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ABSTRACT

The noise forcing underlying the variability in the Arctic ice cover has a wide range of principally unknown

origins. For this reason, the analytical and numerical solutions of a stochastic Arctic sea ice model are analyzed

with both additive and multiplicative noise over a wide range of external heat fluxes DF0, corresponding to

greenhouse gas forcing. The stochastic variability fundamentally influences the nature of the deterministic

steady-state solutions corresponding to perennial and seasonal ice and ice-free states. Thus, the results are

particularly relevant for the interpretation of the state of the system as the ice cover thins with DF0, allowing a

thorough examination of the differing effects of additive versusmultiplicative noise. In the perennial ice regime,

the principal stochastic moments are calculated and compared to those determined from a stochastic pertur-

bation theory described previously. As DF0 increases, the competing contributions to the variability of the

destabilizing sea ice–albedo feedback and the stabilizing longwave radiative loss are examined in detail. At the

end of summer the variability of the stochastic paths shows a clearmaximum, which is due to the combination of

the increasing influence of the albedo feedback and an associated ‘‘memory effect,’’ in which fluctuations ac-

cumulate fromearly spring to late summer. This is counterbalanced by the stabilization of the ice cover resulting

from the longwave loss of energy from the ice surface, which is enhanced during winter, thereby focusing the

stochastic paths and decreasing the variability. Finally, common examples in stochastic dynamics with multi-

plicative noise are discussed wherein the choice of the stochastic calculus (Itô or Stratonovich) is not necessarily

determinable a priori from observations alone, which is why both calculi are treated on equal footing herein.

1. Introduction

The advantages of simple deterministic theories of

climate, such as clear assessment of stability and feed-

backs, were evidently first recognized in the context of

energy flux balance models independently by Budyko

(1969) and Sellers (1969). Such approaches reveal key

issues, such as the role of albedo feedback in planetary

climate, the potential coexistence of multiple climate

states under ostensibly the same forcing conditions, and

the nature of the transition of mean states between

them. Important early extensions of the original models

including a form of meridional heat transfer are still

analytically solvable and can be used to assess the sta-

bility of high-latitude ice caps under varying climatic

conditions (e.g., Held and Suarez 1974; North 1975;

North and Cahalan 1981). The inclusion of additional

physics, such as diffusive-type transport, can decrease

the sensitivity of solutions relative to the simplest

models (e.g., Lindzen and Farrell 1977) or bring out

more stable solutions (e.g., Rose and Marshall 2009)

while sacrificing the ability to find analytical solutions.

Indeed, Lindzen and Farrell (1977) point out that there

is no a priori compelling reason to assume that simple

models with transport are superior than the Budyko–

Sellers type of model. In addition, solely deterministic

models cannot capture the role of variability.

In contrast, fully coupled climate models attempt to

deterministically treat all of the processes in the climate

system and to thereby capture the spatiotemporal
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structure of the atmosphere–land–ocean system. None-

theless, the inevitable complexity accompanying such

treatments often precludes a clear identification of cause

and effect in the absence of independent (e.g., observa-

tional) information. However, this may be due to a con-

fluence of real feedbacks and highly parameterized

processes conspiring to obfuscate a variety of key in-

teractions.Moreover, in theArctic projections vary widely

among the IPCC models regarding the degree of ice loss

through 2100 (see, e.g., Fig. 3 of Eisenman et al. 2011).

Stochastic climatemodels reside in a conceptual region

between these two approaches having been introduced to

develop a statistical understanding of the climate system

or its subsystems (e.g., Hasselmann 1976; North and

Cahalan 1981; Benzi et al. 1981; Nicolis and Nicolis 1981;

Saltzman 2002; Dijkstra 2013). In general the stochastic

approach provides an important niche between solely

deterministic low-order models, which were not designed

to treat high-frequency variability, and complex fully

coupled climate models. In the spirit of the Langevin

theory of Brownian motion, stochastic models typically

consist of an underlying deterministic model augmented

by stochastic forcing. The deterministic dynamics tends to

embody the core physics of the system of note, and the

stochastic forcing captures the short-time-scale processes

that modify the deterministic dynamics. Solutions of

stochastic models provide the statistics underlying the

variability that characterizes the interplay between the

slow and fast dynamics. This interplay introduces a

complexity that can yield dynamics that are qualitatively

different from simple deterministic models alone, while

providing a richness that is seen in climate models, and

yet still within a framework amenable to analysis.

The evolution of the air–sea–ice system has long been

recognized as being a stochastic system (e.g., Lemke

1986, and references therein), and here we focus on a

stochastic energy balance model of Arctic sea ice.

During the satellite era, in which we have high-fidelity

measurements of the extent of the ice cover, there have

been significant decreases in volume and extent (see,

e.g., Kwok and Untersteiner 2011; Meier et al. 2014, and

references therein).While both the observational record

(Agarwal et al. 2012) and climate model simulations

(Eisenman et al. 2011) exhibit substantial variability on

multiple time scales, it is clear that the mean minimum

ice extent is decaying, which has stimulated the question

of whether and when a seasonal ice state—no ice in the

summer—may appear. Importantly, satellite data reveal

that the nature of the noise itself is multifractal

(Agarwal et al. 2012), and thus given the prominence of

variability in the observational record, a central ques-

tion concerns how noise will impact the potential tran-

sitions in the state of the ice cover. Because the

observations show the complexity of the noise structure,

and there is no a priori evidence for a ‘‘correct’’ theo-

retical treatment (e.g., additive vs multiplicative) (Moon

and Wettlaufer 2014), stochastic models must explore

the influences of different but rigorous treatments.

The response of the seasonal cycle of Arctic sea ice

thickness to climate was first reproduced quantitatively in

the thermodynamic model of Maykut and Untersteiner

(1971). The essence of this work has been captured more

recently in several simpler models developed in the spirit

of Budyko (1969) and Sellers (1969) to assess the question

of the transitions between perennial and seasonal ice and

ice-free states (Thorndike 1992; Eisenman andWettlaufer

2009). These approaches reproduce the observed season

cycle of ice thickness, and we use that of Eisenman and

Wettlaufer (2009) as the deterministic backbone of our

stochastic model for the following reasons. First, we have

assessed in detail the stability of the deterministic steady

states of this model and found the two key competing

factors that dominate the response time scales (Moon and

Wettlaufer 2011). In particular, the response time scales

are governed by the destabilizing ice–albedo feedback

and the stabilizing longwave radiative energy loss, which

reflects the well-known fact that thin ice grows more

rapidly than thick ice (see, e.g., Fig. 2 of Moon and

Wettlaufer 2011). Second, we have developed a pertur-

bative framework of determining analytic solutions of the

stochastic model that capture the key statistical moments

of perennial ice states (Moon andWettlaufer 2013). Third,

the approach reveals a ‘‘memory effect’’ whereby the in-

trinsic nonlinearity, asymmetry, and stability characteris-

tics of the interaction between the deterministic backbone

and the noise provide an interpretive framework of cause

and effect, along with their response time scales. Finally,

numerical solutions to this model provide unique visuali-

zation of stochastic paths and probability density func-

tions (PDFs) under the influence of increased greenhouse

gas forcing DF0. This extends our analysis beyond the

range available to our perturbative framework to allow

examination of the dynamics of seasonally varying states.

Because we can physically rationalize using both ad-

ditive and multiplicative noise forcing on the same de-

terministic backbone, we present both here, althoughwe

note this makes for a rather weighty presentation. In

particular, as discussed in detail in section 2c below, in

the case of multiplicative noise we give the both sto-

chastic calculi—Itô and Stratonovich—equal weighting

and thereby compare simulations using both. As we in-

crease DF0 the stochastic stability of the system is

examined in light of the expectations from the

deterministic dynamics—transitions in the ice state are

‘‘blurred’’ by the variability in the stochastic paths. The

structure of the paper is as follows. In the next sectionwe
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describe the stochastic model and the numerical scheme.

We analyze the steady state stochastic solutions (viz.,

stochastic paths, PDFs, and statistical moments) in sec-

tion 3. The overall dynamics is put in the framework of

an ‘‘ice potential,’’ which is a seasonally evolving po-

tential encoding the competition between stabilizing and

destabilizing effects and how these change with DF0.
1 In

this sense it is heuristically like an Ornstein–Uhlenbeck

process, in a time-dependent potential, although we

note that the deterministic backbone is nonlinear and

nonautonomous. We summarize and discuss the find-

ings in section 5.

