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Abstract

In order to determine objectively the fractal behaviour of a time series, and to facilitate potential
future attempts to assess model performance by incorporating fractal behaviour, a multi-order
robust detrended fluctuation analysis (r-DFAn) procedure is developed herein. The r-DFAn
procedure allows for robust and automated quantification of mono-fractal behaviour. The fractal
behaviour is quantified with three parts: a global scaling exponent, crossovers, and local scaling
exponents. The robustness of the r-DFAn procedure is established by the systematic use of robust
regression, piecewise linear regression, Analysis of Covariance (ANCOVA) and Multiple Comparison
Procedure to determine statistically significant scaling exponents and optimum crossover locations.
The MATLAB code implementing the r-DFAn procedure has also been open sourced to enable
reproducible results.

r-DFAn will be illustrated on a synthetic signal after which is used to analyse high-resolution
hydrologic data; although the r-DFAn procedure is not limited to hydrological or geophysical time

series. The hydrological data are 4 year-long datasets (January 2012 to January 2016) of 1-minute
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groundwater level, river stage, groundwater and river temperature, and 15-minute precipitation and
air temperature, at Wallingford, UK. The datasets are analysed in both time and fractal domains. The
study area is a shallow riparian aquifer in hydraulic connection to River Thames, which traverses the
site. The unusually high resolution datasets, along with the responsive nature of the aquifer, enable

detailed examination of the various data and their interconnections in both time- and fractal-

domains.

Keywords: robust detrended fluctuation analysis; detrended fluctuation analysis; fractal behaviour;

Hurst Phenomenon; Time series analysis; high resolution hydrological data;

Introduction

In the field of hydrology, the onset of the study of fractal behaviour of hydrological time series is
marked with Hurst’s investigation of the storage capacity of the Aswan High Dam in Egypt in 1951
(Hurst 1956, Hurst 1951). This sparked further investigation of what later came to be known as the
‘Hurst Phenomenon’ (Hurst 1951). The initial mathematical representation of the Hurst Phenomenon

was described in terms of range, standard deviation and the number of samples considered. However,

E{X(T)}ocT" withH = 0.5

this relationship evolved into: where X(T) is the aggregated series

at scale T and H is the Hurst Exponent (Bras, Rodriguez-lturbe 1985). Of course, the relationship
follows a power law and is linearly related to other measures of fractal behaviour such as the power-
law exponent of the spectral density estimate and the scaling exponent a determined by detrended

fluctuation analysis.

The mathematician Benoit Mandelbrot introduced a different concept to the Hurst Phenomenon that
infuses the self-similarity property of fractals with that of Hurst (Mandelbrot 1982). Mandelbrot
introduced the term ‘fractional noises’ in 1968 to unify the different terms developed over time and

across the different fields that describe series with long-term interdependence (Mandelbrot, Van Ness
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1968). Hence the term ‘Fractal behaviour’ will be used in this paper to refer to the ‘Hurst phenomenon

and ‘long-term memory’; terms which are more common to hydrologists.

Evidently, fractal behaviour of time series has been investigated in various fields and a wide variety
of techniques have been used to quantify it. Fractal behaviour has been studied in the fields of,
amongst others, pharmacology: long-term correlations of DNA (Peng, Buldyrev et al. 1994);
cardiology: non-stationary heart beat time series (Peng, Havlin et al. 1995); earth sciences: ocean
wave height (Ozger 2011), temperature (Koscielny-Bunde, Bunde et al. 1996) and seismicity (Alvarez-
Ramirez, Echeverria et al. 2011); traffic control: traffic speeds time series (Shang, Lu et al. 2008), in
marine transportation (Chen, Tian et al. 2016), solar physics: sunspot time series (Sadegh Movahed,
Jafari et al. 2006), finance: the economy and stock market (Reboredo, Rivera-Castro et al. 2013)
(Zunino, Tabak et al. 2008, Caraiani 2012) and even in music (Dagdug, Alvarez-Ramirez et al. 2007,
Jafari, Pedram et al. 2012, Hennig, Fleischmann et al. 2011, Telesca, Lovallo 2012). Finally, it has
been widely used to investigate the fractal behaviour of hydrological systems, which is the focus of
this investigation.

A variety of techniques have been used to study the fractal behaviour of time series. These include
spectral analysis, wavelet analysis, rescaled-range (R\S), and detrended fluctuation analysis (DFA).
Among these techniques, DFA and spectral analysis are the most commonly used, with DFA being
the preferred technique by many researchers (Chen, lvanov et al. 2002, Eichner, Koscielny-Bunde et
al. 2003, Zhang, Zhou et al. 2011, Hu, Ilvanov et al. 2001, Matsoukas, Islam et al. 2000, Hu, Gao et al.
2009, Ozger 2011) due to ease of detecting changes in scaling when compared to spectral analysis.
Many hydrological time series are mono- and multi-fractal in nature with cut-offs in their scaling
regime, i.e. they exhibit crossovers (Little, Bloomfield 2010, Matsoukas, Islam et al. 2000, Li, Zhang
2007, Tessier, Lovejoy et al. 1996). Identifying these crossovers, or scaling breakpoints, is not
generally done in a systematic or objective way, if it is acknowledged at all (Little, Bloomfield 2010,
Zhang, Zhou et al. 2011, Zhu, Young et al. 2012, Williams, Pelletier 2015, Yu, Ghasemizadeh et al.
2016, Li, Mu et al. 2015, Condon, Maxwell 2014). In order to overcome this deficiency and to provide

3
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a means for quantifying reliable mono-fractal behaviour that can be used for further analysis — such
as in conjunction with models or to infer causalities — this study presents a robust DFA procedure,
named r-DFAn. The aim behind r-DFAn is to identify statistically different scaling regions in a signal
along with the location of these changes, or crossovers, in a systematic way.

Even though fractal behaviour was found to be intrinsic to signals observed from diverse fields, a key
stage in its development is Hurst’s investigation of the storage capacity of the Aswan High Dam in
Egypt in 1951. Analysing annual flows in the Nile, he noticed the clustering of high flows and low
flows in the hydrological time series, and how these variations were scaled with the time over which
they were considered. This effect came to be known as the Hurst Phenomenon (Hurst 1956, Hurst
1951) and appears to be a fundamental property of many natural and anthropogenic systems, as the
above examples show.

