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Abstract 23 
 24 
To provide fundamental decision support information for climate risk assessment in Hungary, an urban spatial development 25 
model of land cover change and population age structure dynamics was developed and applied to local integrated scenarios 26 
of climate change and stakeholder-derived socio-economic change. The four integrated scenarios for Hungary produced 27 
contrasting projections for urban patterns to 2100, but peri-urbanisation around Budapest was estimated to occur under all 28 
scenarios, together with a decline in working age population in the centres of the capital and major towns. This suggests 29 
that future urban planning needs to take into consideration the potential for underutilised urban infrastructure in the centre 30 
of the capital and pressures for social service provisioning in its outskirt. The integrated scenarios and model developed 31 
can be used in future studies to test the effectiveness of inter-sectoral policy responses in adapting urban planning to 32 
multiple climate and socio-economic challenges.  33 
 34 
Keywords 35 
 36 
Integrated modelling; Urban land cover change; Population distribution; Integrated socioeconomic and climate change 37 
scenarios; Stakeholder; Hungary;  38 
 39 
Highlights  40 
 41 
• An integrated model was developed of urban land cover change and population dynamics.  42 
• The model was applied to four integrated climate and socio-economic scenarios for Hungary. 43 
• Local stakeholders were closely involved and this ensured the plausibility and credibility of model projections.  44 
• Contrasting projections for urban patterns were produced to aid climate risk management. 45 
• Recommendations on good practices in collaborative environmental modelling were made. 46 
 47 
1 Introduction 48 
 49 
Public and scientific concern about the threat of climate change to urban areas and urban residents has become increasingly 50 
widespread: the world's urban population (over half of the total population) is expected to face more complex and often 51 
inter-related problems related to water scarcity (Schewe et al., 2014), energy demand (Christenson et al., 2006), public 52 
health (McMichael et al., 2006), amongst others. Many of these problems occur together, or are closely related  to one 53 
another, in urban environments and so, it is important to understand how urban and residential development patterns might 54 
evolve in the future, and how this affects the consequences of climate change on cities. 55 
 56 
Effective policy responses to climate change need to take account of, and coordinate, different perspectives, knowledge 57 
and interests across sectors and governance levels (Adger et al., 2005; Hurlimann and March, 2012). Knowing the role of 58 
regional and local-level actors is essential in understanding responses to policy, socio-economic and environmental drivers 59 
in cities (Antonson et al., 2016; Eikelboom and Janssen, 2013; Kumar and Geneletti, 2015). Targeted responses may be 60 
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required at regional to local levels to tackle ‘vulnerability hotspots’ where climate change impacts are particularly 1 
significant (Rannow et al., 2010). The capacity of, and interplay between, regional and local level institutions often plays 2 
a role in the functioning of multilevel governance and actions to promote such targeted policy (Hanssen et al., 2013; Vedeld 3 
et al., 2016). These considerations have resulted in a rapidly growing number of initiatives to develop lower level climate 4 
change responses, e.g., the ‘Mayors Adapt’ (http://mayors-adapt.eu/) and the ‘100 Resilient Cities initiative’ 5 
(http://www.100resilientcities.org/). However, such ambitions remain beyond the capacity of most local governments, 6 
owing to inadequate local-level information to support decisions and a lack of technical knowledge exchange across levels 7 
and sectors (c.f. Kumar and Geneletti (2015), and references therein). Assessments exploring urban development in 8 
response to climate change are urgently needed, in order to help support local governments in developing adaptation plans. 9 
 10 
Scenario-based model projections of future land cover change are one way of supporting decision-making for adapting to 11 
climate change (Harrison et al., 2016; Prestele et al., 2016). Scenario analysis provides information about future 12 
uncertainties in a structured and consistent manner, which can support decision-makers in evaluating policy alternatives 13 
towards robust decisions (Krueger et al., 2012; Schwarz, 1991). A long-term time scale (decades or centuries) is often 14 
required in developing scenarios related to climate change and land use change, as the climate system itself responds slowly 15 
to changes in greenhouse gas concentration (Moss et al., 2010). Furthermore, urban planners often need to consider longer 16 
time horizons in establishing infrastructure projects. Engaging local stakeholders in the co-creation of scenarios provides 17 
qualitative insight into future changes that are plausible and relevant. The co-creation of scenarios has been widely adopted 18 
in other studies, e.g.  Reginster and Rounsevell (2006), Volkery et al. (2008), Harrison et al. (2015) and Kok and Pedde 19 
(2016). Resources, knowledge and expertise brought by stakeholders can help to build trust and strengthen the feasibility 20 
of adaptation policies (Moss et al., 2010; Tompkins et al., 2008; Voinov and Bousquet, 2010; Voinov et al., 2016). 21 
Neglecting the engagement of stakeholders in climate change assessments may limit the effectiveness of policy responses 22 
and potentially result in policy failure (Vogel and Henstra, 2015).  23 
 24 
Understanding how cities adapt to climate change is at least partly dependent on knowing where people will live in the 25 
future. Hence, projecting plausible long-term trends in both fine-grained urban land cover and population distribution can 26 
contribute to improving the assessment of climate risks, and support the development of effective integrated mitigation and 27 
adaptation solutions. Existing urban models have focused mostly on projecting land use/cover changes using geostatistical 28 
models (Cheng and Masser, 2003; Dendoncker et al., 2007; Jokar Arsanjani et al., 2013b; Poelmans and Van Rompaey, 29 
2009; Verburg et al., 2004; Westervelt et al., 2011), or cellular automata (CA) and agent-based models, in which the 30 
decision-making processes of residents and/or policy-makers are embedded (Brown and Robinson, 2006; Fontaine and 31 
Rounsevell, 2009; He et al., 2008; Jokar Arsanjani et al., 2013a; Verburg et al., 2002; Vliet et al., 2009). Population is 32 
usually treated as an input and a higher level driver of land cover change, while the possible effects of land cover change 33 
on the distribution of population at lower (or cell) levels have largely been ignored. White et al. (2012) describe one of the 34 
few examples where transition rules about people’s spatial activities were embedded within a CA framework to model both 35 
land cover and population at the same resolution.   36 
 37 
A multi-scale modelling approach is important for supporting urban decision-making across different governance levels. 38 
A fine resolution model has greater flexibility in scaling-up local-level projections of urban pattern to higher levels and 39 
downscaling the effects of existing climate policies and action plans, most of which are long-term and have been developed 40 
for national or higher scales. In this study, we focus the model development on projecting long-term urban development 41 
patterns for an entire country (Hungary) at a spatial resolution that is fine enough to represent each local administrative 42 
unit. This goes beyond most existing urban models that have been developed for smaller regions, such as a province 43 
(Verburg et al., 2002), a river delta (Weng, 2002) or a city (Cheng and Masser, 2003; He et al., 2008). Nationwide studies 44 
with fine resolution applications are rare, with studies in the Netherlands (Verburg et al., 2004) and Belgium (Dendoncker 45 
et al., 2007) being notable exceptions. 46 
 47 
Including the impacts of climate change in modelling urban development has rarely been undertaken previously because 48 
of a lack of understanding of how climate change affects either urban land cover or population distribution (Black et al., 49 
2011b; Vari et al., 2003). For example, some extreme weather events, such as floods and landslides, can cause direct 50 
damage to urban infrastructure. However, properties and populations may remain in hazard prone areas because people 51 
have insurance cover, rely on the government to mitigate their risks, decide to stay as the risks do not outweigh the benefits 52 
of a more favourable location, or simply cannot bear the costs of relocation. Droughts and heatwaves may have less direct 53 
impacts on urban land cover and are less likely to elicit migration/relocation, as they could possibly be managed or people 54 
could change their behaviour to adjust to these challenges (Black et al., 2011a; Fielding, 2011). In this study, given the 55 
time period considered (up to 2100), short-lived and localised extreme weather events were not modelled explicitly. 56 
However, their aggregated effects on the regional economy through time were considered. Empirical evidence has shown 57 
that frequent extreme weather events are likely to cause significant damage to the national economy (Brown et al., 2013), 58 
which may influence urban development at some level (Reginster and Rounsevell, 2006).  59 
 60 
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The main purpose of this study is to provide scenario-based future projections of urban land use and population distribution 1 
patterns at a fine spatial resolution for the whole of Hungary. At the local level, the challenges arising from climate change 2 
are already apparent, with some parts of Hungary suffering from flooding, storms, heatwaves, and water shortages (Li et 3 
al., 2017). Information about the range of plausible, but uncertain, futures facing Hungary is fundamental in supporting 4 
multi-level climate change adaptive decision-making and cooperative land use management. To this end, we developed a 5 
model that integrates advances in urban development modelling. A set of integrated scenarios of potential long-term climate 6 
and socio-economic changes (up to 2100) were co-created with local stakeholders. The stakeholders also participated in 7 
reviewing the model structure and evaluating the accuracy and usefulness of model projections. We analysed the 8 
projections obtained under different scenarios and identified those parts of Hungary that are likely to face similar challenges 9 
in urban development regardless of the scenario. 10 
 11 
2 An integrated model for urban development 12 
 13 
2.1 Model structure and workflow 14 
 15 
This study is based on an integrated model that simulates the spatial dynamics of urban land use/cover change (including 16 
residential, commercial and urban green surface areas) and population dynamics for Hungary (named ALLOCATION). 17 
The ALLOCATION model consists of three sub-models operating at/across different spatial scale levels i.e., the national, 18 
regional and local levels (Figure 1, note: the NUTS3 and LAU1 levels are only for display purposes and have not been 19 
used in the current study). The general workflow is described in Figure 2. The model is based on a 1 km2 cellular grid, has 20 
a baseline year of 2010 and simulates urban land cover change with decadal time steps up to 2100. The 1 km resolution 21 
was chosen so that each town, village and district of Budapest could be represented by at least 1 cell. At the beginning of 22 
each time step, the model calls the economic change sub-model (section 2.2.1) to calculate changes in the NUTS2-level 23 
social, economic and demographic factors. The urban land cover change sub-model (section 2.2.2) then executes to: (i) 24 
estimate changes in the extent of the NUTS2-level artificial land cover based on the outputs from the economic change 25 
sub-model; and, (ii) allocate these projected changes to the 1 km cells. After the cell-level land cover extents are calculated, 26 
the population distribution sub-model (section 2.2.3) simulates residential preferences for different age groups based on 27 
the distribution of artificial land covers and redistributes the NUTS2-level population.  28 
 29 