2. Stochastic sea ice model and numerical methods

a. Stochastic Arctic sea ice model

The stochastic Arctic sea ice model that forms the

basis of our simulations has been described previously

[Eqs. (2) or (66) of Moon and Wettlaufer 2013], but to

ensure that this paper is self-contained we summarize it

here. The system is governed by a dimensionless Langevin

equation written as

dE5 a(E, t)dt1 b(E, t)+dW , (1)

where the first term on the right-hand side represents the

deterministic backbone of the stochastic model, which is

equivalent to that of Eisenman and Wettlaufer (2009),

and the second term treats the stochastic forcing where

dW represents a Wiener process, with + denoting the

Stratonovich interpretation of the noise as opposed to

the Itô interpretation, discussed below in section 2c.

The energy E is defined as the amount of latent heat

stored in a layer of ice of thickness h or in the ocean

mixed layer if the ice vanishes. The convention used is

that ice is present (absent) whenE is negative (positive).

The deterministic energy balance term a(E, t) is

a(E, t)[ [12a(E)]F
S
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Here, a(E) is the surface albedo and T(t, E) the surface

temperature. The fraction 1 2 a(E) of the incident

shortwave radiation FS(t) absorbed at the surface is

modeled with an albedo function based on the Beer–

Lambert law of exponential attenuation of radiative

intensity with depth using a characteristic ice thickness

ha 5 0.5m for extinction. It captures the transition from

perennial sea ice albedo (ai 5 0.68) to ocean albedo

(aml 5 0.2) and in this manner models the ice–albedo

feedback—it is clearly operative when the ice thickness

approaches ha. The core deterministic term a(E, t)

describes the energy flux balance at the atmosphere–ice

(ocean) interface where we calculate the surface tem-

perature T(t, E). Quantitatively, this balance is domi-

nated by incoming shortwave radiation, outgoing

longwave radiation, and the conductive heat flux through

sea ice. During winter, the principal stabilizing mecha-

nism is associatedwith how longwave radiative loss drives

ice growth—thin ice grows more rapidly than thick ice

(Stefan 1889). During summer, the principal destabilizing

mechanism is the ice–albedo feedback, which becomes

more prevalent when ice thins and approaches ha. The

observed average annual export of about 10% (Kwok

et al. 2004) acts as a constant sink of energy, here repre-

sented by nR(2E), where n 5 0.1. The ramp function is

R(x $ 0) 5 x and R(x , 0) 5 0, which captures the

transition between freezing and melting states and the

fact that sea ice export occurs onlywhen sea ice is present.

Amore detailed description of the derivation ofa(E, t),

including the incorporation of the various surface fluxes,

the meridional heat flux due to large-scale atmospheric

motions and the radiative transfer model is described in

Eisenman and Wettlaufer (2009). The stability of the

deterministic model and the core competition between

the destabilizing ice–albedo feedback and the stabilizing

1 The core dynamics are studied with the dimensionless version

of the model, but throughout this paper when we refer to values of

DF0 they are understood to carry units of Wm22.
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longwave loss at the ice surface is detailed in Moon and

Wettlaufer (2011), which forms an important foundation

for our interpretation of the stochastic dynamics.

Recently,Wagner and Eisenman (2015) suggested that

the inclusion of a latitudinal variation in a deterministic

single column model can substantially change the struc-

ture of the bifurcation diagram, thereby indicating that

such complexities demarcate a model’s ability to treat

realistic behavior. However, it is a basic result in the

theory of dynamical systems (Tredicce et al. 2004) that,

even in the simplest of models, when one constructs a

bifurcation diagram with a slowly time-varying control

parameter rather than a constant value, substantially

different results are obtained. Hence, both complexity

and the basic mathematical treatment are important.

b. The role of the sea ice–albedo feedback

The most important process controlling the statistics

of the stochastic solutions is the ice–albedo feedback.

The solution behavior is influenced by the asymmetric

(signed) response of the ice to a perturbation associated

with the dependence of albedo upon thickness as de-

picted in Fig. 1. The magnitude of the feedback depends

upon the sensitivity of the albedo to a perturbation,

which begins to become effective when h ’ ha. The

asymmetry is demonstrated for two ice states, A and B.

State A describes ice during summer when DF0 ’ 19.0.

Here, a positive (negative) perturbation will be more

(less) effective in changing the ice energy E because of

the sharp decrease (small change) of the albedo. State B

describes ice during summer when DF0 ’ 20.0 and the

sea ice is very thin. In contrast to state A, a negative

(positive) perturbation will be more (less) effective in

changing the ice energy E because of the sharp increase

(small change) of the albedo. Hence, very small changes

in DF0 near this transition can generate highly variable

stochastic paths. This must be understood as a stochastic

effect rather than a trend associated with increasing DF0;

the key point is that the variability increases with green-

house gas forcing. This process is particularly important

for understanding the solution statistics near the transi-

tion from perennial to seasonally varying ice states.

c. Numerical method

There are a wide variety of numerical methods used to

solve stochastic ordinary differential equations (e.g.,

Kloeden and Platen 1992). Most such methods rely

upon a Taylor expansion, within either the Itô or Stra-

tonovich calculus framework. The order of numerical

methods is determined by the convergence of either

1) the path of the solution itself (strong convergence) or

2) the statistical moments (weak convergence). The in-

clusion of one higher-order term in the Taylor expansion

increases the numerical order by 0.5 (1.0) in the sense of

the strong convergence (weak convergence). For many

cases, order 1.0 (2.0) methods in strong (weak) conver-

gence are sufficient. Here, we use a weak order 2.0 ap-

proach based upon the Runge–Kutta method of Tocino

and Vigo-Aguiar (2002). The discrete form of the Eq.

(1) is written as follows:
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FIG. 1. Schematic diagram showing the relationship between

magnitude of the response of sea ice energy (thickness) and the

albedo. States A and B represent two examples describing the

asymmetric response of sea ice to a given (signed) perturbation.

State A describes ice during summer when DF0 ’ 19.0 and the ice–

albedo feedback starts to operate. A positive perturbation will be

more effective in changing the ice energy E as a result of the sharp

decrease of the albedo. State B is relevant whenDF0’ 20.0 and the

sea ice is very thin during summer. Conversely to state A, a nega-

tive perturbation will be more effective in changing the ice energy

E as a result of the sharp increase of the albedo.
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If the stochastic model is interpreted within the frame-

work of Itô calculus then a(E, t)[ a(E, t), whereas in

the framework of Stratonovich calculus a(E, t)[
a(E, t)1 1/2b(E, t)›Eb(E, t). This transformation be-

tween the two forms of stochastic calculus was introduced

by Wong and Zakai (1965), and there are more peda-

gogical discussions of the mathematical background and

geophysical applications found in Doering (2016) and

Dijkstra (2013). The time step isD and DWn is a Gaussian

variable whose mean and standard deviation are 0 andffiffiffiffi
D

p
, respectively. Using this method and converting to

dimensional time the system reaches a steady state in 20

years. To generate ensemble statistics, we repeat the

simulation using different values of DWn and different

values of DF0. The baseline numerical analysis uses 106

ensemble simulations with a 1026 yr time step and a noise

intensity of 0.05.

ADDITIVE AND MULTIPLICATIVE NOISE

STRUCTURE

Clearly, the simplest form of additive noise transforms

the function b(E, t) on the right-hand side of Eq. (1)

into a (typically small) constant b. This is generally re-

ferred to as constant additive noise. However, since we

are dealing with a deterministic dynamics that is time

periodic, there are a range of possible additive noise

scenarios that can be treated. We describe our approach

presently.

We introduce multiplicative noise through vari-

ability in sea ice export, which we can ascribe to the

observation that the geostrophic wind field that drives

ice motion can be treated as a Gaussian random field

(Thorndike 1982; Agarwal and Wettlaufer 2017). To

include the effect of fluctuations upon the sea ice ex-

port, we introduce a random variable as n5 n01 sj(t),

where the constant value n0 5 0.1 becomes that from

the deterministic dynamics and j(t) is related to the

Weiner process as j(t) 5 dW/dt. Hence, b(E, t) of Eq.

(1) becomes sR(2E) and we can rewrite the sto-

chastic model as

dE5 a(E, t)dt1sR(2E) +dW , (11)

where the noise amplitude s is small relative to unity (for

our numerical studies it is set to 0.05), and the deterministic

term a(E, t) is as in Eq. (2) but with n / n0 5 0.1.

