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Highlights 8 

1. Distinct urban, agricultural and geogenic sources of groundwater contamination 9 

2. Elevated uranium occurrence, exceeding 30 g/L in 10% of sites  10 

3. Shallow aquifer system have significantly enhanced salinity, and nitrate and selenium 11 
concentrations  12 

4. There is evidence of salinity and nitrate breakthrough to depths >100 m due to pumping 13 

 14 

Abstract 15 

Groundwater depletion has been widely studied in northwest India, but water quality concerns 16 

are still poorly constrained.  In this study, we explore the hydrochemistry of the top 160 m of 17 

the aquifer system, through detailed field studies in the Bist-Doab region, considering both 18 

anthropogenic and geogenic controls. A detailed comparison is made between sites dominated 19 

by urban and agricultural landuse.  Salinity, nitrate, chloride and lead concentrations are 20 

significantly higher in the shallow (0-50 m ) groundwater system due to surface anthropogenic 21 

contaminant loading from agricultural and urban sources. The widespread occurrence of oxic 22 

groundwater within the aquifer system means that denitrification potential is limited and also 23 

enhances the mobility of selenium and uranium in groundwater. Geogenic trace elements (e.g. 24 

As, Se, F), are generally found at concentrations below WHO guideline drinking water values, 25 

however elevated U concentrations (50-70 g/L) are found within the deeper part of the aquifer 26 

and shallow urban aquifers associated with higher bicarbonate waters. Higher concentration of 27 

Se (10-40 g/L) are found exclusively in the shallow groundwater system where Se is 28 

mobilised from soils and transported to depth in the shallow aquifer due to the prevailing 29 

oxidising aquifer conditions. New evidence from a range of environmental tracers shows 30 

elevated concentrations of anthropogenic contaminants in the deeper part of the aquifer (50-31 

160 m deep) and demonstrates vulnerability to vertical migration of contaminants. Continued 32 



intensive groundwater abstraction from >100 m deep means that water quality risks to the deep 33 

aquifer system need to be considered together with water quantity constraints.  34 
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1. Introduction 37 

Over the last 150 years there has been growing intensification of agricultural activity in the 38 

Indo-Gangetic plain (Abrol et al., 2002). This started with the introduction of large surface 39 

water irrigation in the 19th century, and was followed by the introduction of agrichemicals in 40 

the mid-20th century and rapid growth in groundwater irrigation and urban development in the 41 

last 50 years (Mukherjee and Kuroda, 2003). Groundwater is now heavily exploited for 42 

irrigation, industry and drinking water and demands on this resource are increasing rapidly 43 

(MacDonald et al., 2016). The Punjab region of northwest India is a nationally critical source 44 

of food and this has been possible through the steady increase in surface water and more 45 

recently groundwater irrigation (Cheema et al., 2014). The Bist-Doab region of northwest India 46 

is a prime example of where there has been long term unsustainable abstraction of groundwater 47 

(CGWB, 2011; Tiwari et al., 2009).  There are huge pressures on groundwater resources in this 48 

region and abstraction for irrigation and domestic use, as well as changes in rainfall patterns 49 

(Asoka et al., 2017), has led to a steady drop in groundwater levels in many regions of northern 50 

India over the last 30 years. The security of groundwater supply is often looked at from a 51 

quantity perspective (Aeschback-Hertig and Gleeson, 2012; Asoka et al., 2017; Gleeson et al., 52 

2015; MacDonald et al., 2012). In contrast, with perhaps the exception of arsenic and fluoride 53 

contamination, the degradation of groundwater quality and aquifer vulnerability, and its 54 

impacts on water security, has received less attention globally (Foster and Chilton, 2003; 55 

Scanlon et al., 2007). 56 

The relatively long residence times of pumped groundwater systems (e.g. 10-103 y-1) are able 57 

to protect groundwater sources from some surface sources of contamination, but once 58 

contaminated, steps taken to reverse this type of anthropogenic water quality degradation take 59 

considerable time (Morris et al., 2003; Visser et al., 2009). The build-up of high salinity in 60 

shallow groundwater systems driven by irrigation and abstraction practice across the Indo-61 

Gangetic Basin is considered to pose a greater threat to groundwater degradation than aquifer 62 

storage depletion (MacDonald et al., 2016).  63 



Geogenic contamination of shallow groundwater resources from arsenic and fluoride is well 64 

documented globally and limits the use of groundwater resources (Edmunds and Smedley, 65 

2013; Fendorf et al., 2010; Smedley and Kinniburgh, 2002). A large number of studies have 66 

investigated geogenic contamination in the distal parts of the Indo-Gangetic basin 67 

(DPHE/BGS, 2001; Nickson et al., 1998; Ravenscroft et al., 2004), in contrast water quality 68 

constraints are relatively poorly characterised in the upper parts of the basin. While regional 69 

hydraulic anisotropy (ratio horizontal to vertical permeability) is thought to protect the deeper 70 

groundwater from being contaminated by shallow geogenic sources of arsenic contamination 71 

in the more distal parts of the Indo-Gangetic alluvial deltaic aquifer system (Bonsor et al., 2017; 72 

