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Abstract 38 

 39 

The Makgadikgadi-Okavango-Zambezi basin (MOZB) is a structural depression in the south-40 

western branch of the East African Rift System of the northern and middle Kalahari, central 41 

southern Africa. In the present day, the mainly dry subbasins of the MOZB are part of a long-42 

lived lacustrine system that has likely existed since Early Pleistocene and from which an extant 43 

freshwater fish radiation emerged seeding all major river systems of southern Africa. During 44 

hydrologically favourable periods the subbasins were connected as a single mega-lake termed 45 

Lake Palaeo-Makgadikgadi. Previous geomorphological studies and OSL dates have provided 46 

evidence for repeated mega-lake periods since approximately 300 ka. The environmental and 47 

climatic implications of such large scale late Quaternary lake-level fluctuations are 48 

controversial, with the duration of mega-lake phases poorly constrained.  49 

Here, we present the first evidence for a Marine Isotope Stage (MIS) 5 mega-lake period 50 

(about 935-940 m a.s.l.) reconstructed from a diatom-rich, 30-cm-thick lacustrine sediment 51 



section, exposed close to a palaeo-shoreline of the Makgadikgadi Basin. Based upon the 52 

environmental setting and in comparison with sedimentation rates of other similar lake 53 

environments, we tentatively estimated that the highstand lasted approximately 1 ka during MIS 54 

5d-b. The 30-cm section was sampled in 0.5-cm steps. Diatom species diversity ranges from 19 55 

to 30 through the section. The dominant species are Pseudostaurosira brevistriata, Rhopalodia 56 

gibberula, Cyclotella meneghiniana and Epithemia sorex. The total of 60 sediment samples 57 

provide us with a record at decadal to bi-decadal resolution. Based on diatom assemblages and 58 

their oxygen isotope composition (δ18O) we infer an alkaline and mostly oligohaline lake with 59 

shallow water conditions prevailing in MIS 5, and is potentially analogous to a Heinrich event. 60 

The climate over southern Africa during MIS 5 has been considered very arid but the 61 

hydromorphological context of our sediment section indicates that we captured a mega-lake 62 

period providing evidence that short-term excursions to significantly higher humidity existed. 63 

A hydrologically more favourable environment during MIS 5 than formerly presumed is in line 64 

with the early human occupation of the Kalahari. 65 

 66 

Introduction 67 

 68 

Geomorphological studies of the northern and middle Kalahari in northern Botswana have 69 

provided evidence of a former mega-lake system (Passarge 1904; Grove 1969; Ebert and 70 

Hitchcock 1978; Cooke 1979; Heine 1982; Thomas and Shaw 1991; Burrough et al. 2009a; 71 

Podgorski et al. 2013; Riedel et al. 2014; Fig. 1), which developed within the Makgadikgadi-72 

Okavango-Zambezi basin (MOZB). The structural depression of the MOZB belongs to the 73 

south-western branch of the East African Rift System (Ringrose et al. 2005; Kinabo et al. 2007; 74 

Shemang and Molwalefhe 2011; Riedel et al. 2014). Grey and Cooke (1977) termed highstands 75 

in this lacustrine system Lake Palaeo-Makgadikgadi (referring to the Makgadikgadi Basin, the 76 

largest and deepest of the depressions), which likely comprised of several lacustrine basins (Fig. 77 



1) and exhibited a maximum expansion of about 66,000-90,000 km2 (Eckardt et al. 2008; 78 

Podgorski et al. 2013). There is geological and phylogeographical evidence that the mega-lake 79 

system may have existed since the Early Pleistocene (Genner et al. 2007; Moore et al. 2012; 80 

Riedel et al. 2014; Schultheiß et al. 2014). An OSL (optical stimulated luminescence) date of 81 

c. 290 ka (Burrough et al. 2009a) provides only a minimum age of the palaeolake system as this 82 

is at the limit of the OSL dating technique (Cordier et al. 2012). 83 

 Burrough et al. (2009a) presented a large number of OSL dates in order to illuminate 84 

the chronology of mega-lake periods. Apart from two dates that fall within MIS 8 (c. 290 ka 85 

and c. 270 ka) they dated highstands during MIS 5 to MIS 1. Their OSL samples were taken 86 

from palaeo-shorelines of the Makgadikgadi Basin which represents the dominant water body 87 

during Lake Palaeo-Makgadikgadi highstands. Burrough et al. (2009a) inferred seven periods 88 

of lake highstands in the Makgadikgadi Basin during the past approximately 105 ka. Two of 89 

these occurred during MIS 5 (104.6 ± 3.1 ka and 92.2 ± 1.5 ka) and the next youngest one is of 90 

MIS 4 age (64.2 ± 2.0 ka).  91 

 Today, the Makgadikgadi Basin (Fig. 1) is characterized by several salt pans. The largest 92 

are the central Ntwetwe Pan (about 4700 km2) and the eastern Sua Pan (about 3000 km2), which 93 

are occasionally filled with water in modern times, but these temporary infills are not high 94 

enough to link the pans together (Riedel et al. 2012). The bottoms of the pans lie generally 95 

below an altitude of 950 m a.s.l. (Grove 1969; Grey and Cooke 1977; Cooke 1980; Mallick et 96 

al. 1981), with the deepest point (also of the MOZB) located in the northern part of the Sua Pan 97 

at an altitude of 890 m a.s.l. (Cooke 1980; Thomas and Shaw 1991; Eckardt et al. 2008).  98 

 The western margin of the Makgadikgadi Basin is sharply bordered by the prominent 99 

Gidikwe Ridge (Fig. 1), which stretches about 250 km from north to south and exhibits a series 100 

of palaeo-shorelines. Here, two distinct palaeo-shorelines were determined at an altitude of 945 101 

and 936 m a.s.l. (Cooke and Verstappen 1984; Thomas and Shaw 1991; Burrough et al. 2009a, 102 

2009b). Lacustrine sediments recorded west to the Gidikwe Ridge (Fig. 1) were interpreted to 103 



be of lagoon origin (Cooke 1980; Thomas and Shaw 1991). The backside of the Gidikwe Ridge, 104 

however, was considered a second ridge (Moremaoto) by Gumbricht et al. (2001; personal 105 

observations FR), delimiting the Makalamabedi Basin (Fig. 1) to the east, which exhibits a 106 

curvilinear morphology interpreted as palaeo-shorelines at approximately 930-940 m a.s.l. 107 

(Gumbricht et al. 2001; Riedel et al. 2014). Near the Moremaoto Ridge about 2-m-thick diatom-108 

rich sediments (personal observation MS and FR) are exposed, which were originally described 109 

in Passarge (1904) who considered an Eemian (MIS 5e) lake period. Shaw et al. (1997) re-110 

studied the diatom-rich sediments, established a MIS 3 age and related them to a lake highstand 111 

of the Makgadikgadi Basin. These sediments however are located in the Makalamabedi Basin 112 

