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Abstract. The dataset presented here consists of an ensemble of 10 global hydrological and land surface models
for the period 1979–2012 using a reanalysis-based meteorological forcing dataset (0.5◦ resolution). The current
dataset serves as a state of the art in current global hydrological modelling and as a benchmark for further im-
provements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i)
snow-dominated regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in
the tropics is not reflected in the ensemble runoff. Verification of the results against benchmark datasets for evap-
otranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using
the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model
performance, while the ensemble mean generally outperformed the single model estimates. The results also
show that there is currently no single best model for all variables and that model performance is spatially vari-
able. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3 yr−1

(334 kg m−2 yr−1), while the ensemble mean of total evaporation was 537 kg m−2 yr−1. All data are made avail-
able openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp
download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and
WMS. The DOI for the data is https://doi.org/10.5281/zenodo.167070.
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1 Introduction

Water security concerns all global economies, rich and poor
(Collins et al., 2009; McDonald et al., 2011; Hansen et al.,
2012). At the same time water availability in many areas is
decreasing due to demographic and climatic changes (Faures,
2006) which can influence agriculture (Rijsberman, 2006)
but also industry and energy through its influence on cool-
ing water and hydropower (Van Vliet et al., 2011; van Vliet
et al., 2016). This combination stresses the need for a holis-
tic (integrated) approach to water resources management and
decision making for flood protection, food and water secu-
rity, energy and large-scale (re)forestation. Such an approach
requires the integration of information on water availability,
demand and quality at all scales, and must be supported by an
improved assessment of water resources and predictive un-
derstanding of the water and energy cycles (UN, 2016). Yet,
the availability of this information is lacking in many regions
of the world (Pozzi et al., 2013). To capture the uncertainty
that stems from the simplifications and assumptions in our
models, a global reanalysis dataset of water resources should
contain a large number of global hydrological and land sur-
face models that assimilate the most important satellite-based
products (Sood and Smakhtin, 2015). This should be avail-
able as a reference for local studies and for the support of
policy and decision making for transboundary watersheds
and for global applications such as flood risk analysis (Trigg
et al., 2016) for which the global land surface and hydrolog-
ical models are the key components.

Only a limited number of global reanalysis datasets that
can support water resources analysis is available. Pioneered
by GLDAS, (Houser et al., 2001; Rodell et al., 2004) sev-
eral other systems followed (e.g. GSWP-2 Dirmeyer et al.,
2006, MERRA-Land Reichle (2012), ERA-Land Balsamo
et al. (2015) but also van Dijk et al. (2014) and WATCH,
Haddeland et al. (2011)). In these, Haddeland et al. (2011)
combines both global land surface models and global hydro-
logical models into a single multi-model ensemble of which
some are also used in this study. The WATCH programme
(Harding et al., 2011) used the WATCH Forcing Data which,
for January 1958 to December 2001, was created by bias cor-
recting ERA40 reanalysis data (Uppala et al., 2005) using
gridded in situ meteorological observations (Weedon et al.,
2011). For January 1901 to December 1957 the WATCH
Forcing Data applied the same system of bias correction,
but applied to randomly selected years of the ERA40 1958–
2001 data (Weedon et al., 2011). During the EMBRACE pro-
gramme the WATCH Forcing Data (1958–2001) methodol-
ogy was applied to the more recent ERA-Interim reanalysis
(Dee et al., 2011) to create the WFDEI (WATCH Forcing
Data methodology applied to ERA-Interim reanalysis; Wee-
don et al., 2014).

We use the WFDEI dataset to force a set of 10 global mod-
els, both land surface models (LSMs) and global hydrolog-
ical models (GHMs). By using a sizeable set of models we
take steps to mitigate some of the errors and uncertainties that
are introduced in individual models by the simplified repre-
sentation of spatially heterogeneous real world processes like
water and energy balances, river routing and seasonal vary-
ing vegetation cover (Beven and Binley, 1992; Vrugt et al.,
2005; Gosling et al., 2010). As a general principle, this is su-
perior to the results of any individual model and as good as or
better than the best model at each point and time (Dirmeyer
et al., 2006; Harding et al., 2011). However, this does not
necessarily mean that this is the case for the set of models
that we use or that some models do not perform considerably
better in specific locations, climatic conditions or for specific
variables (e.g. runoff) than others.

The multi-model ensemble presented here inherits a num-
ber of models from the WATCH project supplemented by ad-
ditional models, a new forcing dataset (WFDEI), a WFDEI-
derived reference potential evapotranspiration dataset and a
new modelling protocol. Furthermore, we introduce the data
repository where the results are stored in an open format in-
cluding all data needed for other groups to perform a similar
exercise. In the end this can contribute to a better understand-
ing of the characteristics of the increasing number of global
models (Bierkens, 2015). The repository comes with (down-
scaling) tools and river basin management models such as
WaterWorld (Mulligan, 2012) to increase usage of the data at
the basin scale outside of the research community.

In this paper we present the first version of the dataset,
which is based on the current state of the art of the contribut-
ing modelling systems and will provide a benchmark to eval-
uate improvements made to the models and forcing data in
the coming years. The main goal of this paper is to provide
a multi-decadal dataset of water balance components from
an ensemble of models that is open and of use for further
research and applications. Secondly, we investigate whether
the ensemble mean in this dataset is superior to the individual
models given the diverse set of models, and if so, for which
variables.

First, we describe the methods and models we have used.
Secondly, we investigate the characteristics of the resulting
dataset using the multi-model signal-to-noise ratio (SNR) to
investigate multi-model agreement and the tools from The
International Land Model Benchmarking Project (ILAMB,
Luo et al., 2012; Mu et al., 2016) to compare the model out-
put to reference datasets for evapotranspiration, total water
storage, soil moisture, snow water equivalent and snow cover.
Thirdly, the terrestrial water budget is used to compare the
results with previous efforts. Finally we present conclusions
and an outlook for further versions of this dataset.
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2 Methodology and modelling protocol

Each of the models used produced results for the period
1979–2012 based on the provided meteorological forcing.
In total 10 models were used, both large-scale hydrological
models and land surface models with extended hydrological
schemes (see the list below and Table 1), all running offline
(i.e. not connected to an atmospheric model) while driven by
the same reanalysis-based forcing dataset. Given the different
nature of the models a single spin-up procedure was not fea-
sible. The spin-up procedure was chosen for each model in-
dividually to match each model’s requirements with the goal
to best represent the climatic conditions over the simulation
period.

HTESSEL-CaMa represents the Hydrology Tiled
ECMWF Scheme for Surface Exchanges over Land
(Balsamo et al., 2009). The runoff produced by the
land surface scheme is routed with the Catchment-based
Macro-scale Floodplain model CaMa-Flood (Yamazaki
et al., 2011). A 10-year spin-up was carried out: an ini-
tial run from 1 January 1979 to 1 January 1989, while
the land surface state of January 1989 was used to ini-
tialize the main simulation.

JULES is the Joint UK Land Environment Simulator,
(Best et al., 2011; Clark et al., 2011), a community
land surface model that has evolved from the Met Of-
fice Surface Exchange Scheme (MOSES). It includes
an additional saturation excess runoff production us-
ing a probabilistic distributed model (Moore, 2007) ap-
proach. A 10-year spin-up was carried out: an initial run
from 1 January 1979 to 1 January 1989, while the land
surface state of January 1989 was used to initialize the
main simulation.