Hoque and Burgess, 2012; Michael and Voss, 2009), the vulnerability of the plains aquifer 73 

systems of NW India to pumping induced vertical migration of contaminants is poorly 74 

understood. Aquifer vulnerability assessment in the upper and central Indo-Gangetic basin are 75 

dominated by the use of models that consider the combined factors of intrinsic aquifer 76 

vulnerability and land use (Rahman, 2008; Raju et al., 2014).  77 

A recent study by Lapworth et al. (2015) in NW India highlighted the low regional aquifer 78 

anisotropy through the use of modern residence time tracers (chlorofluorocarbons), and traced 79 

modern recharge from local meteoric sources using stable isotope ratios of O and H. This study 80 

showed that the shallow (0-50 m) and deeper (>75 m) aquifer system is actively recharged and 81 

renewed by local meteoric sources, and that the intensive pumping for municipal drinking 82 

water supplies from (>100 mbgl) induces vertical leakage from the shallow aquifer (Lapworth 83 

et al., 2015). This induced recharge may reduce aquifer depletion, but the presence of modern 84 

tracers within the shallow and deeper parts of the aquifer system suggests that this groundwater 85 

is perhaps regionally vulnerable to vertical contaminant migration from either anthropogenic 86 

or geogenic sources.  87 

Depth variations in lithology within Indo-Gangetic basin are characterised by large spatial 88 

heterogeneity due to variations in depositional conditions and changes in drainage network 89 

patterns controlled by tectonics and large historical variations in the intensity of the Monsoon 90 

(Gupta, 1997; Kumar et al., 2007; Singh, 2004). Geo-mophologically the foreland basin can be 91 

divided into three zones, the Shiwalik and Kandi watershed, the interfluvial plains located 92 

between larger drainage channels e.g. R. Beas, R. Sutlej and the R. Yamuna, and floodplain 93 

areas located in close proximity to the drainage and in the confluence zones (Bowen, 1985). 94 

Recent work by van Dijk et al. (2014) shows that the geomorphic setting of the Sutlej fan 95 

system provides a primary control on the aquifer distribution and geometry, showing an overall 96 



decrease in the proportion of aquifer material downstream and an average aquifer thickness of 97 

7 m. 98 

99 

Figure 1. a) Study area location, groundwater sampling network and regional groundwater 100 

levels, site names were chosen based on the name of the nearest settlement, the inset shows the 101 

location of the Bist-Doab. b) Schematic hydrogeological cross section of the region, adapted 102 

from Bonsor et al. (2017 ). 103 

Chemical properties of groundwater can be used as environmental tracers and so enable 104 

conclusions to be drawn about the water’s origin, residence time and hydrogeochemical 105 

evolution (Edmunds et al., 2003). For example, tracers such as major elements and ratios (e.g. 106 

NO3, Ca/Mg, NO3/Cl, Cl/Br) and trace elements (e.g. Sr, Li, Rb, Mo, U, As, F, Se, Cd, Ni, Zn, 107 

B) are used as tracers in hydrogeological investigations to characterise anthropogenic and 108 

geogenic sources of contamination (Edmunds and Savage, 1991; Jaunat et al., 2012). 109 

Environmental tracers are routinely employed as proxies for assessing groundwater 110 

vulnerability to vertical leakage and microbiological contamination (Hinsby et al., 2008; Katz 111 

et al., 2011; Katz and Griffin, 2007; Lapworth et al., 2008; Morris et al., 2006). Few studies 112 

have employed direct observations such as hydrochemical profiling with environmental tracers 113 

coupled with available lithological data sets to assess aquifer vulnerability to water quality 114 

degradation in this setting. 115 

This paper focuses on assessing the scale of current contamination in the shallow and deep 116 

aquifers and the vulnerability of the deep aquifers to vertical migration of anthropogenic 117 

contaminants and groundwater degradation risks from geogenic sources of contamination. This 118 



assessment was conducted using detailed hydrochemical profiling in a large study are in 119 

Punjab, NW India (Figure 1). Hydrochemical data from contrasting urban/peri-urban and rural 120 

settings, categorised based on field observations of the dominant land use at sample sites, are 121 

to characterise surface contaminant sources and groundwater degradation within the shallow 122 

sedimentary aquifer system from these two dominant land use types. Data from paired shallow 123 

(0-50 mbgl) and deep abstraction points (60-160 mbgl) are used to assess the impact of 124 

intensive pumping on contaminant breakthrough to depth within the aquifer system. The 125 

hydrochemical profiles will be considered for the first time with available data from detailed 126 

lithological profiles to explore regional controls on deep aquifer vulnerability to vertical 127 

contaminant migration within the sedimentary aquifer system.  128 

 2. Methods 129 

2.1 Study area: hydrogeology and groundwater sampling 130 

A hydrogeochemical sampling campaign was carried out across the Bist-Doab region of 131 

Punjab, northwest India, a 9000 km2 area located between the River Sutlej, River Beas and the 132 