(Riedel et al. 2014).  113 

 There are currently no palaeontological records from lacustrine sediments in the MOZB 114 

older than MIS 3 (Riedel et al. 2014) that could be used to characterise mega-lake periods. 115 

Joyce et al. (2005) concluded an extant cichlid radiation emerged from Lake Palaeo-116 

Makgadikgadi during the Middle Pleistocene seeding all major river systems of southern 117 

Africa. These fish require freshwater habitats, which could be sustained over longer periods 118 

only when the lake had an outlet (Riedel et al. 2014). The Zambezi, which transverses the 119 

northern extension of the lacustrine system, could have acted as an outflow during highstands 120 

when all basins where connected into a single mega-lake. It has been suggested that the inflow 121 

of the Okavango River, and possibly of the Zambezi, controlled mega-lake periods (Nugent 122 

1990). There are, however, several fossil river systems entering the Makgadikgadi Basin 123 

(Riedel et al. 2014) of which the Okwa Valley is the largest (Fig. 1). Riedel et al. (2014) 124 

suggested that the Okwa River was fully active for the last time during the Last Glacial 125 

Maximum and ceased flowing during Heinrich event 1. So far it can only be speculated whether 126 

during periods of enhanced Okwa River inflow the Makgadikgadi Basin became exorheic, with 127 

an outflow to the west, and freshwater conditions prevailed (Riedel et al. 2014).  128 



 On the one hand the environmental and climatic implications of such large scale late 129 

Quaternary lake-level fluctuations and the dynamics of aeolian activity are mainly controversial 130 

and on the other hand the discussion has focussed especially on the period MIS 3 to MIS 1 131 

(Street and Grove 1976; van Zinderen Bakker 1976; Heine 1981, 1987, 1988; Stokes et al. 1997; 132 

Gasse et al. 2008; Burrough and Thomas 2009; Burrough et al. 2009a, 2009b; Hürkamp et al. 133 

2011; Riedel et al. 2014). There has been limited work on MIS 5 sediments, and some climate 134 

interpretations do exist although these rely heavily on marine sediments (from off Namibia: Shi 135 

et al. 2001; Stuut et al. 2002) at a low temporal resolution (Urrego et al. 2015). It is noteworthy 136 

that Urrego et al. (2015) reported increased aridity in south-western Africa (neighboring our 137 

study area) during the warmest periods of MIS 5 (5e, 5c, 5a), but they also identified short 138 

increases in humidity during warm-cold and cold-warm transitions. Geyh and Heine (2014) 139 

reported MIS 5 speleothem growth from the Namib Desert. In south-eastern Africa, MIS 5 was 140 

characterized by episodes of extremely arid conditions leading to dramatic lowstands of Lake 141 

Malawi (Cohen et al. 2007; Scholz et al. 2007). 142 

These tropical African MIS 5 “megadroughts” (Scholz et al. 2007) are discussed to have 143 

facilitated human expansions across Africa and ultimately out of Africa (Rito et al. 2013). 144 

Genetic data suggest that anatomically modern humans (Balter 2002) originated in Africa 145 

during MIS 6 (Ingman et al. 2000) and there is archaeological evidence that they populated the 146 

southern tip of Africa as early as ~165 ka (Marean et al. 2007). Genomic diversity of extant 147 

hunter-gatherer populations is in agreement with this early occupation of southern Africa and 148 

tentatively suggests even the orgin of modern humans from this region (Henn et al. 2011). 149 

Symbolic and thus modern behaviour of such southern African human populations may have 150 

first appeared during MIS 5a (Henshilwood et al. 2002) or early MIS 4 (Jacobs and Roberts 151 

2009). In the Kalahari, archaeological sites at the Tsodilo Hills indicate human occupation since 152 

at least 90 ka (Robbins et al. 2016). Burrough (2016) discussed the environmental contributions 153 



to early human dispersal in the Kalahari and emphasised the contrast between MIS 5 lake 154 

highstands in the Makgadikgadi Basin and extreme lowstands of Lake Malawi.  155 

 The modern climate setting over semi-arid southern Africa is complex (Peel et al. 2007; 156 

Gasse et al. 2008; Chase et al. 2012; Riedel et al. 2014) and comprises moisture transport from 157 

the West and East African monsoons (including convective moisture from the Congo Basin) to 158 

the Okavango catchment and the Kalahari during austral summer. Rainfall variability in 159 

Botswana is described by Batisami and Yarnal (2010).During austral winter, moisture from the 160 

south-eastern Atlantic triggers rainfall (mainly) over the Western Cape Province. South-western 161 

Indian Ocean (Agulhas Current) derived moisture triggers rainfall over southern Africa mainly 162 

during austral summer but also during winter (Chase and Meadows 2007; Gasse et al. 2008; 163 

Burrough et al. 2009b; Chase et al. 2012; Urrego et al. 2015). 164 

 The aim of our study is to reconstruct for the first time the palaeohydrological status of 165 

a mega-lake phase (about 66,000-90,000 km2) in the MOZB, which corresponds to a highstand 166 

of at least 936-945 m a.s.l. of Lake Palaeo-Makgadikgadi, by analyzing diatom assemblages 167 

and their oxygen isotope composition (δ18Odiatom). The mega-lake phase adressed here occurred 168 

during MIS 5 and is the first attempt to infer the duration of a mega-lake phase in this region. 169 

Our findings contribute to the understanding of phylogeographical patterns and climate 170 

evolution of southern Africa. 171 

 172 

Study site 173 

 174 

Our study site (Fig. 1) is located at the Gidikwe Ridge where the ridge is cut by the Boteti River 175 

valley forming a 20-22 m deep gorge. Here, a 10-m-thick sedimentary succession was exposed 176 

(S20.28672°, E24.26822°), which exhibited 40 cm consolidated, heavily diagenetically altered 177 

lacustrine deposits at the base, followed by 9.3 m unfossiliferous, silcrete- and calcrete-rich 178 

playa sediments (Riedel et al. 2014). On the top of the succession of sediments, at about 935 m 179 



a.s.l., the playa sediments are overlain by a 30-cm-thick unit (Fig. 2), which consists of 180 

consolidated, fine-laminated to thin-bedded, finely clastic, light-grey to whitish lacustrine 181 

sediments rich in diatoms and deposited during MIS 5 (Riedel et al. 2014). Lithological hiatuses 182 

were not identified in the 30-cm unit, suggesting sedimentation was continuous. This sediment 183 

unit thins out a few hundred metres west of the section where sandy palaeo-beach features can 184 

be found indicating that the former shore was relatively close. 185 

 186 

Material and Methods 187 

 188 

Sediment samples 189 

 190 

The 10-m sediment outcrop within the Boteti Gorge at the western margin of the Makgadikgadi 191 

Basin (Fig. 1 and 2) was first visited by AK and FR in 2007 and a small number of samples 192 

were taken. Samples from a 40-cm-thick unit of white and pale-gray lacustrine sediments at the 193 

base of the profile has been strongly affected by diagenesis, and contains only few broken 194 

valves of diatoms, while the light-grey to whitish 30-cm-thick deposits at the top of the section 195 

