0 was set using soil data and in 10 

that sense was removed from the problem. However, the introduction of α means that the terms α 11 

and e
-Λ

 in Eq.1 can show similar compensation, assuming the same depth to water table. That is, 12 

considering two simulations with identical values of f, Ks0 and zw, but the first uses (Λ1, α1) while 13 

the second has the distinct values (Λ2, α2), Eq.1 shows that the same runoff will result if 14 

α2= α1 exp(Λ2- Λ1)     (2). 15 

Franchini et al. [1996] show that the assumption of equal zw is generally valid for TOPMODEL, 16 

and comparisons of simulations confirmed that Eq.2 was also a good approximation for 17 

MOSES_TOP across a wide range of parameter space. This compensation between parameters 18 

explains the family of curves seen in Fig.5b, with the maximum E found at smaller Λ as α 19 

decreases. The large values of α that were found by calibration in Chen and Kumar[2001] may, in 20 

part, have been necessary to adjust for insufficient downscaling of Λ.. 21 

The TOPMODEL-type parameterization used here is, in some senses, over-parameterized. 22 

The values of α and Λ are highly uncertain, and there is compensation between them. This 23 

motivated Niu and Yang [2003] to develop an alternative parameterization, which is described in 24 

Section 6.2 below. 25 
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6. Alternative TOPMODEL-type Parameterizations 4 

The previous section established that a parameterization based on TOPMODEL gave the best 5 

simulations of runoff. TOPMODEL has been implemented in a variety of ways in land surface 6 

models. This section considers the sensitivity of our model to aspects of the parameterization. 7 

6.1 Description of MOSES_TOPgc 8 

Gedney and Cox [2003] implemented TOPMODEL in MOSES assuming that the exponential 9 

profile of Ks only held below the bottom of the standard soil model at 3m. The standard soil layers 10 

were augmented by a deeper layer in which a simplified treatment of soil water was used. In the 11 

present work, tests showed that this model was relatively unresponsive because the soil moisture in 12 

the deep layer was assumed to all lie below the water table, with a dry layer between this and the 13 

bottom of the standard soil model. To produce a more realistic response of the water table, the 14 

moisture distribution in the deep layer was taken to be in equilibrium with the drainage at the 15 

bottom of the standard soil model. This modified version was used here as MOSES_TOPgc 16 

MOSES_TOP and MOSES_TOPgc differed in terms of the vertical variation of Ks and in the 17 

number of soil layers. Both required the parameters f and α to be calibrated, and Λ was set to Λ1000-18 

5.  19 

 20 

6.2 Description of MOSES_TOPsim 21 

Niu and Yang [2003] and Niu et al. [2005] described a model called SIMTOP that was 22 

inspired by the form of  TOPMODEL, but was considered simpler. In the present study, this model 23 

was implemented as MOSES_TOPsim. The saturated fraction was calculated as 24 



 18 

)exp(max wsat cfzff −=  1 

where fmax is the saturated fraction when the mean depth to the water table is zero, and can be found 2 

as the fraction of the catchment with λ≥Λ. The value of c was found by fitting an exponential 3 

distribution to that part of the pdf with λ≥Λ, where an exponential often gives a good fit [Woods 4 

and Sivapalan, 1997; Niu et al., 2005]. Subsurface runoff is calculated as 5 

 wfz

bb eRR
−= max  (3) 6 

where the parameter Rbmax is the subsurface runoff when the depth to the water table is zero. Niu et 7 

al. 2005] considered that the advantage of using Eq.3 rather than Eq.1 to calculate Rb was that the 8 

single, entirely calibrated term Rbmax replaced the product of α, Ks0, 1/f and e
-Λ

.  9 

MOSES_TOPsim was implemented with four soil layers down to the depth given in the soil 10 

dataset. In all other respects, MOSES_TOPsim followed MOSES_TOP.  11 

6.3 Calibration of MOSES_TOPgc and MOSES_TOPsim 12 

 Table 4 shows that, after calibration, MOSES_TOPgc performed slightly better than 13 