 30 
Figure 1 Study region and definition of levels  31 
 32 
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 1 
Figure 2 Model structure, parameters and linkages to scenario drivers 2 
 3 
2.2 Model components 4 
 5 
2.2.1 Economic change 6 
 7 
The population distribution sub-model uses the national-level GDP data to estimate the ratio of climate change damage to 8 
GDP (D(T(t))) using Nordhaus’s temperature damage function: 9 
 10 
D(T(t)) = 1 - 1 /(1+0.0028388*(T2 (t)),         (1) 11 
 12 
where T(t) is the mean temperature increase above the pre-industrial level at time step t (Golosov et al., 2014). The sub-13 
model next disaggregates the revised GDP to the NUTS2 level using a simple empirical function derived from a linear 14 
regressive model based on the national and NUTS2-level GDP and population data from 2000 to 2010 (from the Hungarian 15 
Central Statistics Office, KSH). The GDP of a NUTS2 region in time step t is estimated as: GDP%(t) = 0.8899 * GDP%(t-16 
1) + 0.9348 * (Pop%(t-1)*Pop%(t) (adjusted R-squared = 0.99), where GDP%(t) is the ratio of the GDP of the NUTS2 17 
region to the GDP of the whole of Hungary and Pop%(t) is the ratio of the population of the NUTS2 region to the population 18 
of Hungary at time step t. 19 
 20 
2.2.2 Urban land cover change 21 
 22 
This sub-model simulates cell-level urban land cover changes based on changes in NUTS2-level economic and 23 
demographic factors. It was developed using the CORINE land cover datasets (CLC) at 100m resolution for 2000, 2006 24 
and 2012 (from the European Environment Agency, EEA, and the Hungarian Institute of Geodesy, Cartography and 25 
Remote Sensing, FÖMI). Three types of urban land cover were distinguished: (i) residential (‘Urban fabric’, CLC class 26 
111-112), (ii) commercial/industrial (‘Industrial or commercial units’, CLC class 121) and (iii) urban green/leisure (‘Green 27 
urban areas’, CLC class 141 and ‘Sport and leisure facilities’, CLC class 142). The grid reference system was based on the 28 
European Environment Agency (EEA) 1 km2 reference grid and used to extract the selected CLC land cover classes. The 29 
changes in these CLC datasets across time slices were analysed to develop the main empirical functions.  30 
 31 
Function 1 This function estimates changes in the NUTS2 level demand for urban area based on changes in GDP and 32 
population, following the methods and assumptions used in (Reginster and Rounsevell, 2006). Three regressive functions 33 
were developed to project the changes in the three urban land cover types. Additional GDP and population data were 34 
collected from the KSH census database. In the functions for residential (adjusted R-squared = 0.99) and 35 
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industrial/commercial (adjusted R-squared = 0.96) land cover changes, per capita GDP and the extent of existing urban 1 
land cover in the region are the key positive predictors. In the function for green/leisure land cover change (adjusted R-2 
squared = 0.99), the extent of industrial/commercial land cover, children (0-14) and working age (15-64) populations are 3 
negative predictors.  4 
 5 
Function 2 This function estimates a cell’s potential to be developed into different urban land cover types. Logistic 6 
regressive functions were calculated, which have been widely used in the development of previous urban growth models 7 
e.g., in Hu and Lo (2007), Jokar Arsanjani et al. (2013b) and Verburg et al. (2004). A wide range of explanatory variables 8 
were collected from various sources to describe (i) the accessibility (to urban centres, lakes and rivers), elevation, and 9 
neighbourhood urban composition of the cell, and (ii) the local (LAU2,  municipality or equivalent unit, Figure 1) 10 
urbanisation level and densities of roads and railways. We examined the collinearity in the spatial database and subdivided 11 
it for function development and evaluation. To account for spatial autocorrelation, two additional steps were taken. First, 12 
the cell-level geographical coordinates were included as explanatory variables, as spatial autocorrelation can be alleviated 13 
to some extent by introducing location into the function (Hu and Lo, 2007). Second, following Cheng and Masser (2003) 14 
and Verburg et al. (2004), a restricted spatial sampling scheme was designed to ensure that the sub-dataset used for function 15 
development contained minimum spatial autocorrelation between the independent variables. The predictive performance 16 
of the logistic functions was evaluated using AUC (the area under the curve) values. Cut-off values to divide predicted 17 
probabilities of land cover increase into occurrence or non-occurrence were set when the sum of the logistic function’s 18 
sensitivity and specificity was maximised (Liu et al., 2005). We built functions for each of the three urban land covers in 19 
each of the seven NUTS2 regions in Hungary. Different sets of predictors are included in the final models for different 20 
regions and land cover types (see the Electronic Supplementary Materials 1 for the explanatory variables and coefficients). 21 
The AUC values of the final models were mostly (26 out of 27) greater than 0.8, indicating good predictive power.  22 
 23 
Function 3 This function was built to test the theoretical effects of planning regulations on urban morphology. In real world 24 
cases, compact development may be pursued by local authorities to increase residential urban density and prioritise 25 
developments close to the urban core, in order to reduce travel distances and save energy (e.g., the concept of “Compact 26 
City”) (Reginster and Rounsevell, 2006). This type of planning regulation is introduced as , where ∈ 0,1  is 27 
the proportion of the land cover in a cell i’s neighbourhood (3km x 3km), and 0 is the parameter describing the 28 
intensity of the effect of planning on compactness. Thus,  = 0 indicates no regulation, and; as  increases the urban 29 
patterns’ shift from sprawled to compact. The parameter can also be regarded as an abstraction of the “optimal 30 
neighbourhood density” concept explained in previous studies (Caruso et al., 2007; Caruso et al., 2005), representing a 31 
preferred level of residential density (relative to non-urban area) in the neighbourhood, which can be affected by spatial 32 
planning regulations. In Hungary, suburbanisation has been strong from the mid-1990s to around 2005, following a shift 33 
in the government’s strategy towards more compact development to meet the demand for public services by a growing 34 
population (Stanilov and Sýkora, 2014). The outskirts of the Budapest region, however, remained popular for residential 35 
developments even after 2005, based on changes observed between CLC datasets. Despite the introduction of a major 36 
initiative to prevent suburban sprawl in 2005 in the ‘Act LXIV on Spatial Planning in the Agglomeration of Budapest’, the 37 
seven-year long negotiation to pass this law has still allowed a steady conversion of green and agricultural land into urban 38 
areas in the suburban periphery of Budapest. Based on these facts, in the model the initial value of  for 2000-2010 was 39 
set to 0.6 (medium sprawl, unsuccessful planning regulation) for the NUTS2 region of central Hungary (including Budapest, 40 
the capital, and Pest county, which surrounds the capital, Figure 1) and to 0.8 (slight sprawl) for the other regions. The 41 
regulation of urban compactness was assumed to influence both residential and commercial/industrial areas.  42 
 43 
Thus, this sub-model allocates the projected changes in the extents of the NUTS2-level land covers (estimated by Function 44 
1) to the cell-level based on the cells’ growth potential G, which is a multiplication of the developmental potential P 45 
(estimated by Function 1) by the strength of planning regulation on compactness C (estimated by Function 2). The spatial 46 
allocation rules allow more rapid development in cells with greater growth potential (details in the Electronic 47 
Supplementary Materials 1). Only increases are considered for residential and commercial/industrial areas. For urban 48 
green/leisure areas, both increases and decreases are allowed, as these areas are managed and can usually be converted into 49 
other land cover types. The model projects greater decreases from cells with lower growth potential for urban green/leisure 50 
areas, and with greater growth potential for residential and commercial/industrial areas.  51 
 52 
2.2.3 Population distribution  53 
 54 
This sub-model disaggregates the NUTS2 level, age-structured populations onto the 1km grid. It is based on a 55 
disaggregation model (Li et al., 2016b) which integrates residential preferences originating from regional economic 56 
theories and takes advantage of recent dasymetric modelling approaches. In the first step, this sub-model allocates working 57 
age populations (aged 15-29, 30-49 and 50-64) to inhabitable cells (where residential land is present) based on their age-58 
specific weights given to the different residential preference types. The residential preference (P) is approximated as a 59 
function of land cover density in a cell’s neighbourhood, for which the projections from the urban land cover change sub-60 
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model are used. Three types of preferences are considered for the social, economic and urban greenery amenities, which 1 
are estimated by residential, commercial/industrial and urban green/leisure land cover density in a cell’s neighbourhood, 2 
respectively. Another set of weights for territorial types is applied to reflect the relative attractiveness of living in the capital 3 
(aC), a town (aT) and a village (aV). The second step is based on the pattern projected in the first step. Thus, the allocation 4 
of the dependent populations (aged 0-14 and 65+) is driven by their dependency rates (D) to different groups of working 5 
age population residing in areas of different territorial types.  6 
 7 
Following the data-driven parameterisation method developed by Li et al. (2016b), the model was re-calibrated using the 8 
CORINE 2012 database and the LAU2 level population and age structure data from the KSH for each of the NUTS2 9 
regions. The following general rules were applied to redistribute working age populations: (i) all population groups give 10 
high preferences to social amenities; (ii) senior adults (50-64) have relatively lower preferences for economic amenities, 11 
which is in line with decreased purchasing power found in the literature, and relatively high preferences for urban green 12 
amenities, and; (iii) the attractiveness of villages decreases (relative to the capital and towns) as age-class increases. For 13 
the dependent populations: (i) children (0-14) depend heavily on young adults (15-29) in the capital and towns, on middle-14 
aged (30-49) populations in towns and villages, and on senior-aged working population (50-64) in the capital, and; (ii) the 15 
elderly (65+) depend relatively more on young adults (15-29) in the capital, and on the senior working age population (50-16 
64) in towns and villages (see the Electronic Supplementary Materials 1 for detailed residential preference weights and 17 
dependency ratios). 18 
 19 
2.3 Model development and evaluation  20 
 21 
The integrated model was developed using the Repast Simphony toolkit (version 2.1) and scripted in the Java programming 22 
language (North et al., 2013). This toolkit has been widely used in developing cell-based and agent-based models. The 23 
empirical functions of the model were developed using the R statistical language (R Core Team, 2012) before integration. 24 
Based on the guidance suggested in Bennett et al. (2013), an evaluation scheme was designed for the model which combines 25 
both quantitative and qualitative measures. Quantitatively, the model was run for one time step (10 year) with the land 26 
cover and population data of 2000 and these projections, i.e., urban land cover extents and age class-specific populations, 27 
were compared with observational data around 2010. Predicted changes in land cover extents were compared with the 28 
CORINE 2012 data from three perspectives: (i) up-scaled comparisons at the LAU2 (NUTS5) level, (ii) visual comparisons 29 
at the cell level, and, (iii) summarised comparisons using distance-density plots (see details in the Electronic Supplementary 30 
Materials 2). Projected changes in population and age structure were compared with the KSH’s 2011 census data at the 31 
LAU2-level only, as finer resolution observations were not available. Qualitatively, stakeholders assessed the overall model 32 
structure and the usefulness of model projections during several stakeholder workshops that took place between 2014 and 33 
2016 (introduced in section 3.1, and Figure 3).  34 
 35 
2.4 Sensitivity analysis 36 
 37 
In this study, the major source of uncertainty lies within the scenarios, due to the inherent uncertainty of future political, 38 
socio-economic and technological conditions. A secondary source is related to model uncertainty, which is dependent on 39 
the performance of the different model components and the relationships among them. A sensitivity analysis of the 40 
integrated model was performed to determine the robustness of our model projections and reveal which parameters are 41 
likely to be most effective as drivers for future projections (section 3.2). A simple one-at-a-time sensitivity analysis was 42 
performed to examine to what extent the model outcomes are influenced by changes in different parameters. Thus, the 43 
projection for the baseline condition was compared with those obtained by tuning each of the selected model parameters 44 
(by +10% in this study), while leaving the others unchanged. We firstly compared the key model outputs, i.e., extents of 45 
land cover classes and populations of age groups in the capital, towns and villages. Then, following suggestions by (Barreira 46 
González et al., 2015), further comparisons were made at the cell level for (i) cell-to-cell agreements, and (ii) the shape, 47 
fragmentation and heterogeneity of projections on both urban land cover and population distributions. A detailed 48 
explanation of the settings for the analysis and selection of matrices for spatial comparisons is provided in the Electronic 49 
Supplementary Materials 3. 50 
 51 
3 Scenario development and analysis 52 
 53 
3.1 Developing integrated scenarios with stakeholders 54 
 55 
Local scenarios for Hungary were based on global Representative Concentration Pathways (RCPs) and Shared Socio-56 
economic Pathways (SSPs). The RCPs describe potential trajectories for atmospheric concentrations of key greenhouse 57 
gases over time (van Vuuren et al., 2011), which are used as input to global and regional climate models to produce climate 58 
scenarios (see Madsen et al. (2016) for further details). The SSPs describe alternative narratives of future societal 59 
development (Kriegler et al., 2012). A set of scenario combinations (expressed as SSP x RCP) were selected (i) to cover 60 
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both high-end and intermediate climate change, and (ii) to capture the extremes of socio-economic development pathways. 1 
The climate scenarios selected were RCP4.5 and RCP8.5, which cover greenhouse gas concentrations from +4.5 to +8.5 2 
W/m2 and were estimated to lead to global mean temperature increases from the pre-industrial levels by  2 – 4.3 °C and 4 3 
– 7.8 °C by 2100, respectively. Four socio-economic scenarios were selected: SSP1, which emphasises a sustainable future, 4 
SSP3, whose central features are international fragmentation and regional rivalry, SSP4, with both across- and within-5 
country inequality, and SSP5, which describes a future of fossil-fuelled development and accelerated globalisation (O’Neill 6 
et al., 2015). A final set of four SSP x RCP scenario combinations were selected: (1) SSP1 x RCP4.5, (2) SSP4 x RCP4.5, 7 
(3) SSP3 x RCP8.5, and (4) SSP5 x RCP8.5. The background and rationales to these selections are discussed in detail by 8 
Kok et al. (2015b).  9 
 10 
The integrated scenarios were co-created with local stakeholders following principles developed by Gramberger et al. 11 
(2015) and Harrison et al. (2015). Figure 3 shows the general timeline of model and scenario development and how 12 
stakeholders were engaged. Two exploratory workshops focusing on the overall design of the study and to discuss and gain 13 
feedback on the model structure took place in December 2014 involving 9-12 key stakeholders from the public, civil and 14 
private sectors for each workshop. The stakeholders helped to provide sources of up-to-date data, expressed their opinion 15 
on the general acceptance of the model structure, and suggested model components to be included to address issues of local 16 
interest (i.e., population distribution and age structure). These were followed by a larger workshop on scenario development 17 
in July 2015 involving 25 participants. At this workshop, stakeholders were provided with information about the global 18 
integrated scenarios for future climate and socio-economic changes as a starting point. Then, with guidance from 19 
professional facilitators, they worked together to qualify and localise these scenarios for Hungary for the three time periods 20 
of 2010-2040, 2040-2070 and 2070-2100. Progress in the development of the model was reported for discussion leading 21 
to further model refinement to include factors of interest to the stakeholders (e.g., the attractiveness of living in villages to 22 
account for urban out-migration). The local scenarios were reviewed and extended by a subset of stakeholders at another 23 
workshop held in March 2016. The resulting local scenarios provide consistent and plausible descriptions of how events 24 
could unfold over time in major Hungarian sectors such as the economy, demographics, politics, urban development, 25 
agriculture, health, etc. These four integrated scenario were then applied to the ALLOCATION model, and the model 26 
results presented and discussed with stakeholders in a further workshop held in July 2016 involving 34 participants and 27 
later at two in-between workshops in December 2016 with 9 and 10 participants, respectively. The objectives of these 28 
workshops were to further evaluate whether the model projections were understandable and to use the projections to 29 
stimulate stakeholders’ discussion on potential policy responses to climate and socio-economic change.  30 
 31 