Hydrological and hydro-meteorological time series such as rainfall, river stage, river flow,
temperature and more recently, groundwater levels have been characterised as being fractal
(Eichner, Koscielny-Bunde et al. 2003, Zhang, Schilling 2004, Zhang, Yang 2010, Fraedrich, Larnder
1993, Gelhar 1974, Kavasseri, Nagarajan 2004, Li, Zhang 2007, Little, Bloomfield 2010, Zhu, Young et
al. 2012, Liang, Zhang 2013), however, high resolution hydrological datasets are generally not
available and this makes the study of the full range of fractal behaviour difficult. Among hydrological
variables, groundwater levels, in particular, are not generally monitored at very short time intervals
(such as one minute intervals), as for most purposes less frequent measurements are considered
sufficient to capture any variations of interest. Indeed, in many aquifers the forcing processes are
significantly damped such that there is very little value in monitoring at time intervals less than 1
day. However, this is not necessarily the case for shallow permeable aquifers, particularly if
hydraulically connected with a river. In such cases, fluctuations in recharge due to variations in
rainfall or changes in river stage during flood events can cause sub-daily groundwater level

variations which can only be studied with high resolution data.



103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

After presenting the r-DFAn procedure, a synthesized mono-fractal signal will be used to illustrate r-
DFAn. In addition to this, high resolution, 1-minute and 15-minute, hydrological data from a study
site in Wallingford will be presented in the time domain and their fractal behaviour will be analysed
using r-DFANn. The datasets are: groundwater levels, river stage, groundwater temperature, river
temperature, precipitation and air temperature.

The sections that follow include an explanation of the r-DFAn procedure followed by a detailed
description of the study site and data collection and finally a presentation of the r-DFAn results along

with a general discussion and some conclusions.

Methodology: r-DFAN procedure
Among numerous methods developed for studying fractal behaviour, detrended fluctuation analysis
(DFA) is agreed to be a reliable method for non-stationary signals (Chen, lvanov et al. 2002, Eichner,
Koscielny-Bunde et al. 2003, Zhang, Zhou et al. 2011, Hu, Ivanov et al. 2001, Matsoukas, Islam et al.
2000), among others). Nevertheless, in the case of mono-fractal signals that exhibit changes in there
scaling regimes, determining crossovers is subjective and seriously affects the reliability of mono-
fractal quantification.
Hence a procedure that includes DFA and statistical models was developed in order to overcome this
shortcoming and to automate the entire quantification process. The procedure, which will be named
r-DFAn, where n is the order of the detrending function, is explained below and illustrated on a
synthetic signal.

Detrended fluctuation analysis
DFA of first order (i.e. DFA1) was first proposed by (Peng, Buldyrev et al. 1994) when analysing
correlations in DNA. DFA is presented in the following five steps:

1. Let y(ti) be a measurement of variable y observed at equally spaced time intervals, t;, for
N discrete times. Let ¥ be the mean of y(ti) .Compute Y (ti) by subtracting the mean

from the time series and computing a cumulative sum:
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V()= X(v(t)-7) g

. N
2. Divide Y (ti) into M non-overlapping segments each of length L so that M=Int (T .

Each segment will be notated as Y ('[i ) where J =12..Land k=12,.. .M, hence
i=(k-1)L+j.

3. Determine the variance ( sz (L) ) of the fluctuation in each segment (Y, ) after subtracting a
best-fit polynomial of order N ( Pj’jk (ti) ) from each segment. DFAnN refers to DFA detrending
with polynomial of order n .

1e )2

sz ( L) :E Z(Yj,k - Pjnk

i=1

fork=12,...m (2)

4. Determine an average variance measure for all segments of length L :

JORES TN .

mis
5. Repeat steps 1 to 4 for different values of L then plot F (L) versus L on logarithmic axes

to determine the scaling exponent (& ) which is the slope of a best-fit line, as:
F (L) ~ L* (4)

In this paper, & will be referred to as the global scaling exponent; the slope determined by ignoring
the occurrence of any local changes in the scaling exponent. Robust regression (with a bi-square
weight function) is used to determine « . This ensures that the scaling exponent so determined is
based on residuals that are within predefined bounds.

Determining scaling exponents and crossovers for mono-fractal signals
As previously mentioned, changes in the slope of the scaling exponent (& ) may be observed, which
indicate mono-fractal behaviour with changes in the scaling regime. The time periods (L ) where

such changes occur are referred to as crossovers (Kantelhardt, Koscielny-Bunde et al. 2001, Hu,
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Ivanov et al. 2001, Li, Zhang 2007). Even though DFA is a reliable method for identifying fractal
behaviour, determining the number and locations of crossovers, has been rather subjective.

After determining the global scaling exponent using robust regression, piecewise linear regression
will be used to optimise the locations of crossovers by minimising the least squares error between
the data and the fitted broken-line (i.e. the line with crossovers). The number of crossovers to be
fitted to the data are determined in order to give the maximum number of crossovers that produce
significantly different slopes based on a 95% significance level. This is determined by applying an
analysis of covariance (ANCOVA) and a multiple comparison procedure on the DFA results. The
number of crossovers are progressively increased until the method fails to yield any further
significant scaling exponents.

ANCOVA (the analysis of covariance) is a statistical model that combines both ANOVA (analysis of
variance) and linear regression. ANOVA tests the hypothesis that the groups of a dependent variable
are significantly different from a categorised independent variable, based on a given significance
level. When combining linear regression with ANOVA, the slopes of the groups of the dependent
variable can be tested to see whether they are collectively significantly different or not. Hence, by
using the F-test, ANCOVA tests the hypothesis that all groups are significantly different against the
null hypothesis that they are all the same. For comparisons between adjacent slopes, as opposed to
an overall test as in ANCOVA, a multiple comparison procedure is performed post-hoc ANCOVA.
With comparisons between three or more groups, simultaneous statistical inferences increase the
chances of falling into type | error. Multiple comparisons procedure avoids this by increasing the
threshold for inferences.