It is important to note that even in well-studied non-

linear systems, the mathematical and physical in-

terpretation of multiplicative noise depends upon the

choice of stochastic calculus, and there are subtle issues

arising even in the simplest form of additive noise. A

core difference between the calculi resides in the free-

dom to choose the value of the integrand in a subinterval

of the Riemann sum. For example, Itô calculus is often

preferred because it preserves the Martingale property,

wherein the expectation value of any time-dependent

quantity depends solely upon the present value. Al-

though this approach has many practical numerical ad-

vantages, the usual rules of calculus are not obeyed,

whereas this is not the case with Stratonovich calculus.

In this setting, the major difference between Strato-

novich and Itô calculus is the shift of the mean value due

to the accumulation of noise forcing. Here, we will

consider both perspectives numerically through simul-

taneous treatment of the statistical moments and the

stochastic paths.

Wong and Zakai (1965) argued that there is no real-

world system in which perfect white noise exists. Thus,

Brownian motion x(t) approximates a description xn
(t) that is continuous with at least a piecewise con-

tinuous derivative. By showing that xn(t) / x(t) as

n / ‘ they recovered Stratonovich calculus. Accord-

ingly, the choice of stochastic calculus resides in the

characteristics of the noise and continuity arguments

(Moon and Wettlaufer 2014). On one hand, in statis-

tical physics white noise is typically defined through a

d–autocorrelation, and it is also suggested that this

definition is equivalent to Stratonovich calculus

(Risken 1984). Thus, the use of white noise to ap-

proximate high-frequency processes in systems ob-

served over much longer time scales is often argued to

be within the purview of Stratonovich calculus. On the

other hand, in finance and biology, most of the high-

frequency processes are assumed to be discrete, and

hence the above arguments may not be applied. Thus,

Itô calculus is assumed to be appropriate (Turelli

1977; Shreve et al. 2004), thereby maintaining the

Martingale property. In terms of overall separation of

time scales, there is no conceptual distinction between

the statistics of water molecules colliding pollen grains

and the trading equities (or the like). Hence, the

question remains if, how, and when it is appropriate to

use continuity considerations as a core criterion to

choose either of the calculi being discussed here.

We believe the choice of which stochastic calculus

should be used for a particular set of physical processes

is more complicated than the above. For example, in

building a mathematical model it is common to ignore

the influence of high-frequency processes on the de-

terministic dynamics, although we know there are situ-

ations when this is a poor assumption, such as in the

presence of inertial (Kupferman et al. 2004) or feedback

(Pesce et al. 2013) effects. Indeed, when Kupferman

et al. (2004) studied systems with multiplicative colored

noise and inertia they found that if the correlation time

of the noise is faster (slower) than the relaxation time,
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this leads to the Itô (Stratonovich) calculus form of the

limiting stochastic differential equation. Similarly, Itô

calculus is invoked to interpret experiments wherein the

time delay of the feedback is much larger than the noise

correlation time (Pesce et al. 2013). Hence, there is an

experimental demonstration that the choice of the sto-

chastic calculus is not necessarily a priori determinable

from observations alone. Indeed, even taking the white

noise limit of a colored noise process, which leads to Itô

calculus, this is a deliberate choice, which is often made

for numerical reasons—principally the appeal of the

aesthetics of the standard forward Euler scheme

(Doering 2016).

For these reasons, and those found in a more detailed

discussion (Moon and Wettlaufer 2014), we take an

agnostic approach and treat the two calculi with equal

weighting. Although the noise structure of Arctic sea ice

can be quantified from observations (Agarwal et al.

2012), the choice of stochastic calculus cannot be de-

duced from them. Hence, we believe that comparing the

stochastic solutions from the two calculi will be benefi-

cial to those trying to implement stochastic models in a

variety of contexts.

For the most general multiplicative noise case

sR[2E(t)]j(t), with jsj � 1, we have a theoretical

framework with which to compare our numerical

results (Moon and Wettlaufer 2013). Because the

theoretical framework is perturbative, several more

cases are then naturally structured for comparison.

We define seasonally varying additive noise (SVA)

when the noise magnitude is sR[2ES(t)], where ES(t)

is the deterministic steady-state solution and hence

the noise is additive but time varying with the sea-

sonal cycle. The constant additive noise (CA) case

is a natural limit of the seasonally varying additive

noise case and has noise amplitude sR[2ES(t)],

where the overbar is the seasonal time average of ES

(t). The difference between these two cases reveals

the impact of seasonally varying noise magnitude.

It is prudent to deal with all of these cases because the

first-order perturbative solution is equivalent to that

with seasonally varying noise, and the effect of multi-

plicative noise upon the steady-state stochastic solutions

does not appear until the second order. Therefore, we

will compare the full model described by Eq. (11) with

the seasonally varying noise case to reveal the bare ef-

fect of multiplicative noise.

Four similar but systematically different cases will be

analyzed and compared. We first compare the CA and

the SVA cases and then the two different stochastic

calculi, Itô (IM) and Stratonovich (SM), where the M

denotes multiplicative. This allows us to compare and

contrast the role of different classes of noise forcing.

3. Results: Additive noise cases

In this section we describe a large suite of simula-

tions of this model using the numerical method

explained in the previous section. We obtain many

stochastic realizations and generate ensemble statis-

tics. As noted above, the amplitude of the constant

additive noise forcing is fixed at 0.05 for all simula-

tions. One advantage of the numerical simulations

over our solely analytical method is the ability to ob-

serve the evolution of a specific stochastic realization

and to directly construct a PDF for a given type of

noise forcing. Moreover, we can explore the stochastic

solutions over a range of DF0 in which our stochastic

perturbation method cannot be applied, although we

will still compare the numerical solutions to the ana-

lytic solutions over their range of validity (Moon and

Wettlaufer 2013). We thereby extend our un-

derstanding and analysis to the seasonally varying

states, where stochastic effects are particularly

important.

Depending on the geometric structure of the de-

terministic backbone of the model in the vicinity of the

steady-state solution, and the nature of the noise forcing,

the stochastic solution will exhibit dispersion relative to

the deterministic solution, giving rise to asymmetry in

stochastic realizations.

a. Perennial ice states

Deterministic perennial ice states exist under

greenhouse gas forcing DF0 up to approximately 20

when a continuous transition to a seasonally varying

state occurs, whereas beyond approximately 23 the

seasonal ice vanishes in a saddle-node bifurcation to a

perennial ice-free state (see Fig. 3 of Eisenman and

Wettlaufer 2009). Thus, as a first example, in Fig. 2 we

show stochastic realizations as DF0 grows from 10 to 18.

It is noticeable that even with the same noise forcing,

the spread of the stochastic realizations increases with

DF0, with some realizations exhibiting seasonal ice

states under forcing in which the deterministic state has

perennial ice.

As described previously (Moon and Wettlaufer

2013), the stochastic model can be represented in an

approximate form near the deterministic solution ES

(t,DF0) as follows. If we letE(t)5ES(t)1h, where h is

the departure from the deterministic solutions and is

written as

dh

dt
5 c(t)h1 d(t)h2 1sj , (12)

where c(t)[ ›a(E, t)/›EjE5ES
and d(t)[ 1/2›2a(E, t)/

›E2jE5ES
, and a(E, t) is that from Eq. (1). Here, we
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introduce the ice potential V(h, t)[2(1/2)c(t)h2 2
(1/3)d(t)h3 to rewrite Eq. (12) as

dh

dt
52

›

›h
V(h, t)1sj . (13)

The interpretation of both the analytic and numerical

solutions is facilitated by examining the structure of the

potential V(h, t), which reflects the geometry of the

deterministic solutions.2

In an autonomous dynamical system, only a single

potential controls the influence of a given perturbation.

Here, we have a periodic nonlinear nonautonomous

dynamical system, which is much more complicated

because the potential evolves continuously. The

instantaneous stability of the system is reflected in the

shape of V (concave or convex). However, as shown in

Fig. 3, the potentials are not symmetric about the de-

terministic solutions. The response of the system to a

perturbation is dependent on its sign and is proportional

to the slope of V. This is understood as being due to the

nonlinearity in a(E, t), which is reflected in d(t). The

essence of the nonlinearity is that at a given time

the response time scale is dependent upon the state of

the system—the sea ice thickness.

