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Abstract
The accepted paradigm for reproduction in Antarctic marine species is one where oogenesis takes 18 months to 2 years, and 
a bimodal egg-size distribution where two cohorts of eggs are present in female gonads throughout the year. These slow 
gametogenic traits are driven by low temperature and/or the restriction of resource availability because of extreme seasonality 
in the marine environment. Here we present data on the reproductive ecology of the common Antarctic bivalve Aequiyoldia 
eightsii (Jay, 1839) (Protobranchia: Sarepidae) from monthly samples collected between January 2013 and May 2014 at 
Hangar Cove, Rothera Point on the West Antarctic Peninsula. These data show that A. eightsii is unusual because it does not 
follow the typical pattern expected for reproduction in Antarctic marine invertebrates, and differs also from closely related 
nuculanid protobranch bivalves with respect to gametogenic duration and reproductive periodicity. Continuous oogenesis, 
evidenced by the year-round occurrence of previtellogenic, vitellogenic, and ripe oocytes in female gonads, is supplemented 
by a seasonal increase in reproductive intensity and spawning in Austral winter (April–May), evidenced by the loss of mature 
spermatozoa and ripe oocytes from males and females, respectively. The simultaneous occurrence of these contrasting traits 
in individuals is attributed to a flexible feeding strategy (suspension and deposit feeding) in response to seasonal changes in 
food supply characteristic of the Antarctic marine environment. Asynchrony between individual females is also notable. We 
hypothesise that the variability may represent a trade-off between somatic and reproductive growth, and previously reported 
internal interannual cycles in shell growth.
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Introduction

Marine invertebrate reproductive ecology influences pat-
terns of species biogeography, population persistence, and 
species survival (Ramirez-Llodra 2002; Lester et al. 2007). 

Investigating the reproduction of a particular species there-
fore provides insight into its adaptive capacity and potential 
resilience to environmental change (Byrne 2011; Sanford 
and Kelly 2011). As the global ocean is under increasing 
threat from climate change, especially warming and acidi-
fication (Byrne 2011), evaluation of a species’ reproductive 
success is key to understanding vulnerability to future cli-
mate scenarios (Grange et al. 2004). In the Southern Ocean, 
the waters around the West Antarctic Peninsula have expe-
rienced pronounced warming relative to the global average 
(see review by Mayewski et al. 2009), with sea surface sum-
mer temperatures in the Bellingshausen Sea on the west of 
the Peninsula increasing by ~ 1 °C since the 1950s (Meredith 
and King 2005). Antarctic shallow-water invertebrates are 
particularly susceptible to the effects of climate change, as 
warming causes perturbations in sea ice dynamics, which 
could subsequently lead to ecological regime shifts in ben-
thic systems (Barnes and Conlan 2007; Barnes and Souster 
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2011; Barnes 2016). Presently, there is a lack of knowledge 
specific to the recovery potential of the benthos after these 
disturbance events (Clark et al. 2015). Additionally, many 
studies have demonstrated the physiological constraints and 
vulnerability of Antarctic benthic invertebrates to subtle 
temperature increases (e.g. Peck et al. 2004a; Pörtner et al. 
2007; Peck et al. 2010, 2014). Benthic assemblages in Ant-
arctica are taxonomically diverse and abundant, with more 
than 7137 species identified, which accounts for ~ 88% of the 
total number of identified species in the Southern Ocean (De 
Broyer and Danis 2011). However, the reproductive ecology 
and related paradigms regarding invertebrate life history and 
ecology are far from fully understood (Pearse and Lockhart 
2004), with details of reproductive biology, especially in 
terms of variations between the years, or longer term trends, 
rarely published.