LISFLOOD (Van Der Knijff et al., 2010) is a spa-
tially distributed, grid-based rainfall–runoff and chan-
nel routing model that has been designed primarily for
the simulation of the water cycle in large river basins.
The model is made up of a two-layer soil water balance
sub-model, sub-models for the simulation of groundwa-
ter and subsurface flow, a sub-model for the routing of
surface runoff to the nearest river channel, and a sub-
model for the routing of channel flow. The model was
initialized by running the full 1979–2012 period before
starting the main run.

ORCHIDEE is a land surface scheme resulting from
the coupling of the SECHIBA land surface scheme and
the carbon and vegetation model STOMATE. It consists
of a hydrological module (Krinner et al., 2005) and a
routing (Ngo-Duc et al., 2007) and floodplain module
(d’Orgeval et al., 2008). The model was spun up with a
simulation from 1 January 1979 to 31 December 1990.
This simulation started with an average soil moisture

and empty aquifers. After the 12 years of spin-up, river
discharges have reached equilibrium.

PCR-GLOBWB (Bierkens and Van Beek, accessed
2015; van Beek et al., 2011; Wada et al., 2014) is a leaky
bucket global hydrological model providing a regular
grid-based representation of terrestrial hydrology. The
routing is based on a computationally efficient travel
time approach, where volumes of water are transported
over a characteristic distance along the drainage system
(Deursen, 1995). A 68-year spin-up was carried out by
performing two initial back-to-back runs from 1979 to
2012 prior to the definite run.

SURFEX-TRIP uses the ISBA multi-layer land surface
model to compute the soil/snow/vegetation energy and
water budgets (Decharme et al., 2010, 2013) and the
TRIP river routing model to simulate the river flow at
the global scale. A 20-year spin-up was carried out us-
ing the 1979–1988 period two times.

SWBM (Simple Water Balance Model) is a global
model that derives soil moisture, evapotranspiration
(ET) and runoff from meteorological information alone,
i.e. does not use any information on soil or vegeta-
tion characteristics (Orth and Seneviratne, 2013). The
model parameters have been determined by calibrating
the model against multiple reference datasets in Europe.
These spatially uniform parameters were applied glob-
ally to derive the eartH2Observe simulations. The spin-
up was done by running the first year 5 times. The re-
sulting soil moisture and snow fields were then used to
start the actual simulation.

W3RA (worldwide water resources assessment) is
based on the landscape hydrology component model of
the AWRA system (AWRA-L version 1.0; Van Dijk,
2010; van Dijk et al., 2014). AWRA-L can be consid-
ered a hybrid between a simplified grid-based land sur-
face model and a nonspatial (or so-called “lumped”)
catchment model applied to individual grid cells (model
code available at http://www.wenfo.org/wald). Spin-up
was carried out using the entire 1979–2012 modelling
period before the final runs.

WaterGAP3, Water – Global Assessment and
Prognosis-3 is a grid-based, integrative global freshwa-
ter resources assessment tool. It consists of a spatially
distributed rainfall–runoff model, five sectorial water
use models, and a large-scale water quality model
(Flörke et al., 2013; Döll et al., 2009). Storage compart-
ments were initialized by re-running the model with the
first year of available meteorological forcing 10 times.

HBV-SIMREG is the simple conceptual HBV hy-
drological model (Lindström et al., 1997) with opti-
mized parameters derived using a novel regionalization

www.earth-syst-sci-data.net/9/389/2017/ Earth Syst. Sci. Data, 9, 389–413, 2017

http://www.wenfo.org/wald


392 J. Schellekens et al.: A global water resources ensemble of hydrological models

Table
1.O

verview
ofm

odels
and

sum
m

ary
ofprocesses

included.

M
odel

Interception
E

vaporation
Snow

Soillayers
G

roundw
ater

R
unoff

R
eservoirs/lakes

R
outing

W
ateruse

Tim
e

step

H
T

E
SSE

L
-C

aM
a

Single
reservoir,poten-

tialevaporation
Penm

an–
M

onteith
E

nergy
bal-

ance,1
layer

4
N

o
Saturation
excess

N
o

C
aM

a-Flood
N

o
1

h

JU
L

E
S

Single
reservoir,poten-

tialevaporation
Penm

an–
M

onteith
E

nergy
bal-

ance,3
layers

4
N

o
Saturation

and
infilt.excess

N
o

N
o

N
o

1
h

L
ISFL

O
O

D
Single

reservoir,poten-
tialevaporation

Penm
an–

M
onteith

D
egree-day,

1
layer

2
Y

es
Saturation

and
infilt.excess

Y
es

D
ouble

kine-
m

atic
w

ave
Y

es
1

day

O
R

C
H

ID
E

E
Single

reservoir
struc-

turalresistance
to

evap-
oration

B
ulk

PE
T

(B
arella-O

rtiz
etal.,2013)

1
m

oisture
layer,

1–5
therm

odynam
ic

layers

11
Y

es
G

reen-A
m

pt
infiltration

N
o

linear
cascade

of
reservoirs

(sub-grid)

irrigation
only

900
s

energy
balance,

3
h

routing

PC
R

-G
L

O
B

W
B

Single
layer,

subject
to

open
w

aterevaporation
H

am
on

(tier
1)

or
im

posed
as

forcing

Tem
perature

based
m

elt
factor

2
Y

es
Saturation
excess

Tier1
only

lakes
Travel

tim
e

ap-
proach

N
otin

tier1
1

day

SU
R

FE
X

-T
R

IP
Single

reservoir,poten-
tialevaporation

Penm
an–

M
onteith

E
nergy

and
m

ass
balance,

12
layers

14
Y

es
Saturation

and
infilt.excess

N
o

T
R

IP
w

ith
stream

N
o

900
s

for
ISB

A
,

3600
s

forT
R

IP

SW
B

M
N

o
Inferred

from
netradiation

D
egree-day,

1
layer

1
N

o
Inferred

from
precipita-
tion

and
soil

m
oisture

N
o

N
o

N
o

1
day

W
3R

A
G

ash
event-based

m
odel

Penm
an–

M
onteith

D
egree-day,

1
layer

3
Y

es
Saturation

and
infiltration

ex-
cess

N
o

C
ascading

lin-
earreservoirs

N
o

1
day

W
aterG

A
P3

Single
reservoir

Priestley–
Taylor

D
egree-day,

1
layer

1
Y

es
B

eta
function

Y
es

M
anning–

Strickler
Y

es
1

day

H
B

V
-SIM

R
E

G
N

o
Penm

an
1948

D
egree-day,

1
layer

1
N

o
B

eta
function

N
o

N
o

N
o

1
day

Earth Syst. Sci. Data, 9, 389–413, 2017 www.earth-syst-sci-data.net/9/389/2017/



J. Schellekens et al.: A global water resources ensemble of hydrological models 393

scheme in which calibrated parameters are transferred
to grid cells with similar characteristics to produce pa-
rameter maps with global coverage (Beck et al., 2016b).
For each grid cell, we used calibrated parameters from
the 10 most similar catchments and averaged the ensem-
ble of model outputs. The model was initialized using
the first 10 years of the forcing data before starting the
main run.

HBV-SIMREG, SWBM, LISFLOOD and WaterGAP3 all
have been calibrated in previous studies based on observed
runoff data, although these calibration efforts were done with
different forcing datasets (see the respective model papers
listed above). The other models rely on a priori parameter
estimation alone.