 32 
Figure 3 A timeline and interactions of model development, scenarios developments and stakeholder workshops. 33 
 34 
3.2 Quantifying scenario drivers for urban development simulations 35 
 36 
The localised scenario storylines were quantified for those potential drivers of future urban development which can be 37 
represented through the model parameters (Figure 2). Six scenario drivers were selected for quantification based on the 38 
availability of data on future projections, the level of interest to local stakeholders and the effort required for their 39 
quantification (Table 1). The quantification of these drivers follows the logic of the Story-and-Simulation approach 40 
(Alcamo, 2001, 2008); an iterative procedure to link narratives and quantification in scenario exercises. Two, out of the 41 
six, scenario drivers were directly quantified by stakeholders in the scenario workshops (i.e., attractiveness of living in 42 
villages and the extent of urban green areas), since these were considered to reflect the expertise of the stakeholders. The 43 
other scenario drivers were quantified from downscaling existing databases or models or through expert interpretation of 44 
the scenario narratives by the modelling team. 45 
 46 
Economy National-level GDP data were downloaded from the SSP Database (tntcat.iiasa.ac.at/SspDb) of the International 47 
Institute for Applied Systems Analysis (IIASA). The dataset provides future trends of GDP up to 2100, projected under 48 
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different SSP scenarios. In the ALLOCATION model these projections were prepared as inputs for the economic change 1 
sub-model to be downscaled and passed on to the urban land use/cover change sub-model for land demand estimation. 2 
 3 
Climate. Projections of temperature were based on bias-adjusted and downscaled projections from global and regional 4 
climate models (Madsen et al., 2016). Temperature projections were extracted for Hungary under the RCP4.5 and RCP8.5 5 
scenarios from the HadGEM Earth System Model downscaled with the RCA regional model. In ALLOCATION, 6 
temperature is an input to the economic change sub-model which affects GDP.  7 
 8 
Demographics.  National-level population projections from IIASA’s SSP Database were statistically downscaled to the 9 
NUTS2 level for Europe (Terama et al., In press). Decadal population data up to 2100 for Hungary (Terama, 2016) were 10 
extracted for the present study as input to all three ALLOCATION sub-models: the economic change sub-model (to 11 
downscale national-level GDP to NUTS2 level); the urban land use/cover change sub-model (to estimate changes in 12 
demand for urban land), and the population distribution sub-model (to be distributed onto the 1 km grid).  13 
 14 
Preferences. The driver, attractiveness of living in a village (versus living in more urbanised areas such as towns or the 15 
capital) is considered as a driver of urban out-migration. Possible changes in this factor under the four SSP x RCP scenarios 16 
were quantified in the stakeholder workshop using Fuzzy Set Theory (Kok et al., 2015a). In the model, attractiveness of 17 
living in villages is a factor in the population distribution sub-model which shapes the cell-level distribution of working 18 
age groups and, consequently, that of the children and the elderly. 19 
 20 
Urban planning. Scenario drivers considered in this sector include the extent of urban green area and regulation of urban 21 
compactness. Urban green area (or infrastructure) can play an important role in the pursuit of high quality sustainable 22 
development in terms of delivering improved quality of life, promoting healthy communities and creating high quality 23 
environments for a competitive economy (Kambites and Owen, 2006). Future planning directions and rates of change in 24 
urban green area under the four SSP x RCP scenarios were discussed and analysed during the quantification exercises in 25 
the stakeholder workshops using the Fuzzy Set Theory approach. In the model, the rates of planned change in urban green 26 
area, growth or shrinkage, are applied for the urban land use/cover change sub-model to estimate the cell-level changes in 27 
the extent of green/leisure land. These changes further influence cells’ residential preference and population sizes. The 28 
driver of planning regulations represents government efforts towards delivering compact urban development constrained 29 
by the specific SSP x RCP scenario. As an abstract concept, this driver was discussed during the stakeholder workshop for 30 
qualitative trends only, i.e., more compact or sprawled development trends at a low or high level compared to the baseline 31 
(sprawled). In the model, the low and high levels were converted to 30-year changes in  by 33% and 67% (Function 3, 32 
the urban land cover change sub-model, an increasing  indicates changes towards compactness). 33 
 34 
The ALLOCATION model was run by assigning scenario-specific values to these scenario drivers. By using the CORINE 35 
land cover data 2012 as an approximation for a baseline land cover map, the projected changes by 2100 are compared 36 
across the different integrated climate and socio-economic scenarios. The results for the overall extent of urban land cover 37 
and population density (inhabitants per km2 residential areas) are mapped at the LAU2 level (as defined in Figure 1) for a 38 
better visualisation of the general trends. Projections for different urban land cover types and population age classes are 39 
summarised using the KSH’s territorial typology, by which LAU2-level administrative units are classified into five types, 40 
namely, capital (districts), town (county seat or with county rights), town, large village and village.  41 
 42 
Table 1 Scenario settings and estimation for model variables 43 

Class Scenario driver Period 

Integrated climate and socio-economic 
scenarios a 

Source 
Estimation 
method SSP1 x 

RCP4.5 
SSP4 x 
RCP4.5 

SSP3 x 
RCP8.5 

SSP5 x 
RCP8.5 

Economy GDP 

2010-2040 +85.10% +63.74% +50.63% +116.91% 

Database 
IIASA SSP 
Database 

2040-2070 +40.61% +15.95% -2.18% +94.74% 

2070-2100 +29.64% +4.64% -8.43% +81.09% 

Climate Temperature 

2010-2040 +1.3°C +1.3°C +1.4°C +1.4°C 

Model 

IMPRESSIONS 
EU Integrated 
Assessment 
Platform 

2040-2070 +1.0°C +1.0°C +1.8°C +1.8°C 

2070-2100 +0.5°C +0.5°C +2.3°C +2.3°C 

Demographics 
Population 
(and age 
structure) 

2010-2040 -5.24% -10.79% -16.47% +1.09% 

Model 

IMPRESSIONS 
EU Integrated 
Assessment 
Platform 

2040-2070 -6.99% -17.72% -27.39% +6.10% 

2070-2100 -12.21% -24.82% -32.71% +3.54% 

Preferences 2010-2040 -36.33% -18.33% 0% -36.33% 



9 
 

Attractiveness 
of living in 
village (urban 
out-migration) 