Shiwalik Hills to the north (Figure 1). See Figure S1 in supplementary information for details 133 

on surface elevation and population density across the study area. The Bist-Doab is a suitable 134 

region to understand the impacts of intensive groundwater abstraction on groundwater flow 135 

and recharge processes. It is amongst the most agriculturally productive areas in Punjab for 136 

wheat, rice, cotton and maize, with a current split of ca. 75% groundwater irrigation, 25% 137 

surface water irrigation (Lapworth et al., 2014). The Bist-Doab has seen groundwater levels 138 

fall systematically in some regions over the last two decades (Cheema et al., 2014; Lapworth 139 

et al., 2014).  140 

Thick sequences of Pleistocene to Recent sediments derived from erosion of the Himalayas 141 

and lower lying foothills have formed the deep multi-layered sedimentary alluvial plain aquifer 142 

system we find today. Within the Bist-Doab study area (Figure 1) the major lithologies and 143 

sequences in order of increasing age and depth comprise:  i) Recent surface deposits, ii) 144 

Holocene Sirowal sediments and occasional gravels with inter-bedded coarse clastics from the 145 

Kandi belt and red clay beds and iii) Pleistocene boulder beds and inter-bedded clays (Bowen, 146 

1985; Khan, 1984).  147 

Figure 1b shows a schematic hydrogeological section for the Upper Indus, a brief summary of 148 

the hydrogeology is provided in the subsequent section. For a comprehensive description see 149 



Bonsor et al. (2017). The Upper Indus sedimentary aquifer is characterised by highly permeable 150 

sand and gravel lenses interlayered with laterally discontinuous lower permeability silt, clay 151 

and ‘kankar’ (carbonate) deposits. The groundwater resources are highly exploited with many 152 

tube wells (typically <100 m), hand dug wells and an ever growing number of deeper tube 153 

wells, typically >100 m; CGWB (2010). For example Punjab, India, is estimated to have around 154 

1 million tube wells. Groundwater is abstracted using handpumps and motorised diesel and 155 

electric submersible pumps. The aquifer anisotropy ratio (ratio of vertical vs horizontal 156 

hydraulic conductivity, Kv/Kh) for the Upper Indus is typically <25 (Bonsor et al., 2017). The 157 

regional groundwater piezometric head decreases and flattens in a NE-SW direction (CGWB, 158 

2007), with little or no regional flow within the central and SW part of the study area. Recent 159 

groundwater dating work has shown that the regional groundwater flow is now highly modified 160 

by vertical leakage due to both shallow pumping for irrigation and and abstraction at depth for 161 

drinking water (Lapworth et al., 2015). Regionally the groundwater recharge is dominated by 162 

meteoric rainfall (Lapworth et al., 2015), however in close proximity to surface water sources 163 

including canal leakage and surface water exchange have been shown to be important (Rao et 164 

al., 2017). Irrigation in this region is both from shallow groundwater sources and the Bist-Doab 165 

canal system diverted from the Sutlej River.  166 

An array of 19 sites distributed across the study area was selected to characterise a range of 167 

hydrogeological settings including conventional recharge zones, the mid plains as well as 168 

discharge zones close to the confluence of the R. Satluj and Beas and included sites dominated 169 

by urban and rural landuse. Sites were classified as urban (n=12) or rural-agricultural (n=7) 170 

based on field observations of dominant landuse around sampling sites undertaken in 2013. 171 

Field measurements of dissolved oxygen (DO), pH, specific electrical conductance (SEC) and 172 

temperature were made at the wellhead using a flow-through cell. Hydrochemical sampling 173 

was carried out only after stable instrument readings were obtained for the field parameters and 174 

a minimum of three borehole volumes had been purged. These were sampled for a full suite of 175 

inorganic hydrochemistry to characterise the top 160 m of the alluvial aquifer system.  176 

At 19 locations paired shallow (8-50 mbgl) and deep (60-160 mbgl) were sampled from 177 

aquifers (sand and gravels) which were separated in places by thick (typically several, 10-20 178 

m) but regionally discontinuous lower permeability horizons.. Shallow sites were a sampled 179 

using a combination of hand pumps and submersible motorised pumps, deep samples were 180 

taken from municipal abstraction sites using submersible pumps. Sampling for groundwater 181 

was carried out both pre- and post-monsoon (2013-2014) to characterise temporal variability.  182 



2.2 Hydrochemistry 183 

Field alkalinity was determined by duplicate titration of 50 mL of sample with 1.6N sulphuric 184 

acid using a bromocresol green pH indicator. Samples for anion determination were filtered 185 

(<0.45 m) in the field, stored in Nalgene™ bottles and refrigerated prior to analysis by ion 186 

chromatography. Samples for cations were filtered in the field using cellulose nitrate filters and 187 

stored in Nalgene™ bottles. These were preserved by acidifying using 0.5% v/v HCl and 188 

0.5%v/v HNO3 (Aristar™ grade).  Allanalysis was carried out atat BGS laboratories using 189 