The data used to force the models were from the WFDEI
dataset (Weedon et al., 2011, 2014) that comprised the pe-
riod between and including 1979 and 2012 and contains both
3-hourly time intervals and daily time intervals. WFDEI is
based on the ECMWF ERA-Interim reanalysis (Dee et al.,
2011) with a spatial resolution of 0.5◦, and is corrected with
the CRU dataset (Harris et al., 2014b) using a sequential el-
evation correction of surface meteorological variables plus
monthly bias correction from gridded observations. Com-
pared to the original WFDEI dataset we applied several data
formatting changes to facilitate its usage, storage and dis-
semination. In order to avoid land–sea mask problems with
different models all oceans were filled with data from the
original ERA-Interim for all variables apart from precipita-
tion for which the ERA-Interim/Land dataset was used (Bal-
samo et al., 2015). Furthermore, the files were reformatted to
netCDF4 and some metadata attributes have been modified
to comply with the Climate and Forecast (CF) conventions.
Table 2 provides an overview of the WFDEI variables used
in this study.

A list of the most important output variables is presented
in Table 3. If a model does not represent a process, the as-
sociated variables are not available in the dataset. The water
and energy fluxes follow the mathematical convention, i.e.
positive onto the surface and negative away from the surface
(see details in Table 3). For example, runoff has a negative
signal. Although most models can only supply a subset of
the requested variables listed in Table 3 we have defined this
rather large number of variables so that specific fluxes/stores
from models that can supply those can be used for analysis
later on.

Similar to other global forcing datasets (Li and Ma, 2010;
Rust et al., 2014; Sheffield et al., 2006; Rienecker et al.,
2011), the WFDEI forcing contains a number of problems.
For WFDEI we identified five issues. (i) The rainfall in
Gabon in Africa seems to be unrealistically high. A likely
reason for this could be a unit error in the reported precip-
itation. (ii) There are some concerns about the energy forc-
ing terms of WFDEI (SWdown, LWdown) over the Amazon
region (an underestimation of SWdown and overestimation

of LWdown, coming from the ERA-Interim data). (iii) In
a number of time stamps there is some incoming radiation
noise at night time (about 0.05 W m−2), also inherited from
the original ERA-Interim data, resulting from the process-
ing of the fluxes archived by the atmospheric model in ERA-
Interim. (iv) Large positive values of SWdown > 5 W m−2

at night time in some islands and coastal points introduced
during the WFDEI data processing. (v) A total of nine grid
points out of 67 209 were found with a substantial conversion
of liquid rainfall (in ERA-Interim) into snowfall (in WFDEI).
For some models, this can lead to a continuous accumulation
of snow over those points. Although some of these problems
could have been addressed it was decided to keep the original
WFDEI dataset to guarantee consistency with other studies in
the literature.

The simulations were performed from 1 January 1979
to 31 December 2012 in a continuous run. With respect
to static fields (e.g. soil physical parameters, land cover
type) each modelling group used their own datasets, as this
is considered to be part of the modelling system, and ex-
changing these fields between models is not straightforward.
Two simple quality control tests were applied to the data:
(i) generic metadata and quality control (including mass bal-
ance checks) and (ii) comparison of minimum, maximum
and mean fields. The first test is automatic (script available
at: https://github.com/earth2observe/project-tools), while the
second relies on the inspection of aggregated statistics.

To ensure uniform input and use of the data the project’s
servers have been configured to host the forcing data and
also provide an interchange platform for the project using a
THREDDS data server (Domenico et al., 2006). This server
is also used to distribute the data to the rest of the world and
includes an interactive portal (http://wci.eartH2Observe.eu).
The flow of data for the current model runs is depicted in
Fig. 1. Direct access to the THREDDS server is available
at http://wci.earth2observe.eu/thredds/catalog.html while a
mirror of the data is hosted at http://al-tc002.xtr.deltares.nl:
8080/thredds/catalog.html.

All model outputs passed the metadata consistency checks.
The simulations from WaterGAP3, PCR-GLOBWB and
JULES have grid points with residuals above the defined
threshold (5.0× 10−6 kg m−2 s−1) due to the water transport
in the river network that is not accounted for in the water bal-
ance calculations, but the water balance is closed on a basin
scale. For the second data quality check the temporal and
global spatial minimum, maximum, mean and standard devi-
ation were computed for all variables and compared among
the different models using the monthly data. This allowed the
identification of several problems (e.g. different signal con-
ventions for the fluxes, numerical/rounding errors) that were
corrected directly in the data server or by each institution.
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Table 2. Overview of the meteorological forcing used in the simulations, and the corrections applied to the original ERA-Interim during the
WFDEI processing (Weedon et al., 2014).

Variable Standard name Definition Units Corrections

Wind wind_speed Wind speed at a reference level near
the surface – 10 m

m s−1 None

Tair air_temperature Temperature at a reference level
near the surface – 2 m

K Elevation using lapse rate; CRU av-
erage Tair and average diurnal tem-
perature range

Qair specific_humidity Specific humidity at reference level
near the surface – 2 m

kg kg−1 Via changes in Tair and PSurf

PSurf surface_air_pressure Pressure at the surface Pa Via changes in Tair
SWdown surface_downwelling_shortwave_flux_in_air Average incident radiation in the

shortwave part of the spectrum
W m−2 CRU average cloud cover and ef-

fects of inter-annual changes in at-
mospheric aerosol loading

LWdown surface_downwelling_longwave_flux_in_air Average incident radiation in the
longwave part of the spectrum

W m−2 Via fixes in relative humidity and
changes in Tair, PSurf and Qair

Rainf rainfall_flux Average rainfall (only liquid phase) kg m−2 s−1 CRU number of wet days and pre-
cipitation totals

Snowf snowfall_flux Average snowfall (only solid phase) kg m−2 s−1 CRU number of wet days and pre-
cipitation totals

Table 3. List of most important output variables and conventions. If a standard name is not available the name will be used in the respective
netCDF files.

Name long_name standard_name Units Definition Positive direction
(attribute) (attribute) (attribute)

Precip Total precipita-
tion

precipitation_flux kg m2 s−1 Average of total precipitation
(Rainf+Snowf)

downwards

Evap Total evapotran-
spiration

water_evaporation_flux kg m2 s−1 Sum of all evaporation sources, averaged
over a grid cell

downwards

Runoff Total runoff runoff_flux kg m2 s−1 Average total liquid water draining from
land (specific runoff)

into grid cell

RivOut River discharge NA m3 s−1 Water volume leaving the cell downstream
SnowFrac Snow cover frac-

tion
surface_snow_area_fraction – Fraction of each grid cell covered with snow

(0–1)
–

SWE Snow water
equivalent

liquid_water_content_of_surface_snow kg m−2 Total water mass of the snowpack (liquid or
frozen), averaged over a grid cell

–

SurfStor Surface water
storage

NA kg m−2 Total liquid water storage, other than soil,
snow or interception storage (i.e. lakes,
river channel or depression storage)

–

CanopyInt Canopy intercep-
tion depth

– kg m−2 Depth of intercepted water on the canopy –

SnowDepth Depth of snow
layer

surface_snow_thickness m Total snow depth –

SurfMoist Surface soil
moisture

NA kg m−2 5 cm depth or first model layer –

RootMoist Root zone soil
moisture

NA kg m−2 Total soil moisture available for evapotran-
spiration (or up to 1 m depth if not defined)

–

TotMoist Total soil mois-
ture

NA kg m−2 Vertically integrated total soil moisture –

GroundMoist Ground water NA kg m−2 Ground water not directly available for
evapotranspiration