The potentials during the cold periods shown (Feb-

ruary and November) are concave (Fig. 3). As DF0 in-

creases the concave minima deepen (cf., e.g., DF05 10.0

and 14.0). Physically, this reflects the long-understood

phenomenon that thinner ice grows faster than thicker

ice (Stefan 1889). Heat conduction is proportional to

DT/h, where DT is the temperature difference between

the top and the bottom of sea ice of thickness h. Because

the growth rate of the ice depends on how efficiently the

FIG. 2. Several realizations of the seasonal cycle of the stochastic solutions with three different values of DF0:

(a) 10.0, (b) 14.0, and (c) 18.0. The thick black lines represent deterministic stable seasonal cycles of sea ice

thickness. The other lines show different realizations of the stochastic solutions.

2 Note that because h is an energy variable we discussV(h, t) and

V(E, t) interchangeably.
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latent heat and the oceanic heat flux can be conducted

through it, for the same surface heat balance thin ice

grows faster than thick ice. In contrast, near zero the

potentials during the summer are convex, and the

asymmetry about the origin becomes larger as DF0 in-

creases. For DF0 5 10.0, the potentials in June or July

are almost flat near the origin. However, when DF0 5
18.0, the potentials at the same time are convex and

asymmetric with the magnitude of the slope being larger

for h . 0 (E/E0 . 0). The origin of this behavior is that

the ice–albedo feedback is more sensitive as the ice thins

and the magnitude of the energy jEj decreases.
The potentials shown in Fig. 3 demonstrate the

overall seasonal variation. The potentials for Novem-

ber and February reflect the longwave stabilization

during winter, suppressing the effects of perturbations,

and those for June show that the effect of the ice–

albedo feedback is to amplify the magnitude of a per-

turbation. These two main processes combine with the

effects of stochastic forcing determine the steady-state

stochastic solutions of the model. We stress that, al-

though we show several examples of V(h, t) in Fig. 3,

the potential changes continuously in time thereby

impacting the stochastic paths.

Aswehave described previously (Moon andWettlaufer

2013), the steady-state stochastic solutions are determined

by the cumulative influence of the potentials in the

time domain, which is scaled by the response time of

the deterministic solutions. This rectification was re-

ferred to as the memory effect. The stochastic paths

change continuously as the potential V(h, t) changes,

exhibiting a clear seasonality of trajectories.At the end of

the winter (summer), the stochastic paths are more

concentrated (widely distributed) about E/E0 5 0, re-

flecting the deterministic physics of longwave radiative

stabilization and the destabilizing ice–albedo feedback.

There is little difference between DF0 5 10.0 and 14.0,

but as DF0 increases to 18.0, the stochastic paths are

more widely distributed, as can be seen in the supple-

mentary material. In particular, the variability of the

paths at the end of summer exhibit a clear maximum

(Fig. 4), which is due to the combination of the in-

creasing importance of the ice–albedo feedback and the

associated memory effect accumulating a signal from

early spring to late summer.

The seasonality of the PDFs can be understood in

terms of the memory effect. For example, the PDFs in

March have a sharp peak near the deterministic steady-

state solution (E/E0 5 0). This is explained by the con-

cave shape of the potentials from September to February,

which ensures that perturbations converge to E/E0 5 0.

Conversely, the destabilizing effect of the ice–albedo

FIG. 3. (top) The stable periodic steady-state solutions at three different values of DF0: 10.0 (black), 14.0 (blue),

and 18.0 (red). (bottom) The potential V(E, t) for the same values of DF0 in (left) February, (center) June, and

(right) November. The sign of E/E0 is the same as the sign of h.
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feedback is cumulative, beginning in April or May and

reaching a maximum by the end of summer. At any

instant the stochastic solutions embody the delayed

effect of these competing destabilizing and stabilizing

processes. For example, while the ice–albedo feedback

begins in April or May and is active all summer, the

PDFs are not significantly positively skewed until the

end of summer. This reflects the memory effect.

VALIDITY OF ANALYTICAL SOLUTIONS

Previously we calculated perturbatively the first three

moments using (in part) the noise amplitude s as a small

parameter, finding the standard deviation atO(s) and the

mean and skewness atO(s2) (Moon andWettlaufer 2013).

In Fig. 4, we compare the analytic solutions with the nu-

merical solutions for three different values of DF0. The
match between two solutions is excellent for lower values

ofDF0, but, as expected, the deviation grows withDF0. The
deviation between the theory and the numerical solutions

that starts to appear as DF0 increases is due to the fact that,
at a first order, the perturbative solutions fail to include the

asymmetric effects associatedwith the ice–albedo feedback

as seen in the structure of the seasonally varying potentials.

The essence of the perturbative theory is that to first

approximation the PDF is Gaussian with a mean equal

to that of the deterministic steady-state solutions and the

standard deviation changes periodically depending on

the time-dependent state of stability as reflected in the

ice potential. The deviation of the stochastic means from

the deterministic solutions and the skewness appear at

the second order. The basic behavior of the solutions at

each order is determined by the interplay between the

stability of the ice, the nonlinearly induced asymmetry in

the response, and the intensity of the noise forcing. In

particular, the analytic solutions nicely describe the

memory effect in the form of a delayed integral, which is

used to interpret the seasonality of the stochastic solu-

tions. The memory effect combines the cumulative in-

fluence of the interaction between the statistical

fluctuations over the seasonal cycle and the stabilizing

and destabilizing processes embodied in the de-

terministic ice potential, which is also reflected in the

Floquet exponents of the deterministic solutions.

The increasingly non-Gaussian behavior as DF0 in-

creases demonstrates the limitations of the analytic

method. The reason for this deviation is clear; the method

is based upon small-amplitude noise forcing and thus im-

plicitly assumes that the behavior of stochastic paths is

mainly controlled by the stability and the asymmetry em-

bodied in the deterministic solutions. Such behavior de-

pends principally upon the characteristics inherited from

the deterministic solutions rather than the stochastic paths.

However, when DF0 is large, thin ice is particularly sensi-

tive to the ice–albedo feedback. Therefore, the stochastic

paths are not only affected by the stability and the asym-

metry of the deterministic dynamics but they are also

highly dependent upon the noise-induced variability. For

example, positive stochastic forcing during summer is

magnified because of the ice–albedo feedback and then

significantly damped duringwinter by the intensification of

the longwave stabilization. This leads to a larger response

of the statistical moments relative to the analytic solutions.

Moving out of the range of validity of the analytical

framework, in the next section we will study the regime of

DF0 where we have stable seasonally varying states. How-

ever, we can still rely on the theory to interpret solutions

within the context of the behavior of the local ice potentials.

b. Seasonal ice states

According to the deterministic theory, the transition

from a perennial ice state to a seasonally varying state

(with an ice-free summer) is continuous and reversible

FIG. 4. Comparison between analytical (dashed lines) and numerical (solid lines) solutions for (a) the standard deviation

of the seasonal cycle for three different values of DF0 shown in the legend and (b) as a function of DF0.
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as DF0 increases (Eisenman and Wettlaufer 2009). Ap-

proaching this transition, when still in the perennial

state, the response time scale of a perturbation to the

deterministic dynamics is approximately 5 yr. However,

once the stable seasonally varying state emerges, the

response time scale abruptly drops to 2 yr (Moon and

Wettlaufer 2011). From the perspective of a stochastic

model, this transition is far less clear because noise

forcing acts as an additional heat flux source or sink.

Intuitively, this implies that the two states can statisti-

cally coexist with the same DF0, thereby generating a

great deal of variability relative to that of states deeply

in the perennial ice regime. AsDF0 further increases, the

deterministic system approaches a saddle-node bi-

furcation from a seasonally varying state to an ice-free

state (Eisenman andWettlaufer 2009). It is important to

investigate the variability of these states near the bi-

furcation point. In this section we study the entire range

of DF0 spanning these transitions.

1) THE TRANSITION FROM PERENNIAL TO

SEASONAL ICE

The seasonal state appears in the deterministic dy-

namics as DF0 approaches 20.5 from below. Now, we

investigate the characteristics of the stochastic solutions

near this transition, which is ‘‘blurred’’ in the sense that

two stable states coexist at a single DF0.