The reproductive patterns of Antarctic shallow-water 
benthos are often characterised by a prolonged reproduc-
tive cycle (18–24 months), lecithotrophy, and direct devel-
opment, low fecundity, and seasonal reproductive patterns 
(Clarke 1979; Brey and Hain 1992; Chiantore et al. 2002; 
Grange et al. 2004, 2007; Higgs et al. 2009; Pearse et al. 
2009; Reed et al. 2013a). However, a few species also dem-
onstrate shorter gametogenic periods (12 months or less) 
(Clarke 1988; Chiantore et  al. 2002; Tyler et  al. 2003; 
Grange et al. 2011), planktotrophic larvae (Stanwell-Smith 
et al. 1999; Bowden et al. 2009), and relatively high fecun-
dity (McClintock and Pearse 1986; Bosch and Pearse 1990; 
Grange et al. 2004; Orejas et al. 2007). Moreover, the repro-
ductive ecology of Antarctic shallow-water and deep-sea 
species are similar in several benthic taxa, including aster-
oids (Bosch and Pearse 1990) and octocorals (Orejas et al. 
2012). Several authors have suggested that the abiotic and 
biotic characteristics shared between the polar and deep-sea 
environments attribute similarities in reproductive ecology 
between Antarctic shallow-water and the deep-sea benthos 
(Bosch and Pearse 1990; Ramirez-Llodra 2002; Orejas et al. 
2012). Both realms are characterised by low stable tempera-
tures, low light, and ice scour, and functionally similar ben-
thic communities with slow population turnover rates (Bosch 
and Pearse 1990; Aronson et al. 2007; Clark et al. 2015). 
Furthermore, the continental shelf in Antarctica is depressed 
by the weight of the ice-sheet, such that its average depth 
is around 500 m compared to around 200 m elsewhere in 
the world (Heywood et al. 2014). This feature facilitates the 
connection between shallow and deep areas of the Southern 
Ocean across the continental shelf, with submerging Ant-
arctic bottom water and emerging circumpolar deep water 
that may have enhanced colonisation of shallow fauna to 
deep waters (and vice versa) during glacial cycles of shelf 
ice advance and retreat (Berkman et al. 2004; Strugnell et al. 
2011). Many Antarctic invertebrate taxa including Bivalvia, 
Gastropoda, Amphipoda, and Decapoda are reported to have 

a significantly higher degree of eurybathy compared to their 
temperate counterparts, often being distributed from surface 
water to hundreds of metres (Brey et al. 1996).

Protobranchia is a subclass of small deposit feeding 
bivalves commonly found in soft sediment environments 
with approximately 750 species distributed globally (see 
review by Zardus 2002). With a Cambrian origin (Carter 
et al. 2000; Sharma et al. 2013), this subclass has diversified 
and colonised the deep sea, representing ~ 50 and  90% of 
bivalve species on the continental slope and abyssal plain, 
respectively (Allen 1978). Although protobranch bivalves 
are important bioturbators in the deep sea (Zardus 2002), 
they remain one of the least studied molluscan groups 
(Sharma et al. 2013; Reed et al. 2014). Protobranch bivalves 
are well represented in the Antarctic, but information regard-
ing the ecology of Protobranchia in the Southern Ocean is 
limited as most species are found only in deeper water (Reed 
et al. 2013b). One exception is the common shallow-water 
species Aequiyoldia eightsii (Jay, 1939) (previously Yoldia 
eightsii), which has been used as a model bivalve species 
in several investigations. While studies have examined its 
abundance and ecophysiology (described below), the repro-
ductive ecology and gametogenic cycles in this species are 
poorly understood, constrained by the problems associated 
with seasonal sampling of organisms in the Southern Ocean.

Here, we investigated the reproductive ecology of an Ant-
arctic shallow-water protobranch bivalve A. eightsii, which 
is one of the most abundant benthic species in the mari-
time Antarctic. Previous records show densities of A. eight-
sii of up to 1540 m−2 at Signy Island (Peck and Bullough 
1993) and biomass contributions equivalent to 56.6% of the 
total macrofaunal biomass at Faro station in Potter Cove 
(Pasotti et  al. 2015a). The geographical distribution of 
A. eightsii is patchy around the Antarctic continent (Dell 
1990), but is extended to sub-Antarctic regions including 
King George Island  (62o10′S) and the Magellan Strait  (53o 
28′S) (González-Wevar et al. 2012). With a bathymetric dis-
tribution ranging from intertidal sand flats to deep waters 
(824 m), A. eightsii is most commonly found at depths shal-
lower than 100 m (Dell 1990; Peck and Bullough 1993). 
Aequiyoldia eightsii has an opportunistic feeding strategy, 
which typically exhibits deposit feeding but can alternate 
to a suspension feeding mode when phytoplankton is pre-
sent in the water column (Davenport 1988). Deposit feed-
ing and burrowing in A. eightsii involve intensive locomo-
tion, where this species is one of the fastest burrowing of 
all Antarctic marine benthic groups (Peck et al. 2004b). 
Previous observations have also shown a single specimen 
can expel sediment up to 13 times its dry tissue mass within 
24 h (Davenport 1988). Given its high abundance and wide 
distribution within Antarctica, A. eightsii is likely to be one 
of the major bioturbators among the Antarctic shallow-water 
benthic communities. Moreover, A. eightsii has frequently 
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featured in physiological studies as a comparative species 
with other Antarctic benthos (Peck and Conway 2000; Peck 
et al. 2004b; Fattorini et al. 2010; Peck et al. 2014; Román-
González et al. 2017), and as a model species in studies 
designed to analyse the impact of climate change on Antarc-
tic seafloor communities (McClintock et al. 2009; Peck et al. 
2009, 2010; Clark et al. 2016). A recent study identified an 
innate endogenous growth rhythm in this species and sug-
gested the pattern may be attributed to the reallocation of 
energy resources between cycles of somatic and reproduc-
tive investment (Román-González et al. 2017). Owing to the 
use of A. eightsii in a range of Antarctic ecological studies, 
the reproductive data reported here should inform future 
studies focused on interpreting the biological and ecologi-
cal role of the species, and the ecological processes of the 
Protobranchia and Antarctic benthos as a whole.