As an aside, least squares regression (which is conventionally used for determining scaling exponents
for DFA) and other statistical models adopted herein, are based on the assumption of independence
of residuals. However, this is not true when it comes to DFA data points due to the method of their

computation which involves an overlap of segments when determining F (L) for the different time

scales.
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Crossovers and artefacts in DFA results
Crossovers observed when analysing DFA results may either be indicative of a true difference in the
scaling behaviour of the fluctuations or may be induced due to non-stationarities or periodicity
inherent in the data (Kantelhardt, Koscielny-Bunde et al. 2001, Chen, lvanov et al. 2002, Hu, Ivanov
et al. 2001). (Kantelhardt, Koscielny-Bunde et al. 2001) have studied in detail the effects of a
polynomial or oscillatory trend on DFA results and show that higher order DFA can, in many cases,
help in determining true correlation of the fluctuations and the cause behind the occurrence of a
crossover. This systematic handling of trends and periodicity gives DFA an advantage over other non-
detrending methods (Kantelhardt, Koscielny-Bunde et al. 2001).
In previous studies researchers removed periodicity in a time series prior to DFA in order to
determine ‘true scaling exponents’ ((Sadegh Movahed, Jafari et al. 2006, Li, Zhang 2007, Hu, Ivanov
et al. 2001, Kavasseri, Nagarajan 2004)). In this study, periodicity is considered to be part of the
fluctuation structure that is naturally induced by meteorological and hydrological processes, and
hence will not be removed and instead will be identified in the fractal behaviour. In addition, since
hydrological datasets are generally quasi-periodic, removal of periodicity inevitably leads to
unintended modification or addition of trends or a smoothing of the fluctuations.
The scaling behaviour of a time series is approached asymptotically, hence high order DFA results
deviate from a co-linear trend at smaller time scales and this affects the determined scaling

exponent (Kantelhardt, Koscielny-Bunde et al. 2001). This deviation is overcome by dividing F (L)
by a correction factor K (s) , Which in turn is determined by averaging over configurations of

surrogate datasets that are Monte-Carlo simulations of the original time series (100 configurations

will be used in this study) to obtain a modified variance measure, Fn(lgt)j (L) (Kantelhardt, Koscielny-

Bunde et al. 2001):

") FO W T e
Froa (L) = F(n,(L) FO(L) <[ ] >ﬂ2

for L'~ N/20 (5)
Ky (L) <[ Fsﬂ:l)ff (L)T> |1y
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Where <> denotes the average over all configurations and F (") (L) denotes the computed

variance measure from step 4 using n" order DFA, i.e. DFAnN.

Figure 1 presents a flowchart, which summarises the r-DFAn procedure explained above.

Hlustration of r-DFAn
Here r-DFAn involves performing r-DFA1 to r-DFA6 after which artificial deviations in fractal
behaviour are resolved by using equation (5). The global scaling exponent is then determined for all
DFA orders using robust regression with bi-square weighting. This is followed by determining
crossovers (if any) using piecewise linear regression, the results of which are analysed using
ANCOVA, and, in turn, the results from the ANCOVA are assessed using a multiple comparison
procedure in order to ensure that the chosen number of crossovers are statistically significant. The
code has been made available online in (Habib 2016).
A synthesized mono-fractal signal with specified scaling behaviour and crossover location is used to
illustrate the r-DFAn method. The fractal signal is generated using Fourier analysis by scaling white
noise in the frequency domain in order to produce a power spectral density that possesses a certain
known scaling behaviour (Kantelhardt, Koscielny-Bunde et al. 2001). This is generated as follows:

1. Fourier transform a realisation of white noise from time domain (u (t)) to frequency domain

(u(f)k

u(t)e " dt (6)

[
—_
—
N
I

§ —8

2. Scale the obtained power spectral density according to the following equation:

20-1

F(1)=u(r)( 2] o)

a, forf < f.,

Where fg, is the frequency corresponding to crossover t.,, and ¢ = .
a, forf >f,

3. Repeatsteps (1) and (2) N times and compute the average power spectral density estimate:

9
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Fav(f):<F(f)>n (8)
Where <>n is the average over N configurations.

4. Perform inverse Fourier transform on the computed average power spectral density to

obtain a mono-fractal signal in the time domain with a crossover in the scaling regime:
F(t)= [ R, (f)e*"df (9)

F (t) is obtained using 100 configurations of a series of length 22! = 2,097,152 data points, and

with a crossover, in the time domain, at 500 time units and a scaling exponent of 1.0 and 0.5 before
and after the crossover respectively (Figure 2). r-DFAn is used to determine statistically significant
scaling exponents of the synthesized signal and the results are presented in Figure 3.

r-DFAn produced results similar to that in Kantelhardt, Koscielny-Bunde et al. (2001) where the
crossover locations lie ahead of the theoretical location and moves forward on the time scale axis
with the increase in DFA order. The persistence of the crossover across all r-DFA orders indicates
that there is a change in the scaling regime. The fluctuation structure of the series at all time scales is
intertwined. This is evident from the determined scaling exponents where the segment that should
possess a SE of exactly 1.0, exhibits a SE less than 1.0 and the segment that should possess a SE of
exactly 0.5 tends to exhibit a SE higher than 0.5. This shows how the white noise segment and the
rescaled structured noise segment inevitably affect each other, and in-turn, affect the location of the
crossover.

The crossovers in Figure 3 are compared by plotting them against the respective DFA order (Figure
4). Evidently, the crossover value progresses across DFA orders following a linear trend.

To the best of our knowledge, the following three publications introduced methods for objective
fractal behaviour identification using DFA: (Echeverria, Rodriguez et al. 2016, Gulich, Zunino 2014,
Grech, Mazur 2013). The most recent method (Echeverria, Rodriguez et al. 2016) identifies a

transition range for the change in scaling behaviour rather than a point at which change occurs. The
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second method uses the coefficient of determination (R2) (Gulich, Zunino 2014) to determine non
overlapping segments with the best R? values. The different combinations of non-overlapping linear
segments are used to infer different scaling regions in the DFA results. The third method introduced
by (Grech, Mazur 2013) uses a similar methodology as in the Joinpoint Trend Analysis Software for
cancer research (National Cancer Institute 2016) where changes in trends are identified when the
probability distribution of the sum of residuals of a piecewise linear fit is significantly different from
a piecewise linear fit with one additional segment.