MOSES_TOP. MOSES_TOPgc, for which Ks decays only in the deep layer, favored higher values 14 

of f which reduced Ks more quickly in the deep layer. Sensitivity to parameter values was also 15 

similar in each model (not shown). In summary, the modifications of Gedney and Cox [2003] 16 

appear to have largely retained the functioning of a model based on Stieglitz et al. [1997]. 17 

MOSES_TOPsim was calibrated by varying f in the range 0 to 8, and Rbmax over 0·5-10×10
-4

 18 

kg m
-2

 s
-1

. Table 4 shows that this version of the model could be calibrated to give statistics very 19 

similar to those of MOSES_TOP and MOSES_TOPgc. The optimum value of f =3 was similar to 20 

that found by Niu et al. [2005], while Rbmax=1.0×10
-3

 kg m
-2

 s
-1

 was slightly larger, although 21 

different catchments were studied. Again, the optimum parameters meant more subsurface runoff 22 

(89%) than surface runoff. By equating Eq.1 and Eq.3, using f=3 and other values appropriate to the 23 
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catchments, we find that Rbmax=1.0×10
-3

 kg m
-2

 s
-1

 is equivalent to α≈250 on average, which is 1 

comparable to the values used for MOSES_TOP. 2 

 3 

 4 

7. Intercomparison of models 5 

7.1 Runoff 6 

The ability of each model to simulate the observed streamflow is summarized in Table 5, 7 

while values of E can be compared in Fig.2. In Table 5, values shown are for the best overall 8 

parameter values for each model (that is, the parameter values that when used in all catchments 9 

gave the largest E averaged over all catchments). For E and MAE, all of the parameterizations 10 

scored better than the original MOSES. The best models were MOSES_TOPgc and 11 

MOSES_TOPsim. Similar results held for the bias, although MOSES_TOP actually increased the 12 

bias. The fact that all statistics tended to improve while calibration considered only E, increases our 13 

confidence that the new models are a real improvement. The sensitivity of the calibrated models to 14 

changes in parameters around the optima was also broadly similar – as shown in Fig.2 for 15 

MOSES_PDM and MOSES_TOP. 16 

In view of the remaining uncertainties, and the likelihood of variations between catchments, 17 

all the TOPMODEL-type parameterizations can be considered to belong to a “top group” that 18 

performed best. The fact that all the TOPMODEL-type formulations can be calibrated to perform 19 

similarly is not surprising, given that the process representation is very similar in each. The 20 

TOPMODEL approach gave subsurface runoff that could vary more rapidly than the formulation 21 

used in MOSES and MOSES_PDM. The longer term behavior in recessions was also captured 22 

better, as shown by the autocorrelation of streamflow, which is shown for the Ain in Fig.6. That is, 23 

the alternative formulation of subsurface flow in the TOPMODEL-type models was crucial to their 24 

superiority, with a lesser contribution from the saturation excess surface flow (although the two are 25 
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intimately linked). At the scale of these catchments (>1000 km
2
) it is quite possible that, outside of 1 

the stream network, subsurface flow is dominant. 2 

While the TOPMODEL group introduced alternative ways of calculating both surface and 3 

subsurface runoff, MOSES_PDM represented an intermediate class in which only the calculation of 4 

surface runoff was altered from MOSES. Consistent with this, results were intermediate between 5 

those of MOSES and the TOPMODEL group, although E values were close to those of the latter. 6 

For MOSES_PDM, the inclusion of saturation excess surface runoff during rain events greatly 7 

improved the simulation of peak flows. The contribution of surface runoff meant MOSES –PDM 8 

showed more variation than MOSES over timescales of a few days, but at longer timescales the 9 

curve for MOSES_PDM relaxes back onto that for MOSES (Fig. 6), because both simulated 10 

drainage in the same way. It seems likely that the performance of MOSES and MOSES_PDM could 11 

be improved by altering the representation of subsurface drainage (and calibrating any additional 12 

parameters), but this was not investigated here. 13 

The new parameterizations tended to perform better than MOSES in the Ain and Ardeche, but 14 

their superiority was less marked in the Ognon. In the Ain and Ardeche, the correlation of 15 

precipitation and streamflow was greatest when streamflow was lagged by one day (not shown). In 16 

the Ognon, the maximum correlation occurred with a lag of 3 days. This simple result could be 17 

influenced by several factors, but suggests a difference between the catchments. The nature of this 18 

difference is unknown, but possible factors are that the Ognon has extensive limestone and karst 19 