2040-2070 0% -36.33% +22.17% -57.67% 
Stakeholder 
workshop 

Quantification 
using Fuzzy Set 
Theory 2070-2100 -36.33% 0% +22.17% -36.33% 

Urban 
planning 

Urban green 
area extent  

2010-2040 +11.67% 0% -8% -8% 
Stakeholder 
workshop 

Quantification 
using Fuzzy Set 
Theory 

2040-2070 +11.67% -8% -8% -24% 

2070-2100 +11.67% -8% -8% -24% 

Urban 
planning 

Regulation on 
urban 
morphology  

2010-2040 compact  compact sprawl sprawl+ 
Stakeholder 
workshop 

Qualitative 
interpretations 
of the integrated 
scenarios 

2040-2070 compact sprawl sprawl+ b sprawl+ 

2070-2100 compact compact n/a c sprawl+ 
a Changes between the start and end of the time period. 1 
b Indicating a more sprawled development trend at a high level compared to the baseline. 2 
c Expansion of urban area stops in 2070-2100 under SSP3 x RCP8.5, according to the qualitative scenarios. 3 
 4 
4 Results 5 
 6 
4.1 Model performance 7 
 8 
The LAU2-level comparison of the modelled and observed urban land cover suggests good model performance, as the 9 
Coefficient of Determination (R-squared) was found to be greater than 0.97 for all three urban land cover types. Visual and 10 
distance-density plot comparisons also suggest satisfactory model performance in predicting urban land cover changes at 11 
the cell level. The predictive power for population distribution was also found to be good at the NUTS5 level, as the R-12 
squared was greater than 0.83 for all five age groups. More details of the results of the quantitative model evaluation are 13 
provided in the Electronic Supplementary Materials 2. 14 
 15 
Qualitative evaluations by stakeholders suggest general acceptance of the model structure and usefulness of model 16 
projections. In the initial stakeholder workshops (Figure 3), an in-depth discussion was conducted to clarify the model’s 17 
structure and to ensure factors of stakeholders’ interest (e.g., the attractiveness of living in villages to account for urban 18 
out-migration) were included. In the final workshop, the projected results under the four integrated scenarios were 19 
presented to promote discussion of climate change adaption responses that would represent progress towards the  vision of 20 
a sustainable future by 2100 to the extent allowed by the logic of a given SSP and RCP. In a post-workshop survey with 21 
participants, 20 out of the 23 responses rated the question “How useful were the modelling results in discussing possible 22 
responses?” as “very positive” or “positive”, with the remainder rating them “satisfactory”. 23 
 24 
4.2 Model sensitivity 25 
 26 
The results of the sensitivity analysis suggest that the ALLOCATION model is relatively stable in projecting urban 27 
development patterns and, hence, has the potential to be useful for scenario planning (Hewitt and Díaz-Pacheco, 2017). In 28 
general, projected extents and spatial patterns of urban land cover were found to be sensitive to changes in the national-29 
level GDP, regional-level population and planning restrictions towards compact urban development. Consequently, 30 
population distributions, which depend highly on urban land cover distribution in the model, were also sensitive to these 31 
parameters. Projected population distributions were also found to be sensitive to changes in residential preference on 32 
proximity to social amenities and on desire to live in the capital, towns or villages.  33 
 34 
4.3 Future urban development trends in Hungary 35 
 36 
4.3.1 Urban land use/cover change 37 
 38 
The differences in the projected extents of urban areas are driven by GDP and population (sections 2.2.1 & 2.2.2). The 39 
spatial pattern is driven by the planning regulation parameter (section 2.2.2) and the potential of a cell to be developed 40 
further for urban land use, e.g., residential and commercial/industrial, which is calculated using the same set of rules. In 41 
general, a cell’s development potential is greater with an urban land cover element, and if its neighbourhood has a higher 42 
proportion of urban area. Thus, under all scenarios, new development of urban area was projected to be mainly around the 43 
capital and regional centres (towns as county seats and towns with county rights), as shown in Figure 4. Rapid urban 44 
development was projected under the SSP5 x RCP8.5 scenario due to a large increase in both GDP and population (Table 45 
1), despite a rise in temperature of up to 5.5°C causing an averaged decadal 2.55% damage to the GDP by 2100 (from 0.30% 46 
in 2010-2020 to 7.90% in 2090-2100). A growing GDP and a relatively stable population (albeit decreasing) were projected 47 
to contribute to a moderate increase in urban areas under the SSP1 x RCP4.5 scenario. By 2100, a temperature rise of 2.8°C 48 
is projected to cause an averaged decadal 1.05% damage to the GDP (from 0.28% in 2010-2020 to 2.18% in 2090-210). In 49 
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the capital region, more rapid development was projected due to policy regulation of urban compactness to meet the targets 1 
of sustainability and reduce energy demand. Although the projected patterns under the SSP4 x RCP4.5 and SSP3 x RCP8.5 2 
scenarios seem to be similar, two differences should be noticed: (i) the former scenario led to an overall greater increase in 3 
urban areas (hence the darker colours), as better economic conditions were assumed for SSP4 and; (ii) the latter scenario 4 
led to a more widespread pattern of urban area increase, because spatial planning regulations  within a de-globalising SSP3 5 
are assumed to focus on local security which results in sprawl. In addition, some decreases in urban areas were projected 6 
(grey areas, e.g., around the Lake Balaton region), because urban areas in these regions were mainly composed of 7 
green/leisure type, and green/leisure areas were expected to decrease under these scenarios (Table 1).  8 
 9 
While residential land was projected to have the greatest absolute increase among the three types of land cover considered 10 
(result not shown), commercial/industrial land was projected to have the greatest growth rate (Figure 6). This result was 11 
found for all scenarios and for all territorial types, as a consequence of increasing per capita GDP. As mentioned previously, 12 
changes in green/leisure land were set to be driven by the scenario settings (Table 1) and hence, were projected to be only 13 
positive within SSP1 x RCP4.5. Comparing the projections between territorial types, it was interesting to find that large 14 
villages had the greatest increase rate in both residential and commercial/industrial land under all scenarios, except for the 15 
SSP3 x RCP8.5 and SSP5 x RCP8.5 combinations within which a greater increase rate of commercial/industrial land was 16 
found for villages, owing to a sprawl-oriented regulation policy. These large villages were mostly (i) located close to the 17 
capital, not far away from rivers, or distant from major towns, (ii) had a greater proportion of land available for future 18 
development than capital districts and the majority of towns, and (iii) had a greater extent of existing urban land covers 19 
and road density than most villages. For most NUTS2 regions, these characteristics indicated a good developmental 20 
potential for both residential and commercial/industrial uses.  21 
 22 

 23 
Figure 4 Simulated changes in total urban areas (2010-2100) under the four integrated scenarios.  24 
 25 
4.3.2 Population and age structure patterns 26 
 27 
The potential of an inhabitable cell to attract residents is a function of urban land cover densities in its neighbourhood (as 28 
residential preferences) and preference weights given to different territorial types (section 2.2.3). A major population flow 29 
in central Hungary was projected under all scenarios, caused by peri-urbanisation around Budapest: the population was 30 
expected to move to the fringe areas of the capital. In Figure 5, it can be seen that fringe areas either increase or maintain 31 
their populations under SSP1 x RCP4.5 and SSP4 x RCP8.5 scenarios. Under the other two scenarios, in which population 32 
was expected to decline considerably (Table 1), Budapest’s fringe areas were projected to have a relatively lower rate of 33 
population decrease than the Central Hungary region (results not shown). In the fringe areas of the capital, where the cells’ 34 
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developmental potential for residential, commercial/industrial and urban green/leisure uses were all high, the newly 1 
developed residential areas were projected to have relatively high residential preference for residents. Moreover, these new 2 
residential cells were capital cells, and in central Hungary a greater residential preference weight is given to the capital 3 
cells by the working age groups. As a result, these new residential areas in the fringe areas of Budapest attracted population 4 
from the centre of the capital and from the surrounding villages and towns in Pest County. The model further projected 5 
several areas at risk of losing population (dark red areas in Figure 5) under all four integrated scenarios, including those in 6 
Central Hungary (western Pest County), Northern Great Plain (western Jász-Nagykun-Szolnok County and northern Hajdú-7 
Bihar County) and Southern Great Plain (northern Békés County). Under the SSP4 x RCP8.5 scenario, even though national 8 
population and GDP were expected to increase, urban land cover in these regions remained unlikely to expand (Figure 4), 9 
owing to low neighbourhood densities of baseline urban land covers and low local road densities. Hence, population was 10 
projected to migrate to other areas with greater residential preferences (i.e., better access to social and economic amenities, 11 
as new residential and commercial/industrial lands were developed).  12 
 13 