We derive intuition by examining the ice potential

V(E, t) near the steady-state solutions, and in Fig. 5 we

plot potentials for February, June, and December when

DF0 is 19.0, 20.0, and 20.5. Because the deterministic

steady-state solutions contain very thin sea ice or open

ocean during summer, we see enhanced competition

between the ice–albedo feedback and the longwave

stabilization and hence the asymmetric response of the

system to a given perturbation. It is instructive to focus

on the potentials for DF0 5 20.5. The potential for June

exhibits the ice–albedo feedback through the strong

negative slopes when E/E0 . 0. A positive perturbation

will grow rapidly away from the steady-state solution;

for example, melting leads to more melting resulting

from an additional decrease of the ice albedo. By parity

of reasoning a negative perturbation leads to more ice—

the albedo feedback is always positive. However, as we

have an energy balance model based on heat conduction

and the albedo treatment is based on radiative extinc-

tion, the albedo feedback becomes strongly operative

once the ice thickness h ’ ha 5 0.5m. This ice thickness

FIG. 5. As in Fig. 3, but for three different values of DF0: 19.0 (black), 20.0 (blue), and 20.5 (red). (bottom) The

potentials are shown for February, June, and December.
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enhancement of the asymmetric sensitivity induced by

the ice–albedo feedback is fruitfully demonstrated by

examining the detailed changes in the ice potentials.

Recall from Fig. 3 that during winter when DF0 is

such that the system is in the perennial ice state, the

potentials are concave and longwave radiative loss

strongly stabilizes perturbations in a symmetric man-

ner. However, when DF0 increases and the ice is thin-

ner, Fig. 5 shows that during winter the longwave

stabilizing response to a perturbation is highly asym-

metric. Clearly the slope on the positive side is much

larger than that on the negative side and this asym-

metry increases with DF0.

In Fig. 6 we see stochastic realizations as DF0 transi-

tions from perennial to seasonal ice states. (These are

discussed in terms of the comparison between additive

versus multiplicative noise in more detail in the sup-

plementary material and in section 4.) Although the

deterministic steady-state solutions for DF0 5 19.0 and

20.0 are still perennial ice states, the ice is quite thin

during the summer and the stochastic realizations tend

toward seasonally varying states with ice-free summers.

Moreover, while the longwave stabilization is stronger

for thinner ice, the ice–albedo feedback dominates, and

the asymmetry associated with the latter is stronger than

that associated with the former. Recall that as the ice

thickness approaches ha the ice albedo changes from

that of perennial ice (0.68) to that of open ocean (0.2).

Hence, depending on whether the ice thickness is large

or small relative to ha the response to a perturbation will

be very different. Namely, when h ’ ha the ice is more

sensitive to a positive (negative) perturbation, which

causes a dramatic increase (decrease) in the albedo. For

this reason, near the transition from the perennial to the

seasonal ice state, the summer ice thickness approaches

ha and a new asymmetry in the stochastic ensemble

statistics emerges. Interestingly, we then find that as the

system approaches the deterministic transition to sea-

sonal ice, the ice–albedo feedback drives the stochastic

solutions toward the seasonal state. However, with

only a small increase inDF0, the stochastic solutions tend

toward the perennial state. This suggests that near the

FIG. 6. As in Fig. 2, but with three different values of DF0: (a) 19.0, (b) 20.0, and (c) 20.5.
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deterministic transition to seasonal ice, the statistical

fluctuations in the ice cover can exhibit behavior of both

states, and thus the transition itself cannot be explained

using concepts based on linear response.

2) APPROACHING THE DETERMINISTIC

SADDLE-NODE BIFURCATION

As DF0 increases, the deterministic seasonally

varying ice states approach a saddle-node bifurcation

to an ice-free state (DF05 23), which is separated from

the perennial state by a hysteresis loop. Here again to

examine the stochastic solutions we consider the sea-

sonal cycle of the potentials V(E, t) of the de-

terministic steady-state solutions for DF0 5 21.0, 21.5,

and 22.0 (Fig. 7). First, relative to the deterministic

steady state for DF0 5 20.5, the dwell time of these

solutions in the ice-free state is substantially longer. In

particular, note the significant difference in the date at

which freeze-up begins between DF0 5 20.5 and 21.0.

This highlights the fact that the exposed ocean is an

effective heat reservoir and thus acts to prevent the

formation of sea ice during the following winter sea-

son. The effectiveness of this process depends on the

time at which the ice disappears during the summer

and hence the time period that the open water is ex-

posed to solar insolation (Moon andWettlaufer 2012).

Indeed, for all three values of DF0, sea ice only

exists from early January to late May or early June,

reflecting the time it takes to remove the stored heat

from the mixed layer and bring it to the freezing

temperature. Thus, the concave potentials in January

represent the onset of heat loss from outgoing long-

wave radiative flux. As the ice becomes thinner, the

curvature near the origin increases. By March, the

longwave stabilization weakens and, particularly at

DF0 5 22.0, the sea ice–albedo feedback is already

operative, which is reflected in the negative slope on

the positive side of the potential (red curve). As the

summer approaches, in all cases the ice–albedo feed-

back strengthens and its magnitude increases with

DF0, as seen through the changes in the slope on the

positive side of the potentials. The two main compet-

ing physical processes, the longwave stabilization and

the ice–albedo feedback, are enhanced substantially

during very short time periods. Thus, the sensitivity of

the system response to stochastic forcing increases.

The striking behavior that emerges as DF0 ap-

proaches, but is still less than that for the deterministic

saddle-node bifurcation, is seen in the stochastic paths of

the seasonal cycle in Fig. 8. For example, some sto-

chastic paths for DF0 5 21.5 shown in Fig. 8b exhibit

seasonal cycles at the extremes that are both barely

seasonal ice states, with small periods of either winter ice

or ice-free summers, thereby reflecting the deterministic

transition. With only a slight increase in DF0 the hys-

teresis of the deterministic backbone emerges with a

FIG. 7. As in Fig. 3, but for three different values of DF0: 21.0 (black), 21.5 (blue), and 22.0 (red). (bottom) The

potentials are shown for January, March, and May.
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two-state stochastic system in which seasonal ice and

ice-free states coexist, as seen in Fig. 8c. Importantly,

this behavior would manifest itself in a transition with

long dwell times in one of these two states and abrupt

transitions between them.

4. Results: Comparing multiplicative and additive
noise

As was done for additive noise, here we analyze the

statistical properties of perennial and seasonally vary-

ing ice states separately. A physical origin of multipli-

cative noise is the fluctuations in the surface pressure

field, which can be treated as a Gaussian random var-

iable (Thorndike 1982; Agarwal and Wettlaufer 2017).

This variability influences, for example, the ice trans-

port from Fram Strait. Clearly, however, there are

many other possible sources of noise. As in the case of

additive noise, we also use the ability to compare our

analytical solutions with the numerical results, in the

deterministic regime of perennial ice states where our

perturbation theory is valid, as a well-defined test bed

of the numerical approach.

a. Perennial ice states

Stochastic paths are examined for all four cases of

additive (CA and SVA) andmultiplicative (IM and SM)

noise. For an objective comparison among the four

cases, we generate the stochastic paths using the same

random number at each time step drawn from a normal

distribution with zeromean and standard deviation
ffiffiffiffiffi
Dt

p
.

Therefore, the difference between the cases is intrinsic

rather than arising from the randomness of the noise

forcing. Overall, the stochastic solutions are well ap-

proximated by a Gaussian variable with a seasonally

evolving standard deviation.

There is no substantial difference between SVA, IM,

and SM, but these differ from CA, which has a smaller

variability. This is intuitive, because the larger the

magnitude of the noise forcing during winter, the more

effective it is in generating variability for SVA, IM, and

SM than in the case of a seasonally constant noise

FIG. 8. As in Fig. 2, but with three different values of DF0: (a) 21.0, (b) 21.5, and (c) 22.0.
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magnitude. According to our perturbation theory

(Moon and Wettlaufer 2013), all three cases have the

same solution to a first order and are Gaussian variables

with standard deviation determined by the combination

of the stability of the deterministic seasonal cycle and

the noise amplitude. The difference between the mul-

tiplicative noise characteristics of IM and SM appears at

second order in perturbation theory. The gap between

their trajectories represents the intrinsic difference be-

tween Itô and Stratonovich calculus. For example, this

can be seen as a shift of the stochastic mean due to the

cumulative effect of the noise forcing represented ex-

plicitly in Stratonovich calculus. In this model the effect

is always negative, the origin of which is the de-

terministic drift term that distinguishes the two calculi

(Moon and Wettlaufer 2014), and hence multiplicative

noise generates more sea ice.