The objectives of this study were to (1) describe the 
reproductive ecology and general anatomy of A. eightsii 
from a shallow-water site at Rothera Point off the West Ant-
arctic Peninsula using wax histology, (2) to compare the 
reproductive condition of A. eightsii with other Antarctic 
shallow-water benthos and protobranch bivalves, and (3) to 
evaluate, where possible, what may be driving these repro-
ductive patterns.

Materials and methods

Sample collection

Monthly samples of A. eightsii were scuba diver-collected 
between January 2013 and May 2014 at 13 to 16 m depths 
in Hangar Cove, adjacent to the British Antarctic Survey’s 
Rothera Research Station on Rothera Point, Adelaide Island, 
off the West Antarctic Peninsula  (67o33′52S,  68o07′43 W) 
(Fig. 1). Fifteen to 20 individuals were collected per month 
and fixed in 4% buffered formaldehyde in the field. Formal-
dehyde-preserved samples were then transported to the Uni-
versity of Southampton, UK for storage. Poor ice conditions 
and inclement weather prevented field sampling in February 
and June 2013.

Histological preparation

For each specimen, maximum shell length, height, and width 
were measured using a digital calliper (± 0.01 mm) and the 
soft tissue separated from the shell using a scalpel. Photo-
graphs of specimens before and after shell removal were 
taken for anatomical study.

Fig. 1  Location of sampling 
site for Aequiyoldia eightsii in 
Hangar Cove, Adelaide Island, 
West Antarctic Peninsula 
 (67o33′52S,  68o07′43W)
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Aequiyoldia eightsii with shell length > 20 mm have been 
reported to be reproductively mature (Peck et al. 2000). In 
an effort to maintain consistency, only individuals with a 
shell length between 20 and 25 mm were selected for pro-
cessing. None of the bivalves collected in March or August 
2013 measured between 20 and 25 mm and were therefore 
discounted from further study. A total of 95 individuals were 
selected for histological analysis. Sex of individuals was 
determined from histological sections.

The gonad of A. eightsii is not a discrete organ and the 
germinal tissues are infiltrated in the visceral mass. There-
fore, whole specimens were examined using standard wax 
histology techniques following the protocol outlined in 
Higgs et al. (2009). Preliminary studies demonstrated the 
denser foot muscle to be more sensitive to the process of 
clearing when compared to other soft tissues. This tissue 
was therefore dissected and processed separately. Bivalves 
were dissected in a longitudinal direction through the body 
just below the digestive gland, removing the foot muscle 
from the main body.

Both dissected parts of soft tissue were dehydrated in 
a graded series of isopropanol, cleared in three washes of 
histoclear (CellPath, UK) and embedded in wax blocks. 
Serial sections of 7 µm thick were mounted and stained 
with Haematoxylin Z (CellPath, UK) and Eosin Y (CellPath, 
UK), and immediately cover-slipped using a DPX mount-
ing medium (Sigma-Aldrich, UK). Note that the gonads of 
six female individuals were damaged during histological 
preparation and were therefore excluded from reproductive 
analysis.