 14 
Figure 5 Simulated changes (2010-2100) in population density under the four integrated scenarios.  15 
 16 
Some general trends for the projected changes in age structure were found under all scenarios (Figure 6): population aging 17 
and sub-replacement fertility were estimated to become a national problem, and the capital and major towns (those with 18 
county seats/with county rights) were projected to lose a significant number of the working age population. The changes 19 
in age structure further varied across territorial types, as a consequence of differences in the development potential of a cell 20 
and in the attractiveness of territorial types. Increasing urban land cover was projected to lead to better residential 21 
preferences in the cells in the capital and major towns than in the other territorial types. In theory, this could attract 22 
population from other areas, leading to a lower decrease rate of working age population in the capital and major towns 23 
under all scenarios. However, under the SSP3 x RCP8.5 scenario, differences in the rate of decrease of the working age 24 
population were projected to be similar across territorial types. This was due to the effect of residential preferences in the 25 
capital and towns being diluted by an increased attractiveness of living in villages as expected within the scenario. While 26 
under the SSP1 x RCP4.5 and SSP4 x RCP8.5 scenarios, the attractiveness of living in villages was assumed to decline, as 27 
a consequence the relative attractiveness of the capital and towns increased. This led to more population migrating from 28 
villages to more urbanised areas, and, hence, a lower decrease rate of the working age population in the capital and towns. 29 
Finally, urban sprawl under the SSP5 x RCP8.5 scenario resulted in more cells becoming inhabitable (and having residents), 30 
in particular for large villages and villages. Although, to some extent, this helped to sustain the total size of the working 31 
age population in rural areas, the decline of population density in these areas was projected to be more dramatic than in 32 
more urbanised areas (results not shown) where residents preferred to remain, as assumed in the scenario.  33 
 34 
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 1 
Figure 6 Projected changes (2010-2100) in urban land cover and population under different integrated scenarios, 2 
summarised by territorial types.  3 
 4 
5 Discussion 5 
 6 
Under the risk-based framework of climate change impact management introduced in an IPCC special report (Cardona et 7 
al., 2012), vulnerability is defined as the susceptibility of “exposed elements” being adversely affected by hazardous 8 
climate events. Urban infrastructure and population are most commonly regarded as “exposed elements” and their 9 
distribution is key to the assessment and management of climate change impacts. It is within this context that the current 10 
study was conceived. The ALLOCATION model is a product of combining existing empirical approaches to land use/cover 11 
change modelling with population mapping. Two characteristics make the model unique: (i) it is able to make fine 12 
resolution projections over a large area, and; (ii) it generates a variety of outputs including the extents of multiple urban 13 
land cover types, and age-structured populations. Since the main objective is to model a complex system for a large 14 
geographical extent and temporal frame, a top-down modelling approach was selected with careful design of the model 15 
components to balance model specificity, computational burden, data requirement, relevance and ease of communication 16 
to stakeholders from different sectors. Integration in this modelling study is achieved from different perspectives, including 17 
integration of multiple disciplines (e.g., economics, urban/rural land use, and demographics), integration with stakeholders 18 
(in scenario and model development), and integration of scales of considerations (i.e., from national to local levels). The 19 
model developed can be classified as a coupled component model, based on the five common approaches for integrated 20 
environmental modelling summarised by Kelly et al. (2013). Even though the model was developed and calibrated for 21 
Hungary, the modelling framework has considerable flexibility and can easily be applied elsewhere. This is because the 22 
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construction of the model functions only requires open access land cover data and census data at the local administrative 1 
levels both of which are increasingly available.  2 
 3 
The plausibility of the model projections can be supported in several ways. Firstly, the conceptual model structure was 4 
developed based on a combination of three sub-components that are all based on existing empirical approaches with a 5 
certain level of realism. The selection of a top-down approach enabled parameterisation with observation data and the 6 
adoption of parameters with clear performance criteria (e.g., R-squared and AUC). Secondly, the interests and concerns of 7 
local stakeholders were used to guide development of the model and selection of impact and output measurements. This 8 
made the model appropriate and of relevance for its end-users. Thirdly, the integrated scenarios depicting the plausible 9 
futures of socio-economic and climate conditions were developed through engaging closely with stakeholders. This ensured 10 
credibility and salience of these scenarios in supporting policy decisions within the local context. Fourthly, the model 11 
performance was found satisfactory with a good accuracy of baseline projections. Finally, the local stakeholders found the 12 
projections explainable in the context of the integrated scenarios and useful in stimulating discussions on potential policy 13 
responses to climate and socio-economic change.  14 
 15 
Rises in temperature under intermediate (RCP 4.5) and higher-end (RCP 8.5) climate change scenarios were projected to 16 
cause up to 2.18% and 7.91% damages to the GDP of Hungary by 2100. However, their influence on the urban spatial 17 
development patterns was estimated to be marginal by the model. Comparing the projections presented in this paper with 18 
those produced without considering GDP damage (not shown), the differences in residential and industrial/commercial 19 
area estimates were found to be less than 0.1% for all the NUTS2 regions under all integrated scenarios. This was because 20 
the functions to estimate changes in urban land covers (Function 1, section 2.2.2) used the per capita GDP and existing 21 
land covers in the region as key indicators, with the latter dominating (see the Electronic Supplementary Materials 2). 22 
Moreover, in both climate scenarios, the damage was estimated not to exceed 1% before 2050. Provided both GDP and 23 
population were projected to change dramatically, such a small reduction in GDP was inadequate to cause any obvious 24 
changes in per capita GDP and its consequent impact on the urban land cover change was negligible. At this scale of 25 
modelling, most of the other model factors selected for Hungary were related to socioeconomics and physical urban 26 
environments which could not be directly linked to climate change. Thus it was not surprising that the projected results 27 
suggested a negligible effect of climate change on urban development through causing damages to the national GDP. Given 28 
the current objectives and context of integrated scenarios, further modelling efforts to quantify the impacts of climate 29 
change on urban development may integrate sub-models accounting for land cover changes in other sectors, e.g. forestry 30 
and agriculture, that can directly influence urban development (through competition for land) and have a clearer link to 31 
climate impacts (White and Engelen, 1997). Finally, it should be noted that, different results may be gained when applying 32 
the modelling framework to other countries, as the factors selected, coefficients estimated and evolutions of GDP and 33 
population projected may all be different.  34 
 35 
Applying the model to climate and socio-economic scenarios to simulate a range of plausible futures of urban development 36 
provides useful information for stimulating discussions related to climate change adaptation options. This has been 37 
frequently emphasised in the literature (van Ruijven et al., 2014) and was confirmed by local stakeholders involved in this 38 
study. In general, two types of scenario products can be distinguished: (i) qualitative narratives that contain detailed 39 
descriptions of events and complexity that cannot be easily captured in modelling approaches and are generally stakeholder-40 
led, and; (ii) quantitative trends described in numerical forms that are needed as model input and which are often modeller-41 
led (Pedde et al., In revision). The two types of scenario products are often combined in the Story-And-Simulation (SAS) 42 
approach (Alcamo, 2008), which refers to an iterative, stepwise process to link narratives and quantifications. The inherent 43 
difference between the two scenario types poses great challenges to their integration in the SAS approach (Houet et al., 44 
2016). Several methods have been developed to address this issue by jointly considering research objectives, scales and 45 
desired level of participation in the scenario process (c.f. Mallampalli et al. (2016) for an overview). In this study, we 46 
applied an approach known as ‘hardwiring’ of the two scenario types (Houet et al., 2016). Thus, scenario drivers are 47 
quantified without violating the background climate and socio-economic settings of each scenario, and they consist of both 48 
quantitative model estimations (i.e., national GDP, population and temperature) and qualitative information generated 49 
through the participation of stakeholders (i.e., residential preferences and planning regulations on urban green infrastructure 50 
and urban morphology). Quantifying the drivers in strict obedience to the underlying assumptions helped to retain the 51 
internal consistency of each scenario. It further helped to reduce the overall subjectivity of the scenario driver set by limiting 52 
the entry of qualitative scenario drivers to higher levels, on which the quality of model estimations was likely to be more 53 
profound. The final four localised scenarios were used to set the socio-economic and climatic conditions for model 54 
simulation. These scenarios were developed based on combinations of the SSPs and RCPs from the IPCC-related global 55 
scenario framework. Extending, downscaling and applying a common scenario framework is likely to increase the chance 56 
of our predictions being useful for future climate change risk management studies in the same region, as well as them being 57 
comparable with relevant studies in other regions or at a higher level. 58 
 59 
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An important lesson learnt from this study was the need for optimising the level of efforts required from stakeholders. In 1 
this study, stakeholders were closely engaged with both the scenario and model development processes (Figure 3) and 2 
provided location-specific knowledge to fill gaps in data, simplify model structure and evaluate model outputs for their 3 
acceptance and usefulness. To ease the burden, engaging stakeholders in other technical tasks, such as quantitative 4 
evaluation, was avoided. It was, thus, the responsibility of modelling experts for to perform a detailed verification and 5 
validation exercise to strengthen the technical soundness of the model (c.f. the quantitative evaluation results in the 6 
Electronic Supplementary Materials 2). Moreover, due to the diversity of stakeholders’ background, the qualitative 7 
evaluation of the model structure was conducted through discussion only. It may be beneficial to include a more structured 8 
approach in such discussion, for example, by using a questionnaire to evaluate the model construction, operation and output, 9 
and by modelling experts working more closely with the stakeholders in the workshops (Bennett et al., 2013). Another 10 
lesson learnt was the need for effective communication among scenario scientists, modelling experts and stakeholders. In 11 
our post-workshop survey with stakeholders, it was found important to include a small group of resource persons who 12 
engaged with both scenario and model developments in the stakeholder meetings to ensure the transparency of the 13 
development processes. In line with Booth et al. (2016), this study highlighted the importance of having research team 14 
members capable of working comfortably across disciplines and being capable of understanding both aspects of scenario 15 
construction and modelling. Good communication also contributes to interests between the research team and stakeholder 16 
community being more balanced. For instance, several modifications of model structure took place to include factors of 17 
local interests (e.g., urban/rural out-migration). It should be further mentioned that in our workshops, a few stakeholders 18 
with scientific background or modelling skills unexpectedly volunteered in answering questions to the research team raised 19 
by the other stakeholders. This facilitated the acceptance of, and enhanced the confidence in, the modelling approach within 20 
the stakeholder community. 21 
  22 
This study has several limitations, for which future research directions need to be suggested. Firstly, the model lacks 23 
explanatory power on the complex underpinning processes of land cover conversion and residential mobility. Future studies 24 
which aim to better explain their mechanisms, and interactions with climate conditions, may benefit from linking a bottom-25 
up approach under an agent-based modelling framework. Such models can be developed for smaller geographical regions 26 
to better meet the demand of geospatial data, and at finer spatio-temporal scales to enable individual households, life course 27 
events and decision-making processes to be represented explicitly (Fontaine and Rounsevell, 2009). They may also be 28 
better applied to specific issues, such as international migration flows related to changes in suitability and/or preference 29 
for living next to the coast. Secondly, when focusing on smaller research areas, or on a specific set of sectors, building a 30 
wider range of localised and sectoral scenarios, may be more informative and helpful in establishing well-targeted policy 31 
responses. An example can be found for the fine level simulation of urban growth (Houet et al., 2016), in which the authors 32 
utilised a novel six-step method to generate a set of seven contrasting scenarios for climate adaption. Moreover, lower-end 33 
climate change scenarios need further attention following the ambition set in the Paris Agreement of limiting the global 34 
temperature increase to 1.5°C above pre-industrial levels. Thirdly, more scenario drivers may be included when more 35 
qualitative information is available in future studies. One interesting example is the size of neighbourhood being used to 36 
estimate a cell’s residential preferences in the population distribution sub-model. This parameter is related to the distance 37 
travelled for commuting and leisure purposes, which can be influenced by climatic conditions, time use, lifestyle, transport 38 
efficiency and planning, etc. (Koetse and Rietveld, 2009; Li et al., 2015; Li et al., 2016a). Many of these factors are likely 39 
to cause contrasting patterns of change within the scenarios used in this study. Fourthly, according to qualitative feedback 40 
from stakeholders understanding local context and working in the local language are critical factors in reducing the risk of 41 
miscommunication during facilitated engagement sessions and may help avoid the need for making corrections later.  42 
  43 
6 Conclusion 44 
 45 
An integrated model was developed, evaluated and applied to predict fine-level urban development for the whole of 46 
Hungary. The model projected contrasting patterns of urban land cover and age-structured population under the four 47 
integrated scenarios, which revealed several societal challenges that Hungary may need to face in the future.   48 
 49 
Under the scenarios combined with intermediate climate change (RCP 4.5), urban development paths were projected to be 50 
different between the two socio-economic conditions describing (i) a sustainable future with less inequality (SSP1), and 51 
(ii) an unequal future of increased social, economic and political disparities (SSP4). Under the former integrated scenario, 52 
the country was predicted to have moderate and compact urban growth around the capital and regional centres, 53 
accompanied with steady rural out-migration and depopulation. Under the latter scenario, a slow urban growth rate in a 54 
compact-sprawl-mixed fashion was predicted, with strong national depopulation which is greatest in rural areas. More 55 
distinct future urban patterns were projected under the higher-end climate changes (RCP8.5) which were associated with 56 
two other socio-economic scenarios. In a de-globalising future of low-level economic growth and a seriously degraded 57 
environment (SSP3), the country was projected to have slow and sprawled urban growth across the territory. The capital 58 
region was estimated to lose a significant amount of population and newly developed residential areas around the capital 59 
were likely to be underutilised. In contrast, in an economically driven future which is highly industrialised and fossil-fuel 60 
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based (SSP5), the country was projected to have a rapid and sprawled urban growth and an overall growth in population. 1 
Strong domestic migration was projected to occur in order to occupy the newly developed residential areas. This was likely 2 
to result in a more unevenly distributed population pattern. Despite the differences in shape and speed, the peri-urbanisation 3 
of the Budapest region and out-migration from the centres of the capital and major towns were projected to occur under all 4 
scenarios. This suggests that future local urban policies should take into the consideration the potential underutilisation of 5 
urban infrastructure in the capital centre, and the pressure of social service provisioning in its outskirt.  6 
 7 
Our modelling experiments revealed the inadequacy of approximating the impacts of climate change on urban land cover 8 
change through GDP only, and suggested further integration with land cover change sub-models for other land cover types 9 
that not only affect urban developments but also respond directly to climate changes. Co-learning with stakeholders in both 10 
scenario and model developments contributed to the originality of this study. To achieve effective collaboration between 11 
scenario scientists, modelling experts and stakeholders, the study pointed out the importance of objectively deciding upon 12 
the division of work load between the stakeholders and research term, and in ensuring consistency between the two. Having 13 
participants in both groups who work comfortably across disciplines and are thoroughly familiar with the local context also 14 
supported good communication and collaboration. The projected results may provide fundamental decision support 15 
information for assessing the vulnerability of Hungarian cities to climate change. The integrated model can further be used 16 
to test the effectiveness of response options for climate change adaptation.  17 
 18 
Software and data availability 19 
 20 
No specific software has been developed. This paper uses R version 3.2.0 (R Foundation for Statistical Computing, Austria) 21 
for statistical analysis and empirical function construction, ArcGIS version 10.2 (ESRI Inc., USA) for spatial data 22 
management and final output visualisation, and Repast Simphony version 2.1 (Argonne National Laboratory, USA) for 23 
model development and integration. The data used for model development (section 2) and scenario configuration (section 24 
3) are either open access or freely available upon request from the corresponding author. The final projected patterns of 25 
urban land covers and population age structures for Hungary by 2040, 2070 and 2100 are also available upon request from 26 
the corresponding author. 27 
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Electronic Supplementary Material 1 - Supplemental data and methods 
 
1 Rules for spatially allocating the changes in artificial land cover  
 
Parameters and their sources are listed in Tables S1.1-S1.3. At time step t, for each NUTS2 region: 
 
 Step 1 – The regional demands of each artificial land class (ERES, ECOM and EGRE) are calculated by ΔEt = Et – Et-1 

(Table S1.4 and the main text) or predefined in scenarios as ΔSt: 
 Step 1.1 – For ERES and ECOM, if growth in demand of any land types is predicted (ΔEt > 0) in the region, then 

identify those increased land classes and go to Step 2; else if no growth is predicted, then go to Step 4.  
 Step 1.2 - For EGRE, if growth (ΔSt >0) is predefined in scenario settings, then go to Step 2; else if decrease (ΔSt 

<0) is predefined, then go to Step 3; else if no change is predefined, then go to Step 4. 
 