Clearly, because the solutions are periodic the PDFs

change continuously during the year. To demonstrate this

change we use the contour diagram shown in Fig. 9, with

CA, SVA, and SM in Figs. 9a, 9c, and 9e, respectively, for

DF0 5 10. They are quite similar in the sense that the

PDFs are broad during summer and become narrow

during winter, which is well explained by the two main

competing effects of sea ice–albedo feedback and long-

wave stabilization. The difference between pairs of these

PDFs is shown in Figs. 9b,d,f. The difference between

SVA and CA shown in Fig. 9b is characterized by the

negative region near zero (blue) flanked by the positive

regions, which shows that SVAhas a wider PDF structure

than CA. Note that this effect is particularly strong near

the end ofApril, right before the sea ice–albedo feedback

starts to become active. We see that the noise magnitude

for SVA is larger than CA during winter when the larger

variability resulting from sea ice export is important, after

which the sea ice–albedo feedback becomes dominant.

The comparison of SM and CA shown in Fig. 9d differs

from that between SVA and CA in that the center of the

negative region becomes more negative and the positive

region on the negative energy side is more pronounced.

This qualitative difference becomes more striking in

Fig. 9f, which shows that the center of the PDFs for SM

become more negative and more negatively skewed.

As DF0 increases from 10.0, the competition between

the sea ice–albedo feedback and the longwave stabiliza-

tion is amplified. Slightly thinner sea ice at the end of

summer experiences increased longwave stabilization,

which is effective throughout the following winter. At the

same time, the magnitude of the noise forcing decreases

because it is proportional to sea ice thickness, decreasing

the overall variability. The imbalance between the long-

wave stabilization and the sea ice–albedo feedback in-

creases when DF0 5 15.0. However, a further increase in

DF0 intensifies the sea ice–albedo feedback thereby in-

creasing the overall variability of the stochastic model.

The contour diagram for DF0 5 15.0 is shown in

Fig. 10. The individual PDFs for each case are nearly

indistinguishable from each other, so we must examine

the differences between them. We see from Figs. 10b,d

that the negative region around E/E0 5 0 and the two

positive regions flanking it represent the increasing

breadth of the PDFs for SVA and SM relative to those

for CA. The asymmetry associated with the multipli-

cative noise effect is shown in Figs. 10d,f, with the in-

creasingly darker red for E/E0 , 0 and the overall

negative shift of the PDFs for SM.

Having now examined DF0 5 10 and 15, we can intuit

that a further increase in DF0 will enhance the difference

between CA and the other cases. We expect that the

seasonal variation of the noise magnitude will generate

larger variability and this will couple to the increased

influence of the sea ice–albedo feedback during summer.

However, as the ice thins, so too will the impact of mul-

tiplicative noise, although the relative magnitude of the

different contributions to the overall variability are dif-

ficult to quantify. For example, as DF0 increases the sta-

bility of the ice cover weakens, which provides the basis

for the enhanced influence of stochastic forcing, but at the

same time the magnitude of the noise forcing decreases.

ForDF05 18 the PDFs of the stochastic solutions start

to change dramatically, their spread around the de-

terministic seasonal cycle showing a strong seasonal

dependence, as seen in the contour diagram of Fig. 11.

Figures 11a,c,e show that the spread changes dramati-

cally during the year, particularly at the end of a sum-

mer, where the standard deviation reaches a maximum.

Again, the sea ice–albedo feedback is one of the prin-

cipal contributors to the stochastic solution structure.

The substantial difference between CA and SVA and

SM is shown in Figs. 11b,d. The breadth of the PDFs due

to the seasonal variation of the magnitude of the noise is

exhibited again via the negative region centered around

zero, flanked by the two positive regions. The temporal

influence of the noise is such that its amplitude saturates

inMarch, but the negative region appears later, between

April and May. The multiplicative noise effect shown in

Fig. 11f is somewhat diminished relative to DF0 5 10. In

particular, the positive regions (red) on the negative

(lower) side show that the negative tail of the PDFs is

weaker than in the case with DF0 5 10.0.

In summary, as DF0 increases from 10.0 to 19.0, the

deviation of the stochastic mean from the deterministic

seasonal cycle changes from negative to positive for all

the four cases, the difference between CA and SVA

becoming larger with DF0. The noise forcing–induced

by the variability of sea ice export provides two
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important factors controlling the statistics of the sto-

chastic solutions: 1) the seasonal change of the noise

magnitude and 2) the effect of multiplicative noise. The

larger the magnitude of the noise near the end of winter

the more effective it is in generating increased vari-

ability of sea ice energy, and this becomes more im-

portant as DF0 increases. The effect of multiplicative

noise, which always reduces the stochastic mean and

the skewness, is stronger for lower values of DF0 be-

cause the noise magnitude is proportional to the sea ice

thickness. We end this section by noting that the ap-

proximate analytical solutions match well with the

numerical solutions, suggesting that further research

regarding the perennial ice states may be fruitfully

explained using approximate methods (Moon and

Wettlaufer 2013).

b. Seasonally varying states

AsDF0 increases, the deterministic dynamics predicts a

reversible transition from perennial to seasonal ice,

FIG. 9. Seasonal evolution of PDFs for (a) CA, (c) SVA, and (e) SM and the difference of

the PDFs (b) between SVA and CA, (d) between SM and CA, and (f) between SM and SVA

are shownwhenDF05 10.0, in the perennial state of the deterministic system. The x axis is the

month of the year from January to December, and the y axis the rescaled sea ice energy as in

the previous figures. The probability density is shown by the color scheme, where red rep-

resents larger values. The deterministic seasonal cycle is indicated by E/E0 5 0, and the two

white lines centered around E/E0 5 0 indicate the standard deviation of the stochastic

solutions.
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where sea ice vanishes during summer and grows back

during winter. It is notable that on the annual time scale

the observed ice extent is a white noise signal (Agarwal

et al. 2012), and we find here that the seasonal states

undergo dramatic fluctuations during the year. Thin ice

exposed to strong shortwave radiative flux during early

summer melts quickly as a result of the sea ice–albedo

feedback. As winter approaches, thin ice forms from the

open ocean and then grows rapidly because of the

strength of the longwave radiative heat loss. Regardless

of the structure of the noise, its effect is to generate large

variability around the deterministic seasonal cycle. Un-

fortunately, as mentioned above and previously (Moon

and Wettlaufer 2013), analytical solutions are not yet in

hand for this regime. Nonetheless, the logic found in

studying the perennial ice state acts as a framework for

understanding stochastic solutions in the seasonal case.

The continuous evolution of the PDFs over the year

for all of the noise cases when DF0 5 20.0 is shown in

Fig. 12. Even though the overall magnitude of the noise

is smaller than that for the perennial sea ice states, the

stochastic variability is even larger, which reflects the

reduced stability of the system. In the constant additive

noise case, we found that the PDFs at the sameDF0 have

positive tails due to the increased seasonal influence of

the sea ice–albedo feedback.

A key common characteristic of the PDFs is the distinct

difference between summer and winter. The standard

deviations (the two white lines) exhibit a dramatic change

from winter to summer. Accordingly, the shape of the

FIG. 10. As in Fig. 9, except that DF0 5 15.0.
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PDFs also changes from sharply peaked to broad and

the positive tails extend further in the positive sense

during summer. These general characteristics are seen

in CA, SVA, and SM. The difference between SVA and

CA, shown in Fig. 12b, or between SM and CA, shown

in Fig. 12d, is qualitatively similar to the warmer (larger

DF0) perennial ice states that exhibited continuous

broadening. The difference between SVA and SM,

shown in Fig. 12f, is also similar to these previous cases,

exhibiting a negative shift of the PDFs resulting from

the drift term.

As DF0 increases slightly above 20.0 we find large

differences between the solutions. First, the determin-

istic seasonal cycle changes rapidly with an increase in

DF0 in this regime, for example, the open-ocean state

persists much longer. Moreover, the sea ice–albedo

feedback becomes more sensitive to negative energy

perturbations, which means that stochastic forcing gen-

erates more sea ice. Because the ice is thinner, the noise

amplitude is smaller and the variability for all four cases

decreases.