(Boteti Top = BT) have abundant diatoms. Although carbonate is contained in BT, remains of 196 

ostracod valves were only exceptionally preserved. Except for a few pollen grains, no other 197 

fossil remains were identified. When revisiting the section in 2009 samples for OSL dating 198 

were taken from the two lacustrine sediment units. MF provided an OSL date suggesting MIS 199 

5 age for BT. OSL dating of the 40-cm unit at the base of the Boteti section failed because the 200 

OSL signal was close to saturation and therefore at its upper limit. 201 

In 2011 the outcrop was revisited for high resolution sampling and a fresh surface was 202 

exposed and thoroughly cleaned using spade, saw, knife and brush. The sampling of the 203 

relatively hard sediments was done in 0.5-cm increments with a knife from the base to the top 204 

of the BT unit. 60 sediment samples of about 60 grams each were taken, sample BTdiatom-1 205 



corresponding to the lowermost and sample BTdiatom-60 to the uppermost layer. In addition, 206 

using a saw, a 30x15x15-cm-sediment block was removed covering the complete BT unit in 207 

order to obtain suitable material for optical dating. The sawed surfaces did not exhibit cracks 208 

through which light could have penetrated into the internal sediments. The block was 209 

immediately wrapped with thick black plastic foil and stored in a sealed box. 210 

 211 

OSL dating 212 

 213 

Samples were taken from the lower (BT 1055), middle (BT 1054) and upper part (BT 1052) of 214 

the sediment block in the OSL lab of Bayreuth University, Germany.  A further sample (BT 215 

885) from the middle part of the BT section had been already obtained during field work in 216 

2009 (Fig. 2). 217 

The coarse grain quartz fraction (90-200 µm) of the sediment samples was used for OSL 218 

dating. Luminescence measurements were carried out using a Risø-Reader TL/OSL-DA-15 219 

(Bøtter-Jensen 1997), equipped with blue LEDs (470 ± 30 nm) for stimulation, a Thorn-EMI 220 

9235QA photomultiplier combined with one 7.5 mm U-340 Hoya filter (transmission 290-370 221 

nm) for detection and a 90Y/90Sr β-source (8.1 ± 0.6 Gy/min) for artificial irradiation. 222 

The equivalent dose (De) was determined by applying a single aliquot regenerative 223 

(SAR) dose protocol (Murray and Wintle 2000). Shine-down curves were measured for 20 s at 224 

elevated temperatures (125°C) after a preheat for 10 s at 220°C and 240°C respectively for the 225 

natural and regenerated signals and a cut-heat of 160°C for the test doses. The preheat 226 

temperatures were chosen after a preheat plateau test, which indicated that the given dose could 227 

be reproduced within a temperature range of 220°C to 240°C.  228 

Finally, the De was calculated from the integral of the first 0.4 s from the shine-down 229 

curves after subtracting the mean background (16-20 s) signal. For each sample, up to 28 small 230 

aliquots (steal cups) were measured with 200-500 grains per aliquot. Possible feldspar 231 



contamination of the aliquots was checked by stimulating the artificially irradiated samples with 232 

infrared (IR-OSL) and detecting in the UV range (290-370 nm). For De determination, only 233 

those aliquots of a sample were used, which passed the criteria of a recycling ratio of 1 ± 0.1 234 

and a recuperation value of < 5% (Murray and Wintle 2000). The standard error was used as De 235 

error. 236 

The dose rate(Ḋ) for OSL age calculation was determined by thick source α-counting 237 

and ICP-MS. Cosmic-ray dose rates were calculated according to Prescott and Hutton (1994). 238 

The water content of the samples was determined using the average value of the possible water 239 

content range, based on the porosity of the samples. An error for the water content value was 240 

chosen, which included the possible water content range. The values used for the water content 241 

were checked by measuring the in situ water contents of the samples, showing conformity 242 

within errors. 243 

 244 

Diatom assemblages 245 

 246 

Diatom extraction and slide preparation for microscopic analyses were carried out following 247 

Battarbee et al. (2001). Diatom identification and counting were performed using a Meiji 248 

Techno 4000 microscope at 1000x magnification with an oil immersion objective. 249 

Approximately 500 diatom valves were counted per sample to ensure that effective numbers of 250 

taxa were counted. Diatom relative abundances were plotted using Tilia® (Grimm 1991-2011), 251 

and planktonic to benthic ratios calculated according to the formula: ∑(planktonic) / 252 

∑(planktonic + benthic). 253 

For precise identification of the diatom taxa, a Zeiss Supra 40 VP scanning electron 254 

microscope (SEM) was additionally used. Diatoms for the SEM analyses were prepared by 255 

drying 0.5 ml of the treated sample suspension on a cover slip fixed on a stub. After drying, the 256 

diatoms were coated with gold in a sputter coater and then examined with the SEM. Diatom 257 



species were identified using, amongst other keys, Krammer (2002), Krammer and Lange-258 

Bertalot (1997, 1999, 2000, 2004), Levkov (2009) and Kusber and Cocquyt (2012). A list of 259 

species and their authorities is provided in ESM 1. 260 

The ecological preferences of identified diatoms concerning salinity, pH and trophic 261 

level were taken from the literature (ESM 2), but are unknown in some taxa. The salinity 262 

classification follows Schlungbaum and Baudler (2001): freshwater = < 0.5 psu; oligohaline = 263 

0.5 to < 5 psu; mesohaline = 5 to 18 psu; euryhaline = fresh to saltwater, indifferent or non-264 

significant. 265 

Ordination analyses were undertaken using Canoco 4.5 (ter Braak and Šmilauer 2002)  266 

to reveal major trends in the diatom data. An initial detrended correspondence analysis (DCA) 267 

gave an axis 1 gradient of only 0.734, revealing a dataset with very little species turnover, so 268 

principal components analysis (PCA) was used instead. Scaling for both samples and species 269 

was optimized through symmetric scaling of the ordination scores (Gabriel 2002). Because we 270 

have closed relative abundance data, species data were log (x+1) transformed and both species 271 

and samples were centred to give a log-linear contrast PCA (Lotter and Birks 1993). To 272 

determine if any of the PCA axes were in themselves significant in explaining variation in the 273 

diatom data, a broken stick analyses was undertaken (Jollifer 1986). The diatom stratigraphy 274 

was zoned using Constrained Incremental Sum of Squares Cluster Analysis (CONISS) 275 

according to Grimm (1991-2011). 276 

 277 

Diatom oxygen isotope analysis 278 

 279 

From the 60 BT samples studied in respect of diatom assemblages, alternate samples were 280 

analysed for their oxygen isotope composition. Following the protocol established by Morley 281 

et al. (2004) the 30 sediment samples for δ18Odiatom analysis underwent chemical digestion using 282 