The novelty of the r-DFAn method is that it explicitly determines the statistical significance of
adjacent scaling regimes while taking into account the total number of scaling regimes with the help

of the multiple comparison procedure as previously explained.

Study site

Description

The study area is located in Wallingford, Oxfordshire, United Kingdom (Figure 5) with a number of
gauges installed on the site of the Centre for Ecology and Hydrology (CEH). The Wallingford
Observatory comprises two shallow boreholes (WL84 and WL85) screened within shallow alluvial
gravel deposits, a stilling well located in the nearby River Thames, and an automatic weather station
(AWS). Their locations are shown in Figure 5. The boreholes are sited on a grass verge adjacent to a
set of buildings at CEH. The verge is actively managed and cut frequently during the growing season.
Several poplar trees (Populus) and a sycamore tree (Acer pseudoplatanus) are located within 10 m of
the borehole. Areas of hard standing, associated with nearby buildings and car parks, limit
infiltration at the site. The stilling well is positioned 420 m west of the boreholes and is adjacent to
the eastern bank of the River Thames. The AWS lies between the boreholes and stilling well, within
cattle pasture.

Geology and hydrogeology

11
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The Wallingford site is located close to a major geological boundary in the course of the River
Thames. Upstream from Wallingford, the river flows across a broad, mudstone-floored valley formed
from Early Cretaceous Gault Clay (Figure 6). Downstream from Wallingford, the River Thames is
progressively constricted as it passes through the Goring Gap which divides the Chiltern Hills and the
Berkshire Downs. Here the River Thames flows across the Upper Greensand and the overlying Late
Cretaceous Chalk Group. The geological formations are inclined gently toward the southeast so that
the river crosses younger formations in a downstream direction.

The Upper Greensand in the Wallingford area is a heterogeneous deposit of mudstones, sandstones
and siliceous malmstones and forms an aquifer unit approximately 25 m thick above the Gault Clay
(Figure 6). The Upper Greensand is overlain by the West Melbury Marly Chalk, which although
forming the base of the Chalk Group, differs markedly from the pure-white, high-porosity
carbonates, which form the bulk of the overlying Chalk. The West Melbury Marly Chalk is largely
composed of carbonate-rich mudstone (marl) with a distinctive glauconite-rich unit (Glauconitic Mar|
Member) at the base. This basal part of the Chalk has a low permeability and springs are often seen
to emerge from overlying thick-bedded chalks around the flanks of the Chiltern Hills and Berkshire
Downs. The spring line is generally located just below the boundary with the overlying Zig Zag Chalk
Formation.

The River Thames is separated from the Cretaceous bedrock formations by a layer of Quaternary
sand and gravel, which is typically around 5 m thick and can extend across the valley floor for up to

2 km. The sands and gravels are subdivided into a number of named river terrace deposits. The
Northmoor Sand and Gravel member occurs beneath and adjacent to the floodplain of the modern
River Thames and in the Wallingford area is subdivided into a lower facet and an upper facet. The
lower facet is generally concealed beneath a thin (metre-thick) cover of Holocene alluvium.

The Wallingford boreholes were drilled into the upper facet of the Northmoor Sand and Gravel on a
minor terrace just above the level of the modern Thames floodplain. They proved 0.5 m of soil,

overlying 4.0-4.2 m of interbedded sandy gravel and gravelly sand with fine to coarse pebbles

12
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composed largely of limestone, ironstone and flint. The gravels rest sharply on grey mudstones of
the Glauconitic Marl. This low permeability horizon at the base of the Chalk Group hydraulically
isolates the highly permeable sands and gravels from the underlying Upper Greensand aquifer.
There is a hydraulic head difference of around 4 - 5 m between this aquifer and the overlying terrace
sand and gravels, with the potentiometric head of the Upper Greensand typically above ground level
during the winter.

Hydrology

The River Thames is the most prominent surface water feature traversing the sands and gravels with
a mean flow and baseflow index (BFI) of 28.3 m3/s and 0.64, respectively, as monitored 8 km
upstream at Day’s Weir (Marsh, Hannaford 2008). The River Thame is the most significant local
tributary of the Thames, with the confluence 6.5 km upstream of the site. The Thame has a mean
flow of 3.8 m3/s and BFI of 0.59 at Wheatley (51.740° N 1.115° W). Ewelme Brook is an example of
one of the smaller groundwater dominated streams seen locally which emerge as springs from the
top units of the West Melbury Chalk, and flow across the sands and gravels before converging with
the Thames. It has a mean flow and BFI of 0.05 m3/s and 0.98, respectively, 400 m downstream of its
source (51.620° N 1.074° W). The mean annual rainfall recorded between 1972 and 2007 in

Wallingford is 596 mm.

Data Collection and Inspection

Data Collection

The six datasets discussed herein are river stage, groundwater levels, river temperature,
groundwater temperature, rainfall and air temperature. Details of the datasets and gauge
installation are summarised in Table 1 and Table 2 respectively.

Groundwater levels and temperature are monitored using a 3.5 mH,0 range MEAS KPSI™ 501
pressure transducer in borehole WL84. The sensors are located 4.5 m below ground level adjacent to

the screen for representative groundwater temperature measurements. (Sorensen, Butcher 2011)
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reported this was the most accurate pressure transducer (Transducer F) out of sixteen models tested
with an accuracy in field tests of £ 4 mm and no evidence of drift. An additional 3.5 mH,0 range
MEAS KPSI™ 500 pressure transducer is also installed within the borehole to validate the primary
dataset. Temperature on both KPSI™ sensors is typically accurate to + 0.1°C, but specified to within
1 0.25°C. All measurements are recorded every minute and telemetered using Adcon A723 addITs.
In borehole WL85, a 3.5 m range In-Situ Inc. Level TROLL® 500 is installed and logging at a 1 minute
frequency. This sensor is specified as accurate to £ 3.5 mm by the manufacturer. This dataset
provides a backup dataset in the event of transducer or telemetry failure at borehole WL84.
Frequent manual observations of groundwater level are undertaken at both boreholes with a dip
tape to detect any evidence of instrument malfunctioning or drift (Post, Asmuth 2013). The dip tape
is regularly calibrated against an EU Class | measuring tape, which has a tolerance of + 0.4 mm over
the length used.