UKAS accredited methods. Field blanks were taken through the same sampling procedure and 190 

the ICP-MS and IC results were validated using Aquacheck™ standards. Daily calibration of 191 

field probes (SEC, DO, pH) were carried out, Eh probes values were checked using Zobell 192 

solution in the field. All raw Eh values were temperature corrected.  193 

2.3 Lithological profiles 194 

Lithological records were compiled for 30 locations within the study area from a range of 195 

sources including the Central Ground Water Board database (CGWB, 2014), Bowen (1985 and 196 

six newly installed (2013) National Institute of Hydrology groundwater monitoring sites. The 197 

fraction of aquifer and non-aquifer thickness within the shallowest 50 metres was calculated. 198 

Fifty meters is is locally considered the depth above which the shallow aquifer system is found. 199 

Aquifer units were identified as micaceous sands of varying grades, fine-coarse grained, as 200 

well as selected cobble, pebble and angular gravel sized quartzite sequences. Non-aquifer 201 

deposits were typically plastic clays (brown and green) as well as non-plastic yellow clays 202 

found at a few locations. The identified aquifer layers were numbered from shallowest to 203 

deepest at each site as a measure of the vulnerability of the deeper aquifers to vertical migration 204 

of recharge (See Table S1 in supplementary information for compiled summary results).  205 

3. Results 206 

3.1 Hydrochemical depth profiles 207 

Results from pre and post monsoon sampling at each paired site are not differentiated in this 208 

study. While statistically significant differences between shallow and deep samples were found 209 

for a range of hydrochemical parameters, no statistically significant differences in either 210 

shallow and deep groups were detected using a Wilcoxon rank sum test (p>0.1), when 211 

hydrochemistry results were compared pre and post monsoon. 212 



Figure 2 shows hydrochemical depth profiles for a range of key water quality parameters and 213 

environmental tracers including electrical conductivity, nitrate (NO3), and selected trace 214 

elements (selenium (Se), arsenic (As), lead (Pb) and fluoride (F)) grouped by sites dominated 215 

by either urban or agricultural landuse. Overall there is a decrease in concentration with depth 216 

for all parameters except As for urban sites. For agricultural sites broad decreases in 217 

concentrations with depth are observed for all parameters except F, Se and As which had no 218 

clear trend with depth. Highest concentrations for a range of trace elements including As, Pb, 219 

Se, uranium (U) and F were found in sites dominated by urbanland use, and with the exception 220 

of U (Figure 3),Pb and NO3 these were below the WHO guideline value and Indian standard 221 

for drinking water . Molybdenum (Mo) shows an increase in concentration with depth 222 

irrespective of land use type, some sites between 50-150 m show higher concentrations 223 

between 10-20 g/L. 224 

 225 

Figure 2. Depth profiles for selected hydrochemistry for different land use a) SEC (S/cm), b) 226 

As (g/L), c) DO (mg/L), d) F (mg/L), e) NO3 (mg/L), f) Pb (g/L), g) Se (g/L), h) Mo (g/L). 227 

Solid line shows WHO drinking water guideline values (WHO 2011), dashed line shows 228 

permissible India drinking water standard (IS, 2012) if they differ from WHO standard. 229 



Figure 3 shows depth profiles for U (Figure 3a) and key geochemical parameters that control 230 

U concentrations in groundwater, including pH (Figure 3b), Eh (Figure 3c), alkalinity (Figure 231 

3d). Elevated concentrations of U are found in both the shallow and deep aquifers, with mean 232 

and median concentrations of 17 and 16 g/L respectively.  233 

 234 

Figure 3. Depth profiles of Uranium and key hydrogeochemical parameters for different land 235 

use a) U (g/L), b) pH, c) Eh (mV), d) HCO3 (mg/L). Solid line shows WHO drinking water 236 

guideline value of 30 g/L for Uranium (WHO 2011).  237 

3.2 Hydrochemical changes with land use, lithology and historical groundwater trends 238 

Statistical summaries, shown as box plots and cumulative frequency plots, are presented in 239 

Figures 4 and 5 for key selected water quality parameters, with results grouped by depth and 240 

landuse type. Shallow groundwaters from urban and agricultural land use have comparable 241 

median values for SEC and show significantly elevated SEC values compared to deep sites. 242 

Nitrate distributions were significantly higher for shallow agricultural groundwater compared 243 

to urban land use, and elevated in concentration compared to deep groundwater, only a few 244 

outliers were found above the WHO guideline values of 50 mg/L. Higher Cl concentrations 245 

were observed in shallow groundwater compared to deep groundwater although median values 246 

are all below 50 mg/L. Median U concentrations were >15 g/L for all groups except shallow 247 

agricultural sites where concentrations were significantly lower with median values of c. 248 

g/L. Arsenic concentrations were below 10 g/L, with median concentrations for all groups 249 

below 2 g/L. Shallow groundwaters had higher Pb concentrations and larger interquartile 250 



ranges compared to deep groundwater, and a number of outliers that were above the WHO 251 

guideline value of 10 g/L (Figure 5d). Fluoride concentrations were all found to be below 1.5 252 

mg/L. Significantly higher HCO3 concentrations were found in shallow urban groundwater 253 

compared to other groups. Median DO and concentrations and distributions were comparable 254 

across all groups and depths (Figure 4c and Figure 5h). Groundwater is generally oxic, but sub-255 

oxic and more reducing conditions are found in all groups and depths. Higher pH values 256 