[BRGM, 1970, although some is also present in the Ain], and is also the flattest catchment studied. 20 

 21 

7.2 Soil water and energy balance 22 

The catchments studied here were relatively wet and the various parameterizations tested had 23 

relatively little impact on the total runoff or evaporation: soil evaporation was rarely limited by 24 

moisture availability and changes in surface runoff were largely balanced by opposite changes in 25 
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the subsurface. However, moisture stress became more important in drier summers and then the 1 

calculated turbulent fluxes were sensitive to the parameterization of subgrid variability. Figure 7a 2 

show the soil wetness (expressed as a fraction of saturation) in the top 1m of soil for the Ardeche 3 

catchment during part of 1986. (MOSES, MOSES_PDM and MOSES_TOPgc simulated similar 4 

soil wetness during this period, so only MOSES is shown. Similarly, MOSES_TOPsim was similar 5 

to MOSES_TOP.) In MOSES, the period of vegetation stress started a month earlier and lasted 6 

longer than with MOSES_TOP, with substantial impacts on the modeled evaporation (Fig.7b). 7 

Cumulative evaporation was 28% greater in MOSES_TOP over the period June to September 1984 8 

while sensible heat was 31% lower (not shown). Differences of this magnitude would have 9 

substantial impact on an atmospheric model: if this average heat flux difference was assumed to 10 

occur over 12 hours of daytime and to diverge in a 1km deep boundary layer, the temperature 11 

difference would be ~1.3K. 12 

Although all the TOPMODEL-based models were calibrated to give similar performance for 13 

runoff, their internal state variables often had rather different values. For example, during the period 14 

shown in Fig.7 the water table was on average 1.4m deeper in MOSES_TOPgc than in 15 

MOSES_TOP, as a result of differences in parameterization and parameter values. Although this 16 

difference was not significant to the present work, it could be important for other processes, for 17 

example trace gas emission over wetlands. 18 

 19 

8. Discussion 20 

 When calibrated, both the PDM and TOPMODEL-type approaches perform better than the 21 

standard MOSES model which has no representation of subgrid soil moisture variability. The 22 

TOPMODEL-type approach is found to be superior over three catchments of the size of a typical 23 

gridbox in an atmospheric model. This is in agreement with the findings of Warrach et al.[2002] for 24 

a single, small catchment. The similar forms and results of the TOPMODEL-type parameterizations 25 

suggest that any of these models could be used, but this result will have to be confirmed for other 26 
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environments. The PDM and TOPMODEL-TYPE approaches have optimum parameter values that 1 

do not vary much for the three catchments studied, suggesting that detailed calibration may not be 2 

required for every catchment. 3 

For models using a PDM-like approach, Dumenil and Todini [1992] and Hagemann and 4 

Gates [2003] have suggested how the parameters can be related to catchment characteristics, but 5 

these require further investigation and most studies have calibrated the parameters. 6 

In principle, an attractive feature of TOPMODEL is that readily-available elevation data can 7 

be used to define an important input, namely the pdf of λ. However, many studies have shown that 8 

the pdf is sensitive to the resolution of the data, and so even the topographic parameters are 9 

uncertain. This uncertainty has led some to abandon or revise the use of λ in their models [Niu et 10 

al., 2005; Decharme et al., 2006]. In the present work, compensation between parameters meant 11 

that the importance of uncertainty in λ varied with the value of α. In the present study, the approach 12 

taken was to adjust Λ (broadly in line with that suggested by scaling studies) and calibrate α within 13 

the range suggested as physically reasonable. The robustness of this procedure will be investigated 14 

in future work. Users of TOPMODEL-type models must be aware of the uncertainty in λ and its 15 

possible impact on their model and its calibration. 16 

Despite the large uncertainty in global fields of λ, there does appear to be useful information 17 

in this data. For example, our unpublished work shows significant correlations between HYDRO1K 18 