All of the PDFs for DF0 5 20.5 have negative tails

(Fig. 13), which is explained by the increased sensitivity

of the albedo feedback to negative energy perturbations;

the growth rate for a negative perturbation during

summer is larger than that for a positive one. The

qualitative consistency with the constant noise case is

due to the decreased magnitude of the overall noise

forcing during the year. The seasonal variation of the

noise forcing and the effect of multiplicative noise do

not make a significant difference. Thus, as expected, the

PDFs during summer have broader negative tails.

FIG. 11. As in Fig. 9, except that DF0 5 18.0.
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One of the most important characteristics of the CA,

SVA, and SM cases is the clear contrast between summer

and winter, as seen in Figs. 13a,c,e, the origin of which is

the dramatic change in the seasonal stability of the ice

cover. The difference between CA and SVA shown in

Fig. 13b is similar to the previous cases, with seasonal

broadening and contraction. The PDFs for SM become

more negative than those for SVA, shown as an increase

in the red intensity straddling E/E0 5 0 in Figs. 13d,f.

The statistical moments are sensitive to small changes

in DF0 in the seasonal state. First, the standard deviation

is slightly smaller than that at the lowerDF0, which is due

to the decreased noise amplitude associated with the

overall decay of the ice cover. Contrary to the sharp

decrease after the maximum, the standard deviation

decreases slowly after reaching the maximum and then

shows a sharp decline in approximately November.

Recall that at this time there is open ocean, which has a

large sensible heat and must be cooled before freezing

can begin. After the ice forms, the strong longwave

stabilization plays an important role in suppressing

fluctuations. The deviation of the stochastic mean from

the deterministic seasonal cycle is largely negative for all

of the four cases. After the local maximum in June, a

significant negative shift appears, which represents the

sea ice–albedo feedback being more sensitive to nega-

tive perturbations. Finally, near the transition from the

open ocean to thin sea ice, there exists another local

maximum. The first peak is associated with the sea ice–

albedo feedback in early summer, and the second peak is

the emergence of thin sea ice from open ocean. When

thin sea ice is generated, a perturbation can be negative

FIG. 12. As in Fig. 9, except that DF0 5 20.0.
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or positive. A positive perturbation leads to temporary

melting of thin ice. The open ocean has high heat ca-

pacity and thus stores substantial sensible heat, which

always acts to delay the formation of thin sea ice.

Therefore, the system has positive asymmetry during the

early stages of thin ice generation. After the ice is suf-

ficiently thick, the strong longwave stabilization begins

to control the stochastic solutions.

We summarize the statistics of the stochastic solutions

in the seasonally varying state as follows. The standard

deviation for SVA is larger than that for CA over the

entire range of DF0, which was also seen for the peren-

nial ice regime. The standard deviation is almost the

same for SVA and SM, but a visible difference emerges

near the deterministic saddle-node bifurcation. In the

deviation of the stochastic mean from the deterministic

seasonal cycle and the skewness, it is important to focus

on the role of the sea ice–albedo feedback near the de-

terministic transition from the perennial to the season-

ally varying ice state. For DF0 ’ 19.0 (below the

transition), both quantities are positive, which is asso-

ciated with the nature of the ice–albedo feedback and is,

as expected, enhanced for the SVA case. For the SM

case, the negative multiplicative noise effect ensures

lower values than for the SVA case. As discussed

above, a slight increase in DF0 leads to a substantially

different situation, as is evident in the negative deviation

of the stochastic mean from the deterministic solution

and the negative skewness. The increased sensitivity of

the ice–albedo feedback to a negative perturbation

dominates the statistics immediately after the emergence

of seasonally varying states. After passing through the

FIG. 13. As in Fig. 9, except that DF0 5 20.5.
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transition, a sharp increase in the deviation of the sto-

chastic mean from the deterministic solution and the

skewness occurs until the deterministic saddle-node bi-

furcation to an ice-free state is approached. Distinctions

with the cases at lower DF0 include the skewness and the

noise magnitude for CA being larger than that for SVA,

where the noise magnitude is proportional to the ice

thickness.Additionally, the skewness for SM is larger than

that for SVAand the skewness for thewinter is larger than

that for the summer. The summer value is taken at the end

of August when the open ocean is stable relative to thin

sea ice. At the end of March thin sea ice remains, which

generates substantial sensitivity to perturbations.

5. Conclusions

Using both analytical and numerical methods, we

have studied the dependence of the solutions of a sto-

chastic sea ice model on the external heat flux DF0,

which models greenhouse gas forcing, for both additive

and multiplicative noise. Additive noise does not de-

pend on the state of the system itself and is thus quali-

tatively and quantitatively distinct from multiplicative

noise, which does depend on the state of the system.

Here, in the latter case we considered the variability of

atmospheric forcing driving a variation of sea ice export

as a key source of multiplicative noise, and hence the

noise forcing is linearly proportional to the sea ice

thickness (or energy). The ensemble statistics of the

system depend upon the stability and asymmetry of the

underlying deterministic solutions and the magnitude of

the noise forcing. The stability and the asymmetry are

principally determined by two main processes; the ice–

albedo feedback and the longwave stabilization, which

act asynchronously.

We divided the analysis into the three regimes of

DF0 associated with the steady-state solutions of the

deterministic system: perennial and seasonal ice and

ice-free states as found by Eisenman and Wettlaufer

(2009). The deterministic perennial and seasonal

states are separated by a reversible transition, and the

seasonal and ice-free states are delineated by a saddle-

node bifurcation. By introducing the concept and an

‘‘ice potential,’’ which describes the thermodynamic

restoring forces in the system in a manner akin to a

time-dependent Ornstein–Uhlenbeck process, we

provide a relatively simple framework for interpreting

the solutions.

Because the underlying deterministic model is non-

autonomous, so too is the stochastic model. When the

noise magnitude is small, and DF0 is such that the de-

terministic solutions are in the perennial state, we

can compare numerical simulations with perturbative

solutions derived previously (Moon and Wettlaufer

2013). This allows us to distinguish between the core

nonlinear effects of the deterministic backbone of the

model from those associated with noise forcing at each

order in the perturbative framework. We find a ‘‘mem-

ory effect’’ whereby the intrinsic nonlinearity, asym-

metry, and stability characteristics of the interaction

between the deterministic backbone and the noise allow

fluctuations in ice energy from the early spring to ac-

cumulate and manifest themselves in the late summer.

We constructed and examined four variants of this

noise structure for a detailed comparison with the

perturbative solution in the deterministic regime of

stable perennial ice states. The most general form of

multiplicative noise forcing is sR[2E(t)]j(t), where

jsj � 1 is the magnitude of the noise, E(t) is the sea

ice energy, and j(t) is white noise. Two cases were

considered here, depending on the nature of the sto-

chastic calculus: Itô calculus (IM), which preserves the

Martingale property, and Stratonovich calculus (SM),

where the M denotes multiplicative. Because analysis

of the properties of data alone is insufficient to de-

termine which of the stochastic calculi is most appro-

priate for the task at hand, in the case of multiplicative

noise we compare simulations from both Itô and Stra-

tonovich calculi. The core reason for this is insufficient

information regarding the difference in time scale be-

tween noise forcing, inertia, and/or feedbacks in the

system, as is discussed in detail in section 2c above. The

seasonally varying noise (SVA) case, with noise am-

plitude sR(2ES), where ES(t) is the deterministic

steady-state solution, examines the role of the seasonal

change of the noise amplitude. The constant additive

noise (CA) case uses the seasonal average of ES(t) and

thus has noise amplitude sR[2ES(t)], where the over-

bar denotes the seasonal time average.

In the perennial ice regime the difference between

CAand SVA reveals the role of the seasonal variation of

the noise amplitude and is detectable at a first order in

perturbation theory, where the approximate solution is a

Gaussian variable. As expected from the perturbation

theory, the SM and IM cases exhibit no distinct differ-

ence with SVA at a first order. Rather, their differences

are found at second order where non-Gaussian charac-

teristics were predicted theoretically. Specifically, the

difference between SVA and IM is seen in the skewness,

because of the role of the effect of the multiplicative

noise. The difference between IM and SM is due to the

shift of the mean associated with the drift term in Stra-

tonovich calculus.