30% H2O2 and 5% HCl followed by sieving of samples at 74 µm and 10 µm. Diatoms were 283 



then isolated using a combination of differential settling and heavy liquid separation using 284 

sodium polytungstate (SPT). The SPT was then washed out of the purified sample using 285 

multiple rinses of deionised distilled water, and dried down prior to analysis. Samples were 286 

measured using a step-wise fluorination procedure using 6 mg of sample (Leng and Sloane 287 

2008) and a Finnigan MAT 253 isotope ratio mass spectrometer. δ18Odiatom were converted to 288 

the Vienna Standard Mean Ocean Water (VSMOW) scale using an international laboratory 289 

diatom standard (BFCmod) calibrated against NBS28. The methology has been verified through 290 

an inter-laboratory calibration exercise (Chapligin et al. 2011). Replicate analyses of sample 291 

material from this current study indicating an analytical reproducibility (mean difference) of 292 

0.2‰ (1σ = 0.5, n = 9). 293 

 294 

Results 295 

 296 

OSL dating 297 

 298 

The suitability of the quartz extracts for OSL dating was evaluated using a combined preheat 299 

plateau and dose-recovery test. In ESM 3c, the result of this test is shown, indicating the given 300 

dose of 70.2 Gy could be reproduced within a temperature range of 220°C to 260°C. In addition, 301 

ESM 3a shows a typical OSL shine-down curve, displaying a bright OSL signal that is quickly 302 

bleached to measurement background. Growth curves could be established with high precision, 303 

with recycling ratios of 0.9-1.1 (ESM 3b). Thus, the OSL quartz behavior, the preheat plateau 304 

and the dose-recovery tests demonstrate the suitability of the applied SAR protocol.  305 

In Table 1, the analytical data for OSL age calculation, including the data for dose rate 306 

determination are given. The results of the OSL age calculation ranging from 106.3 ± 7.4 to 307 

88.5 ± 5.8 ka indicate the studied section can be assigned to MIS 5. The sample BT 1055 from 308 

the lower part of the studied sediment unit (Fig. 2) has an OSL age of 103.4 ± 6.4 ka, the 309 



following sample BT 1054 from the middle part of the 30-cm unit (Fig. 2) shows an age of 310 

106.3 ± 7.4 ka, which is within errors still consistent with the stratigraphic order. Sample BT 311 

1052 from the upper part (Fig. 2) reveals an age of 90.3 ± 9.2 ka. The sample BT 885, which 312 

was previously taken in 2009, shows an age of 88.5 ±5.8 ka and correlates with the result of BT 313 

1052 (Table 1).  314 

 315 

Diatom assemblages and δ18Odiatom 316 

 317 

The microscopic analyses of the samples reveal the sediments are rich in well-preserved diatom 318 

valves (Fig. 3). In total, 50 species could be identified of which 44 species are benthic, that is 319 

they prefer littoral rather than planktonic habitats (ESM 1, ESM 22). The number of species per 320 

sample ranges from 19 to 30. Generally, most species are represented by a few valves only. 321 

Benthic diatoms dominate the whole sequence (70 to 95%), especially in the uppermost 322 

sediments, resulting in very low planktonic/benthic ratios (Fig. 4). 323 

 Using broken stick, only PCA axis 1 showed significant variation. PCA axis 1 sample 324 

scores are therefore also plotted against depth in Fig. 4. These data show considerable variation, 325 

superimposed on a strong directional change from the base of the sediment unit to about 25 cm, 326 

before sample scores decline to the top of the profile. A moderate but significant Pearson 327 

product moment correlation coefficient exists between PCA axis 1 sample scores and the P/B 328 

ratio (r = -0.618; p = 0.0001). CONISS has delimited 3 zones (Kala-1 to Kala-3), with major 329 

divisions at 13.75 cm and 23.25 cm (Fig. 4).  330 

 Kala-1: This zone is dominated by Pseudostaurosira brevistriata and Rhopalodia 331 

gibberula, although the planktonic Cyclotella meneghiniana is also abundant, resulting in 332 

highest P/B ratios for the sequence and lowest PCA axis 1 samples scores. Halamphora 333 

thermalis is also relatively common. At this time, δ18Odiatom values increase steadily to their 334 

highest values of +34.2‰ at 11.5 cm.  335 



 Kala-2: This zone is delimited by a small peak in P. brevistriata, a P/B minimum and 336 

declining δ18Odiatom values. Within this zone, the most notable changes include declining C. 337 

meneghiniana values and increases in Epithemia sorex.  338 

 Kala-3: This zone is delimited by very low P/B ratio values and high PCA axis 1 339 

samples, and lowest δ18Odiatom values (+28.2‰ at 23.5 cm). During this zone, C. meneghiniana 340 

values are generally at their lowest, while  E. sorex values are at their highest. Towards the top 341 

of this zone, P/B ratio values increase slighty, concomitant with declining PCA axis 1 sample 342 

scores and increasing δ18Odiatom values to about +31‰. 343 

 The inferred hydrological parameters (salinity, trophic status, pH) show little variation 344 

throughout the palaeolake-phase. Most diatoms are tolerant to salinity fluctuations but about 345 

15% of the species of the assemblages reflect oligohaline conditions in zones Kala-1 and -2 346 

with an increase to 20% in Kala-3. About 60% of the diatom species indicate eutrophic 347 

conditions and 20-30% are nutrient-tolerant. The pH reconstruction indicates alkaline 348 

conditions (> 7). Approximately 30-40% of the diatom species require pH values of 7-8 and 349 

50-80% of 8-9 with slight decrease of alkalinity during zone Kala-3. 350 

 351 

Discussion 352 

 353 

Dating 354 

 355 

Age calculation of mega-lake phases in the MOZB (Fig. 1) have previously been established 356 

using a large set of OSL dates from palaeo-shoreline features (Burrough and Thomas 2009; 357 

Burrough et al. 2009a, 2009b). In respect of MIS 5, Burrough et al. (2009a) identified two 358 

highstands of Lake Palaeo-Makgadikgadi centred at c. 105 ka and c. 92 ka respectively,  359 

analysed as "events of unknown duration" (Burrough et al. 2009b). In contrast to samples 360 

obtained from shoreline sediments (Burrough et al. 2009a), which may have been reworked by 361 



waves, we dated quartz grains from a low energy aquatic milieu. The fine lamination of the 362 

sediments indicates still water conditions below the wave-line and reworking of the sediments 363 

can likely be ruled out. The range of our dates, however, shows large uncertainty remains. 364 

Considering the uncertainties of the oldest (106.3 ± 7.4 ka) and the youngest age (88.5 ± 5.8 365 

ka), the max. range is 113.7-82.7 ka, a period of 31 ka covering roughly MIS 5d-b, and the min. 366 

range is 98.9-94.3 ka, a period of 4.6 ka.  367 

The range has to be considered in the context of the duration of continuous deposition 368 

of 30 cm of lacustrine sediments. In comparision with lake systems showing at least partly 369 

similar (palaeo-)environmental settings (Aral Sea: 30 cm ~650 years, Filippov and Riedel 2009; 370 

Lake Titicaca: 30 cm ~900-1200 years, Fornace et al. 2014; Tso Moriri, Ladakh, India: 30 cm 371 