–

NA = not available

3 Dataset characteristics

3.1 Multi-model SNR

An important component of a multi-model dataset is the pos-
sibility to characterize the multi-model agreement or con-

sistency. While such characteristics do not imply quality or
skill, it can provide an overview of the regions and variables
where datasets strongly disagree. This information can be
used either by the modelling community to focus on particu-
lar aspects of their models or by users as a first order uncer-
tainty estimate of the multi-model ensemble. The agreement

Earth Syst. Sci. Data, 9, 389–413, 2017 www.earth-syst-sci-data.net/9/389/2017/



J. Schellekens et al.: A global water resources ensemble of hydrological models 395

WCI data storage and exchange

Land surface/hydrological 
model output

0.5 x 0.5 degree

WFDEI forcing data

0.5 x 0.5 degree

EO data products and 
derived data

Data access methods/protocols

FTP
server

THREDDS data server

OpeNDAP WCS WMS HTTP

cf- compliant 
netCDF files

Public access

Modeller
community

Add 
products

https://wci.earth2observe.eu/portal

rsync
mirror

Figure 1. Flow of input and model data via the eartH2Observe Water Cycle Integrator (WCI). All data are accessible to users via a number
of open protocols and a tailor-made user interface at http://wci.earth2observe.eu.

metric selected here is the SNR, which compares the signal to
noise levels by relating the ensemble’s variance to that of the
individual members, which has been widely used as a classi-
cal measure of predictability in seasonal forecasting (Kumar
and Hoerling, 2000). SNRs were calculated for three model
variables: evapotranspiration, runoff and root zone soil mois-
ture plus an ensemble of global precipitation datasets. See
Appendix A for a detailed description of the SNR calcula-
tions.

We performed the calculations with monthly mean anoma-
lies to focus on the model agreement in terms of intra-
seasonal to inter-annual variability. Since all models were
driven by the same atmospherical conditions, low values of
SNR can be directly associated with differences in the repre-
sentation of processes such as energy partitioning and runoff
generation – i.e. ensemble uncertainty. However, since one
single forcing was used, the ensemble is missing an impor-
tant source of uncertainty: the driving data. Precipitation is
likely the main source of uncertainty; it is very important for
the terrestrial water balance while at the same time it is dif-
ficult to observe both locally and remotely. To put our re-
sults into perspective, we also computed the SNR of an en-
semble of precipitation datasets including three atmospheric
reanalysis datasets (ERA-Interim: Dee et al., 2011, JRA55:
Kobayashi et al., 2015, MERRA: Rienecker et al., 2011), two

datasets based on rain gauges (GPCC: Schneider et al., 2011,
CRU TS3.10: Harris et al., 2014a) and two datasets derived
from remote sensing data (GPCP: Adler et al., 2003, CMAP:
Xie and Arkin, 1997).

The SNRs were computed for the period January 1980 to
December 2012 by removing the mean annual cycle in each
grid point from each ensemble member such that y and yi

are both equal to zero; see Appendix A. Due to the differ-
ences in the representation of soil moisture storage among
the models, the ensemble mean is dominated by those mod-
els with a higher water holding capacity and hence larger ab-
solute soil moisture variability. Therefore, the root zone soil
moisture was first transformed to percentiles before perform-
ing the calculations for each model (Wang et al., 2011). The
SNR varies between 0 and +∞ with values below 1 indicat-
ing that the inter-model variability is larger than the ensemble
mean variability, i.e. low inter-model agreement, and values
above 1 indicating a high inter-model agreement.

The multi-model consistencies in terms of inter-annual
variability evaluated by the SNR are shown in Fig. 2a–
c for the different variables, and aggregated by climate
types in Fig. 3a–c. The results highlight regions with a
low inter-model agreement over (i) snow-dominated regions
(runoff, evapotranspiration and root zone soil moisture) and
(ii) tropical rainforest and monsoon regions (evapotranspira-
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tion), whereas the temperate areas show a high inter-model
agreement. Comparing these results with the precipitation
datasets’ agreement (Figs. 2d and 3d), which were not in-
cluded in the driving data, the large uncertainty in the tropical
areas is not reflected in the runoff or root zone soil moisture.
On the other hand, there is little disagreement in the precipi-
tation datasets in cold regions, which could be caused by the
fact that in these regions we rely mostly on reanalysis data
sources, while the multi-model ensemble contains a large
spread. The SNRs suggest that over cold regions the multi-
model ensemble is generating a large spread (likely due to
the different treatment of cold processes among the models)
while over the tropical areas some of the multi-model agree-
ment might be underestimating the actual uncertainty by ne-
glecting the driving data uncertainty in the ensemble genera-
tion.

3.2 Verification with external datasets

We use the ILAMB system (The International Land Model
Benchmarking Project; Luo et al., 2012; Mu et al., 2016)
to compare the model results against benchmark data
mostly derived from satellite remote sensing, of evapotran-
spiration (ET), terrestrial water storage anomaly (TWSA),
soil moisture anomaly (SMA), snow water equivalent
(SWE) and snow cover fraction (SC). For evapotranspi-
ration both the GLEAM-V2a and V3b datasets (Miralles
et al., 2011; Martens et al., 2017) and the MODIS evapo-
transpiration estimates (Mu et al., 2011) were used while
for soil moisture anomaly we used the combined ac-
tive+passive microwave ESA CCI soil moisture dataset
(Dorigo et al., 2015, 2012). The snow cover dataset was
obtained from the Interactive Multisensor snow and ice
mapping System (IMS; Ramsay, 1998; Helfrich et al.,
2007) while for SWE we used GLOBSNOW-2 (Takala
et al., 2011; Pulliainen, 2006). The TWSA dataset was
obtained from GRACE data (JPL; Landerer and Swen-
son, 2012). The complete benchmark results are avail-
able at the dataset storage entry page at https://github.com/
earth2observe/water-resource-reanalysis-v1 while a sum-
mary is given in Appendix B, Table B1 to B6. A project re-
port presenting in-depth verification is provided in the Sup-
plement.

ILAMB provides a scoring system to relate modelled
results to reference datasets. In the ILAMB system mul-
tiple performance metrics are calculated, and additionally
these metrics are converted to scores ranging between
0 and 1 to facilitate comparison and averaging. In this
study three performance metrics are calculated for each
of the five model variables evaluated (ET, TWSA, SMA,
SWE, SC): total bias, root mean square error (RMSE)
and phase difference (difference in months between peak
values); furthermore a total of five 0–1 scores are cal-
culated, for global bias, RMSE, seasonal cycle, spatial
distribution and inter-annual variability, plus a 0–1 overall

score that summarizes them. The metrics and scoring are
explained in detail in the ILAMB documentation (http:
//earth2observe.github.io/water-resource-reanalysis-v1/
assets/pdf/ILAMB_metrics_document.pdf). For the case
of anomaly variables (TWSA and SMA), the bias and
spatial distribution scores are calculated over the stan-
dard deviations of the variables, and not directly over the
anomalies. The current study is not an exhaustive test of the
performance of the different models, instead we focus on
the multi-model ensemble, commenting on specific models
only when this is thought to be important to the ensemble as
a whole. Apart from the global level, the ILAMB results are
also available for a number of predefined regions (biomes;
see Fig. 4).