Data analysis

Gonad morphology

General anatomical observations of A. eightsii were made 
with respect to gonad morphology from the serial sectioning 
of both dissected parts of animals under a light microscope 
[Olympus BHS (BH-2)], and the macrophotography images 
of soft tissues after shell removal.

Female reproductive analysis

Preliminary analysis indicated that a sexually mature female 
could simultaneously carry in excess of 3000 oocytes. 
Therefore, only eight histological sections, evenly distrib-
uted across the gonad-digestive complex per specimen 
(around 1.5 mm apart), were taken for image analysis. Thin 
tissue sections were photographed using a Nikon D5000 
digital camera mounted on a light microscope [Olympus 
BHS (BH-2)]. Oocyte size, measured as Equivalent Circu-
lar Diameter (ECD), of individual females was quantified 
using the ‘Area’ tool in ImageJ v1.48 (Rasband 1997-2016). 

ECD assumes the best-fit spherical size of each oocyte and is 
equivalent to Oocyte Feret Diameter (OFD) used in previous 
studies (e.g. Reed et al. 2013a, 2014). Only oocytes with a 
visible nucleus were measured to ensure the size of each 
oocyte was approximated at, or very close to its maximum 
cross-sectional area. The equation used for calculating ECD 
from the traced area of each oocyte was

where ECD is Equivalent Circular Diameter (µm), and A is 
the area of an individual oocyte (µm2).

Female maturity was evaluated based on the overall 
oocyte cellular appearance and description of marine 
bivalve ovary development outlined in Morse and Zar-
dus (1997). Oocytes < 50 µm ECD, with basophilic cyto-
plasm and a large nucleus, were defined as previtellogenic. 
Oocytes between 50 and 80 µm ECD, with eosinophilic 
cytoplasm and yolk droplets, were identified as vitello-
genic, whereas oocytes > 80 µm ECD with an outer vitel-
line envelope and jelly coat were defined as ripe oocytes 
(Fig. 1 in Online Resource 1).

Male reproductive analysis

Eight histological sections evenly distributed across the 
gonad-digestive complex of each male A. eightsii were 
photographed for image analysis. Five stages of gonad 
maturity were identified according to the rationale for the 
overall development and distribution of spermatozoa in 
marine bivalve testes development described in Morse and 
Zardus (1997) (Fig. 2 in Online Resource 1).

Stage I (early developing stage)  Spermatogonia develop 
along the follicle wall.

Stage II (mid-developing stage)  Spermatogonia divide 
into spermatocytes 
and move away from 
the follicle wall. The 
spermatocytes have 
increased in number 
and occur in clusters.

Stage III (late developing stage)  Spermatocytes divide 
into spermatids, which 
then differentiate into 
spermatozoa. The divi-
sion and differentiation 
process leads to sper-
matozoa being placed 
in the centre of the 
lumen in chained form.

(1)ECD = 2

√

A

�
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Stage IV (ripe stage)  Spermatozoa increase in 
number and occupy the entire 
lumen. Testes expand in size 
and are fully developed.

Stage V (spent stage)  Spawned spermatozoa; testes 
are reduced in size with empty 
spaces visible in follicles.

Statistical analysis

A χ2 test of independence was conducted between both 
month using pooled females and individual females within 
each month, and oocyte size frequency distribution to deter-
mine whether there was a statistically significant associa-
tion between these variables. For instances, where expected 
cell frequencies were less than five, neighbouring oocyte 
size bin ranges were collapsed and the procedure re-run 
until this assumption was met. Statistical significance is 
reported at p < 0.05. For instances, where a statistically sig-
nificant association was reported, the strength of association 
between variables was evaluated using Cramer’s V (Cohen 
1988), with a value of 0 and 1 indicating “no association” 
and “complete association”, respectively (i.e. small asso-
ciation = 0.1, moderate association = 0.3, and large asso-
ciation = 0.5). In addition, the deviation of individual cells 
from independence was reported using adjusted standardised 
residuals according to Agresti (2007), where values > 3 were 
deemed indicative of cells that significantly deviate from 
independence.

All statistical analyses were performed using IBM SPSS 
Statistics version 24 for Mac OS X.