~1100 years, Leipe et al. 2014; Lake Kotokel, Buryatia, Russia: 30 cm ~700 years, Kostrova et 372 

al. 2016; Lake Teletskoye, Russian Altai: 30 cm ~600 years, Mitrofanova et al. 2016; Lake 373 

Van, Turkey: 30 cm ~1000 years, North et al. unpublished data) it can be roughly estimated 374 

that the 30-cm sediment unit of the Boteti section had been deposited during a period of 375 

approximately 1 ka. 376 

 It is possible, but not likely that the terminal highstand is not archived in the 30-cm unit. 377 

This could be because of potential deflation processes after the lake level had decreased. Once 378 

exposed, sediments of such composition usually harden quickly under a (semi-)arid climate and 379 

subsequent weathering and erosion processes are limited. This is also due to the fact that under 380 

retreating lake levels, aeolian activity is increasing and consolidated lacustrine sediment 381 

sequences are often, instead of being deflated, covered by sand (as can be observed across the 382 

MOZB), which protects them from erosion. Moreover, the 40-cm-lacustrine-sediment unit at 383 

the base of the Boteti section, which is overlain by playa sediments, appears to be complete and 384 

provides an independant example of a relatively short lake highstand. We thus can provide at 385 

least a first idea how long so-called mega-lake phases may have lasted. 386 



 The estimation that the 30-cm-sediment unit covers a period of not more than 387 

approximately 1 ka allows us to infer a temporal resolution of the analysed samples of 1-2 388 

decades. Dating uncertainties remains a major challenge for an accurate reconstruction of 389 

environmental dynamics in the Kalahari, and is probably responsible for most of the 390 

controversial discussions related to (Street and Grove 1976; Heine 1981, 1987, 1988; Stokes et 391 

al. 1997; Gasse et al. 2008; Burrough and Thomas 2009; Burrough et al. 2009a, 2009b; Chase 392 

and Brewer 2009; Hürkamp et al. 2011; Riedel et al. 2014; Burrough 2016). 393 

 Significant uncertainties also exist with respect to measured palaeo-shoreline altitudes. 394 

In a number of studies the uncertainty is as high or even higher as the 9 m difference between 395 

the 936 and 945 m a.s.l. palaeo-shorelines (Riedel et al. 2014). On the other hand, it is unlikely 396 

mega-lake highstands reached the same elevation repeatedly, except in exceptional 397 

circumstances. The two different lacustrine sediment units of the Boteti section indicate two 398 

lake periods at the same position, which means they are of likely similar extension, although 399 

the older highstand is about 9.3 m lower than the younger one. The amount of available water 400 

during these two periods may have been similar, pointing at comparable climate settings, but 401 

with increased accumulation of sediments in the MOZB raising the lake floor (Haddon and 402 

McCarthy 2005). Thus a higher lake level of significant younger age than an earlier lower lake 403 

level could have potentially been reached even with less hydrological input. 404 

 405 

Diatom assemblages and δ18Odiatom 406 

 407 

The diatom assemblage presented here is very different from contemporary flora found in the 408 

fresh, shallow waters of the Okavango Delta (Mackay et al. 2012). The dominance of benthic 409 

taxa (Fig. 4) in the BT unit indicates the persistence of shallow water conditions and extensive 410 

littoral regions, especially during the terminal stages of sediment accumulation (zone Kala-3). 411 

Patrick (1977) described E. sorex as an aerophilous species that can persist in environments 412 



characterized by desiccation. Therefore, an increase of the abundance of E. sorex within the 413 

sediments at this time potentially shows a stronger proximity to the shoreline caused by a drop 414 

in lake level during this period of inferred lake level decline. The maximum water depth can be 415 

calculated in the hydromorphological context to have been a few metres only (max. depth of 416 

palaeolake ~50 m). The diatom assemblages reveal changes in lake water depth throughout the 417 

record. The significant correlation between PCA axis 1 sample scores and P/B ratio suggests 418 

varying water levels influenced diatom composition in the shallow lake waters. What is notable 419 

is the period of highest P/B ratio is coincident with increasing δ18Odiatom values (increasing 420 

effective moisture), indicative of increasing planktonic habitats in this part of the lake (Fig. 4). 421 

 These shallow waters were likely freshwater to brackish; qualitative salinity 422 

reconstruction indicate oligohaline conditions (0.5 to < 5 psu) persisted during the whole period 423 

(Fig. 4). For example, the dominant species P. brevistriata, R. gibberula and M. elliptica have 424 

wide salinity tolerances (Caljon and Cocquyt 1992; Krammer and Lange-Bertalot 1999; van 425 

Dam et al. 1994; Stachura-Suchoples 2001). E. sorex is also described from oligohaline waters 426 

(Cholnoky 1968; Patrick 1977; Krammer and Lange-Bertalot 1999; Kelly et al. 2005), while C. 427 

meneghiniana is often found in brackish water (Hecky and Kilham 1973). 428 

 The qualitative oligohaline salinity reconstruction at the study site does not mean that 429 

Lake Palaeo-Makgadikgadi was oligohaline in general but exhibited salinity gradients. Filling 430 

up and interconnecting the lacustrine basins to a single lake (Fig. 1) required significant inflow 431 

from at least one of the major river systems, either from the Okavango River in the (north-)west 432 

or from the Okwa River in the southwest. It also cannot be ruled out that both river systems 433 

were active simultaneously. If the Okavango was the main source of hydrological input, the 434 

main lacustrine depression of the palaeolake-system, the Makgadikgadi Basin, would have 435 

acted as a terminal lake with increasing salinity to the east (Fig. 1). The likely outflow in this 436 

scenario would be through the Zambezi valley. Therefore, western lake areas between major 437 

inflow and outflow would have been under freshwater conditions. An example of a comparator 438 



to this behaviour can be found at extant Bosten Lake, Xinjiang, China, where inflow and 439 

outflow are located at the western side of the lake and freshwater conditions prevail only there, 440 

while the largest part of the water body is oligohaline (Mischke and Wünnemann 2006; Wufuer 441 

et al. 2014; personal observation FR). A second scenario considers the Okwa River the main 442 

source of water inflow during the highstand. In this case the Makgadikgadi Basin was exorheic 443 

and the study site would have been in proximity to the outflow. In both scenarios freshwater 444 

areas are limited, and considering the relatively short period of approximately 1 ka, the mega-445 

lake phase likely did not foster evolutionary radiations of freshwater fish or gastropods. This is 446 

in agreement with the phylogeographic studies of Joyce et al. (2005) and Schultheiß et al. 447 

(2014) who considered Early to Middle Pleistocene age of Lake Palaeo-Makgadikgadi 448 

evolutionary radiations, indicating palaeohydrology and hydromorphology differed 449 

significantly from our observed MIS 5 setting. 450 

 In respect of pH, it can be inferred from the diatoms that the lake was always alkaline 451 