Although there are a number of uncertainties associated
with TWSA as estimated by GRACE measurements (Long
et al., 2014; Riegger et al., 2012), resulting from the uncer-
tainty of the GRACE data itself and the leakage corrections,
the results provide an independent means of evaluating our
model results. Both the peak month phase difference and the
ensemble mean bias are negative for most models compared
to GRACE (see Fig. 5) which could indicate that these mod-
els lack a store such as rivers or lakes (Kim et al., 2009)
or that the size of the included stores is inadequate. Table 4
lists the models and the variables used to calculate TWSA in
this study. Results for the WaterGAP3 model should be in-
terpreted with caution because it lacks total moisture which
is a large store in many models. RMSE is largest in high-
precipitation regions and lowest in dry areas (Fig. 5, bot-
tom panel). Overall, total scores for TWSA are close be-
tween the models, while the highest values are recorded for
the ensemble mean, suggesting that the lowest-scoring mod-
els do not have a large detrimental effect on the ensemble
mean. Although the scores for the TWSA (ranging between
0.49 for SWBM and 0.60 for HTESSEL) are similar at the
global level, there are larger differences between the mod-
els at the regional level. The negative phase difference for
nearly all models indicates that the peak in the anomaly in
the models occurs earlier than in the GRACE data. This could
point to a general underestimation of the TWSA (for exam-
ple the groundwater component) resulting in a system that
reacts too quickly. In addition, the negative phase difference
is strongest in the cold regions indicating that snow mod-
elling might be an important factor here. There are large re-
gional differences in the phase difference performance show-
ing best results in Africa (below the Sahel), Australia, India,
and South America north of 25◦ S. There is no single model
that performs best in all regions.

For evapotranspiration our results compare better to the
GLEAM products (mean model total score of 0.83 for both
products) but less so to the MODIS product (mean model
score of 0.78; see Table 5). Most models (and the ensemble
mean) evaporate more water than the remote sensing based
estimates. As shown by Miralles et al. (2016) it is still dif-
ficult to determine the quality of global ET products. The
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Figure 2. Signal-to-noise ratio of monthly mean anomalies of evapotranspiration (a), runoff (b), root zone soil moisture (c) and precipitation
(d).

Figure 3. Distribution of the SNR of monthly anomalies over different BIOMES (horizontal axis; see Fig. 4) for evapotranspiration (a),
runoff (b), root zone soil moisture (c) and precipitation (d). The boxplots represent the spatial variability of the individual pixels of SNR in
each biome extending from percentile 5 to 95 (whiskers), percentiles 25 to 75 (box) and median (horizontal line).

driving force behind the ET estimates by the multi-model en-
semble is provided by the WFDEI (based on ERA-Interim)
which is shown to have relatively high ET (Miralles et al.,
2016). It is beyond the scope of the current study to ex-
amine the differences in ET between the models, but the
choice of calculation method of potential ET within the mod-

els may already account for a large spread (see e.g. Weiland
et al., 2015, who used the WFDEI forcing to calculate FAO
Penman–Monteith reference evapotranspiration (ET) (Allen
et al., 1998), Priestley–Taylor reference ET (Priestley and
Taylor, 1972) and Hargreaves reference ET (Hargreaves and
Samani, 1982; Hargreaves and Allen, 2003; Sperna Weiland
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Figure 4. BIOMES used in calculating regional averages. These are: AUST (Australia), EQAS (equatorial Asia), SEAS (Southeast Asia),
CEAS (central Asia), BOAS (boreal Asia), SHAF (Southern Hemisphere Africa), NHAF (Northern Hemisphere Africa), MIDE (Middle
East), EURO (Europa), SHSA (Southern Hemisphere South America), NHSA (Northern Hemisphere South America), CEAM (Central
America), TENA (temperate North America) and BONA (boreal North America).

Table 4. Components used in total water storage estimation for each model. The definition of the variables can be found in Table 3.

SWE CanopInt SurfStor TotMoist GroundMoist

HTESSEL-CaMa x x x x –
JULES x x – x –
LISFLOOD x – – x x
ORCHIDEE x – x x –
PCR-GLOBWB x x x x x
SURFEX-TRIP x x x x –
SWBM x – – x –
W3RA x – – x x
WaterGAP3 x x x – –
HBV-SIMREG x – – x x

et al., 2012)). The method used to estimate net radiation may
also play a large role. Although the results show that the en-
semble mean provides best overall performance, the spread
in ET is large (between 1.66 and 1.33 mm day−1).

All models provided SWE, while only six models pro-
vided SC. Total performance against the reference dataset
was highest for ORCHIDEE, WaterGAP3 and LISFLOOD
although the bias is fairly large for all models (see Fig. 6).
The phase difference seems to be influenced most by rather
poor scores in the Himalaya. The total ensemble mean score
for SWE is 0.67, which is lower than the highest model
score of 0.74, suggesting that in this case the model mean
should be used with care. However, GlobSnow has been
shown to miss early season snow and SWE levels can drop
too rapidly in spring (Takala et al., 2011). As most mod-
els show a later spring melt than GlobSnow it remains un-
clear if this is a model deficiency. A number of models show
an unrealistic build-up of snow over time in Europe (HBV-
SIMREG and PCR-GLOBWB), boreal North America (HT-
ESSEL, HBV-SIMREG, PCR-GLOBWB), central Asia (HT-
ESSEL, HBV-SIMREG) and Southeast Asia (HTESSEL,

JULES, LISFLOOD). This may be caused by the fact that
the models have been driven by a different dataset (with dif-
ferent temperature and radiation characteristics) than what
they have been developed with. Snow cover fraction (SC) es-
timated by the models compares well to the IMS results. Here
SURFEX-TRIP performs best but performance in general is
much closer compared to the SWE results and the ensemble
mean seems to provide a good estimate. Getting the phase
correct in the Himalayan region seems to be the most chal-
lenging parameter for the models (see Fig. 7).

Although current satellite-derived surface soil moisture
products that cover a long period have a number of limi-
tations (Su et al., 2016; Loew et al., 2013), and are also
not completely model-independent, they have been shown to
capture intra- and inter-annual soil moisture variability, and
this variability is not dependent on an external atmospheric
forcing dataset. In addition, comparison with land surface
models and in situ data showed good correlation (Albergel
et al., 2013). However, the long soil moisture record is not
homogeneous because of sensor degradation as well as dif-
ferences in sensor characteristics, algorithms and calibration
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Figure 5. Terrestrial water storage anomaly metrics for the ensemble mean, from top to bottom: SD of bias, phase difference (months) and
root mean square error.

Table 5. Model mean evapotranspiration compared to the MODIS and GLEAM-V2a/GLEAM-V3b products. The difference in model mean
annual ET in the last three rows is due to different periods used for the comparison (GLEAM-V2a 1980–2011, GLEAM-V3b 2003–2012,
MODIS 2000–2012).