(median of 7.5) were found in deep agricultural groundwater compared to other groups.  257 

 258 

Figure 4. Box-plot of selected hydrochemical parameters by land use and borehole depth a) 259 

SEC (S/cm), b) pH, c) DO (mg/L), d) U (g/L), e) HCO3 (mg/L), f) Pb (g/L), g) NO3 (mg/L), 260 

h) As (g/L), i) Cl (mg/L). DAgr = deep agricultural, DUrb = deep urban, SAgr = Shallow 261 

agricultural, SUrb = shallow urban. Solid lines show WHO drinking water guideline values 262 

(WHO 2011), dashed line shows permissible India drinking water standard (IS, 2012) if they 263 

differ from WHO standard. 264 

 265 



 266 

Figure 5. Cumulative probability plots for hydrochemistry a) SEC (S/cm), b) F (mg/L), c) 267 

HCO3 (mg/L), d) Pb (g/L), e) NO3 (mg/L), f) pH, g) U (g/L) and h) DO (mg/L). Solid lines 268 

show WHO drinking water guideline values (Orgnaisation, 2011), dashed line shows 269 

permissible India drinking water standard (IS, 2012) if they differ from WHO standard. 270 



 271 

Figure 6. Cross plots of: Cl (meq) for agricultural (agr) and urban (urb) sites vs a) NO3(agr), 272 

b)NO3(urb), c) Br(agr), d) Br(urb); cross plots of Cl/Br Mass Ratio vs e) Cl(agr), f) Cl(urb), 1=Dilute 273 

(i.e. low total dissolved solids (TDS))  groundwater (Davis et al., 2004), 2=Bulk precipitation 274 

(Alcalá and Custodio, 2008), 3=Septic tank leachate (Panno et al., 2006), 4=Sewage (Vengosh 275 

and Pankratov, 1998), marine and halite binary mixing lines shown (Katz et al., 2011), urine 276 

binary mixing line for West Bengal, India (McArthur et al., 2012); cross plots of Cl/Br Mass 277 

Ratio vs g) Pb(agr), h) Pb(urb), i) As(agr), j) As(urb), k) U(agr), l) U(urb). WHO guideline drinking 278 

water values are shown as black horizontal lines (Orgnaisation, 2011). 279 



Cross plots for selected parameters (Cl vs NO3, Br and Cl/Br and Cl/Br vs Pb, As, U) are shown 280 

in Figure 6. These plots can be used to distinguish between different sources of contamination 281 

as well as key geochemical controls. There is a positive correlation between Cl and NO3 282 

(Figures 6a and 6b) for both agricultural (R2=0.2, p<0.001) and urban land use  (R2=0.16, 283 

p=0.07) and several shallow sites within urban settings show evidence of denitrification. A 284 

strong positive correlation is observed between Cl and Br shown in Figures 6c for agricultural 285 

land use (R2=0.9, p<0.001) and urban land use in Figure 6d (R2=0.5, p<0.001). Figure 6e and 286 

6f show cross plots of Cl (mg/L) against Cl/Br mass ratio, which can be used to distinguish 287 

between different sources of Cl. Deep sites are characteristic of more pristine and dilute (low 288 

TDS) groundwater and bulk precipitation, and some plot between the mixing line of dilute 289 

unaltered groundwater and halite end members, the latter being significant only for urban land 290 

use, suggesting that halite is not naturally occurring in the Bist-Doab. Shallow groundwater 291 

sources area dominated by samples that plot along the dilute groundwater-urine mixing line for 292 

both land uses. Overall, there is a positive correlation between log (Pb) and log (Cl/Br mass 293 

ratios) for agricultural sites (R2=0.4, p<0.001) and a weak negative correlation for urban sites 294 

(R2=0.2, p<0.001), as shown in Figures 6g and 6h. The sign is in reverse for As and Cl/Br mass 295 

ratios (Figures 6i and 6j), suggesting different sources and controls. There is a weak negative 296 

correlation between log(U) and log(Cl//Br mass ratios) with higher U concentrations in shallow 297 

urban groundwater with urine and halite signatures (Cl/Br mass ratio >400), shown in Figures 298 

6k and 6l.  299 

3.3 Spatial variations in hydrochemistry 300 

Figures 7a and 7b show the spatial variability in long term groundwater levels and the fraction 301 

of low K horizons in the top 50 m below ground level across the study area. There is 302 

considerable variability in the average aquifer layer thickness (6.8 m, range 0-23.7 m) and 303 

average number (2, range 0-6) of non-aquifer units found in the top 50 m below ground level 304 

for individual lithologs across the study area. No clear spatial correlation in the fraction of low 305 

K horizons across the study area is observed; sites in close proximity have significantly 306 

different profiles.  The average fraction (cumulative depth) of non-aquifer sequences for the 307 

top 50 meters was 0.3 (range 0-0.9) (See Table S1 for details). Spatial variability for selected 308 

hydrochemistry (SEC, NO3, CFC-12 and U), is also presented in Figures 7c-7f. Overall, the 309 

highest SEC and NO3 groundwaters are clustered in the central plains and distal part of the 310 