Even though the magnitude of the noise for the SVA

case is larger (smaller) than that for CA during winter

(summer), the seasonal standard deviation is larger. The
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overall behavior represents the confluence of the sea-

sonal memory effect with the variation of the noise

magnitude. As the external heat flux DF0 increases in

this regime, the standard deviation decreases because of

the decline of the noisemagnitude with the decline in ice

thickness, but increases again as DF0 increases further,

because of the weakened stability associated with the

ice–albedo feedback. This change in the standard de-

viation with increasing DF0 explains the first-order so-

lutions for all of the cases.

For smallDF0 the deviation of the stochasticmean from

the deterministic seasonal cycle is negative for all of the

cases, with SM having a larger deviation as a result of the

nature of the mean shift induced by multiplicative noise.

As DF0 increases further, the stochastic mean becomes

larger than the deterministic seasonal cycle due to the ice–

albedo feedback. The difference between SVA and CA is

particularly distinct, showing that the larger magnitude of

the noise at the end of winter continues to impact the

fluctuations of the sea ice energy during summer, which is

thememory effect. The skewness behaves similarly to the

deviation of the stochastic mean from the deterministic

solution. The negative skewness for smaller values of DF0

increases sharply and becomes positive as DF0 increases.

The effect of multiplicative noise in the SM and IM cases

drives the sea ice energy toward negative values such that

the skewness for these cases is smaller than that for SVA.

The numerical results match the perturbation solutions

nearly exactly, confirming the validity of the theoretical

analysis in the perennial ice regime.

The seasonally varying states are clearly qualitatively

and quantitatively different than the perennial states.

For example, the difference between SVA and CA is

larger than in the perennial ice regime. Thus, quantita-

tive estimation of sea ice variability in the seasonal state

depends sensitively upon the detailed nature of the

seasonality of the noise magnitude. The controlling

factor in the variability is the increased sensitivity of the

ice–albedo feedback to negative energy (positive

thickness) fluctuations near the transition from the pe-

rennial to the seasonally varying regime. This signed

sensitivity leads to both the deviation of the stochastic

mean from the deterministic solution and the skewness

having local minima near DF0 5 20.5, which is most

pronounced in the SVA case. These statistics pass

through a smaller minimum in the SM and IM cases

because of the nature of themultiplicative noise. Finally,

all of the statistical moments increase sharply as DF0

approaches the deterministic saddle-node bifurcation.

The central complexities of the evolution of the sto-

chastic solutions as DF0 increases through the perennial

and seasonally varying regimes of Arctic sea ice are

best embodied in the evolution of the PDFs shown in

Figs. 9–12. Regardless of the regime, as DF0 increases the
seasonality of the variability increases but is maximal in

the seasonal state. The structure of othermoments reveals

the distinctions between additive andmultiplicative noise,

which becomes acutely important as the stability of the

deterministic seasonal cycle weakens. The asymmetry

associated with the ice–albedo feedback response mani-

fests itself in qualitatively unique ways when fluctuations

are (not) tied to the ice energy and/or thickness in multi-

plicative (additive) noise. There are a number of processes

in which multiplicative noise is tied to observational re-

ality, but as a general feature (independent of its origin) in

this sort of a model it possesses some compelling features.

First, it captures leading-order growth or decay of fluctu-

ations, which we expect from general considerations of

simple Langevin equations. Second, in the case we con-

sidered here, as the ice cover is reduced then the fluctua-

tions are less effective in impacting the state of the system,

and this is clearly seen in the variability of the seasonal

cycle and the nature of the memory effect. It is thus of

interest to systematically and explicitly incorporate sto-

chastic effects in more complex models of sea ice, as is

done in atmospheric models (Dawson and Palmer 2015).

To this end, the framework provided here may be of use.
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2013: Stratonovich-to-Itô transition in noisy systems with

multiplicative feedback. Nat. Commun., 4, 2733, doi:10.1038/
ncomms3733.

Risken, H., 1984: The Fokker-Planck Equation: Methods of Solu-

tion and Applications. Springer Series in Synergetics, Vol. 18,

Springer, 454 pp.

Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea

ice, and multiple climate states: Insights from energy bal-

ance models. J. Atmos. Sci., 66, 2828–2843, doi:10.1175/

2009JAS3039.1.

Saltzman, B., 2002: Dynamical Paleoclimatology: Generalized

Theory of Global Climate Change. International Geophysics

Series, Vol. 80, Academic Press, 354 pp.

Sellers,W., 1969: A global climatic model based on the energy balance

of the earth–atmosphere system. J. Appl. Meteor., 8, 392–400,

doi:10.1175/1520-0450(1969)008,0392:AGCMBO.2.0.CO;2.

Shreve, S. E., P. Chalasani, and S. Jha, 2004: Stochastic Calculus for

Finance. Vol I, The Binomial Asset Pricing Model, Springer,

187 pp.

Stefan, J., 1889:Über einige probleme der theorie der wä�larmeleitung.

Sitzungsber. Dtsch. Akad. Wiss. Berlin, Math.-Naturwiss. Kl., 98,

473–484.

Thorndike, A. S., 1982: Statistical properties of the atmospheric pres-

sure field over the Arctic Ocean. J. Atmos. Sci., 39, 2229–2238,
doi:10.1175/1520-0469(1982)039,2229:SPOTAP.2.0.CO;2.

——, 1992: A toy model linking atmospheric thermal radiation and

sea ice growth. J. Geophys. Res., 97, 9401–9410, doi:10.1029/
92JC00695.

Tocino, A., and J. Vigo-Aguiar, 2002: Weak second order condi-

tions for stochastic Runge–Kutta methods. SIAM J. Sci.

Comput., 24, 507–523, doi:10.1137/S1064827501387814.
Tredicce, J. R., G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier,

and B. Picqué, 2004: Critical slowing down at a bifurcation.

Amer. J. Phys., 72, 799–809, doi:10.1119/1.1688783.

Turelli, M., 1977: Random environments and stochastic cal-

culus. Theor. Popul. Biol., 12, 140–178, doi:10.1016/

0040-5809(77)90040-5.

Wagner, T. J. W., and I. Eisenman, 2015: How climate model

complexity influences sea ice stability. J. Climate, 28, 3998–
4014, doi:10.1175/JCLI-D-14-00654.1.

Wong, E., and M. Zakai, 1965: On the convergence of ordinary

integrals to stochastic integrals. Ann. Math. Stat., 36, 1560–
1564, doi:10.1214/aoms/1177699916.

5140 JOURNAL OF CL IMATE VOLUME 30

http://dx.doi.org/10.1575/1912/8601
http://dx.doi.org/10.1073/pnas.0806887106
http://dx.doi.org/10.1175/2011JCLI4051.1
http://dx.doi.org/10.3402/tellusa.v28i6.11316
http://dx.doi.org/10.3402/tellusa.v26i6.9870
http://dx.doi.org/10.1103/PhysRevE.70.036120
http://dx.doi.org/10.1063/1.3580491
http://dx.doi.org/10.1029/2003JC001785
http://dx.doi.org/10.1029/2003JC001785
http://dx.doi.org/10.1175/1520-0469(1977)034<1487:SRMOSC>2.0.CO;2
http://dx.doi.org/10.1029/JC076i006p01550
http://dx.doi.org/10.1002/2013RG000431
http://dx.doi.org/10.1209/0295-5075/96/39001
http://dx.doi.org/10.1209/0295-5075/96/39001
http://dx.doi.org/10.1029/2012JC008006
http://dx.doi.org/10.1063/1.4848776
http://dx.doi.org/10.1063/1.4848776
http://dx.doi.org/10.1088/1367-2630/16/5/055017
http://dx.doi.org/10.3402/tellusa.v33i3.10710
http://dx.doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1981)038<0504:PIASSC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1981)038<0504:PIASSC>2.0.CO;2
http://dx.doi.org/10.1038/ncomms3733
http://dx.doi.org/10.1038/ncomms3733
http://dx.doi.org/10.1175/2009JAS3039.1
http://dx.doi.org/10.1175/2009JAS3039.1
http://dx.doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1982)039<2229:SPOTAP>2.0.CO;2
http://dx.doi.org/10.1029/92JC00695
http://dx.doi.org/10.1029/92JC00695
http://dx.doi.org/10.1137/S1064827501387814
http://dx.doi.org/10.1119/1.1688783
http://dx.doi.org/10.1016/0040-5809(77)90040-5
http://dx.doi.org/10.1016/0040-5809(77)90040-5
http://dx.doi.org/10.1175/JCLI-D-14-00654.1
http://dx.doi.org/10.1214/aoms/1177699916