Annual mean Bias RMSE Phase difference Overall score
mm day−1 mm day−1 mm day−1 months –

GLEAM-V2a 1.31 – – – –
GLEAM-V3b 1.27 – – – –
MODIS 1.28 – – – –
Model mean: GLEAM-V2a period 1.46 0.15 0.37 −0.31 0.83
Model mean: GLEAM-V3b period 1.48 0.21 0.30 −0.06 0.83
Model mean: MODIS period 1.48 0.20 0.49 −0.23 0.78

(Liu et al., 2012). Therefore we used the period 2002–2012
only. Because only a limited number of models was able to
provide surface soil moisture we have chosen to evaluate

root zone soil moisture from the models with the remote-
sensing product (see Table 6). Although this may seem to
be a large mismatch, the fact that we compare monthly aver-
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Figure 6. Bias in kg m−2 between GlobSnow and the model results. The top left figure shows the ensemble mean. Reds denote a positive
bias, blues a negative bias.

age data should filter out the fast topsoil moisture fluctuation
and make it more comparable. When comparing the results
of the global models, the obtained differences are a result of
the imperfections in the meteorological forcing, the model
uncertainty – including parameterization and representative
depth of the soil moisture – and the uncertainty in the soil
moisture product. Global scores range from 0.45 for SWBM
to 0.61 for HTESSEL and JULES with the ensemble mean
score being very close to the best model at 0.60. Figure 8
shows the results for Australia and Southeast Asia. A recent
study that used remotely sensed soil moisture to update the
state of the PCR-GLOBWB hydrological model over a catch-
ment in Australia (López López et al., 2016) showed signifi-
cant improvement in simulated discharge after including the
remotely sensed soil moisture, demonstrating that the hydro-
logical models can benefit from the remotely sensed surface
soil moisture. Conversely, Orth et al. (2013) showed that cal-
ibrating the SWBM against discharge only, yielded well rep-
resented soil moisture dynamics.

Beck et al. (2016a) compared the set of model outputs
described in this paper with discharge from 966 medium-
sized catchments and demonstrated that the calibrated mod-
els showed best performance and that, on average, for the
uncalibrated models the hydrological models performed bet-
ter than the land surface models in snow-dominated regions.
They also show that for example ORCHIDEE performs well

Table 6. Averaging depth of surface moisture and root zone mois-
ture in the models.

SurfMoist RootMoist

HTESSEL-CaMa 0.07 m 1 m
JULES 0.1 m 1 m
LISFLOOD – varb

ORCHIDEE 0.092 ma 2 m
PCR-GLOBWB varc 1 m
SURFEX-TRIP 0.04 m varb

SWBM – varc

W3RA 0.05 m 1 m
WaterGAP3 – varb

HBV-SIMREG varc varc

a using the sixth layer in SoilMoist, b variable depth supplied
with model and available on server, c bucket model,
depth= 0.970 m/(theta_fc-theta_wp), where 0.970 m is the
capacity of the bucket for SWBM and using the FC parameter
for HBV-SIMREG.

in cold regions but tends to underestimate runoff in the other
parts of the globe. This seems to be confirmed by the SC
and SWE results for ORCHIDEE, and by its ET results that
indicate that ORCHIDEE overestimates ET in high-ET re-
gions. Combining the results of Beck et al. (2016a) and the
current results also shows that the models that have been cal-
ibrated on discharge do not necessarily give the best results
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Figure 7. Difference in peak snow cover (SC) month for the models compared to the IMS dataset.

for the variables we have used here. This is especially true
for the HBV-SIMREG model which provides best results for
discharge but has overall lowest scores when comparing it to
the other datasets.

3.3 Terrestrial water budget

Table 7 summarizes the global water budget of all the mod-
els. The terrestrial runoff totals for all models apart from OR-
CHIDEE (where runoff also includes the excess water flow-
ing off floodplains and irrigated areas: de Rosnay et al., 2003)
have been derived from the specific runoff per grid cell. As
such the runoff into internal basins that do not drain into
the ocean (endorheic basins) is included in the estimates and
evaporation and abstractions from the routed water are not
included (except for ORCHIDEE, where the evaporation in
floodplains and abstraction for irrigation are included). The
spread in runoff is fairly large (see Fig. 9) and must originate
from the difference in model concepts and parameterization
(including the available energy partitioning) since the atmo-
spherical forcing data used is identical for all models. Runoff
is increasing after 1997 in all models. As can be seen from
the top panel of Fig. 9, this is due to the elevated precipita-
tion during the same period making more moisture available

for both evaporation and runoff. As demonstrated by Fig. 10
the results plot closely to the precipitation minus runoff line
with the LSMs generally showing more evapotranspiration
and less runoff compared to the GHMs.

Table 8 presents the results of this study together with a
selection of previous studies. Although results are not al-
ways directly comparable due to differences in land mask
and techniques used, current results compare reasonably
well with previous estimates. Yearly terrestrial runoff (ex-
cluding Antarctica and Greenland) from the 10 models
ranges between 38 652 and 55 877 km3 yr−1 with an en-
semble mean of 46 268 km3 yr−1. Rodell et al. (2015) pre-
sented an optimized estimate of global terrestrial runoff
of 45 900 km3 yr−1

± 4400 km3 yr−1 for the period 2000–
2010. Furthermore, the lower estimates compare well with
findings from Clark et al. (2015) (44 200± 2660 km3 yr−1),
while the ensemble mean compares well with the WATCH-
based simulations of 49 680 km3 yr−1 (Clark et al., 2015)
and the results by Haddeland et al. (2011) (42 000 to
66 000 km3 yr−1), but are higher than estimates by van Dijk
et al. (2014) (20 909 km3 yr−1, based on 430 basins esti-
mated to cover 90 % of global runoff) and Dai et al. (2009)
(37 288 km3 yr−1). The relatively high runoff in the estimates
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Figure 8. Soil moisture anomaly dynamics and climatology over Australia and Southeast Asia for all models compared to ESA CCI SM.

that rely on models, such as in this study, may in part be
caused by the fact that they include small islands (Syed et al.,
2009) which are not represented in the gauge- and GRACE-
based estimates.

4 Data availability

All data are made available via the eartH2Observe server
which can be accessed via the WCI portal (http://wci.
earth2observe.eu; see Fig. 1) which offers plotting and col-
laboration features, or direct via a THREDDS server allow-
ing access via OPeNDAP, WCS WMS and direct HTTP
download (ftp is also supported). The main servers are

hosted at PLMA-Ltd (Plymouth, United Kingdom) and
a mirror server is hosted at Deltares (Delft, the Nether-
lands). Data are stored on the server in netCDF-cf com-
pliant files. All data generated for this paper are freely
available via the OCD Open Database Licence (http:
//opendatacommons.org/licenses/odbl/summary/). The DOI
for the data is https://doi.org/10.5281/zenodo.57760.

5 Conclusions and outlook

For most of the variables we have found that the ensemble of
land-surface and hydrological models gives satisfactory re-
sults and the agreement between the models is good for large
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Figure 9. Global mean yearly precipitation (a) and runoff (kg m−2 yr−1) for all models (b). The thick black line represents the ensemble
mean.

parts of the terrestrial earth. The multi-model agreement in
terms of monthly anomalies using the SNR provided an in-
sight into the main regions/variables where the dataset shows
a reduced multi-model agreement: (i) snow-dominated re-
gions (in all three variables – evapotranspiration, runoff and
root zone soil moisture) and (ii) tropical rainforest and mon-
soon regions (only for evapotranspiration). Furthermore, the
SNR of an ensemble of precipitation datasets was calculated,
indicating a large uncertainty of precipitation in the tropics,
which is not reflected in the ensemble runoff from the mod-
els. In cold regions the precipitation uncertainty derived from
the available datasets is small compared to the uncertainty of
the multi-model simulations. This suggests that the model
cold processes are an important factor in this multi-model
disagreement. However, in these regions there are no satellite
estimates and a limited number of rain gauges, which means

that the current global datasets most probably underestimate
the precipitation uncertainty in those regions.