At the stilling well, river stage and temperature were measured at 1 minute interval with a 3.5 mH,0
range MEAS KPSI™ 500. There is currently no backup sensor installed at this location.
Meteorological variables are monitored every 15 minutes using a Didcot AWS, with DICo Probes for
air temperature. The temperature is typically accurate to + 0.1 °C, although calibrated to an accuracy
of + 0.2 °C. Rainfall is monitored with a tipping bucket rain gauge (0.2mm tip volume), which is
mounted at ground level to reduce the effects of undercatch (Rodda and Dixon, 2012).

Data quality control

The groundwater and river datasets span 2,101,873 records from 08:48 2" January 2012 until 00:00
01° January 2016. These datasets contained missing values, which totalled 1.0 and 0.7 % of the total
record lengths in the borehole and stilling well, respectively. These were infilled using four
techniques (Table 3). The datasets contained several small gaps (<10 min), including numerous

1 minute gaps, for example the groundwater level dataset contains 393 records. These records were

all infilled via linear interpolation, which is considered reasonable over such short timeframes.
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The majority of groundwater level data infilling was via linear regression with borehole WL85

(R? =1.00 from 616482 concurrent records). However, over 33 hours in June 2013 there was no
corresponding record from WL85. Therefore, the rate of change over the preceding 24 hour period
was used to reconstruct the groundwater level data. This enabled anticipated short-term
fluctuations to be captured in the absence of any precipitation. This was not thought to have a
significant impact on the results, as the infilled time is less than 0.25% of the entire time period.
Linear interpolation over periods in excess of 10 minutes was used for the groundwater temperature
and river datasets.

There was no evidence of drift noted in the WL84 groundwater level dataset. This was confirmed via
comparison with manual level observations which showed no deterioration in accuracy with time,
with all data within £ 3 mm. Furthermore, there was no systematic deviation in readings between
the pressure transducers within borehole WL84.

Both air temperature and rainfall datasets contained missing values totalling 10% in record length,
notably 3516 records between 13™ November and 20" December 2013 and 4700 records between
24" December 2014 and 11 February 2015. These were infilled with hourly data from Benson
located 2 km northeast of Wallingford and is indicated in Figure 5. Benson temperature data were
downscaled to 15 minute using linear interpolation, then used to infill the Wallingford data. Rainfall
data were not downscaled, and were not adjusted for location as 88 % of the concurrent hourly
totals were identical.

Data Inspection: Processes and time-scales

Rainfall was highly unusual during the study period, exceeding the average in 2012 and 2014 by
about 40 and 50% respectively, and approximately equal to the average in 2013 and 2015 by about 3
and -5% respectively. However, during early 2012 Southern Britain had actually been experiencing
drought conditions. In April, though, there was an abrupt change in the weather pattern across the
UK, which preceded unprecedented rainfall locally (Parry, Marsh et al. 2013). This resulted in

atypical river flows during late spring and summer and, moreover, inhibited the development of soil
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moisture deficits during summer 2012. Consequently, the onset of runoff was rapid during the
winter rains causing periods of high flow throughout October 2012 — April 2013 along the Thames.
The summer of 2013 was reasonably warm and dry and resulted in high soil moisture deficits
developing. However, the clustering of deep depressions throughout December 2013 and January
2014 produced high rainfall, high runoff and the highest average January flow along the Thames
since records began in 1883 (CEH/Met Office, 2014).

Groundwater head remains elevated above the river stage throughout the period indicating the
potential for perennial groundwater discharge to the Thames (Figure 7). The elevated groundwater
head could be supported through upwelling from the Chalk to the East or the Upper Greensand to
the West where the overlying Glauconitic Marl Member is absent. Other contributions could
originate via loses from upgradient surface waters, such as the River Thame or more groundwater
dominated streams like Ewelme Brook.

Rises in River Thames stage are a response to flow from upstream catchments and hence are much
greater than concomitant rises in groundwater head (Figure 7). The River Thames response would be
a combination of both groundwater discharge and overland flow which is likely to occur north of the
piezometer site, where the river and its tributaries flow across the impermeable Gault Clay
Formation.

Groundwater temperature is relatively stable displaying a low-amplitude sinusoidal pattern which
peaks in October and reaches its minima in April (Figure 7). These peaks and troughs are lagged in
comparison to air temperature. By contrast, river temperature responds quickly to air temperature
throughout, but without the same extremes because of the higher thermal capacity of water.

It is observed that there can be a marked and rapid rise in borehole water level during and shortly
after intense rainfall events (Figure 8 and Figure 9). This is believed to be due to the Lisse effect,
which arises from air entrapment during these events, particularly during summer. Figure 9 shows
the response of the borehole water level to individual rainfall events during August (a summer

month) where the Lisse effect is clearly observed and during November-December (winter months)
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where the Lisse effect is less prominent. The Lisse effect tends to occur in shallow unconfined
riparian aquifers similar to the that studied here (Weeks 2002). During these changes in level there
are also concurrent changes in groundwater temperature (Figure 9). Figure 9 captures one such
event. Initial change in groundwater temperature (marked as ‘local minimum’ in Figure 9) is
attributed to initial inflow of groundwater with a slightly different ambient temperature into that in
the well during the initial rise in the borehole water column. This is followed by a reversal in the
temperature gradient which occurs due to mixing of the water column in the well. The mixing is
believed to be induced by turbulence due to the rapid inflow and then outflow of water as a result of
the build-up and then reduction of air pressure in the unsaturated soil during the Lisse effect. This
results in a local temperature maximum occurring during the declining phase in the borehole water
level. The temperature then starts to transition into a new equilibrium state after the dissipation of
the Lisse effect. When such events occur during the winter an inverse response occurs with an initial
local maximum followed by a larger local minimum. The observed rise in groundwater level in Figure
9is ~0.15 m in response to a rain event that had a cumulative depth of ~0.01 m. With a specific
yield estimate of about 0.15 for the study site, the observed rise in groundwater level is expected
not to exceed 0.07 m. And hence the 0.15 m rise in groundwater level for this event is evidently
caused by the Lisse effect.