Results

Gonad morphology

The overall anatomy of A. eightsii is presented in Fig. 2. 
The gonad envelops the centre of the alimentary canal. A 
thin layer of gonadal tissue (up to 3–4 cells thick) covers the 
outer layer of the digestive gland and envelops the stomach 
where the gonad tissue thins to approximately 1 cell thick. A 
strip of gonadal cells is located within the anterior adductor 
in the upper body (Figs. 2b,d; 3a).

While the diameter of the stomach reduces as it penetrates 
the centre of the foot muscle, the gonadal tissue layer around 
the stomach thickens (up to 10–12 cells thick; Fig. 3b). 
The adjacent section of hindgut in the foot muscle is also 
surrounded by gonadal tissue, but fewer cells are present 
(around 5–6 cells thick). No gonadal cells are found near the 
base of the half gut loop in the foot muscle.

Sex ratio

All specimens (n = 95) selected for histological analysis had 
distinguishable gonads and were separately sexed. Of the 95 
individuals, 48 (50.5%) were female and 47 (49.5%) were 
male.

Female reproductive analysis

Qualitative assessment of the female gonad revealed the 
presence of oocytes of all developing stages throughout the 
study period. Previtellogenic oocytes (and other smaller 

Fig. 2  Anatomy of a female 
Aequiyoldia eightsii collected 
in April 2013 from Hangar 
Cove, Adelaide Island, West 
Antarctic Peninsula  (67o33′52S, 
 68o07′43W). a Photograph of 
soft tissue after shell removal 
(left side); b General anatomi-
cal structure (left side). Gonad 
envelopes dg digestive gland 
shown in orange; c Photograph 
of soft tissue after shell removal 
(right side). d Configuration 
of the alimentary canal and 
associated gonad (right side). 
a anus, aa anterior adductor, 
dg digestive gland, es exhalent 
siphon, f foot, ct ctenidium, h 
hinge, hg hindgut, is inhalant 
siphon, o oesophagus (attaches 
to pl), pa posterior adductor, pl 
palp lamella, pp palp proboscid, 
r rectum, st stomach. Scale bar 
1 cm
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oocytes) were observed developing along the follicle walls 
next to both vitellogenic and ripe oocytes throughout all 
months, and in 39 of the 42 females sampled between Janu-
ary 2013 and May 2014 (Fig. 4). The absence of ripe oocytes 
was observed in the gonad of only three females, comprising 
single specimens from July 2013 (shell length = 20.95 mm), 

October 2013 (shell length = 20.40 mm), and May 2014 
(shell length = 24.62 mm). The measured oocyte diam-
eters ranged from 12.5 to 176.7 μm. A spawning event 
occurred between April and May in 2013 and 2014, indi-
cated by a reduction in average oocyte size (± SD), from 
97.4 ± 23.4 µm, n = 3549 to 59.3 ± 14.3 μm, n = 740, and 

Fig. 3  Transverse histological sections of a female Aequiyoldia eight-
sii collected in April 2013 at Hangar Cove, Adelaide Island, West 
Antarctic Peninsula  (67o33′52S,  68o07′43W). a Horizontal section 

through the median level of the visceral mass. b Horizontal section 
through the top level of foot muscle. fm foot muscle, o oocytes. Scale 
bar 500 μm. For other abbreviations see Fig. 2
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Fig. 4  Oocyte ripening in 
Aequiyoldia eightsii from 
Hangar Cove, Adelaide Island, 
West Antarctic Peninsula 
 (67o33′52S,  68o07′43W) 
between January 2013 and 
May 2014. DG digestive gland, 
HG hindgut, MO ripe oocytes, 
OG oogonia, PVO previtello-
genic oocytes, VO vitellogenic 
oocytes. Scale bar 200 μm
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from 93.0 ± 28.7 μm, n = 2164 to 54.2 ± 14.5 μm, n = 208, 
respectively.

Although oocytes of all maturity stages were observed 
in the gonad throughout the study period, the distribution 
of oocyte sizes varied between months (Fig. 5). A χ2 test of 
independence was conducted between month, using pooled 
females, and oocyte size frequency distribution. All expected 
cell frequencies were greater than five. There was a statisti-
cally significant association between month and the frequen-
cies of oocytes distributed across the range of oocyte size (χ2 
=  8156.288, df = 36, p < 0.0001). The association was mod-
erately strong (Cohen, 1988), Cramer’s V =0.349, and 46 of 
52 cells had adjusted standardised residuals > 3 (Table 1) 
indicating a significant deviation from independence.