The ability of the multi-model ensemble to model total wa-
ter storage dynamics at the scale of the GRACE data is gen-
erally good although models predict the peak in total water
storage earlier in all regions. The fact that the phase differ-
ence is largest in the cold zones also indicates that there are
difficulties in modelling the snow pack. This is in line with
the observation of Beck et al. (2016a) that the models tend
to produce the snowmelt runoff peak too early. Getting SWE
right is difficult for the models, and the results of the verifi-
cation with the GlobSnow data strengthen the results of the
SNR analysis (and the TWSA analysis), which point to cold
regions as regions with low inter-model agreement. It is one
of the few cases where the multi-model performance against
the reference dataset is markedly lower than the performance
of the best model.
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Table 7. Mean evaporation and runoff for the whole period compared to the change in storage of the total moisture component of each model.
Mean precipitation for the whole period using the common land surface mask was 863 (kg m−2 yr−1). Surface water storage and storage in
snow and glaciers is not taken into account. A positive change in storage indicates the model lost water storage during the simulation period.

Model Total evaporation Runoff (kg m−2 yr−1) 1 storage
(kg m−2 yr−1) (km3 yr−1) (kg m−2)

HBV-SIMREG 529 353 (48 945) 1.5
HTESSEL-CaMa 576 287 (39 785) 21.5
JULES 524 355 (49 239) 11.5
LISFLOOD 480 403 (55 877) −9.3
ORCHIDEEa 598 278 (38 652) 9.4
PCR-GLOBWB 511 354 (49 096) 3.2
SURFEX-TRIP 561 301 (41 818) −8.8
SWBM 519 354 (49 129) 7.9
W3RA 518 344 (47 721) 3.1
WaterGAP3b 549 306 (42 415) –

Ensemble mean 537 334 (46 268) 4.4
a Runoff results have been obtained using the routed discharge and not the grid cell specific runoff as in
the other models. b Change in storage for WaterGAP3 is not shown here because it only supplies
root-zone storage.

Table 8. Comparison of mean annual total of terrestrial precipitation, evapotranspiration and runoff with previous studies.

Runoff Total evaporation Precipitation
(km3 yr−1) (km3 yr−1) (km3 yr−1)

This study 46 268 74 457 119 659
Rodell et al. (2015) 45 900 70 600 116 500
Clark et al. (2015) 44 200 – –
Haddeland et al. (2011) 54 186 72 103 12 6000
Syed et al. (2009) 30 354 – –
van Dijk et al. (2014) 20 909 – –
Dai et al. (2009) 37 288 – –
Trenberth et al. (2007) 37 300 73 000 112 600

Although the scores indicate a good performance of the
ensemble, the evapotranspiration estimates are higher than
those by the benchmark datasets. This, combined with the
large spread within the ensemble itself, indicates that the ET
estimates have a large uncertainly and further work is needed
to improve the results. It also shows that in future versions of
the dataset potential ET (PET) and net radiation should also
be reported by all models as the choice of PET calculation
method and net radiation estimate may be large contributors
to the recorded spread in ET estimates.

The current study shows a wide spread in runoff into the
oceans derived from the set of models used. The large range
stems from a combination of different total evaporation val-
ues and different storage dynamics in the models due to the
different concepts and parameterization of runoff generation.
Given the large spread it seems plausible that the ensemble
mean provides the most reliable estimate of the global water
fluxes although there is no independent way of testing this
assumption.

At the global level the multi-model ensemble mean pro-
vides the best (or close to the best) performance for most of
the variables we investigated using the ILAMB system al-
though caution should always be used. Beck et al. (2016a)
concluded similarly in their investigation of the current en-
semble with respect to global discharge. Beck et al. (2016a)
also show that the ensemble mean comes close to the best
(calibrated) models with respect to discharge. The main ex-
ception is SWE, where the ensemble mean is not the best per-
former. Furthermore, the results for TWSA for WaterGAP3
should probably be discarded as we do not have all the re-
quired information. At the regional level the picture is less
clear. This means that although the ensemble mean can be
regarded as a best first estimate, a look at the regional re-
sults is required for basin-scale applications of the current re-
sults. Nevertheless, the above demonstrates that the ensemble
mean of the present dataset could be used to evaluate water
resources.
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Figure 10. Average runoff plotted against average total evaporation
(both expressed in kg m2 yr−1) for all models. The solid line rep-
resents the input precipitation minus runoff. For this line we used
863 kg m−2 yr−1, which is the average calculated over all grid cells
that have values for each model.

The above shows a couple of areas of importance for fur-
ther development of global models and datasets and the cur-
rent set in particular: precipitation estimates in the tropics,
cold weather processes and evapotranspiration losses. This
does not mean that other processes are already properly rep-
resented in the global models and that the influence of these
processes is not important or not reflected in the current re-
sults. In particular for snow precipitation we rely on reanal-
ysis mostly and the uncertainty in the SWE estimates could
also stem from snow input. Work on improving the precipita-
tion estimates has been started by creating a merged precip-
itation product (Beck et al., 2017) that may help to improve
the forcing input.

Constraining models with soil moisture may reduce the
spread in evapotranspiration rates and discharge estimates
(see e.g. López López et al., 2016) while van Dijk et al.
(2014) demonstrated that the use of satellite-derived total wa-
ter storage can be successfully used to constrain global hy-
drological models. When combining different data sources
estimating the errors associated with them becomes very im-
portant. This may be done using error models that allow for
error propagation for various scenarios of data assimilation
and data source sampling (Anagnostou et al., 2010). We plan
to combine this in a future version of the multi-model ensem-
ble that includes uncertainty envelopes (Nikolopoulos et al.,
2010) and error estimates for runoff and other hydrological
variables.

One way of making the forcing data and model results
more relevant for basin-scale studies is by including higher-
resolution model runs. Several of the models will be run-
ning at a higher resolution in a future set of runs and the
common resolution will be increased to 0.25◦ resolution. In
addition, the WaterWorld model (a web-based hydrological
model based entirely on provided global datasets; Mulligan,
2012) will be run at 10 km resolution at the global scale and
will form part of the continuing model inter-comparisons be-
yond this paper.

A literature search reveals that the data we produced
have already been used by several other researchers includ-
ing a study investigating vegetation–atmosphere coupling
(Zscheischler et al., 2015). This demonstrates the value of
open data that is easy to access and comes with little restric-
tions on its use. Furthermore, the hydrological simulations
that are performed within the eartH2Observe project can be
reproduced by other groups by accessing the forcing data on
the data server.
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Appendix A: SNR

The SNR of the multi-model ensemble was computed as the
ratio between the external variance (Vext) and the internal
variance (Vn) as

SNR=
Vext

Vn

,Vext =
√

V 2
h+V 2

n. (A1)

Here Vh is the total variance with the internal and total vari-
ances computed as

V 2
h =

1
NM − 1

N∑
i=1

M∑
j=1

(
yi,j − y

)2 (A2)

V 2
n =

1
NM −N

N∑
i=1

M∑
j=1

(
yi,j − yi

)2 (A3)

and y is defined as

y =
1

NM

N∑
i=1

M∑
j=1

yi,j (A4)

with yi :

yi =
1
N

N∑
j=1

yi,j . (A5)

In the above, yi,j is the value for the ensemble member j and
time i, with M the number of ensemble members and N the
length of the time series, y is the total temporal and ensemble
mean and yi is the ensemble mean.

Appendix B: Summary of ILAMB results
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Table B2. Diagnostic summary for soil moisture anomaly: model vs. ESA-CCI.