λ and observed extent of inundation. Thus although the absolute value of λ is uncertain, it might be 19 

possible to employ a relatively simple downscaling or correction method, and retain useful 20 

information about spatial variability.  21 

The large uncertainty in parameter values for the models studied suggests that some 22 

calibration is currently essential for models of runoff generation. The need to calibrate a model is 23 

not necessarily a major obstacle to global implementation if, as was the case here, the model is not 24 

very sensitive to variations of parameter values around the optimum values. Further, Gulden et al. 25 

[2007] suggest that a suitable choice of hydrological parameterization can reduce the sensitivity of a 26 
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model to poor choices of uncertain parameter values, although which of the schemes tested here 1 

would fare best in that respect has not been examined. 2 

Although it is tempting to relate all these models, and in particular those based on 3 

TOPMODEL, to processes that occur on the scale of a small catchment, they are all highly 4 

simplified representations of reality. Particularly at larger scales, the parameterizations may be 5 

better thought of as convenient functional forms that capture some of the essential dynamics of 6 

catchments. 7 

 8 

 9 

9. Conclusions 10 

The impact of different parameterizations of runoff generation in the MOSES land surface 11 

model was tested using observed streamflow from three mesoscale catchments. Parameterizations 12 

based on the Probability Distributed Model (PDM) and TOPMODEL were implemented. Runoff in 13 

the standard MOSES is dominated by drainage which varies too slowly to match the observed 14 

streamflow. MOSES_PDM added a representation of saturation excess surface runoff to the 15 

standard model, while the TOPMODEL-based models additionally altered the representation of 16 

subsurface runoff. After calibration, the alternative parameterizations performed considerably better 17 

than the standard model. The best results were found using any of the parameterizations based on 18 

TOPMODEL, which were better because they allowed the subsurface runoff to vary more quickly, 19 

with smaller volumes of surface runoff contributing to flow peaks. Although all the new models 20 

required extra calibration, a single set of parameter values was identified for each that could be used 21 

in all catchments with results comparable to those found from calibration. Attention was drawn to 22 

uncertainty in the value of the topographic index, which is an important parameter in TOPMODEL-23 

type models. The simulation of turbulent fluxes during dry periods was sensitive to the choice of 24 

parameterization, which would be important when coupled to an atmospheric model. 25 



 24 

Our future work aims to extend this work to other environments, and to investigate the use of 1 

catchment characteristics for estimating parameters a priori. We also intend to investigate the use of 2 

remote sensing products for the assessment of runoff parameterizations, particularly moisture stress 3 

[e.g. Anderson et al., 2007], inundation and wetland extent [e.g. Prigent et al., 2001]  and changes 4 

in terrestrial water storage [e.g. Niu et al., 2007]. 5 
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 7 

Appendix: The calculation of saturation excess surface runoff in MOSES_PDM 8 

 9 

Given a rainfall rate P (net of interception) over a timestep of length ∆t, the rate of saturation 10 

excess surface runoff (Rs) is found as  11 
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where b, fsat, S, Smax and So are as described in Section 2.2.  16 
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Figure 1: Examples of 3-day average precipitation and streamflow for the Ain, during part of the 1 

validation period. (a) The components of precipitation. The scale on the right hand side shows the 2 

precipitation in terms of an equivalent streamflow rate. (b) streamflow as modelled by MOSES - 3 

this was almost all subsurface flow (c) streamflow as modelled by calibrated MOSES_PDM (d) 4 

surface and subsurface components of runoff from MOSES_PDM (e) as c but for calibrated 5 

MOSES_TOP (f) as d but for calibrated MOSES_TOP. 6 

 7 

 8 

Figure 2: Efficiency for 3-day average flow during the validation period, comparing MOSES with 9 

modified versions of the model. Values are shown for three catchments, and the average over the 10 

catchments. For each, six models are compared. The first bar represents MOSES, the next three bars 11 

represent versions of MOSES_PDM, and the final two bars represent versions of MOSES_TOP. 12 