(pH ~8). Whereas C. meneghiniana, E. sorex, H. thermalis and R. gibberula occur preferentially 452 

in waters with the pH greater than 8 (Cholnoky 1968; Gasse 1986; Gasse et al. 1995; van Dam 453 

et al. 1994), M. elliptica and P. brevistriata predominantly occur in circumneutral to low 454 

alkaline waters (pH = 7-8; Cholnoky 1968; Gasse 1986; van Dam et al. 1994; Stachura-455 

Suchoples 2001; Fig. 4). In addition, P. brevistriata, C. meneghiniana, and E. sorex indicate 456 

elevated trophic levels troughout the record (Cholnoky 1968; van Dam et al. 1994; Gasse et al. 457 

1995; Krammer and Lange-Bertalot 2000; Stachura-Suchoples 2001; Kelly et al. 2005). 458 

 The δ18Odiatom data reflects the oxygen isotope composition of lake water (δ18Olake), and 459 

the water temperature at the time of frustule formation (Leng and Barker 2006; Leng and 460 

Henderson 2013). In turn, δ18Olake is controlled by the isotopic composition of precipitation 461 

(δ18Op) re-charging the lake and the balance of evaporation over precipitation on the lake. Open 462 

lake systems that have permanent river inflow and outflow have short residence times, and as 463 

a result δ18Odiatom tends to reflect changes in δ18Op. Whereas in closed lakes that have no 464 



discernable outflow, δ18Olake is usually influenced by evaporation of surface waters, and as a 465 

result δ18Odiatom reflects the moisture balance (precipitation over evaporation) of the region 466 

(Leng and Marshall 2004; Leng and Barker 2006; Leng and Henderson 2013).  467 

 There is scant information about the isotope composition of precipitation (δ18Op) in 468 

Botswana, and southern Africa in general, with much of our understanding of isotope dynamics 469 

linked to changes in Late Pleistocene groundwater and speleothem δ18O records (de Vries et al. 470 

2000; Lee-Thorp et al. 2001; Holmgren et al. 2003; Kulongoski and Hilton 2004). The 18O 471 

enrichment of older groundwaters in Uitenhage, South Africa, have previously been interpreted 472 

in terms of a change in moisture source, with a northeastward incursion of South Atlantic winter 473 

precipitation, which displaces or mixes with monsoonal precipitation from the Indian Ocean in 474 

south-western Africa (Stute and Talma 1998). By comparison, a more recent study from 475 

Letlhakeng, southern Botswana, suggests there was no role for Atlantic-sourced moisture and 476 

that the Indian Ocean has been the dominant moisture source over the southern Kalahari since 477 

the Late Pleistocene through to the present day (Kulongoski and Hilton 2004). The influence 478 

of the ‘amount effect’ on δ18Op has also been discounted, as modern δ18Op values for the region 479 

range from 0 to –5‰, but the most depleted δ18Op values occur during months with the most 480 

amount of rainfall (de Vries et al. 2000). As a result, Kulongoski et al. (2004) concluded that 481 

Late Pleistocene groundwater δ18O variability is caused by changes in atmosphere-δ18Op 482 

dynamics driven by changing sea surface temperatures. 483 

A δ18O speleothem record from Cold Air Cave in the Makapansgat Valley, northern South 484 

Africa, was interpreted in terms of δ18Op variability caused by changes in the frequency of 485 

intense convective storm events during the dry season that bring depeleted δ18Op (Rozanski et 486 

al. 1993), against a background of persistent mid-latitude rain during the wet season (Holmgren 487 

et al. 2003). As a result, higher or more positive δ18Op values reflect generally warmer, wetter 488 

conditions while lower values suggest cooler, drier conditions. This interpretation is supported 489 



by a 100-year data set from the region, which demonstrates a positive correlation between 490 

measured regional temperatures and speleothem δ18O (Lee-Thorp et al. 2001). In addition, an 491 

observed correlation between regional temperature and precipitation and speleothem colour, 492 

layer thickness and δ18O further supports the interpretation that lighter δ18Op is representative 493 

of drier, colder conditions over southern Africa (Holmgren et al. 1999).  494 

The δ18Odiatom record from the BT unit spans approximately 1 ka sometime during MIS 5d-495 

b and shows decadal to bi-decadal variability. Based on the interpretative framework for 496 

changes in δ18Op during the Late Pleistocene set out above, the shift in δ18Odiatom from +30.5‰ 497 

at the base of the sediment unit to higher values of +34.2‰ at 11.5 cm would indicate 498 

increasingly warmer and wetter conditions during this period (Fig. 4). The lower δ18Odiatom 499 

values would be driven by the enhancement of a wet season over the Kalahari and an subsequent 500 

increase in lake level. This observation is consistent with the increase in P/B ratio (Fig. 4), 501 

suggesting an increase in planktonic habitats associated with greater lake levels. Moreover, on 502 

top of an increasing lake level, the lake water would also be undergoing enhanced evaporation 503 

because of the generally warmer conditions, and therefore lake waters would also become 504 

further enriched in 18O. Taken together, the shift to a dominant wet season and greater 505 

evaporation would both drive δ18Odiatom to the more positive values observed in our record (Fig. 506 

4). However, it is difficult to tease out which would be the dominant mechansism, and the 507 

δ18Odiatom record is likely to reflect a combination of both.  508 

 After the initial increase there are a number of significant fluctuations in δ18Odiatom from 509 

~+34 to +30.5‰ between 11.5 – 19.5 cm (Fig. 4), which broadly mirror changes in P/B, and 510 

could reflect variability between warm-wet and cold-arid climate, as well as the subsequent 511 

changes in evaporative concentration of Lake Palaeo-Makgadikgadi. Following this, the shift 512 

to the lowest δ18Odiatom values in our record occurs at 23.5 cm (Fig. 4), which we interpret as a 513 

shift to colder and more arid conditions, as well as a lowering of lake level as indicated by the 514 



P/B ratio from the diatom assemblages. The return to more positive δ18Odiatom values after this 515 

event (Fig. 4) could reflect a shift back to a warm, wet environment, but as the P/B ratios show, 516 

lake levels remain low and so could reflect enhanced evaporation of lake water during this arid 517 

stage in climate.  518 

 The relatively short duration of the mega-lake phase of approximately 1 ka under a 519 

generally arid climate over large parts of southern Africa during MIS 5 (Scholz et al. 2007; 520 

Urrego et al. 2015) suggests we may have captured a climate event at the scale of a Heinrich 521 

event (Bond and Lotti 1995, Broecker 2002). Previous studies have modelled the impact of 522 

Heinrich events on South Atlantic sea surface temperatures, which increase abruptly ("Atlantic 523 

Heat Piracy Model", Ganopolski and Rahmstorf 2001; Seidov and Maslin 2001). The climatic 524 

effect of northern hemisphere triggered Heinrich events on the southern hemisphere has also 525 

been identified in Antarctica ice cores (Jouzel et al. 2007). The observation of Urrego et al. 526 