Controls on river and groundwater levels are diurnal and seasonal. During the summer, river levels in
the stilling well are noticeably influenced by bow waves emanating from passing boat traffic. This
can result in random noise of several millimetres during daylight hours (Figure 8a). Such noise is less
pronounced during the winter months, and also tends to be focussed during weekends or public
holidays.

Evapotranspiration from groundwater storage is similarly diurnal and seasonal producing daytime
drawdown and overnight recovery typically between April and October (Figure 10). It is likely to be a
consequence of the nearby poplar trees which have been observed to root to at least 3.2 m below

the surface (Heilman, Ekuan et al. 1994) and could, therefore, tap the saturated zone directly.
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Contributions from the sycamore are likely to be more limited as the species tends to restrict root

growth to within the top metre (Heilman, Norby 1998, Simon, Collison 2002).

Results and discussion

The Lisse effect — which was explained under the Data Inspection Section — is an artefact of the
monitoring well’s response to heavy rainfall events and is not, therefore, indicative of a physical
increase in groundwater storage. Hence, as suggested by (Zhang, Gong et al. 2011) the data will be
corrected for the Lisse effect. The procedure developed for the removal of the Lisse effect is detailed
in Appendix A. Both groundwater level and temperature data will be corrected for the Lisse effect
and fractal behaviour for both observed and corrected time series will be presented.

Figure 11 to Figure 14Figure 14 present the results of r-DFAn for all the datasets listed in Table 1.
Table 4 presents a summary of the global scaling exponents and persistent crossovers in r-DFA1 for
all datasets.

The Lisse effect has a noticeable effect on the mono-fractal behaviour of groundwater temperature
and levels (Figure 11 and Figure 12), particularly at intermediate time scales (i.e. around 1000 mins
or 0.7 days). Where, in the case of the borehole water level, correction for the Lisse effect removes a

crossover, due to the reductionin F (L) , at these intermediate time scales. The global fractal

exponents for groundwater temperature with and without the Lisse effect are ~1.43 and ~1.40
respectively, and that for groundwater levels are ~1.68 and ~1.78 respectively. Hence, the global
scaling behaviour is not strongly affected by the existence of the Lisse effect.

Global fractal behaviour of rainfall, river stage and groundwater level (corrected for Lisse effect) at
the Wallingford site are consistent with previous studies (Matsoukas, Islam et al. 2000, Li, Zhang
2007) where rainfall is similar to white noise (« = 0.5) and river stage and groundwater fluctuation is
more structured and tends to Brown noise (x = 1.5). Here, the global scaling exponent for rainfall,
river stage and groundwater level are ~0.72, ~1.60 and ~1.78 respectively (Figure 13-E, Figure 13-F

and Figure 13-G). (Little, Bloomfield 2010, Li, Zhang 2007, Zhang, Schilling 2004) speculate on the
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role of runoff, recharge and the carrying medium i.e. soil, on altering the fluctuation structure of
rainfall to produce more structured fluctuation in groundwater level and river stage.

Crossovers are observed in all datasets studied. Notable is the protuberant shape observed for air
temperature (Figure 13-A), groundwater temperature (Figure 13-C), and river temperature (Figure
13-D) with maximum bulge for r-DFA1 at around ~14 hours, ~11 hours and ~9 hours respectively.
Persistence of this crossover across higher order r-DFAn indicates a strong presence of a periodic
cycle with a cycle length smaller than that observed in r-DFA1 at the maximum bulge (Li, Zhang
2007, Sadegh Movahed, Jafari et al. 2006, Kantelhardt, Koscielny-Bunde et al. 2001). The degree of
protuberance in the fractal domain is proportional to the amplitude of the cycle in the time domain
(which is presented in Figure 4).The amplitude of the cycle in Figure 4 is related to the degree of
protuberance in that the degree of protuberance for air temperature is larger than that for river
temperature and which in turn is larger than that for groundwater temperature.

An important speculation that relates the r-DFAn results of the three temperature time series and
the three hydrological time series (i.e. rainfall, groundwater levels and river stage) is the degree of
similarity of the DFA results of the former compared to that of the latter. The similarity of r-DFA
results of the three temperature time series (i.e. air temperature, river temperature and
groundwater temperature), is attributed to the underlying dominantly-linear heat transfer process
that does not induce or alter the fractal properties of the temperature time series. However, the
DFA results of rainfall, river stage and groundwater levels do not exhibit the same degree of
similarity due to underlying non-linear recharge, runoff and baseflow transfer functions.

The rainfall series has one persistent crossover at 1.6 days for r-DFAL. Investigation of the rainfall
series in the time domain revealed that all storms last for a maximum period of 1.4 days and about
75% of dry period length (i.e. dry periods between storms) are shorter than 1.6 days; Storms were
estimated by clustering non-zero rain with no longer than 2 hours of dry period as was done in
(Ireson, Butler 2011)). Keeping these estimates in mind, it is speculated that the 1.6 days crossover

separates between two regimes where the first regime, that corresponds to scales smaller than 1.6
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days, is affected by the intermittency of rainfall. The second regime, that corresponds to scales from
1.6 days to a number of months, is no longer dominated by the effect of storms and rain events.
Published results for rainfall do not coincide with the rainfall series at Wallingford. One such case are
the rainfall series studied in (Matsoukas, Islam et al. 2000) from 9 different locations in the US. A
crossover between 5 and 10 days was observed at the 9 locations and its occurrence was related to
the separation between meteorological and climatological regimes that act as forcing on the rainfall
time series. However, the scaling exponents before and after the crossover coincide with our
findings where a SE of about 1.0 is observed at smaller scales and a SE of about 0.6 is observed at
larger scales. In another publication, (Tessier, Lovejoy et al. 1996) observed a crossover at about 16
days for rainfall time series collected from 30 different catchments in France. (Koscielny-Bunde,
Kantelhardt et al. 2006) studied daily rainfall data from various places across the world, hence, it is
only the scaling exponents on larger scales that can be compared. The scaling exponents from
Wallingford and those reported in (Koscielny-Bunde, Kantelhardt et al. 2006) are similar because
both are close to white noise as opposed to 1/f noise that is exhibited across smaller scales in the
Wallingford 15-minute rainfall data.