For MOSES_PDM, PDM_0 denotes a model with S0=0, PDM_calib is the calibrated model for 13 

each catchment and PDM_best is the best overall model. The adjacent whiskers indicate the range 14 

given by varying S0 ±10% about the best overall model. For MOSES_TOP, TOP_calib denotes the 15 

calibrated model for each catchment and TOP_best is the best overall model. The whiskers indicate 16 

the range given by varying f and α by ±10% about the best overall model. 17 

 18 

 19 

Figure 3: Sensitivity of MOSES_PDM to parameter values, using data for the Ain from the 20 

validation period. 21 

 22 

 23 

Figure 4: Published estimates of how the average topographic index changes with the resolution of 24 

the input data. Bracketed numbers in the legend give the range of resolution considered in each 25 
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study. The results for Ibbit and Woods (2004) are extrapolated down to 1m, using the relationship 1 

proposed in their Fig.9. 2 

 3 

 4 

Figure 5: Sensitivity of MOSES_TOP to parameter values, using data from the Ain catchment in the 5 

validation period. (a) Sensitivity to α [with f=3] and f [with α=100]. Λ was given by its adjusted 6 

value Λ1000-5  (b) Sensitivity to Λ with f=3, for four values of α. ∆Λ1000 is the difference from Λ1000. 7 

 8 

 9 

Figure 6: Autocorrelation of 3-day average flow in the Ain during the validation period, for 10 

observed and modelled flows. 11 

 12 

 13 

Figure 7: Modelled 5-day averages for the Ardeche, as simulated by MOSES and MOSES_TOP. (a) 14 

Soil wetness in the top 1m as a fraction of saturation. The dashed line shows the wetness above 15 

which transpiration is not restricted by soil water. (b) Soil evaporation (transpiration plus 16 

evaporation from the soil surface).17 
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TABLE 1: Statistics of the catchments. Elevation statistics were calculated from HYDRO1K data. 1 

The runoff ratio is the ratio of streamflow to precipitation. Precipitation and runoff ratio are for 2 

August 1986-July 1989. The runoff ratio for the Ardeche is for August 1987-July 1989. 3 

 4 

 Area 

(km
2
) 

Average 

elevation 

(m) 

Standard deviation 

of elevation (m) 

Precipitation 

(mm) 

Runoff 

ratio 

Ain at Vouglans 1120 742 198 1699 0.81 

Ardeche at Sauze 

St Martin 

2240 571 364 1430 0.64 

Ognon at Pesmes 2040 336 120 1275 0.47 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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TABLE 2: Statistics of the streamflow observed and modeled by MOSES for August 1986 to July 1 

1989, calculated using three-day averaged flow. 2 

 Observed mean 

flow (m
3
 s

-1
) 

Bias (%) Mean absolute 

error (%) 

Efficiency 

Ain 42.3 3 53 0.50 

Ardeche 64.8 -4 42 0.64 

Ognon 37.4 25 46 0.65 

 3 
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TABLE 3: Values of the calibrated parameters and model efficiency (E) during the validation 1 

period, for MOSES_PDM. b is the shape factor, S0 is the soil water storage below which there is no 2 

surface runoff and Smax is the maximum possible gridbox soil water storage. Model versions were 3 

PDM_0 (with S0=0) and PDM_calib (calibrated for each catchment). Overall best denotes the single 4 

set of parameter values that gave best results when used for all catchments, and the E value is the 5 

average over the catchments. 6 

 7 

 PDM_0  PDM_calib 

 b E  S0/Smax B E 

Ain 0.25 0.67  0.75 10 0.75 

Ardeche 0.25 0.79  0.75 10 0.88 

Ognon 0.0 0.65  0.75 0.5 0.69 

Overall best 0.0 0.60  0.75 10 0.78 

 8 
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TABLE 4: Values of the calibrated parameters and model efficiency (E) during the validation 1 

period, for versions of MOSES with TOPMODEL-type parameterizations. f is the decay coefficient 2 

for saturated hydraulic conductivity, α is the anisotropy, which was allowed to vary between 1 and 3 

100, and Rbmax is the subsurface flow rate for water table depth of zero. Overall best denotes the 4 

single set of parameter values that gave best results when used for all catchments, and the E value is 5 

the average over the catchments. Overall best is also shown for runs with MOSES_TOP in which α 6 

was allowed to vary between 1 and 2000. 7 

 8 

 9 

 MOSES-TOP  MOSES-TOPgc  MOSES-TOPsim 

 f (m
-1

) α  E  f (m
-1

) α  E  f  (m
-1

) Rbmax 

(10
-3

 kg m
-2

 s
-1

) 