Statistically significant associations between individ-
ual females, sampled in the same month, and their oocyte 
size frequency distributions were also recorded, where the 
strength of associations was generally moderate (p < 0.05; 
see Table 1 in Online Resource 2).

Male reproductive analysis

Seasonal changes in male maturity stage were interpreted to 
show a spawning event in April–May, as indicated by spent 
testicular acini (stage V) in 2013 and newly developed sper-
matogonia (stage I) in 2014 (Fig. 6). Testes matured from 
an early developmental (stage I) to mature stage (stage IV) 
between July 2013 and April 2014, and from a late develop-
mental (stage III) to mature stage (stage IV) between Janu-
ary and April 2013.

Discussion

The present study of the reproductive ecology of the Ant-
arctic shallow-water protobranch bivalve, A. eightsii, dem-
onstrates a reproductive mode that differs from previously 
described protobranch species and other Antarctic shallow-
water invertebrates. Our results indicate that the Hangar 
Cove population of A. eightsii exhibits continuous oogen-
esis, with a period of increased reproductive intensity and 
spawning between April and May, with asynchrony in oocyte 
development among females. Although we acknowledge 
reduced sample sizes in some months, this was to ensure all 
samples were comparable with respect to shell lengths and 
therefore sexual maturity, based on previous studies (Peck 
et al. 2010). Of those specimens which fit our selection cri-
teria, there was no control over gender at the point of collec-
tion. Within the individual females measured, efforts were 
made to measure in excess of 1000 oocytes where possible to 
reduce the weighting of inherent variability. All specimens 
in this study were dioecious with an overall female-to-male 

ratio approximating unity and with no evidence of hermaph-
roditism found.

Continuous investment in oogenesis was evidenced by 
the simultaneous, year-round occurrence of previtellogenic, 
vitellogenic, and ripe oocytes in the female gonads. This 
reproductive trait contrasts with observations of seasonal 
oogenic development reported in most shallow-water Ant-
arctic marine invertebrates studied to date (e.g. Chiantore 
et al. 2001; Ahn et al. 2003; Tyler et al. 2003; Grange et al. 
2004, 2007; Kang et al. 2009; Grange et al. 2011; Reed et al. 
2013a, b), and other closely related protobranch bivalves 
including the cold water Yoldia hyperborea (Jaramillo and 
Thompson 2008), where cohorts of oocytes distinguish-
able in their maturity stage dominate the gonad at different 
times of year. Continuous oogenesis is observed, however, in 
some deep-sea protobranch bivalves (Tyler et al. 1992; Zar-
dus 2002; Scheltema and Williams 2009; Reed et al. 2014). 
Significant associations between individual females and their 
oocyte size frequency distribution were also observed indi-
cating asynchrony in oogenesis between individuals sam-
pled in the same month. This asynchrony could be attrib-
uted to an aseasonal reproductive rhythm. However, we did 
not observe any evidence for aseasonality in the form of 
multiple spawning events in the females (Fig. 6), nor male 
maturity stage (Fig. 2 in Online Resource 1). Instead, we 
observed a seasonal periodicity in the reproduction of both 
male and female A. eightsii (described below). In the case of 
the females studied, this seasonal periodicity was observed 
simultaneously to the continuous investment in oocyte devel-
opment described above. We therefore propose that the asyn-
chrony observed between individual females is consistent 
with an innate, long-term multi-year reproductive cycle, 
related to the partitioning of energetic resources between 
somatic and reproductive investment (as hypothesised in 
Román-González et al. 2017 and discussed below).

Observed simultaneously to the continuous oocyte devel-
opment described above was a seasonal increase in reproduc-
tive intensity (spawning) during early Austral winter. This 
was demonstrated by an investment in the size and presence 
of ripe oocytes and their subsequent loss from the gonad, 
and a statistically significant association between month and 
oocyte size frequency distribution. Despite this observation, 
previous studies have identified very few bivalve veligers 
or larvae in winter in shallow waters adjacent to Rothera 
Research Station (Bowden et al. 2009). However, the peri-
calymma larva of protobranchs differs from the typical 
veliger larva of most bivalves in identifying features, being 
barrel-shaped and cloaked with an outer test enveloping the 
larva (Zardus and Morse 1998). This atypical appearance 
and the well-established difficulties associated with field 
identification of larvae render this larval type susceptible 
to misidentification, underestimation, and/or being missed 
entirely in plankton samples. Winter spawning events have 
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Fig. 5  Average monthly oocyte size frequency distributions measured 
as Equivalent Circular Diameter (µm) of Aequiyoldia eightsii from 
Hangar Cove, Adelaide Island, West Antarctic Peninsula  (67o33 52S, 
 68o07′43W) between January 2013 and May 2014. Box-whisker plots 