Bist-Doab; deep groundwaters are typically below 600 S/cm and 10 mg/L as NO3. Uranium 311 



concentrations greater than 10 g/L are found across the study area, the two sites with the 312 

lowest U concentrations in both shallow and deep sites (Nawanshahr and Aima Mangat, see 313 

Figure 7f). Both also have high NO3 and CFC-12 concentrations (Figure 7d and 7e) indicating 314 

shorter residence times which suggests that U concentrations may increase with longer 315 

residence times. 316 

 317 

Figure 7. Spatial variation in a) long-term groundwater level trends (1985–2012), data source 318 

CGWB from Lapworth et al. (2015), site location names for groundwater sites are shown , b) 319 

fraction of low K lithology (plastic clay sediments) in the top 50 m below ground surface, and 320 

hydrochemistry (average of pre and post monsoon): c) SEC (S/cm), d) NO3 (mg/L), e) 321 



Chloroflurocarbon-12 (pmol/L), data from (Lapworth et al., 2015), and f) Uranium (g/L). The 322 

highlighted region in the centre of the study area shows region with highest population density 323 

(>700/km2).  324 

4. Discussion 325 

4.1 Hydrochemical depth profiles 326 

4.4.1 Anthropogenic sources of contamination  327 

Significantly higher SEC and NO3 concentrations are found in the shallow aquifer system, 328 

compared to the deeper aquifer systems, and this observation is consistent for groundwaters 329 

located in both urban and rural settings (Figure 7). This finding is consistent with other studies 330 

in India which show similar vertical variation in groundwater SEC (Misra and Mishra, 2007) 331 

and NO3 concentrations (Agrawal et al., 1999; Suthar et al., 2009) and references therein. In 332 

the Bist-Doab this reflects anthropogenic inputs to the shallow groundwater system as there is 333 

no evidence, based on stable isotope data, for significant enrichment due to evapotranspiration 334 

in this study area (Lapworth et al., 2015). In the shallow agricultural areas, the data are 335 

consistent with irrigation returns flushing nitrate and chloride (Cl) into the aquifer (O 336 

Dochartaigh et al., 2010) and the use of fertilizers. In the urban areas, widespread 337 

contamination from sanitation is a more likely explanation. The presence of DO and the high 338 

Eh values for  the majority of samples suggest that NO3 reduction is probably not regionally 339 

significant (Rivett et al., 2008). However, at some sub-oxic sites the reducing conditions may 340 

lead to NO3 reduction hot-spots within the shallow aquifer system where shallow groundwater 341 

tables are present or dissolved organic carbon concentrations are higher (Seitzinger et al., 342 

2006).  343 

In sites where agricultural land use dominates there is a good correlation between NO3 and Cl 344 

(Figure 6). For some urban sites this relationship breaks down, and there are very low NO3: Cl 345 

mass ratios, indicating denitrification processes and may result from the supply of organic 346 

carbon from urban waste-water sources (McCray et al., 2005). This assertion is further 347 

corroborated by the Cl:Br mass ratios for urban sites, which largely fall on a waste water mixing 348 

line in Figure 6 (Katz et al., 2011). At some sites shallow and deep groundwaters have low Cl 349 

and low Cl:Br mass ratios and low NO3 and Cl concentrations that suggest rainfall dominated 350 

low TDS groundwater samples (Alcalá and Custodio, 2008; Davis et al., 2004). This inference 351 

is further supported by Rao et al. (2014) who use major ion chemistry (i.e. Gibb plots and 352 



Ca/Na vs Mg/Na cross plots) which reveals that groundwater composition in this region is 353 

dominated by carbonate and silicate weathering processes but that in some instances shallow 354 

groundwaters show rainfall signatures. High Pb (>10 g/L) concentrations are found in the 355 

shallow groundwater in urban sites, as has been reported in other urban aquifers in India (e.g. 356 

Somasundaram et al., 1993) and elsewhere (Navarro and Carbonell, 2007; Rivett et al., 2011).   357 

 358 

4.1.2 Geogenic contamination  359 

Potential geogenic contaminants such as selenium, arsenic, fluoride and uranium show 360 

contrasting trends with depth, though in the case of As and U they are subtle. Observed fluoride 361 

concentrations are below 1.5 mg/L for all samples in this study (see Figure 5) comparable to 362 

other studies undertaken within the Shiwalik hills in close proximity to Bist-Doab, to the north 363 

of this study area (Singh et al., 2010). There is a general trend of increasing F concentrations, 364 

up to 0.6 mg/L, with depth, pH, HCO3 and groundwater residence time (Figure 2), irrespective 365 

of land use. There is a distinct group of shallow groundwater samples with F concentrations 366 

between 0.9-1.2 mg/L.  367 

The highest Se groundwaters are found at shallow depths within the generally more oxic part 368 

of the aquifer and consistent with other published studies (Weres et al., 1990), which have 369 

observed high Se in groundwater associated with oxidising conditions and high NO3 370 

concentrations (Figure 2). Selenium appears to have a shallow source and enhanced regional 371 