The fractal behaviour of river stage (Figure 13-F) and groundwater levels (Figure 13-G) are very
similar. (Li, Zhang 2007) speculated the effect that river stage fractal properties would have on that
of groundwater levels, especially at the larger scales. However, River Thames, which is generally
groundwater dominated (with a BFI of 0.64 measured 8 km upstream of the site), is expected to
have fractal properties similar to that of groundwater fluctuation.

(Little, Bloomfield 2010), as reported in (Labat, Masbou et al. 2011), studied GW levels and found
that they exhibited scaling exponents ranging from 1.20 to 1.65. (Li, Zhang 2007) reported two
crossovers; one between a few days and 10 days and the second was between a few months and a
year. Unfortunately, the groundwater scale ranges studied herein are different from those studied in

(Li, Zhang 2007), hence a comparison is not possible. However, according to (Yu, Ghasemizadeh et al.
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2016), the fractal behaviour of groundwater levels is found to be site specific and hence need not be
similar.

Finally, Figure 14 summarises all crossovers that persist across all r-DFA orders in the 6 datasets
studied. As explained earlier when illustrating r-DFAn on the synthetic signal, due to anticipated
interaction between the different scaling regimes, the ‘true’ crossover is expected to fall before the
crossover in r-DFA1. Evidently, the crossovers in all datasets (except for the second CO in the
groundwater levels dataset) follow a generally linear trend. Noteworthy is the similarity of slopes of
the three unaltered temperature time series (air temperature, river temperature and groundwater
temperature) that the crossovers follow. In addition, the slopes for river stage and the first CO of

groundwater levels are of similar magnitude.

Summary and conclusions

The fractal behavior of six very high-resolution datasets was investigated using robust detrended
fluctuation analysis procedure (r-DFAnN) that allows for accurate non-subjective determination of
global scaling exponents and statistically significant changes in the scaling regimes (crossovers). The
datasets investigated were 1-minute river and groundwater temperature and levels, 15-minute
rainfall and temperature. The variables were collected in Wallingford, UK, over a period of 4 years.
The study site is formed of a shallow gravel aquifer that drains into River Thames. Detailed
inspection of all variables in the time domain was presented along with their fractal behavior.

Due to the very high resolution of the data collected and the high permeability of the aquifer, the
Lisse effect was identified. Insights into the dynamics taking place inside the groundwater
monitoring well were inferred from a combined inspection of the one-minute groundwater level and
groundwater temperature data. Plant root uptake was clearly identified in the groundwater level
time series with recession during the day and infiltration during the night. The removal of the Lisse
effect from the affected time series showed how the Lisse effect influences the fractal behavior of

these time series at intermediate time scales (at about one day).
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The high resolution of the data enabled the study of their mono-fractal behavior from a time scale as
short as 3 minutes for 1-minute river and groundwater data and a time scale of 45 minutes for the
15-minute meteorological data. At these scales, the river stage and groundwater levels exhibit a
strong and persistent crossover at sub-hourly time scales which would not be detected with coarser-
resolution time series.

As for the temperature time series, the periodicity, which is observed in the time series of the air,
river and groundwater temperature series, was clearly captured in the fractal analysis in the form of
a protuberant shape with a size proportional to the amplitude of the periodicity observed in the
time domain. We believe that the underlying (dominantly) linear process of temperature
conductance has led to an ‘approximately linear’ transfer of fractal behavior between the
temperature series whereas the underlying non-linear transfer processes of runoff and infiltration
that rainfall undergoes did not lead to the same degree of similarity in fractal behavior of rainfall,
river stage and groundwater fluctuation.

The fractal behaviour of all datasets was presented, however, a model is required in order to be able
to ascertain the driving forces that cause the observed fractal behaviour. The role of soil in acting as
a ‘fractal filter’ of water along its path way, and the role of the processes of recharge and base flow
on the fractal properties of rainfall, is a concept that, to the best of our knowledge, is not yet well
established. The degree to which models are able to capture fractal behavior of hydrological and
hydro-geological time series is an area worth investigation, in light of recent successful attempts like

that of (Williams, Pelletier 2015) and (Russian, Dentz et al. 2013).
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Figure 3 r-DFA of synthesized mono-Fractal time series of length 221 data points, a theoretical crossover at

500 units and a theoretical scaling exponent of 1.0 before crossover and 0.5 after the crossover.
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578 Figure 5 Illustration of Wallingford study site location and relevant gauges from Google Earth
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Figure 6 Block diagram showing the topography and geology surrounding the borehole site. Block covers an
area of approximately 16x17 km and is viewed looking south (downstream) toward the Goring Gap. The block
covers an altitudinal range of 360 m and is viewed with a vertical exaggeration factor of X10. See cross-section
(b) for a key to the colours of the geological formations and abbreviations.
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587 Figure 7 Full time series of daily rainfall, river and groundwater level, and air, river and groundwater
588 temperature.
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Figure 8 Response of river and groundwater levels and temperature to events in (a) Left panel: August 2012

(b) Right panel: November 2012
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Figure 9 Top panel: Groundwater level and temperature with focus on one Lisse event (grey dotted lines mark
minimum and maximum groundwater temperature differences); Bottom Panel: Coinciding cumulative rainfall.
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Figure 11 lllustration of the effect of the Lisse effect on the fractal behaviour of Groundwater temperature

31



605

606

607

608

609

610

611

612

613

614

615

616

617

, r-DFAL B r-DFA2 . r-DFA3
10 10 10
—#&— Observed GWL ~—#— Observed GWL ~—#— Observed GWL
—#— GWL corrected for Lisse —#— GWL corrected for Lisse —#— GWL corrected for Lisse
10% 10% 10%
10° 10° 10°
3 =) =)
[ e g
10 10 107
10% 10 10%
10 10°° 10°
10° 10° 10* 10° 10° 10° 10* 10° 10° 10° 10° 10°
Window, L (minutes) Window, L (minutes) Window, L (minutes)
. r-DFA4 B r-DFA5 . r-DFA6
10 10 10
—#— Observed GWL —#— Observed GWL —=#— Observed GWL
—#— GWL corrected for Lisse —=#— GWL corrected for Lisse —e— GWL corrected for Lisse
102 10? 10?
10° 10° 10°
3 =) )
[ e i
10 10 102
10 10 10
10 10°° 10
10° 10? 10* 10° 10° 10? 10* 10° 10° 102 10* 10°