for each month; diamond mean, line median, box 25th to 75th percen-
tile range, and whiskers 1.5 times the value of the interquartile range. 
Oocyte diameter equivalent circular diameter. N number of females, n 
number of oocytes measured. Error bars ± 1SE
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been previously reported for other Antarctic shallow ben-
thic invertebrates, including the seastar Odontaster vali-
dus (Pearse 1965), the ascidian Cnemidocarpa verrucosa 
(Sahade et al. 2004), and the octocoral Malacobelemnon 
daytoni (Servetto and Sahade 2016), and confirmed in some 
cases by the presence of larval stages in the water column 
(e.g. for O. validus; Bowden et al. 2009). These events have 
been attributed to flexible feeding, energy storage, and/or 
extended gametogenic periods. In the case of A. eightsii, 
based on observations in this study, there is no evidence of 
energy storage or an extended gametogenic period; however, 
flexible feeding in the form of both suspension and deposit 
feeding has been reported (Davenport 1988), and we specu-
late that the peculiar reproductive ecology of the bivalve is 
underpinned by a long-term internal cycle related to energy 
allocation.

Feeding plasticity may overcome the food limitation that 
characterises shallow Antarctic waters and poses resource 
limits for many species during winter, and may also facili-
tate the continuous oogenesis observed in A. eightsii. 
Aequiyoldia eightsii exploits phytoplankton in the sum-
mer by suspension feeding, and deposit feeds on organic 
material in the sediment, mostly composed of microphy-
tobenthos and macroalgal fragments all year round (Dav-
enport 1988; Corbisier et al. 2004; Pasotti et al. 2015b). 
Fragments of phytoplankton/algae were observed in the 
stomach and hindgut of all specimens in the current study, 
supporting continuous feeding throughout the year. These 
findings are consistent with previous laboratory experiments 
where specimens aged younger than 24 years fed primarily 
on phytoplankton < 20 µm in diameter (Cripps and Priddle 
1995). As the A. eightsii specimens analysed in the current 
study had shell lengths between 20 and 25 mm, representa-
tive of 10–33 years of age (Peck and Bullough 1993), it 
is likely that the phytobenthos is the primary food source. 
Nanoplankton concentrations in the waters around Rothera 

Research Station peak in the late summer (~ March), and 
are suggested to have an important influence on the ecology 
of benthic grazers in the area (Clarke et al. 2008). The set-
tlement and subsequent deposit feeding on nanoplankton in 
sediment therefore could trigger a reproductive response in 
A. eightsii, such as spawning in the Hangar Cove population, 
which could explain the increased reproductive intensity and 
spawning detected in April and May.

While feeding plasticity enables A. eightsii to sustain 
continuous oogenesis, and the seasonal availability of food, 
i.e. nanoplankton production, acts as a selective pressure 
driving a superimposed seasonal reproduction, recent evi-
dence of a multi-year cycle in shell growth of the proto-
branch bivalve (Román-González et al. 2017) suggests the 
reproductive asynchrony observed in females is not under-
pinned by environmental factors. Nor can this reproductive 
pattern be explained by the accepted paradigm of an 18- 
to 24-month period needed for oogenesis in several other 
Antarctic invertebrates (Peck et al. 2005; for examples see 
Grange et al. 2004, 2007; Brockington et al. 2007; Orejas 
et al. 2007). The reproductive ecology of A. eightsii also 
differs from other shallow-water and deep-sea nuculanid pro-
tobranch bivalves that have a 12-month gametogenic cycle, 
often with seasonal investment in reproduction (Tyler et al. 
1992; Nakaoka 1994; Jaramillo and Thompson 2008; Schel-
tema and Williams 2009). Instead the asynchrony observed 
here may be linked to an innate, endogenous growth rhythm 
(e.g. 9.06 year) that is asynchronous between individuals, 
not keyed with environmental variability, and attributable to 
cycles in reproductive output (Román-González et al. 2017).