Se concentrations in soils are thought to be the source of elevated Se in shallow groundwaters 372 

in Punjab (Bajaj et al., 2011; Dhillon and Dhillon, 2003). In semi-arid areas, such as the 373 

southern parts of the Bist-Doab, Se can build up over time in the soil and once irrigated can 374 

leach soluble Se from the soils leading to elevated Se in shallow groundwater (Deverel and 375 

Fio, 1991). Under oxidising conditions the more mobile Se (VI) is leached and this can be 376 

enhanced by the presence of oxyanions such as NO3, sulphate and phosphate (Wright, 1999). 377 

Selenium concentrations found in this study (0.01-40 g/L) are comparable with a recent study 378 

undertaken across Punjab, NW India (Dhillon and Dhillon, 2003; Dhillon and Dhillon, 2016), 379 

which found a significant relationship with depth, NO3 and SEC suggesting a shallow source 380 

of Se.  381 

Uranium concentrations ranged between 0.9-70 g/L and concentrations in deep groundwater 382 

are significantly higher compared to shallow groundwater (p<0.05), with median values >15 383 



g/L. Significantly higher Mo concentrations were also found in deeper sites compared to 384 

shallow sites (Figure 2). WHO provisional guideline value for U is 30 g/L, a guideline value 385 

for U that is based on daily water consumption of 2 L/day. Comparable concentrations of U 386 

have also been reported in the shallow hard-rock (“basement”) groundwater of Andhra Pradesh, 387 

where U mineralisation is present (Brindha et al., 2011). The highest Se and U concentrations 388 

are observed in urban/peri-urban sites, which suggests that fertilisers are probably not a major 389 

source of Se and U in this area as has been hypothesised for other regions globally (Schnug 390 

and Lottermoser, 2013), it is likely that geogenic sources of U (e.g. U minerals and iron oxide 391 

coatings on aquifer grains, the prevailing oxic and alkaline conditions and carbonate 392 

complexation with U (VI)) that facilitates U mobilisation and result in high median U 393 

concentrations (Barnett et al., 2002; Kumar et al., 2011). The elevated U concentrations in the 394 

top 30 m in urban/peri-urban sites could be related to carbonate or organic matter U 395 

complexation, possibly from waste water sources, another possible process that could enhance 396 

in-situ U mobility is NO3 fertilisation which was recently proposed by Banning et al. (2013).   397 

Arsenic concentrations were found below the WHO guideline drinking water value of 10 g/L 398 

for all of the samples in this study (n=76), and showed an inverse relationship with SEC, DO 399 

and the CFC-12, a groundwater age tracer, and a positive relationship with pH (see Figure 4). 400 

The overall increase in arsenic concentration with depth (see Figure 2) and bulk groundwater 401 

residence time (Lapworth et al., 2015) and correlation with pH and DO suggest that redox-402 

speciation controls may be important for desorption of AsV from iron oxy-hydroxide surfaces 403 

leading to the release of higher arsenic concentrations into solution under alkaline conditions 404 

(Jain et al., 1999; Masscheleyn et al., 1991). Concentrations are generally below 3 g/L even 405 

in the deepest sites where median concentrations are 1.5 g/L. There are three anomalously 406 

high sites that fall between 3-9 g/L which are found in the shallow part of the aquifer system, 407 

and these higher concentrations could be related to recent Holocene deposits and/or regions of 408 

lower aquifer flushing (Shamsudduha et al., 2015). In contrast, much higher arsenic 409 

concentrations in groundwater have been reported for parts of southern Punjab and Chandigarh, 410 

to the southeast of the study area (Chakraborti et al., 2016) and over much of the region (Hundal 411 

et al., 2009; Kumar et al., 2016; Sharma et al., 2013) 412 

4.2 Vertical contaminant migration and vulnerability of deep groundwater sources 413 

Natural flow regimes and recharge in the groundwater system are highly perturbed by the 414 

sustained pumping for irrigation and drinking water supply. A conceptual diagram showing a 415 



schematic of the contrasting groundwater flow regimes pre and post pumping and the migration 416 

of anthropogenic contaminants within the aquifer system is shown in Figure 8. There is 417 

evidence of NO3 breakthrough from the shallow groundwater to depth (Figure 2 and 7) and this 418 

is likely to be enhanced in the future if the current increases in pumping from the shallow and 419 

deep aquifers continue. There is clear evidence from historical groundwater-level records that 420 

there has been a large decline in groundwater levels in shallow aquifers used for irrigation at a 421 

regional scale (ca. 20-25% of the Bist-Doab) over the last 20 years (Lapworth et al., 2015).  422 