Annual mean Bias RMSE Phase difference Global RMSE Seasonal Spatial Interannual Overall
(m3 m−3) (SD) (m3 m−3) (months) bias cycle distribution variability

MeanModel 0.02 −0.01 0.02 −0.23 0.63 0.4 0.70 0.81 0.48 0.6
HTESSEL-CaMa 0.04 0.00 0.02 −0.33 0.72 0.38 0.68 0.74 0.53 0.61
JULES 0.02 −0.01 0.02 −0.47 0.67 0.38 0.67 0.84 0.05 0.61
LISFLOOD 0.03 0.00 0.02 0.30 0.72 0.38 0.67 0.76 0.49 0.6
ORCHIDEE 0.02 −0.01 0.03 −0.3 0.61 0.37 0.64 0.73 0.51 0.57
PCR-GLOBWB 0.04 0.00 0.02 0.06 0.68 0.40 0.69 0.65 0.51 0.59
SURFEX-TRIP 0.02 −0.01 0.02 −0.58 0.65 0.38 0.67 0.78 0.51 0.6
SWBM 0.01 −0.02 0.02 −0.14 0.47 0.39 0.67 0.28 0.42 0.45
W3RA 0.02 −0.01 0.02 −0.41 0.62 0.42 0.7 0.80 0.45 0.60
WaterGAP3 0.01 −0.02 0.02 −0.61 0.52 0.39 0.64 0.57 0.41 0.51
HBV-SIMREG 0.02 −0.01 0.02 −0.17 0.58 0.42 0.72 0.72 0.45 0.58

Table B3. Diagnostic summary for evapotranspiration: model vs. GLEAM-V3B.

Annual mean Bias RMSE Phase difference Global RMSE Seasonal Spatial Interannual Overall
(mm day−1) (mm day−1) (mm day−1) (months) bias cycle distribution variability

MeanModel 1.48 0.21 0.30 −0.06 0.86 0.83 0.81 0.95 0.69 0.83
HTESSEL-CaMa 1.60 0.33 0.36 −0.10 0.84 0.80 0.77 0.96 0.66 0.81
JULES 1.45 0.18 0.35 −0.27 0.84 0.80 0.77 0.93 0.70 0.81
LISFLOOD 1.33 0.06 0.37 −0.21 0.84 0.79 0.79 0.93 0.69 0.81
ORCHIDEE 1.66 0.39 0.44 −0.22 0.81 0.76 0.70 0.94 0.67 0.77
PCR-GLOBWB 1.42 0.15 0.39 −0.52 0.83 0.78 0.77 0.95 0.65 0.79
SURFEX-TRIP 1.55 0.28 0.39 0.25 0.85 0.78 0.75 0.96 0.61 0.79
SWBM 1.43 0.16 0.43 0.11 0.83 0.76 0.80 0.89 0.69 0.79
W3RA 1.44 0.17 0.32 0.13 0.86 0.82 0.85 0.95 0.66 0.83
WaterGAP3 1.45 0.18 0.58 −0.19 0.78 0.69 0.82 0.77 0.58 0.72
HBV-SIMREG 1.47 0.20 0.39 0.16 0.84 0.78 0.81 0.94 0.64 0.80

Table B4. Diagnostic summary for snow water equivalent: model vs. GLOBSNOW.

Annual mean Bias RMSE Phase difference Global RMSE Seasonal Spatial Interannual Overall
(kg m−2) (kg m−2) (kg m−2) (months) bias cycle distribution variability

MeanModel 29.50 20.20 7.90 0.70 0.74 0.65 0.95 0.32 0.73 0.67
HTESSEL-CaMa 49.90 40.60 7.20 0.50 0.73 0.67 0.95 0.06 0.73 0.64
JULES 21.30 12.00 5.90 0.30 0.67 0.68 0.96 0.29 0.69 0.66
LISFLOOD 21.10 11.80 9.30 0.90 0.70 0.57 0.92 0.79 0.73 0.71
ORCHIDEE 6.90 −2.40 5.70 −0.20 0.62 0.66 0.97 0.86 0.66 0.74
PCR-GLOBWB 53.00 43.70 9.80 0.90 0.72 0.60 0.92 0.03 0.72 0.60
SURFEX-TRIP 27.10 17.90 6.50 0.50 0.73 0.68 0.95 0.26 0.73 0.67
SWBM 26.50 17.20 13.80 0.90 0.58 0.42 0.93 0.56 0.75 0.61
W3RA 17.90 8.60 6.30 0.80 0.75 0.67 0.94 0.26 0.74 0.67
WaterGAP3 14.50 5.20 7.20 0.80 0.70 0.62 0.94 0.86 0.70 0.74
HBV-SIMREG 57.30 48.00 22.80 1.00 0.55 0.41 0.91 0.03 0.57 0.48

Table B5. Diagnostic summary for snow cover: model vs. IMS.

Annual mean Bias RMSE Phase difference Global RMSE Seasonal Spatial Interannual Overall
(snow/snow+land) (snow/snow+land) (snow/snow+land) (months) bias cycle distribution variability

MeanModel 0.14 −0.01 0.04 0.27 0.88 0.84 0.95 0.98 0.77 0.88
HTESSEL-CaMa 0.14 -0.02 0.05 0.07 0.88 0.83 0.97 0.98 0.74 0.87
JULES 0.16 0.00 0.05 −0.03 0.90 0.83 0.97 0.98 0.76 0.88
LISFLOOD – – – – – – – – – –
ORCHIDEE 0.13 –0.03 0.07 0.10 0.82 0.75 0.95 0.97 0.74 0.83
PCR–GLOBWB – – – – – – – – – –
SURFEX–TRIP 0.15 –0.01 0.04 0.02 0.90 0.84 0.98 0.99 0.77 0.89
SWBM – – – – – – – – – –
W3RA 0.13 –0.02 0.06 0.27 0.85 0.8 0.95 0.97 0.71 0.85
WaterGAP3 0.15 –0.01 0.06 –0.07 0.84 0.8 0.98 0.96 0.73 0.85
HBV–SIMREG – – – – – – – –
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Table B6. Diagnostic summary for terrestrial water storage anomaly: model vs. GRACE.

Annual mean Bias RMSE Phase difference Global RMSE Seasonal Spatial Interannual Overall
(m3 m−3) (SD) (m3 m−3) (months) bias cycle distribution variability

MeanModel 5.73 −1.17 3.43 −0.43 0.63 0.47 0.83 0.62 0.58 0.63
HTESSEL-CaMa 6.62 −0.28 3.55 −0.53 0.61 0.47 0.82 0.67 0.54 0.62
JULES 5.14 −1.76 3.59 −0.59 0.62 0.47 0.81 0.51 0.55 0.59
LISFLOOD 4.77 −2.13 4.04 −0.42 0.60 0.43 0.81 0.39 0.55 0.56
ORCHIDEE 6.12 −0.78 3.98 −0.66 0.60 0.46 0.79 0.25 0.53 0.53
PCR-GLOBWB 8.88 1.98 4.08 0.00 0.55 0.43 0.82 0.69 0.46 0.59
SURFEX-TRIP 8.40 1.50 4.91 −0.49 0.59 0.41 0.82 0.60 0.54 0.59
SWBM 7.58 0.68 4.82 −0.42 0.50 0.36 0.80 0.44 0.49 0.52
W3RA 6.36 −0.54 3.97 −0.54 0.63 0.42 0.82 0.64 0.57 0.62
WaterGAP3 2.81 −4.09 5.07 −0.86 0.49 0.40 0.75 0.53 0.46 0.53
HBV-SIMREG 5.81 −1.09 4.19 −0.56 0.61 0.41 0.82 0.61 0.55 0.60
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