The maximum egg size of A. eightsii measured in this study 
was 176.7 μm. In marine invertebrates, larval development 
mode is often inferred from egg size (Moran and McAlister 
2009). However, in Protobranchia, egg sizes can vary exten-
sively within individual modes of development and even 
within closely related species (Gustafson and Reid 1986; 

Table 1  Cross tabulation of month, using pooled females of Aequiyoldia eightsi, and oocyte size frequency distribution

Adjusted standardised residuals appear in parentheses below observed frequencies. Adjusted standardised residuals > 3, i.e. where cells signifi-
cantly deviate from independence, are indicated in bold

Oocyte size (µm) Month

2013 2014

Jan Apr May Jul Sep Oct Nov Dec Jan Feb Mar Apr May

0–40 74 80 47 42 346 281 87 57 230 95 95 110 35
[− 9.1] [− 12.2] [− 0.8] [− 1.1] [22.6] [17.4] [1.7] [− 6.9] [4] [6.1] [− 8.7] [− 3.8] [5.5]

40–60 109 199 355 380 751 610 176 159 301 71 254 221 101
[− 18.2] [− 19] [23.5] [27.3] [32.5] [24.8] [0.5] [− 9.4] [− 6.9] [− 5.3] [− 12.3] [− 8.3] [12.5]

60–80 287 437 284 262 493 489 342 393 452 75 566 314 67
[− 12.4] [− 12.4] [12.8] [11.7] [10.1] [11.5] [10.8] [1.6] [− 3.2] [− 7] [− 1] [− 6.6] [4.5]

80–180 2166 2833 54 18 86 192 430 1228 1589 511 2027 1519 5
[28.3] [30.5] [− 27.5] [− 29.3] [− 44.1] [− 36.8] [− 10] [9.3] [5.7] [6.4] [14.5] [13.5] [− 15.8]
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Fig. 6  Testes maturation in Aequiyoldia eightsii from Hangar Cove, 
Adelaide Island, West Antarctic Peninsula  (67o33′52S,  68o07′43W) 
between January 2013 and May 2014. DG digestive gland, HG hind-

gut, LM lumen, RS residual sperm, SC spermatocytes, SG spermato-
gonia, SS spent acini, SZ spermatozoa. Scale bar 200 μm
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Scheltema and Williams 2009). This subclass is known to 
only exhibit two modes of larval development to date: pelagic 
lecithotrophy and brooding (Zardus 2002; Scheltema and Wil-
liams 2009). Since gametogenesis of A. eightsii shows syn-
chrony in seasonality between males and females, the loss of a 
relatively large proportion of gametes between April and May 
and the absence of brooded embryos suggest this bivalve is a 
broadcast spawner with lecithotrophic larvae. Winter spawn-
ing of lecithotrophic larvae may facilitate the avoidance of 
predators feeding on larvae associated with the summer bloom 
(Sahade et al. 2004), ice-mediated disturbance (Barnes and 
Souster 2011), and a greater availability of free substratum 
for larval settlement (Bowden 2005). As adult A. eightsii can 
inhibit larval settlement via density-dependent control (Peck 
and Bullough 1993), larvae spawned during periods with more 
available habitat could increase the chance of settlement.

The reproductive ecology of A. eightsii exhibits con-
tinuous oogenesis, with a period of increased reproductive 
intensity and spawning between April and May, and asyn-
chrony between females. These characteristics contrast with 
the seasonal reproductive traits reported for many shallow-
water Antarctic invertebrates and closely related protobranch 
bivalves. We hypothesise that the asynchrony documented 
between females is underpinned by a multi-year periodicity 
attributed to an innate, endogenous rhythm related to ener-
getic allocation between somatic and reproductive invest-
ment. However, the ability to switch between suspension and 
deposit feeding modes, according to the quality and quantity 
of food available, facilitates a continuous investment into 
oogenesis, whilst being responsive to the seasonal pulse in 
primary production. This study provides key information on 
a scientifically important species of bivalve that has been 
commonly used for baseline ecological investigations in 
Antarctica. Knowledge of its reproduction provides insight 
into the biological flexibility of the species and contributes 
to our wider understanding of adaptations in polar marine 
environments.
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