E 

Ain 3.0 100 0.87  7.0 100 0.87  3.0 0.8 0.89 

Ardeche 3.0 75 0.87  4.5 75 0.90  3.0 1.0 0.84 

Ognon 2.5 100 0.76  3.5 100 0.81  2.5 1.0 0.79 

Overall 

best 

3.0 100 0.81  4.5 100 0.84  3.0 1.0 0.82 

Overall 

best 

(α≤2000) 

3.5 2000 0.85  - - -  - - - 

 10 

  11 
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TABLE 5: Summary of performance of each model during the validation period. All runs used the 1 

“best overall” parameters for the model, i.e. the same parameters were used in all catchments. 2 

“Average” is the average over all catchments. 3 

  MOSES MOSES-

PDM 

MOSES-

TOP 

MOSES-

TOPgc 

MOSES-

TOPsim 

Efficiency Ain 0.50 0.75 0.87 0.87 0.89 

 Aredeche 0.64 0.88 0.88 0.90 0.84 

 Ognon 0.65 0.71 0.69 0.75 0.76 

 Average 0.60 0.78 0.81 0.84 0.83 

       

Ain +2.8 +2.5 -3.4 -1.7 -0.0 Bias (%) 

(model-

observed) 

Aredeche -3.7 -3.6 -8.1 -4.0 -8.5 

 Ognon +25.4 +25.4 +21.3 +21.3 +21.9 

 Average of 

absolute 

values 

+10.6 +10.5 +11.0 +9.0 +9.5 

       

MAE (%) Ain 53 37 25 26 23 

 Aredeche 42 29 24 25 26 

 Ognon 46 42 35 33 33 

 Average 47 36 28 28 27 

 4 



Figure 1: Examples of 3-day average precipitation and streamflow for the Ain, during part of the validation
period. (a) The components of precipitation. The scale on the right hand side shows the precipitation in terms
of an equivalent streamflow rate. (b) streamflow as modelled by MOSES - this was almost all subsurface flow
(c) streamflow as modelled by calibrated MOSES PDM (d) surface and subsurface components of runoff from
MOSES PDM (e) as c but for calibrated MOSES TOP (f) as d but for calibrated MOSES TOP.



Figure 2: Efficiency for 3-day average flow during the validation period, comparing MOSES with modified
versions of the model. Values are shown for three catchments, and the average over the catchments. For
each, six models are compared. The first bar represents MOSES, the next three bars represent versions of
MOSES PDM, and the final two bars represent versions of MOSES TOP. For MOSES PDM, PDM 0 denotes
a model with S0=0, PDM calib is the calibrated model for each catchment and PDM best is the best overall
model. The adjacent whiskers indicate the range given by varying S0 by ±10% about the best overall model.
For MOSES TOP, TOP calib denotes the calibrated model for each catchment and TOP best is the best overall
model. The whiskers indicate the range given by varying f and α by ±10% about the best overall model.

Figure 3: Sensitivity of MOSES PDM to parameter values, using data for the Ain from the validation period.



Figure 4: Published estimates of how the average topographic index changes with the resolution of the input
data. Bracketed numbers in the legend give the range of resolution considered in each study. The results for
Ibbit and Woods (2004) are extrapolated down to 1m, using the relationship proposed in their Fig.9.

Figure 5: Sensitivity of MOSES TOP to parameter values, using data from the Ain catchment in the validation
period. (a) Sensitivity to α [with f=3] and f [with α=100]. Λ was given by its adjusted value Λ1000 − 5 (b)
Sensitivity to Λ with f=3, for four values of α. ∆Λ1000 is the difference from Λ1000.



Figure 6: Autocorrelation of 3-day average flow in the Ain during the validation period, for observed and
modelled flows.

Figure 7: Modelled 5-day averages for the Ardeche, as simulated by MOSES and MOSES TOP.(a) Soil wetness
in the top 1m as a fraction of saturation. The dashed line shows the wetness above which transpiration is not
restricted by soil water. (b) Soil evaporation (transpiration plus evaporation from the soil surface).
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