 Step 2 – The growth of cell-level artificial land cover is estimated using following steps: 

 Step 2.1 – For each cell i in the region, calculate the cell-level development potential Pi for each land cover type 
using the logistic regressive functions (Tables S1.5-S1.7): 	 / 1 ∑ ∗ , where a is 
the intercept and b is the coefficient of the variable var from the collection of all explanatory variables {V}. Use 
the predefined cut-off value (Tables S1.5-S1.7) to identify a pool of candidate cells {M} (if Pi > cut-off value) 
for further growth estimation.  

 Step 2.2 – For each cell k in the candidate pool M, calculate the potential of growth (Gk) for each land cover type 
using Gk = Pk·Ck, where Ck is the force of policy on compact urban development (see main text). 

 Step 2.3 – Estimate the cell-level growth for each land class using 	 ∗ /∑ ∈ , where m refers to 
the mth cell from M. Total cell-level demand of artificial land ( ) is calculated by summing D for all land 
classes concerned. 

 Step 2.4 – If the available land ( ) is limited and competition between land cover types exists ( ), 
then go to Step 2.5; otherwise, increase each land cover type by its predicted Dk and go to Step 2.6.  

 Step 2.5 – Check the development priority for each land cover type: 
o If no priority, then increase the extent of the land cover by its relative demand: ∗ / ;  
o If any land cover type is prioritised, then increase its extent by Dk if (Dk≤ AVLk). Convert the rest of 

AVLk to the classes not prioritised according to their relative predicted demands. If (Dk >AVLk), convert 
all AVLk into the prioritised land class.  

o Update AVLk for M, calculate unallocated ΔEt and go to Step 2.6 
 Step 2.6 – If ΔEt for each land class is all allocated, then go to Step 2.7; else repeat Steps 2.2-2.5. 
 Step 2.7 – End for the region.   

 
 Step 3 – The decrease in cell-level urban green/leisure land cover is estimated using following steps: 

 Step 3.1 – For each cell i in the region, calculate the cell-level development potential Pi for urban green/leisure 
use using the logistic regressive functions (Tables S1.7): 	 / 1 ∑ ∗ , where a is the 
intercept and b is the coefficient of the variable var from the collection of all explanatory variables {V}. Use the 
predefined cut-off value (Tables S1.7) to identify a pool of candidate cells {M} (if Pi > cut-off value) for further 
decrease estimation.  

 Step 3.2 – For each cell k in the candidate pool M, calculate the potential of decrease in urban green/leisure area 
(Rk) using Gk = (1 - Pk)·Ck, where Ck is the multiplication of the cell’s development potentials for residential and 
commercial/industrial uses. 

 Step 3.3 – Estimate the cell-level urban green/leisure decrease using 	 ∗ /∑ ∈ , where m refers 
to the mth cell from M.  

 Step 3.4 – Check the existing urban green/leisure for each cell: 
o If the existing urban green/leisure land is not smaller that , then turn all  from the existing area to 

available land ( );  
o If the existing urban green/leisure land is smaller that , then turn all exiting urban green/leisure land 

to available land ( );  
o Update AVLk for M, calculate unallocated ΔSt and go to Step 3.5. 

 Step 3.5 – If ΔSt is all allocated, then go to Step 3.6; else repeat Steps 3.3-3.5. 
 Step 3.6 – End for the region.   

 
 Step 4 – End for the region.  
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Table S1.1 Explanatory variables at NUTS2 level – socio-economics and demographics 
Variable Source Symbol 
GDP in million HUF at time step t KSH1; IMPRESSIONS IAP2 GDP(t) 
GDP per capita in million HUF at time step t KSH1; IMPRESSIONS IAP2 GDP_PC(t) 
Population aged < 15 at time step t KSH1; IMPRESSIONS IAP2 CHILD(t) 
Population aged 15 – 64 at time step t KSH1; IMPRESSIONS IAP2 WORK(t) 
Population aged > 65 at time step t KSH1; IMPRESSIONS IAP2 RETRIED(t) 
Unemployment rate at time step t KSH1; IMPRESSIONS IAP2 UNEPLY(t) 
1 The Hungarian Central Statistical Office (KSH) datasets were used for constructing functions, www.ksh.hu/. 
2 The IMPRESSIONS IAP (under construction) predictions were used for scenario analysis, www.impressions-project.eu/. 

 
Table S1.2 Explanatory variables at the cell level 
Variable Source Symbol 

X coordinate in ETRS_1989_LAEA_L52_M10 spatial reference system EEA1 X 

Y coordinate in ETRS_1989_LAEA_L52_M10 spatial reference system EEA1 Y 

Distance to the centre of capital (Budapest) in meters OpenStreetMap2 D2CAPITAL 

Distance to historical town centre in meters OpenStreetMap2 D2TOWN 

Distance to historical village centre in meters OpenStreetMap2 D2VILLAGE 

Distance to lake in meters CORINE3 D2LAKE 

Distance to river in meters CORINE3 D2RIVER 

Averaged elevation in metres SRTM4 ELEV 

Variation (standard deviation) of elevation SRTM4 ELEV_STD 

Proportion of available land at time step t  Estimation5 AVL(t)* 

Proportion of residential area in baseline in cell at time step t CORINE6 RES(t) 

Proportion of commercial and industrial in cell at time step t CORINE7 COM(t) 

Proportion of urban green and leisure area in cell at time step t CORINE8 GRE(t) 

Proportion of residential area in 3x3 neighbourhood at time step t CORINE6 RES_N1(t) 

Proportion of commercial and industrial in 3x3 neighbourhood at time step t CORINE7 COM_N1(t) 

Proportion of urban green and leisure area in 3x3 neighbourhood at time step t CORINE8 GRE_N1(t) 
1 European Environment Agency (EEA) reference grid at 1 km2, www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2.  
2 OpenStreetMap data produced by Geofabrik for locations of centres, www.geofabrik.de/data/download.html.   
3 CORINE land cover classes from EEA, www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-3, and from Hungarian Institute of 
Geodesy, Cartography and Remote Sensing (FÖMI), www.fomi.hu/.  
4 SRTM (Shuttle Radar Topography Mission) data from the USGS EROS Data Center, http://www2.jpl.nasa.gov/srtm/.     
5 AVL(t) = 100% - RES(t) - COM(t)- GRE(t) – Water body% - Protected area(t)%, where protected area was estimated based on the Natura2000 (2014), 
http://www.eea.europa.eu/data-and-maps/data/natura-7, and CDDA (2014), www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-
national-cdda-8, from the European Environment Agency (EEA). 
6 Residential area - “Urban fabric” (CLC 111-112). 
7 Commercial and industrial area – “Industrial or commercial units” (CLC 121).  
8 Green and leisure area – “Green urban areas” (CLC 141) and “Sport and leisure facilities” (CLC142). 

 
Table S1.3 Explanatory variables at the NUTS5 level 
Variable Source Symbol 

Proportion of residential area at time step t CORINE1 MEAN_RES(t) 

Proportion of commercial and industrial area at time step t CORINE2 MEAN_COM(t) 

Proportion of urban green and leisure area at time step t CORINE3 MEAN_GRE(t)  

Railway density (length in km per km2)  OpenStreetMap4 DEN_RAIL(t) 

Motorway density (km per km2) OpenStreetMap4 DEN_MOTOW(t) 

Primary/Secondary/Tertiary road density (km per km2) OpenStreetMap4 DEN_OTHRD(t) 

Region is capital  OpenStreetMap5 IS_CAPTIAL 

Region is town OpenStreetMap5 IS_TOWN 

Region is village OpenStreetMap5 IS_VILLAGE 
1 Residential area - “Urban fabric” (CLC 111-112). 
2 Commercial and industrial area – “Industrial or commercial units” (CLC 121). 
3 Green and leisure area – “Green urban areas” (CLC 141) and “Sport and leisure facilities” (CLC142). 
4 OpenStreetMap data for transportation networks. 
5 OpenStreetMap data for administrative boundaryies. 

 
Table S1.4 Estimating the extent of urban land class in NUST2 regions at year t 
Outcome Expression R2 Adj. R2 

ERES(t) 0.987553 * ERES(t-1) +2446.195814 * ΔGDP_PC(t) + 627.270153 0.997 0.997 

ECOM(t) 1.037425 * ECOM(t-1) + 1032.750659 * ΔGDP_PC(t) - 113.107198 0.964 0.960 

EGRE(t) 1.113059 * EGRE(t-1) - 0.095884 * ECOM(t-1) -0.012262 * ΔCHILD(t)  -7.9137E-8 
* ΔWORK(t)2 + 134.101485 

0.999 0.999 
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Table S1.5 Logistic functions to predict residential land cover (PRES) growth for each NUTS2 region.  
  HU10 

Central 
Hungary 

HU21 
Central 
Transdanubia 

HU22 
Western 
Transdanubia 

HU23 
Southern 
Transdanubia 

HU31 
Northern 
Hungary 

HU32 
Northern 
Great Plain 

HU33 
Southern 
Great Plain 

C
el

l-
le

ve
l 

X  1.875e-05    -3.561e-05 -4.358e-06 

Y -8.998e-06  4.296e-06  2.881e-05   

D2CAPITAL -4.712e-05 1.555e-05 7.685e-06   3.527e-05  

D2TOWN -1.631e-04 -1.058e-04 -3.966e-05    -3.874e-05 

D2VILLAGE -2.188e-04 -4.107e-04 -1.277e-03 -6.859e-04 -5.811e-04 -2.062e-04 -1.941e-04 