(2015) that during climate transitions between warm and cold or cold and warm, humidity 527 

during arid MIS 5 temporarily increased, supports the idea of a Heinrich event-like climate 528 

period. Our record thus demonstrates the decadal to bi-decadal climate variability during such 529 

an event. 530 

 Our data cannot contribute to the discussion whether the MIS 5 climate extremes 531 

triggered large scale early human migration across and ultimatively out of Africa (Carto et al. 532 

2009; Rito et al. 2013). The data, however, can contribute to the discussion why the Kalahari 533 

hunter-gatherers, i.e. the Khoisan-speaking Bushmen groups, represent the genetically most 534 

divergent population in the world (Tishkoff et al. 2007; Li et al. 2008; Henn et al. 2011). High 535 

genetic variation means high adaptation potential (Charlesworth 2009). Semi-arid areas such as 536 

the Kalahari are particularly vulnerable because small negative changes in precipitation amount 537 

or in rainfall seasonality may trigger major changes in the environment and thus largely control 538 

the habitability. Even under the assumption of large dating uncertainties, it is clear that 539 

anatomically modern humans have lived in the Kalahari during MIS 5 and the climate extremes 540 



likely triggered migration to environmentally more favourable regions. On the other hand it is 541 

evident that Khoisan-speaking groups have adapted to arid climate, exhibiting traits which are 542 

absent in other human groups such as the ability to store water and lipid metabolites in body 543 

tissues (Schuster et al. 2010). Considering these adaptations in the context of archaeological 544 

findings (Robbins et al. 2016), it can be assumed that Khoisan-speaking groups have lived 545 

permanently in (semi-)arid environments since MIS 5, that is they probably never left the 546 

Kalahari as other human groups did. The environmental history of the Kalahari since MIS 5 547 

appears to be that of a highly dynamic and thus often fragmented ecosystem; habitat 548 

fragmentation leading to human population fragmentation. Small populations however are 549 

prone to genetic drift, which results in loss of genetic variation (Charlesworth 2009). Against 550 

this background it can be suggested that the Khoisan-speaking groups have not been fragmented 551 

into small populations but represented a relatively large human population all over the Kalahari. 552 

This was possible only if these humans and the animals they hunted had access to potable water.  553 

The here studied MIS 5 lake highstand in the MOZB of approximately 1 ka appears to 554 

be a relatively short period, which however, can be compared with the tip of an iceberg. We do 555 

not know how far the lake regressed after the highstand. We do not know how the seasonality 556 

of MIS 5 rainfall was. We do not know which rivers were active during which period of 557 

supposedly extra-arid MIS 5, except that we can assume from the geographical settings of 558 

headwaters that Okavango, Orange and Zambezi rivers were likely perennial even during 559 

megadroughts. These river systems however cannot have been the only sources of potable water 560 

because otherwise the Khoisan-speaking population would have been fragmented, which 561 

evidently was not the case. The idea that the Kalahari was even drier than present-day during 562 

much of the last approximately 100 ka as was postulated for MIS 5 (Urrego et al. 2015) or for 563 

the Last Glacial Maximum (LGM; Riedel et al. 2014) must be questioned. Gasse et al. (2008) 564 

saw evidence for enhanced humidity over parts of south-western Africa during LGM. Hürkamp 565 

et al. (2011) proposed winter rainfall in addition to summer rainfall over the southern Kalahari 566 



during this period and Riedel et al. (2014) suggested that the Okwa River (Fig. 1) was fully 567 

active during the LGM. It thus can be speculated that future studies of MIS 5 climate over the 568 

Kalahari may exhibit the environment was more favourable for humans than supposed. 569 

 570 

Conclusions 571 

 572 

OSL ages suggest the identified mega-lake phase in the Kalahari occurred during a period of 573 

MIS 5d-b. The climate over southern Africa during MIS 5 was considered to have been 574 

(extremely) arid (Scholz et al. 2007; Urrego et al. 2015), although Urrego et al. (2015) identified 575 

short excursions to more humid conditions during cold-warm and warm-cold transitions. One 576 

of these humid periods triggered a highstand at Lake Palaeo-Makgadikgadi of about 935-940 577 

m a.s.l. for approximately 1 ka, as is tentatively estimated here based on the potential 578 

sedimentation rate of the studied section. This short-term hydrologically favorable phase is at 579 

the scale of a North Atlantic-driven Heinrich event, and we speculate whether rapid increases 580 

of southern Atlantic SSTs could have triggered significantly increased moisture supply over the 581 

Kalahari and/or the Bié Plateau (Angola) where the (nowadays) active catchment of the 582 

Okavango river system is located (Fig. 1). 583 

The studied section is in close proximity to the palaeo-shore of the mega-lake and based 584 

on the P/B ratio of diatom assemblages we infer shallow water conditions prevailed at the site. 585 

The analysed diatom assemblages indicate an alkaline and oligohaline lake, although the 586 

reconstructed salinity is not representative of the whole mega-lake because the studied section 587 

is located about 100-150 km away from the two major inflow systems, the Okavango River in 588 

the (north-)west and the Okwa River in the southwest of the lacustrine basins (Fig. 1). As we 589 

could not infer which of the inflow systems was active during the highstand, a salinity gradient 590 

from freshwater to oligohaline either existed off the Okavango or Okwa river mouths.  591 



Considering the role Pleistocene Lake Palaeo-Makgadikgadi is likely to have played in 592 

the phylogeography of freshwater fish (Joyce et al. 2005) or freshwater gastropods (Schultheiß 593 

et al. 2014), we suggest the mega-lake phase in this study is too short a duration that is 594 

dominated by oligohaline conditions, and therefore it was not a suitable trigger for evolutionary 595 

radiations of freshwater taxa. The comparatively high temporal resolution of 1-2 decades of our 596 

studied samples provides valuable insights of climate variability during a mega-lake phase. 597 

Albeit significant changes in δ18Odiatom values occurred (Fig. 4), the highstand is considered a 598 

hydrologically stable period. 599 

Although the studied mega-lake period was likely a short-term climate anomaly possibly 600 

triggered by North-Atlantic iceberg discharges, it is challenging the view that MIS 5 was mostly 601 

extremely dry. That the environment may have hydrologically been more favourable, is 602 

supported by archaeological and genetic data suggesting permanent human occupation of the 603 

Kalahari since MIS 5. 604 
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Species b/p salinity pH trophic level