 423 

Figure 8. Conceptual model of changes in the hydrogeology and groundwater contaminant 424 

sources and migration in the Upper Indus aquifer system as a result of intensive pumping and 425 

anthropogenic pollution, a) pre-pumping conditions ca. 1950s, b) present day conditions with 426 

intensive pumping for irrigation and domestic drinking water 427 

No obvious relationship exists between deep groundwater CFC-12 and distance from the 428 

recharge zone at the foot of the Shiwalik hills. Further, there is no clear spatial pattern in 429 



fraction of low K horizons in the upper 50 m of the aquifer (Figure 7). However, the poor 430 

spatial continuity of low K layers and the existence of high concentrations of CFC-12 and NO3 431 

in some deep groundwater points suggests that the aquifer has some vertical continuity enabling 432 

pumping induced flow. Under a natural groundwater flow regime pre-pumping groundwater 433 

residence times of the order of ca.102-103 years or more might be expected at 100-150 m deep 434 

within the aquifer (Figure 8). This is due to the vertical stratification in lithology,high aquifer 435 

storage and the low hydraulic gradients.  436 

The aquifers in this region are vulnerable to contamination from anthropogenic agricultural 437 

(e.g. NO3) urban sources (e.g. NO3, Pb) and natural geogenic sources (e.g. Se and U). In some 438 

shallow groundwaters these contaminants are approaching or exceeding WHO guideline 439 

drinking water limits (e.g. NO3, Pb and Se). These results show the potential for contaminants 440 

from surface and shallow sources to be flushed deeper into the aquifer, exceeding the capacity 441 

of the shallow aquifer to fully attenuate these contaminants through natural mechanisms such 442 

as sorption, dilution and denitrification. The enhanced pumping and resulting decline in water 443 

levels has meant that net potential recharge to the shallow aquifer has been enhanced 444 

(MacDonald et al., 2016; Shamsudduha et al., 2011), facilitating the rapid migration of 445 

recharge to depth within the aquifer system. Observed arsenic concentrations in the shallow 446 

aquifers in this region were all found to be below 10 g/L, and it is possible that this can be 447 

attributed to the oxidising conditions, low anisotropy and higher rates of flushing in the aquifer 448 

system compared with the distal parts of the Indo-Gangetic Basin and elsewhere (Shamsudduha 449 

et al., 2015; Smedley et al., 2003; Van Geen et al., 2008).  450 

In contrast to the deltaic parts of the Indo-Gangetic Basin, the regionally low anisotropy within 451 

the multi-layered aquifer system in the Bist-Doab, demonstrated in this paper using a range of 452 

environmental tracers, reveal that the deeper groundwater system is potentially vulnerable to 453 

vertical breakthrough of mobile contaminants from shallow parts of the aquifer system. This 454 

finding has important implications for the management of groundwater in this region and risks 455 

posed by geogenic and other anthropogenic contaminants (Chakraborti et al., 2011) including 456 

pesticides which are used intensively in this region (Ali et al., 2014) and have been shown to 457 

contaminate the shallow groundwater system (Tariq et al., 2004). The oxic and HCO3 enriched 458 

hydrochemistry of the deeper aquifer and shallow urban groundwater system facilitates the 459 

mobility of uranium and occurrence of elevated uranium in groundwater, in some cases 460 

exceeding 50 g/L, in a significant proportion of sites (median value of 15 g/L). Together 461 



these findings show that it is vital to continue to monitor the evolution of water quality within 462 

the top 200 m of this critical drinking and agricultural water resource. Indeed, deep 463 

groundwater pumping will continue to increase in the future to supply the growing demand for 464 

drinking water. The findings from this study are expected to be relevant across the Indo-465 

Gangetic Basin, a large and densely populated area, where similar hydrogeological typologies 466 

are found (Bonsor et al., 2017). Evidence from this region, which has a long history of intensive 467 

pumping, is useful to inform the groundwater management in regions which are likely have an 468 

intensification of groundwater use in the future. 469 

5. Conclusions 470 

• Evidence from a range of tracers (e.g. NO3, SEC and CFC-12) demonstrate that 471 

there is low regional anisotropy within the multi-layered aquifer system in this 472 

region and a significant component of vertical leakage can penetrate to deeper 473 

aquifers (>100 m) due to intensive pumping within the deeper part of the aquifer 474 

system. 475 

• Some shallow groundwaters have SEC >1500 S/cm, and nitrate concentrations 476 

>50 mg/L, with potential implications for the use of this water for irrigation in the 477 

long-term due to the build-up of dissolved constituents in the shallow aquifer and 478 

unsaturated zone. 479 

• Naturally occurring contaminants arsenic and fluoride were present in 480 

concentrations below WHO guideline drinking water limits for all sites in this study 481 

with median concentrations below 2 g/L and 0.4 mg/L respectively. 482 

• Uranium concentrations in deeper groundwater are significantly higher, >30 g/L, 483 

compared to shallow groundwater, and overall median values are >15 g/L. 484 

Enhanced uranium concentrations, >50 g/L, are also observed in urban areas 485 

where higher HCO3 concentrations are found due to urban waste water sources. 486 

• There is evidence of NO3 breakthrough from the shallow groundwater to depth and 487 

this may to be enhanced in the future if the current increases in pumping from the 488 

deep aquifers continue. This also has implications for the vulnerability of deep 489 

drinking water sources to contamination by pesticides and other anthropogenic 490 

contaminants. 491 

 492 
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