D2LAKE   2.608e-05  -7.699e-05 -3.367e-05 2.832e-05 

D2RIVER  1.316e-05  -8.345e-06  1.564e-05  

ELEV  -2.633e-03 6.631e-03   1.438e-02 -3.484e-02 

ELEV_STD   -2.833e-02 2.180e-02 -2.216e-02   

AVL(t) 1.846e-02 1.473e-02  1.765e-02 4.492e-03 1.325e-02 2.039e-02 

RES(t) 2.441e-02 2.090e-02  2.990e-02 1.255e-02 1.194e-02 2.841e-02 

COM(t) 4.291e-02    -1.248e-01  3.577e-02 

GRE(t) 2.227e-02   4.984e-02   5.443e-02 

RES_N1(t) 2.111e-03 7.233e-03 7.923e-03 8.261e-03 6.893e-03 7.606e-03 6.733e-03 

COM_N1(t) -5.038e-03  9.390e-03   -5.941e-03  

GRE_N1(t) 4.619e-03  1.313e-02     

N
U

T
S

5-
le

ve
l 

MEAN_RES(t) -2.939e-02   -1.952e-01 -4.787e-02 -5.466e-02  

MEAN_COM(t) 5.234e-02 1.188e-01  1.884e-01  2.539e-01  

MEAN_GRE(t) -6.328e-02       

DEN_RAIL(t) -2.793e-04 -1.344e-03      

DEN_MOTOW(t) 5.246e-04  1.025e-03    -3.625e-03 

DEN_OTHRD(t) 7.567e-04      3.376e-03 

IS_CAPTIAL        

IS_TOWN   1.309e+00 1.219e+00 1.169e+00 4.008e-01  

IS_VILLAGE        

Intercept 2.279e+01 -9.742e+01 -1.570e+01 -3.908e+00 -8.473e+01 1.716e+02 1.860e+01 

AIC 1196.1 1157.9 1586.7 1593.8 1196.1 1570.1 1251.1 

AUC 0.8270114 0.8296137 0.8152192 0.8238422 0.8410751 0.8336033 0.8708228 

Cutoff1 0.06644128 0.03104071 0.05375403 0.03386196 0.02119745 0.02282712 0.02028611 
1 Cutoff value = where the sum of the model sensitivity and specificity is the greatest  

 
Table S1.6 Logistic functions to predict commercial & industrial land cover growth (PCOM) for each NUTS2 region.  
  HU10 

Central 
Hungary 

HU21 
Central 
Transdanubia 

HU22 
Western 
Transdanubia 

HU23 
Southern 
Transdanubia 

HU31 
Northern 
Hungary 

HU32 
Northern 
Great Plain 

HU33 
Southern 
Great Plain 

C
el

l-
le

ve
l 

X  1.25E-04  1.36E-04  3.63E-04  

Y      8.35E-05 -7.33E-05 

D2CAPITAL -6.38E-05   -1.40E-05  -4.01E-05  

D2TOWN -1.84E-04 -3.43E-04 -3.73E-04 -3.09E-04 -2.95E-04 -1.32E-04 -1.14E-04 

D2VILLAGE  1.64E-04      

D2LAKE 4.38E-05 -7.40E-05    4.20E-05 -3.88E-05 

D2RIVER  1.66E-05 2.78E-05    4.48E-05 

ELEV     -6.22E-02 -2.15E-02 -5.68E-02 

ELEV_STD -7.05E-02  -1.37E-01     

AVL(t)  1.27E-02 1.62E-02 1.28E-02 1.54E-02 1.90E-02 6.62E-02 

RES(t) -1.73E-02     2.37E-02 4.39E-02 

COM(t) 1.61E-02 5.82E-02 6.55E-02  1.57E-02 7.46E-02 1.25E-01 

GRE(t)        

RES_N1(t)    3.88E-03   5.21E-03 

COM_N1(t) 5.61E-03   2.09E-02    

GRE_N1(t)   8.75E-03     

N
U

T
S

5-
le

ve
l MEAN_RES(t)      1.22E-01  

MEAN_COM(t) 6.94E-02 1.23E-01 3.16E-01    3.61E-01 

MEAN_GRE(t) -5.70E-02     6.42E-01 -4.06E-01 

DEN_RAIL(t) -4.73E-04 -1.28E-03      
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DEN_MOTOW(t)    -6.77E-03    

DEN_OTHRD(t)  2.92E-03     -1.41E-03 

IS_CAPTIAL        

IS_TOWN   -1.67E+00   3.85E-01  

IS_VILLAGE        

Intercept -3.11E-01 -6.77E+01 -4.90E+00 -7.02E+01 -4.36E+00 -2.09E+02 1.43E+01 

AIC 780.52 522.86 254.54 408.12 333.94 900.91 907.24 

AUC 0.8374454 0.895711 0.918099 0.854678 0.865272 0.796618 0.819756 

Cutoff1 0.0491122 0.014451 0.013794 0.007486 0.007966 0.010754 0.014735 
2 Cutoff value = where the sum of the model sensitivity and specificity is the greatest  

 
Table S1.7 Logistic functions to predict green & leisure land cover (PGRE) growth for each NUTS2 region.  
  HU10 

Central 
Hungary 

HU21 
Central 
Transdanubia 

HU22 
Western 
Transdanubia 

HU23 
Southern 
Transdanubia 

HU31 
Northern 
Hungary 

HU32 
Northern 
Great Plain 

HU33 
Southern 
Great Plain 

C
el

l-
le

ve
l 

X  5.98E-04 8.85E-04     

Y 3.00E-04 4.51E-04 3.29E-04     

D2CAPITAL  1.03E-04 9.80E-05     

D2TOWN -7.55E-05 2.33E-04 -2.50E-04 -1.58E-04 2.38E+02 -2.06E-04  

D2VILLAGE        

D2LAKE -1.78E-04     -1.70E-04  

D2RIVER     8.37E-05 -5.22E-05  

ELEV -8.35E-03      -5.62E-02 

ELEV_STD 3.44E-02     3.71E-01 2.28E-01 

AVL(t) 1.88E-02   2.98E-02 -6.17E-02  2.10E-02 

RES(t)    3.96E-02  2.95E-02  

COM(t)   5.31E-02    5.18E-02 

GRE(t) 3.86E-02  5.34E-02  2.38E+02 8.07E-02 4.26E-02 

RES_N1(t) 5.44E-03   7.69E-03    

COM_N1(t)   -1.16E-02  3.97E-02 -2.11E-02 8.57E-03 

GRE_N1(t)  1.12E-02     2.07E-02 

N
U

T
S

5-
le

ve
l 

MEAN_RES(t) -3.40E-02   -2.93E-01  2.79E-01  

MEAN_COM(t)  1.84E-01 2.82E-01     

MEAN_GRE(t)  1.89E-01  3.34E-01    

DEN_RAIL(t)    -4.48E-03  6.16E-03  

DEN_MOTOW(t)      8.28E-03 -0.00788 

DEN_OTHRD(t)      -9.18E-03  

IS_CAPTIAL        

IS_TOWN       -1.00E+00 

IS_VILLAGE        

Intercept -8.61E+01 -4.34E+02 -5.39E+02 -7.21E+00 -2.36E+04 -5.41E+00 -3.90E+00 

AIC 415.1 256.06 271.19 204.27 49.949 211.3 225.31 

AUC 0.8091564 0.876377 0.783115 0.807328 0.966114 0.938917 0.820256 

Cutoff1 0.0143627 0.014363 0.003603 0.002762 0.002911 0.003392 0.002891 
1 Cutoff value = where the sum of model sensitivity and specificity is the greatest  
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2 Rules for spatially allocating age-structured population  
 
A full description of the background theory is available in the following paper:  

Li, S., Juhász-Horváth, L., Harrison, P.A., Pintér, L., Rounsevell, M.D.A., 2016. Mapping population and age 
structure in Hungary: A residential preference and age dependency approach to disaggregate census data. J 
Maps 12(sup1), 560-569. doi: 10.1080/17445647.2016.1237898 

 
At time step t, for each NUTS2 region: 
 
 Step 1 – Read population data from the software system. 
 
 Step 2 – Allocating population for working age classes (aged 15-29, 30-49 and 50-64): 

 Step 2.1 – Calculate the neighbourhood density of a cell i ( ) is calculated using a distance decay function, 

	 ∑ 1 1 / ∙∈ , where N is a collection of the cells in the cell i’s rectangular 

neighbourhood,  is the distance from cell n to the cell i, and  is the maximum distance considered in the 
neighbourhood. The  for social and urban greenery preference is set 3km and for economic preference is 
assumed in different categories (0-5, 5-15, 15-25 and 25-50 km, Table S1.8). 

 Step 2.2 – Calculate the local preference LX using: ∗ ∗ ∗ , where w1, w2, and w3 
represent the weights given by residents to social (S), economic (C), and urban greenery (G) preferences 
(values in Table S1.9). Residential ( ), commercial/industrial ( ) and green urban/leisure ( ) land 
densities are used for the social (S), economic (C), and urban greenery (G) preferences. 

 Step 2.3 – Classify cell-level LX into capital (LXC), town (LXT) and village (LXV) according to the 
geographical location and territorial types. The local preferences of a cell i is then estimated as ∗

∗ ∗ , where a1, a2 and a3 are the weights given to territorial types (values in Table 
S1.9). 

 Step 2.4 – For an inhabitable cell  in a NUTS2 region m, the number of population of each working population 

group (W) is calculated as	
∗ ∗ ∗

∑ ∗ ∗ ∗∈
∙ , where , , and  are the three local 

preferences of cell  ( ∈ ). Mt denotes the collection of all inhabitable cells in region m in time step t. 
Parameter k refers to the kth cell from Mt.  is the population in region m to be redistributed. 

 
 Step 3 – Allocating populations for children (0-14) and the elderly (65+): the dependent populations (D) are 

estimated based on the working populations (W) predicted in Step 2, as: 
∑ ∗

∑ ∑ ∗∈
∙ , where 

	 ∈ ) is predicted the population of a working age group (15-29, 30-49 or 50-64) of cell  ( ∈ ). The 
coefficient b indicates the strength of dependency on W (values in Table S1.10). Mt is a collection of all inhabitable 
cells in region m in time step t. Parameter k refers to the kth cell from Mt.  is the dependent population in region 
m to be redistributed. 

 
 Step 4 – End for the region. 
 
Table S1.8 Frequency (%) of commuting distance in Hungary 
 Home worker (otthon dolgozik) 0–5 km 5–15 km 15–25 km 25–50 km 50 km + Other 

Town (Város) 5.3 55.7 19.6 7.6 6.4 5 .. 

Village (Község) 5.9 31.8 23.6 18.5 12.7 6.8 .. 

Budapest 5.5 28.7 40.4 17.1 6.8 1.6 .. 