R. gibba b freshwater1 indifferent (7 - 9)1,2,3,4 oligo- to eutraphentic1,3,5

S. engleri b freshwater3 optimum: 7.6 - 81

N. gracilis b freshwater2 widely indifferent 5.5-61; 7-83 oligo-6 to mesotr.2; nitrogen 

heterotraphentic1

C. cf. lancettulif. b freshwater7

F. rhomboides b freshwater3 acidophilous,  5.7 - 5.81 oligotraphentic2

N. radiosa b freshwater8 6.5 - 71 meso- to eutraphentic2

N. scutelloides b freshwater9 8 - 8.51,3,4 eutraphentic2

P. esox b freshwater10 < 71,2 mesotraphentic2

P. microstauron b freshwater3 6.53 - 71 eutraphentic2

E. cf. diodon b freshwater2 5.3 - 5.41 oligotraphentic2

A. exigua b freshwater1 8 - 91,4 eutraphentic11

A. ambigua p freshwater2 slightly > 74 eutraphentic2

G. angustatum b mostly freshwater1 7.5 - 81,3 oligotraphentic2

G. cf. clavatum b mostly freshwater12 > 84 oligotraphentic2

H. amphioxys b fresh water, tolerates oligohaline1 > 7, widely indifferent1 eurytraphentic2; nitrogen 

heterotraphentic1,13,14 

A. copulata b freshwater to oligohaline2 8 - 92 eutraphentic2,15

F. cf. capucina p freshwater to oligohaline2 7.4 - 7.81 meso- to eutraphentic2,15

H. thermalis b freshwater to oligohaline3 8 - 93

H. veneta b freshwater to oligohaline1 8 - 8.51 eutraphentic1,2

C.  cf. elkab b freshwater to oligohaline3 81 - 9.44

M. martyi b freshwater15 to oligohaline5 ~ 81,4 eu- to mesotraphentic2

S. construens b freshwater to oligohaline15 7.81 - 8.44 eutraphentic15

D. stelligera p freshwater to oligohaline1 6.8 - 8.51,3,4 eurytraphentic1

S. phoenicenteron b freshwater to oligohaline2 6.8 - 71,4 eutraphentic2

P. gastrum b oligohaline, tolerates freshwater5,9 ~ 81 eutraphentic2

E. sorex b oligohaline1,12,16,17 > 82; 8.3 - 8.51 eutraphentic1,2,12

D. kuetzingii b oligohaline2 8 - 93 mesotraphentic2

C. cymbiformis b oligohaline2 7.5 - 81,3 oligotraphentic2

S. pupula b oligo- to mesohaline1 indifferent3 eurytraphentic2

C. meneghiniana p oligo- to mesohaline1 8 - 8.51,4 eutraphentic18

A. sphaerophora b mesohaline to marine8,15 8 - 8.51; tolerates pH ≥ 93 eutraphentic2

C. clypeus b mesohaline to marine16,19 7 - 812 eutraphentic2

R. gibberula b freshwater9 to mesohaline2 widely indifferent; > 8 - 101,3 oligo- to eutraphentic1,20

C. placentula b freshwater1 to mesohaline12 84 eutraphentic2

P. brevistriata b freshwater to mesohaline2,15 7.5 - 7.81,4 eutraphentic15,18

T. cf. hungarica b mesohaline2; tolerates freshwater12 ~ 8.51,2,3 eutraphentic2

C. pusilla b mesohaline, tolerates freshwater21 7 - 83,4

N. cf. frustulum b mesohaline1; euryhaline22 8.7 - 101,4 eutraphentic2,12,23;nitrogen 

heterotr.c1,14

M. elliptica b mesohaline1,24; euryhaline22 7 - 81,2,3

C. solea b euryhaline22 slightly > 81 eutraphentic2

S. ovalis b euryhaline1,2 ~81,4 eutraphentic2

D. stelligeroides p oligo- to mesotraphentic25

C. cucumis b 7.5 - 81

E. volkii b

A. frickei b
1Cholnoky 1968; 2van Dam et al. 1994; 3Gasse 1986; 4Gasse et al. 1995; 5Hustedt 1957; 6Cholnoky 1966b; 7Guiry and Guiry 2012; 8Krammer and 

Lange-Bertalot 1997; 9Patrick and Reimer 1966; 10Andrews 1966; 11Krammer and Lange-Bertalot 2004; 12Kelly et al. 2005; 13Cocquyt 1998; 14Round 

et al. 1990; 15Stachura-Suchoples 2001; 16Krammer and Lange-Bertalot 1999; 17Patrick 1977; 18Krammer and Lange-Bertalot 2000; 19Pouličková and 

Jahn 2007; 20Patrick and Reimer 1975; 21Cholnoky 1960; 22Caljon and Cocquyt 1992; 23Cholnoky 1966a; 24Müller 1904;  25Houk et al. 2010

ESM 2: Ecological information of the identified taxa with references
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Table 1 Analytical data for OSL age calculation: Sample code, 238U, 232Th and 
40K-concentrations, total dose rate, equivalent dose and OSL age 

Sample U 
[ppm] 

Th 
[ppm] 

K 
[%] 

 
Ḋ 

[Gy/ka] 
De 

[Gy] 
OSL Age 

[ka] 

BT    885 1.14 ± 0.08 2.20 ± 0.05 0.41 ± 0.01  0.88 ± 0.04 77.6 ± 3.8 88.5 ± 5.8 

BT 1052 0.97 ± 010 2.02 ± 0.04 0.32 ± 0.01  0.66 ± 0.03 59.7 ± 5.2 90.3 ± 9.2 

BT 1054 0.91 ± 0.07 2.38 ± 0.05 0.34 ± 0.01  0.69 ± 0.33 72.9 ± 3.7 106.3 ± 7.4 

BT 1055 0.93 ± 0.09 2.42 ± 0.05 0.33 ± 0.01  0.68 ± 0.33 70.7 ± 2.8 103.4 ± 6.4 

 



Figure captions 1 

 2 

Fig. 1. A. general location of study area. B. Map of Makgadikgadi-Okavango-Zambezi basin 3 

(MOZB) of the south-western branch of the East African Rift System and the major 4 

tributaries. Black dashed lines indicate valleys of palaeo-rivers. Major subbasins of 5 

MOZB shaded black. During late Quaternary hydrologically favourable periods these 6 

subbasins may have been part of a mega-lake. Due to tectonics and hydromorphological 7 

processes the modern setting can be used only tentatively for simulating past mega-lake 8 

sizes and shapes. C. A digital elevation model (modified from Riedel et al. 2014) exhibits 9 

the location of the studied geological section at the western edge of the Makgadikgadi 10 

Basin where palaeo-shorelines can be found on the structural Gidikwe Ridge. 11 

 12 

Fig. 2. Upper part of the Boteti river valley section with studied 30-cm diatom-rich sediment 13 

unit on top (BT). Position of samples for OSL dating and OSL dates are indicated. 14 

 15 

Fig. 3. Scanning electron microscope images of the six most abundant diatom species identified 16 

in the Boteti section top unit (BT). 1-2: Cyclotella meneghiniana, 3-4: Pseudostaurosira 17 

brevistriata, 5-6: Mastogloia elliptica, 7-8: Rhopalodia gibberula, 9-10: Epithemia sorex, 18 

11-12: Halamphora thermalis. 19 

 20 

Fig. 4. Composite diagram illustrating percentage abundances of most frequent species 21 

separated into benthic and planktonic forms, P/B ratio, log-centred PCA, δ18Odiatom 22 

variability, and stack diagrams for salinity, trophy and pH inferred from the autecology 23 

of the diatom species.  24 

 25 
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