Window, L (minutes)

Window, L (minutes)

Window, L (minutes)

Figure 12 lllustration of the effect of the Lisse effect on the fractal behaviour of Groundwater level

32



10° ¢ 108
—%— -DFAL ( ) —#— r-DFAL
—#— -DFA2 A ~ —#— -DFA2 (B)
10* £ | —%—r-DFA3 P —#— -DFA3
-DFA4 i 104+
—%— -DFAS —#—r-DFAS
10° | | —%— r-DFA6 —%— -DFA6
102 L 102 L
=) =)
'S 'S
10] L
10° -
100
102
101
r-DFAL global SE = 1.15 r-DFAL1 global SE = 1.55
102 I . . . . 104 | I . 1 | I
10t 10% 10° 10* 10° 10° 10° 10! 102 10° 10* 10° 10°
Window, L (minutes) Window, L (minutes)
108 108 -
—— -DFA1 —s— -DFA1
o ©) N (D)
—#—-DFA3 —»— r-DFA3
104 - r-DFA4 104+ r-DFA4
—»— -DFAS —s— -DFAS
—%— -DFAG ——-DFA6
102 102+
= 2
w 'S
100 100 -
102 102F
r-DFAT1 global SE = 1.52 r-DFA1 global SE = 1.68
10»4 L L L L L ] 10-4 L Il L L L I}
10° 10' 10? 10° 10* 10° 10° 10° 10' 102 10° 10 10° 10°
Window, L (minutes) Window, L (minutes)
10%p o —— 17.4 day
——-DFA1 ——-DFAL !
—#— -DFA2 (E) —#— -DFA2 (F)
—»— -DFA3 —»— -DFA3
r-DFA4 -DFA4
10" - | —%— r-DFAS o5 102 |- | —#—r-DFAS
—=— r-DFA6 . —=— -DFA6
1.6 days
2 100k 3 100k
T 10 T 10
107" 102f
r-DFA1 global SE = 0.70 r-DFAL1 global SE = 1.59
102 . | I I ) 104 . I . I . |
10' 10? 10° 10% 10° 108 10° 10t 10% 10° 10* 10° 10°
Window, L (minutes) Window, L (minutes)
0% 104
—»— -DFA1
—#—r-DFA2 (G)
—#%—r-DFA3 4.0 days 5
102+ r-DFA4 1071
—»— -DFAS
—»— r-DFA6
100 100
a 3
w w
102+ 16 mins 102
0.94
104 104 F
r-DFA1 global SE = 1.75 r-DFAL global SE = 1.67
10 . . . . I ' 106 . . . . . )
10° 10' 10? 10° 10 10° 108 10° 10" 10% 10° 10* 10° 10°
Window, L (minutes) Window, L (minutes)

618

619 Figure 13 r-DFAn results of (A) dry air temperature, (B) 1-minute groundwater temperature corrected for
620 Lisse effect, (C) 1-minute observed groundwater temperature, (D) 1- minute river temperature, (E) 15-minute
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621
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627

628

rainfall intensity, (F) 1-minute river stage, (G) 1-minute groundwater level corrected for Lisse effect, and (H) 1-
minute observed groundwater level
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Figure 14 Summary of COs that persist through all orders of DFA for all datasets studied
Table 1 All datasets analysed for fractal behaviour
Resoluti
Dataset eéo ution Data length
(minutes)
Dry air temperature 15 01/2012 to 12/2015
River Thames temperature Wallingford 1 01/2012 to 12/2015
Groundwater temperature at Wallingford (with and
. . 1 01/2012 to 12/2015
without the Lisse effect) / 012/
Rainfall at Wallingford 15 01/2012 to 12/2015
River stage at Wallingford 1 01/2012 to 12/2015
G dwater levels at Wallingford (with and without th
.roun water levels at Wallingford (with and without the 1 01/2012 to 12/2015
Lisse effect)
Table 2 Details of installations
Installation Latitude Longitude Elevation Total depth Screen
(°) () (mAOD) (m) (mBGL)
wL84 51.6036 -1.1107 47.883 5.01 217-4.71
WL85 51.6036 -1.1106 47.778 4.79 1.95-4.49
Thames stilling well 51.6047 -1.1164 43.747 N/A N/A
AWS N/A N/A
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Table 3 Data infilling and data flags

Data flags Infilling technique Groundwater Thames
Level Temp Level Temp
1 None 2050767 | 2050729 | 2054175 | 2054217
2 Linear interpolation (<10 min) 1173 1189 901 902
3 Linear regression 8281 256 93 50
4 Duplication of preceding record 1991 0 0 0
5 Linear interpolation (>10 min) 0 10038 7043 7043
Table 4 Summary of r-DFA results for all the time series analysed

Dataset Resolution r-DFA1

Global SE co1 Co2 CO3
Air Temperature 15 min 1.15 - 14 hr -
GW Temperature (observed) | 1 min 1.52 78 min 11 hr -
River Temperature 1 min 1.68 16 min 9.6 hr -
Rainfall Intensity 15 min 0.80 - - 1.6 day
GWL (observed) 1 min 1.67 10 min 8 hr 1.6 day
River Stage 1 min 1.59 31 min - 17.4 day
GW Temperature (no Lisse) 1 min 1.55 - 5.8 hr -
GWL (no Lisse) 1 min 1.75 16 min 4.0 hr -
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Appendix A — Procedure for the removal of the Lisse effect

In the absence of soil air pressure data and other identifiers that would indicate a Lisse event from
one that is otherwise, the following systematic approach was implemented for the removal of the
Lisse effect:

- Gradients in the time series that exceed a pre-defined positive and negative threshold are
identified. In this way the start and end of a Lisse event are identified. The thresholds are
selected based on the probability density function of the slopes and on trial and error.

- Data points identified as being within a Lisse event are clustered using K-means clustering in
order to segregate individual Lisse events.

- The clustering was assessed visually, and if necessary, amended.

- Alinear slope joining the start and end of each Lisse event was computed to replace the Lisse

event.
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Figure A. 1  illustrates some Lisse events observed in the GWL data from Wallingford and the

computed linear slope that will replace them.
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Figure A. 1 lllustration of the removal of some Lisse events from the Wallingford site

Precipitation (mm/15min)

40