All (Összesen) 5.5 42.9 24.8 12.9 8.5 4.9 0.4 

 
Table S1.9 Weights for local preference estimation and coefficients for population redistribution function 
  Age class w1  w2  w3  a1  a2  a3  R-squared RMSE 

H
U

10
 15-29 0.98 0.98 0.94 5070.876 1874.304 462.7677 0.719 2866.179 

30-49 1 0.96 0.92 8259.81 3314.214 807.5729 0.785 4060.033 

50-64 1 0.96 0.92 5361.809 2061.233 532.7279 0.821 2407.333 

H
U

21
 15-29 1 1 0.7 0 3164.574 233.3811 0.857 627.919 

30-49 1 1 0.6 0 5164.616 382.6156 0.870 977.873 

50-64 1 1 0.7 0 3716.433 278.401 0.884 695.072 

H
U

22
 

15-29 1 0.96 0.92 0 4938.67 133.0202 0.916 484.489 

30-49 1 0.4 1 0 8141.008 235.2779 0.922 808.666 
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50-64 1 0.04 0.92 0 5848.673 171.7724 0.933 583.131 

H
U

23
 15-29 1 0.96 0.08 0 6339.051 300.1142 0.830 650.735 

30-49 1 0.2 0 0 8870.262 493.8941 0.843 934.779 

50-64 1 0.02 0.12 0 6739.412 404.64 0.843 746.989 

H
U

31
 15-29 1 0.92 0.04 0 4927.736 188.9237 0.880 681.845 

30-49 1 0.88 0.02 0 7315.161 280.0909 0.887 990.358 

50-64 1 0.2 0 0 5674.714 221.2271 0.887 763.918 

H
U

32
 15-29 1 0.98 0.88 0 5931.873 275.3658 0.901 906.767 

30-49 1 0.98 0.88 0 8185.784 403.0809 0.931 1024.495 

50-64 1 0.96 0.92 0 5723.21 299.3604 0.935 734.918 

H
U

33
 15-29 0.98 0.94 0.98 0 4549.193 265.9332 0.832 1224.588 

30-49 0.98 0.94 0.98 0 6606.067 434.5498 0.891 1348.229 

50-64 1 0.88 0.98 0 4652.226 352.2766 0.912 878.553 

w1 – social preference (S) 
w2 – economic preference (C) 
w3 – urban greenery preference (G) 
a1 – weight of local preference in capital  
a2 – weight of local preference in town 
a3 – weight of local preference in village 

 
Table S1.10 Coefficients for population redistribution function  
 Age class b1  b2  b3  b4  b5  b6  b7  b8   b9  R-squared RMSE 

HU10 0-14 0 0.039 0.094 0 0.488 0.501 0.659 0.017 0 0.867 1391.745 

65+ 0.625 0.196 0 0 0 0 0.388 0.574 0.725 0.808 2351.728 

HU21 0-14 0 0 0.442 0 0.447 0.202 0 0 0.030 0.882 467.835 

65+ 0 0.035 0 0 0 0.003 0 0.728 0.677 0.880 536.831 

HU22 0-14 0 0.207 0 0 0.312 0.529 0 0 0 0.918 384.752 

65+ 0 0.191 0 0 0.163 0.005 0 0.382 0.714 0.927 462.987 

HU23 0-14 0 0 0.667 0 0.207 0.033 0 0.351 0.042 0.839 504.464 

65+ 0 0.138 0 0 0.547 0 0 0 0.719 0.846 572.849 

HU31 0-14 0 0.073 0.918 0 0 0 0 0.578 0 0.891 595.788 

65+ 0 0 0 0 0.015 0 0 0.824 0.776 0.882 615.542 

HU32 0-14 0 0 0.938 0 0.468 0 0 0 0 0.945 592.229 

65+ 0 0.409 0 0 0 0 0 0.286 0.751 0.914 618.028 

HU33 0-14 0 0 0.204 0 0.475 0.387 0 0 0 0.904 608.739 

65+ 0 0.214 0 0 0 0 0 0.573 0.815 0.906 742.134 

b1 – dependency on population aged 15-29 in capital 
b2 – dependency on population aged 15-29 in town 
b3 – dependency on population aged 15-29 in village  
b4 – dependency on population aged 30-49 in capital 
b5 – dependency on population aged 30-49 in town 
b6 – dependency on population aged 30-49 in village 
b7 – dependency on population aged 50-64 in capital 
b8 – dependency on population aged 50-64 in town 
b9 – dependency on population aged 50-64 in village 
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Electronic Supplementary Material 2 - Supplemental model evaluation 
 
We ran the model with baseline data for 2000 (based on the CORINE 2000 dataset) for one time step, i.e. 10 years, and 
compared the predicted results with observed results. The observed land cover changes were based on the CORINE 2012. 
The observed population and age structure were based on the 2011 census data provided by the Hungarian Central 
Statistical Office (KSH).  
 
1 Artificial land cover 
 
Firstly, predicted extents of the three artificial land cover types in 2010 were compared with observed extents at the LAU2 
level (Figure S2.1). We roughly estimated the urban land extent for 2010 as: (extent in 2000) + (change in extent between 
2000 and 2012) * 5/6. The Coefficient of Determination (R-squared) values were computed, with all higher than 0.97, 
indicating an excellent model performance on predicting. However, this could also be due to the relative small increase 
(5%) in the urban area between 2000 and 2010.  
 
Secondly, visual comparisons were performed to assess the general accuracy of the predicted cell-level increases in 
artificial land covers (Figure S2.2). The results are overall satisfactory for the total artificial area which is dominated by 
the residential and commercial/industrial land cover types. However, the results for green/leisure land cover seems 
inaccurate, possibly due to the situations that this land cover type is more influenced by policy plans and that it is also 
likely to be converted into other (artificial) land cover types.  
 
Thirdly, distance-density plots were produced to compare the cell-level predictions on the increases in total artificial with 
observed increases. Mean value and standard deviation of cell-level increase were calculated for different “distance to 
(capital/town/village) centre” groups, with an interval of 1 km (Figure S2.3A-C). In general, the standard deviations of the 
predicted cell-level increases were lower than that of the observed, suggesting the observed increases were more unevenly 
distributed.  
 
2 Population and age structure 
 
A comparison between the predicted population age structure and observed (census data 2011) was performed. The results 
were examined at the LAU2 level, see Figure S2.4 for the scatter plots between the observed and predicted populations for 
the whole of the country. The overall predictive power was satisfactory (all R-squared > 0.82). In general, the predictions 
seemed to be lower than the observations (all slope < 1).  
 
 

 
Figure S2.1 Scatterplot: Predicted vs. observed urban land class extent at LAU2-level: (A) residential, (B) commercial & 
industrial and (C) green & leisure. 
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Figure S2.2 Visual comparison between predicted and observed urban area increases (ha/cell) in Budapest region. Total 
artificial area = sum of residential, commercial/industrial and green/leisure areas. 
 

 
Figure S2.3 Mean and std. of cell-level urban area increase in different “distance to capital centre” (A), “distance to town 
centre” (B) and “distance to village centre” (C) groups.  
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Figure S2.4 Comparison between predicted and observed distributions of population and age-structure at the LAU2 level. 
 
 



 
Electronic Supplementary Material 3 - Supplemental sensitivity analysis 
 
A sensitivity analysis was performed to examine how sensitive the changes in model parameters may influence the model 
outcomes. The most common one-at-a-time (OAT) approach was used, thus different model outputs were obtained by 
tuning one model parameter, leaving the others unchanged. The analysis was performed to test with the dataset prepared 
for model validation for which model was executed for one time step for projections at 2010. 
 
A sensitivity index (SI) was calculated as: log10(Yi/Y0)/log10(Pi/P0), where Y0 is the default model output projected 
using the default parameter values P0 (i.e., the outputs generated for model validation), and Yi is the projection obtained 
when the parameter value is changed from its default value to Pi (i.e., by +10% for all regions/cells). High absolute SI 
values indicate a strong effect of the change in the parameter on the model output. Values of 1/−1 refer to 
positive/negative linear effects. 
 
Not all of the model parameters were included in the sensitivity analysis. The developmental potentials for different 
urban land cover types (Function 1 Section 2.2.2, main text) were included in the sensitivity analysis, instead of testing 
their inputs, i.e. the local-level parameters listed in Tables S1.5-S1.7, supplemental data and method, electronic 
supplementary material 1 (esm1). Since the influence of these parameters on developmental potentials is directly related 
to their coefficients in the logistic regression models, the consequences of the changes of these parameters on the model 
outcomes can be inferred. Another set of the excluded parameters were the regional-level dependency ratio of the child 
and elderly populations listed in Table S1.10, esm1, for population distribution mapping. These parameters are operating 
at the final step of the model workflow. They are not connected to other model components and their effects on 
population distribution are based on simple relations to the working age populations, which are rather straightforward. 
 
The targeted model outputs include those general ones of research interests (extents of land cover class and populations 
of age group in the capital, towns and villages). The cell-level predictions were also compared between the default and 
OAT induced projections, using a set of matrices accounting for (i) cell-to-cell agreements, and (ii) changes in the shape 
and heterogeneity of predictions. For urban land cover, model outputs were converted to binary maps of urban area 
distribution by assigning cells with total urban land cover > 1 ha as presence (1). The Kappa coefficient (≤1) was used to 
determine the cell-to-cell agreement. The Kappa for the default projection was 1. A SI of Kappa between -2 and 0 would 
suggest a very good agreement (Kappa > 0.8). The landscape shape index (LSI, a standardised measure of total edge 
density for the size of the urban landscape) was used to compare the overall shape of outputs. A negative SI of LSI would 
suggest a more compact shape and a positive value suggests a more irregular shape. The standard deviation shape index 
(SSI, the standard deviation of the shape indexes calculated for each isolated urban area) was used to compare the 
variation in the shape indexes for all urban land cover patches. A negative SI of LSI would suggest a more even (positive 
for uneven) distribution of shape indexes. For population distribution, Pearson’s R was calculated for the cell-to-cell 
agreement, with that of the default projection being 1. A greater negative SI of R indicates a smaller difference. 
Skewness and Kurtosis were further computed for the distribution of cells’ population. Skewness (SK) measures the 
symmetry of the distribution (SK=0 if symmetrical) and positive/negative SIs indicate more/less symmetrical 
distributions of the population. Kurtosis (KU) measures the amount of probability in the tails of distribution (KU=3 if 
normal distribution) and positive/negative SI indicate more/less in the tails. 
 
The results of sensitivity analysis are presented in Tables S3.1 and S3.2. The extent and shape of urban land cover 
projections were sensitive to the national-level GDP, the regional-level population of age group and planning restrictions. 
Population distributions of age group were further sensitive to residential preference on proximity to social amenities and 
on whether to live in the capital, towns or villages. The main reasons for a marginal influence of the developmental 
potentials are due to the settings of the experiment to (i) increase their value for all cells simultaneously and (ii) run the 
model for only one time step.  
 
 



Table S3.1 Model’s sensitivity to change in a selected set of parameters (symbol definition in Table S3.2) 

 
† EC = extent of land cover class in capital; ET = extent of land cover class in towns; EV = extent of land cover class in villages; K = kappa index; LSI = landscape shape 
index; SSI = standard deviation shape index; PC = population of age class in capital; PT = population of age class in in towns; PV = population of age class in villages; R = 
Pearson’s R; SK = Skewness; KU = Kurtosis 
 
Table S3.2 Definition of sensitivity index symbols in Table S3.1 

 

EC† ET EV EC ET EV EC ET EV K LSI SSI PC PT PV PC PT PV PC PT PV PC PT PV PC PT PV R SK KU

[N] GDP
[N] Temperature increase
[R] Child population (0-14)
[R] Working population 1 (15-29)
[R] Working population 2 (30-49)
[R] Working population 3 (50-64)
[R] Elderly population (65+)
[R] Planning towards compactness
[L] Potential for residential area
[L] Potential for rommercial area
[L] Potential for urban green area
[R] Social preference
[R] Economic preference
[R] Urban greenery preference
[R] Weight of preference in capital 
[R] Weight of preference in town
[R] Weight of preference in village
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Symbol Range of sensitivity index (SI) Definition - effect of parameter change on the model output
SI ≥ 1 Positive (equal or stronger than linear effect)
0.05 < SI < 1 Weak positive (weaker than linear effect)
-0.05 ≤ SI ≤ 0.05 Marginal or no effect
-1 < SI < -0.05 Weak negative (weaker than linear effect)
S1≤ -1 Negative (equal or stronger than linear effect)
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